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Abstract. In this work, we propose finite element schemes for the numerical approximation of nematic liquid

crystal flows, based on a saddle-point formulation of the director vector sub-problem. It introduces a Lagrange

multiplier that allows to enforce the sphere condition. In this setting, we can consider the limit problem (without

penalty) and the penalized problem (using a Ginzburg-Landau penalty function) in a unified way. Further, the

resulting schemes have an stable behavior with respect to the value of the penalty parameter, a key difference with

respect to the existing schemes. Two different methods havebeen considered for the time integration. First, we

have considered an implicit algorithm that is unconditionally stable and energy preserving. The linearization of

the problem at every time step value can be performed using a quasi-Newton method that allows to decouple fluid

velocity and director vector computations for every tangent problem. Then, we have designed a linear semi-implicit

algorithm (i.e. it does not involve nonlinear iterations) and proved that it is unconditionally stable, verifying a discrete

energy inequality. Finally, some numerical simulations are provided.
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1. Introduction. Liquid crystals are materials that exhibit intermediate transitions from

liquid to solid made of anisotropic macro-molecules of similar size. Typically, liquid crystal

molecules are represented as rods. The nematic phase is considered the simplest liquid crystal

phase where the elongated molecules tend to be locally parallel to some preferential direction.

However the molecular centers of gravity are allowed to flow freely as in an isotropic fluid,

i.e. without a positional order. This uniaxial orientational order is typically modelled by a

unit vector called the director vectord. The first phenomenological theory describing statical

configurations of a nematic liquid crystal was proposed by Oseen [27] and Frank [15]. They

suggested that the director field corresponds to a minimum ofthe so-called Oseen-Frank free-

energy functional, which in the most elementary form is the Dirichlet energy

(1.1) E(d) = K

∫

Ω

|∇d|2 dx

subject to the sphere condition;K is an elastic constant.

It is known that orientational orders affect all the macroscopic properties of the fluid

velocity, introducing an anisotropic stress tensor in the linear momentum equations. The
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continuum theory of nematic liquid crystals was formulatedby Ericksen [11, 12] and Leslie

[21, 20], containing the Oseen-Frank elastic energy.

Our interest is to construct numerical approximations for the motion of a nematic liquid

crystal governed by the simplification of the Ericksen-Leslie equations proposed by Lin in

[22]. This problem has numerically been treated using the Ginzburg-Landau penalty prob-

lem in order to enforce the sphere constraint. In Section 2 weformulate the problem in the

saddle-point framework. Such a formulation allows us to enforce the sphere condition with or

without penalty in a single setting. One benefit of this approach is that an energy estimate is

obtained for both cases. In Section 3 we present a semi-discrete scheme based on low-order fi-

nite elements for approximating all the unknowns. This scheme is unconditionally stable and

its solution satisfies a discrete energy estimate. In Section 4, three time-stepping schemes are

considered. The first two schemes are nonlinear, with a backward-differencing and mid-point

discretization, respectively. Different linearizationsfor these schemes are studied in Sec-

tion 5. The third scheme is linear, implicit with respect to the linear term and semi-implicit

with respect to the nonlinear term. The three schemes are again unconditionally stable. In

Section 6, we test our numerical algorithms with an initial smooth condition and a initial con-

dition with two defect points. Finally, we compare the numerical approximations for a test

with analytical solution.

2. Problem statement. A micro-macroscopic continuum theory has been developed

for the modeling of nematic liquid crystal flows (see [10]), that characterizes this physi-

cal phenomenon in terms of the (microscopic) molecular orientation and the (macroscopic)

velocity-pressure variables. The simplified Ericksen-Leslie system consists of a set of partial

differential equations that reads as follows: findd, u, andp̃ such that

(2.1)

∂td+ (u · ∇)d− γ∆d− γ|∇d|2d = 0,

|d| = 1,

∂tu+ (u · ∇)u− ν∆u+∇p̃+ λ∇ · ((∇d)t∇d) = g,

∇ · u = 0,

in (x, t) ∈ Ω × (0, T ), whereΩ ⊂ R
3 is the spatial bounded domain filled by the liquid

crystal, and[0, T ] the time interval. The physical constants are the fluid viscosity ν > 0, an

elasticity constantλ > 0 and a relaxation timeγ > 0. The unknownd(x, t) ∈ R
3 is the

director vector that determines the orientation of the molecules,u(x, t) ∈ R
3 is the velocity

of the flow and̃p(x, t) ∈ R its pressure. The datag(x, t) ∈ R
3 is a force term. The gradient

operator is defined as∇x = ∂jxi and(∇x)t denotes its transpose. In the following, we will

consider that the boundary conditions∂nd = 0 andu = 0 are satisfied a.e. on the boundary

∂Ω if we do not specify the contrary;∂nd = ∇d · n is the normal derivative wheren is

the outward normal vector to the boundary. Initial boundaryconditionsd(x, 0) = d0 (with

|d0| = 1 a.e. inΩ), andu(x, 0) = u0 (with ∇ · u0 = 0 in Ω andu0 = 0 on∂Ω).
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In fact, system (2.1) is a simplification of the classical Ericksen-Leslie theory of liquid

crystals obtained after assuming that some physical elastic constants are equal (see [10]).

In general, this assumption is not true, but the mathematical nature of the system does not

change, and the complications related to its numerical approach are still present in the simpli-

fied problem. For this reason, system (2.2) has been subject of many mathematical analyses

(see [17, 25, 26, 4]).

The saddle-point formulation for (2.1) consists in findingd, u, q, andp̃ such that

∂td+ (u · ∇)d+ γ(−∆d+ q d) = 0,

d · d = 1,(2.2)

∂tu+ (u · ∇)u− ν∆u+ λ∇ · ((∇d)t∇d) +∇p̃ = g,

∇ · u = 0,

whereq(x, t) ∈ R is the Lagrange multiplier used to enforce the restriction|d|2 = 1 a.e. in

Ω × (0, T ) (| · | denotes the Euclidean norm). It is interesting to observe that problem (2.2)

has only quadratic nonlinear terms whereas problem (2.1) involves cubic nonlinear terms.

In top of the open questions related to the Navier-Stokes equations, the nonconvex con-

straint overd makes the theoretical analysis of the previous problem verydifficult to ap-

proach. So, a penalized version is usually considered, in which the constraint|d|2 = 1

is weakly enforced by adding the Ginzburg-Landau (GL) function fǫ(d), for 0 < ǫ ≪ 1,

wherefǫ(d) := 1
ǫ2 (d · d − 1)d. We will also make use of the potential functionFǫ(d) :=

1
4ǫ2 (d · d− 1)2; note that∇dFǫ(d) = fǫ(d). The GL penalized problem then reads

∂td+ (u · ∇)d+ γ(−∆d+ fǫ(d)) = 0,

∂tu+ (u · ∇)u− ν∆u+ λ∇ · ((∇d)t∇d) +∇p̃ = g,(2.3)

∇ · u = 0,

supplemented with the respective initial and boundary conditions. In fact, it is straightforward

to note that the GL penalized problem (2.3) can also be castedin a saddle-point form as

follows:

∂td+ (u · ∇)d+ γ(−∆d+ q d) = 0,

d · d− ǫ2q = 1,(2.4)

∂tu+ (u · ∇)u− ν∆u+ λ∇ · ((∇d)t∇d) +∇p̃ = g,

∇ · u = 0,

whereq = 1
ǫ2 (d · d − 1), henceq d = fǫ(d). The clear advantage of (2.4) with respect to

(2.3) is the fact that it formally allowsǫ = 0, i.e. it includes the limit and penalized problem

in a unified formulation. This unified approach also permits to make connections between
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existing methods that seemed essentially different. Further, the saddle-point approach gives

a clue about how to deal with the mathematical analysis of thelimit problem. The stability of

the multiplierq in the limit case can only be attained via an inf-sup conditionsà la Babuska–

Brezzi, with a formidable complication: the inf-sup condition is nonlinear.

For the subsequent numerical analysis, we will consider a reformulation of the coupling

term in the fluid momentum equation. After some manipulation, the coupling term can be

re-written as:

∇· ((∇d)t∇d) = ∂j(∂jdk∂idk) = ∂2jdk∂idk +
1

2
∂i(|∂jdk|

2) = (∇d)t∆d+
1

2
∇(|∇d|2).

Using the second equation in (2.4), we have:

q(∇d)td =
1

2
q∇(|d|2) =

1

2
q∇(ǫ2q) =

ǫ2

4
∇q2.

Using thed-system in (2.4), we get:

∇ · ((∇d)t∇d) = (∇d)t(∆d− q d) +
1

2
∇(|∇d|2 +

ǫ2

2
q2)

=
1

γ
(∇d)t(∂td+ (u · ∇)d) +

1

2
∇(|∇d|2 +

ǫ2

2
q2).

Note that for (2.3) one obtainsq(∇d)td = q 1
2∇(|d|2) = 0. Then, we have the above

equality forǫ = 0. We can absorb the second term in the pressure gradient by using the

modified pressurep = p̃ + λ
2 |∇d|2 + ǫ2

4 q
2, leading to the following version of the fluid

momentum equation:

(2.5) ∂tu+ (u · ∇)u− ν∆u+
λ

γ
(∇d)t(∂td+ (u · ∇)d) +∇p = g.

In fact, these manipulations are not new for the GL penalizedproblem (see e.g. [17, 4]). This

reformulation will allow us to obtain finite element approximations with an energy estimate

that mimics the one at the continuous level.

Since the aim of this work is to consider a Faedo-Galerkin approximation of system (2.3)

or (2.4) based on finite element spaces, we consider the problem in a weak sense as follows:

find (d(t), q(t),u(t), p(t)) ∈ W 1,3(Ω) ∩ L∞(Ω)×H−1
ǫ (Ω)×H1

0 (Ω)×L
2
0(Ω) such that

(∂td, d̄) + γ(∇d,∇d̄) + c(u,d, d̄) + γbd(q,d, d̄) = 0,(2.6a)

bd(q̄,d,d)− ǫ2 (q, q̄) = 〈1, q̄〉 ,(2.6b)

(∂tu, ū) + ν(∇u,∇ū) + c(u,u, ū)

+
λ

γ
c(ū,d, ∂td+ (u · ∇)d) − bu(p, ū) = 〈g, ū〉 ,(2.6c)

bu(p̄,u) = 0,(2.6d)

https://www.researchgate.net/publication/220179768_Finite_Element_Approximations_of_the_Ericksen-Leslie_Model_for_Nematic_Liquid_Crystal_Flow?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/267436973_A_linear_mixed_finite_element_scheme_for_a_nematic_Ericksen-Leslie_liquid_crystal_model?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==


5

hold for any(d̄, q̄, ū, p̄) ∈ H1(Ω)×H−1
ǫ (Ω)×H1

0 (Ω)×L
2
0(Ω) a.e. int ∈ (0, T ). The forms

associated to this problem are defined as

bd(q,d, d̄) = (q,d · d̄), bu(p, ū) = (p,∇ · ū) , c(u,v, ū) = 〈(u · ∇)v, ū〉.

Note that the elastic tensor effect in theu-system is denoted by the same formc(·, ·, ·). Here-

after,(·, ·) denotes the inner product inL2(Ω), with ‖ · ‖ the associated norm, and〈·, ·〉 the

duality product between(H1(Ω))′ andH1(Ω). Since the Lagrange multiplierq will lose

regularity fromǫ > 0 to ǫ = 0, we consider the Banach spaceH−1
ǫ (Ω); for anyǫ > 0 it is

the Hilbert spaceL2(Ω) but endowed with the normǫ‖ · ‖ + ‖ · ‖−1, whereas forǫ = 0 it is

the dual space ofH1(Ω).

THEOREM 2.1. The continuous problem (2.6) withǫ = 0 satisfies the following energy

equality:

‖u(t)‖2 + λ‖∇d(t)‖2 + 2

∫ t

0

(ν‖∇u(s)‖2 +
λ

γ
‖∂td(s) + (u(s) · ∇)d(s)‖2)ds

= ‖u0‖2 + λ‖∇d0‖2 + 2

∫ t

0

〈g(s),u(s)〉 ds,(2.7)

that holds for anyt ∈ [0, T ]. On the other hand, forǫ > 0, the system satisfies

‖u(t)‖2 + λ‖∇d(t)‖2 + 2

∫ t

0

(ν‖∇u(s)‖2 +
λ

γ
‖∂td(s) + (u(s) · ∇)d(s)‖2)ds

+ λ
ǫ2

2
‖q(t)‖2 = ‖u0‖2 + λ‖∇d0‖2 + λ

ǫ2

2
‖q0‖2 + 2

∫ t

0

〈g(s),u(s)〉 ds,(2.8)

for anyt ∈ [0, T ], whereq0 = (|d0|2 − 1)/ǫ2.

Proof. Definingw(d,u) := ∂td+ (u · ∇)d the following identity holds:

λ

γ
c(u,d,w) =

λ

γ
‖w‖2 −

λ

γ
(∂td,w).(2.9)

On the other hand, we can re-write Eq. (2.6a) as:

(w, d̄) + γ(∇d,∇d̄) + γbd(q,d, d̄) = 0.

Takingd̄ = ∂td, we easily get:

(2.10) −(w, ∂td) =
γ

2
∂t‖∇d‖2 + γ bd(q,d, ∂td).

The time derivative of Eq. (2.6b) leads to

2 bd(q̄, ∂td,d) + ǫ2(∂tq, q̄) = 0,

which for q̄ = q allows to write the last term of (2.10) as follows

bd(q,d, ∂td) =
ǫ2

2
(q, ∂tq) =

ǫ2

4
∂t‖q‖

2.
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Hence, we finally have that (2.9) is expressed as:

λ

γ
c(u,d,w) =

λ

γ
‖w‖2 +

λ

2
∂t‖∇d‖2 +

λǫ2

4
∂t‖q‖

2.

The desired energy equality is obtained testing (2.6c)-(2.6d) against(u, p), using the previous

equality and the skew-symmetry propertyc(u, ū, ū) = 0 for anyū ∈ H1
0 (Ω). We get:

∂t

{
‖u‖2 + λ‖∇d‖2 +

λǫ2

2
‖q‖2

}
+ 2

(
ν‖∇u‖2 +

λ

γ
‖w‖2

)
= 2 〈g,u〉

a.e. in(0, T ). For ǫ = 0, the energy equality (2.7) is obtained after integrating the previous

equation in the time interval(0, t). The energy equality for the penalized problem (2.8) is

proved by noting that Eq. (2.6b) holds att = 0 with q0 = (|d0|2 − 1)/ǫ2 for ǫ > 0.

Pressure stability relies on the well-known inf-sup condition:

inf
p̄∈L2

0
(Ω)

sup
ū∈H1(Ω)

bu(p̄,∇ · ū)

‖p̄‖‖ū‖1
≥ βu > 0,

which is known to be true due to the surjectivity of the divergence operator fromH1
0 (Ω) onto

L2
0(Ω); L

2
0(Ω) is the space ofL2(Ω) functions with zero mean value. We refer to [31, 18]

for some regularity results for the pressure in the transient Navier-Stokes system. The control

over the Lagrange multiplierq is not so well understood. The GL penalty version introduces

L2(Ω) control overq that is lost when the penaltyǫց 0. So, this stability does not apply for

the singular limitǫ = 0, and the well-posedness of the original problem can only rely on an

inf-sup condition. The inf-sup condition

inf
q̄∈H−1(Ω)

sup
d̄∈H1

0
(Ω)

bd(q̄,d, d̄)

‖q̄‖−1‖d̄‖1
≥ βd(d) > 0,(2.11)

has been proved very recently in [19] under some regularity assumptions overd in the frame

of the steady harmonic maps problem, which is (2.6a)-(2.6b)without the time derivative and

convective terms. This regularity is much stronger than theone that the energy estimate (2.7)

provides ford.

With regard to the long-term behavior for a zero forcing term(g = 0), we can see that

for t→ ∞ the energy dissipation in (2.7) goes to zero:

ν‖∇u(t)‖2 +
λ

γ
‖∂td(t) + (u(t) · ∇)d(t)‖2 → 0,

henceu goes to the trivial stationary pointu = 0 and ‖∂td‖ → 0. Thed component

of the solution exhibits non-trivial stationary states. Such a stationary states are minima of

the Oseen-Frank free-energy function (1.1). It means that there exist steady solutions with

‖∇d‖ > 0. This fact is shared by both the limit and penalized case. Forthe penalized case,

there is an additional term in the energy, which is the penalty energyλǫ
2

2 ‖q‖2.
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3. Spatial discretization. Let Th be a partition ofΩ into a set of finite elements{K}.

For every elementK, we denote byhK its diameter, and set the characteristic mesh size as

h = maxK∈Th
hK . The space of polynomials of degree less or equal tok > 0 in a finite

elementK is denoted byPk(K). The space of continuous piecewise polynomials is defined

as

(3.1) Pk
h =

{
vh ∈ C0(Ω) such that vh|K ∈ Pk(K) ∀K ∈ Th

}
.

These approximations are usually calledH1-conforming approximations, because of the

inter-element continuity. The spacePk
h is spanned by the set of nodal functions{πa

h}a∈Nh
,

whereNh is the set of nodes in the mesh. Therefore, any functionϕh ∈ Pk
h can be uniquely

determined in terms of its nodal values{ϕa}a∈Nh
as

∑
a∈Nh

ϕaπa
h (see [5, 13]). The nodal

interpolation of a continuous functionϕ ∈ C0(Ω) is denoted byπh(ϕ) =
∑

a∈Nh
ϕ(xa)πa

h

Let us consider a conforming finite element discretization of problem (2.6). The finite

element spaceDh for the director vectordh is chosen to be(P1
h)

d. We also consider the

spaceQh for the Lagrange multiplierqh to beP1
h. The constraint form reads as

bd(qh,dh, d̄h) = (qh,dh · d̄h).(3.2)

In this case, the constraint is satisfied in a discrete sense,as the incompressibility condition

for the fluid problem. In the frame of harmonic maps, Huet al. have considered the following

modification of the constraint form in [19]:

bd(qh,dh, d̄h)h = (qh, πh(dh · d̄h)).(3.3)

Sinceπh(·) ∈ Qh with the previous choice of finite element spaces, the constraint equation

amounts to saying that|da| = 1 for any a ∈ Nh. Furthermore, the finite element pair

Dh×Qh has been recently proved to satisfy the corresponding discrete version of the inf-sup

condition (2.11):

inf
qh∈Qh

sup
d̄h∈Dh

bd(qh,dh, d̄h)h

‖qh‖−1‖d̄h‖1
≥ βh,d(dh) > 0,(3.4)

in [19]. It has allowed to prove the well-posedness of the tangent problem that arises from the

full Newton linearization of the steady-state harmonic maps problem, in the vicinity of a local

minimum under strong regularity assumptions. In this proof, the fact that the projectionπh(·)

has been used is necessary, so it does not apply tobd(qh,dh, d̄h). In any case, numerical

experimentation says that this choice is also stable for theproblems considered in Section 6.

REMARK 3.1. Let us recall that, for Dirichlet boundary conditions overdh, the discrete

inf-sup condition (3.4) is violated when there are elementsK ∈ Th with all the nodes con-

strained; we can easily check that there is no control of the Lagrange multiplier at a boundary

node that is connected to boundary nodes only. This type of meshes usually leads to prob-

lems and should be avoided. In any case, an alternative way tocircumvent this problem is to

https://www.researchgate.net/publication/248071340_Theory_Practice_of_Finite_Elements?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/38443465_A_Saddle_Point_Approach_to_the_Computation_of_Harmonic_Maps?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/38443465_A_Saddle_Point_Approach_to_the_Computation_of_Harmonic_Maps?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/235409926_The_Mathematical_Theory_of_Finite_Element_Method?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
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consider homogeneous Dirichlet boundary conditions overq too, as proposed in [19]. Since

|da| = 1 for appropriate boundary data,qa = 0 is an appropriate condition.

In [19], the saddle-point version of the harmonic maps problem is used together with

a Newton linearization, and the corresponding inf-sup condition for the tangent problem is

proved. As an alternative, it could be used for the minimization step of the linearized problem

in the popular Alouges’ method proposed in [1] (see also [3, 2] and Section 5.3). In the

frame of liquid crystals, we consider two different solvers, that are extensions of these two

approaches to the problem at hand.

Let us point out that thedh−qh block matrices in the corresponding linear system are di-

agonal matrices when using closed (nodal) integration, andso computationally more efficient;

closed (nodal) integration of the constraint terms is the way to get a lumped mass matrix for

Lagrangian elements. The closed integration of the constraint trilinear form consists of:

bd(qh,dh, d̄h)hs =
∑

a∈Nh

qada · d̄a

∫

Ω

πa
h dx = (qh,dh · d̄h)s,(3.5)

where the sub-labels indicates lumped sub-integration of the term. The nodal enforcement

of the restriction is even more explicit in this case. Here and in the sequel, we will also use

the sub-indexs for inner-products(f, g)s =
∫
Ω
πh(fg) dx andL2-discrete norm‖f‖s =

(f, f)
1/2
s involving finite element functions to denote that closed integration is used.

REMARK 3.2. The nodal enforcement of the constraint could also be understood as

a collocation method for the constraint equation. In this case, the discrete version of the

Lagrange multiplier space consists ofQh = {δ(xa), a ∈ N}, whereδ(xa) : C0(Ω) → R

is defined by〈δ(xa), v〉 = v(xa) for v ∈ C0(Ω). This approach to the problem is not so

powerful, because it can only be used for the limit case, since the penalty term is ill-posed.

For the Navier-Stokes sub-problem we consider the standardMINI element, in which the

pressure finite element spacePh is taken asP1
h, and the velocity spaceVh is (P1

h)
d ⊕ (Bh)

d,

where

Bh = {vb such that vb|K ∈ P3(K), vb|∂K = 0, vb|K ≥ 0, ∀K ∈ Th}

is the space of bubbles (cubic in dimension 2) at every element (see e.g. [7]). This velocity-

pressure finite element pair is known to satisfy the discreteinf-sup condition

inf
p̄h∈Qh

sup
ūh∈Vh

bu(p̄h, ūh)

‖p̄h‖‖ūh‖1
≥ βu,h ≥ 0

for βu,h uniform with respect toh. Onwards, we consider the skew-symmetric form (for

Dirichlet boundary conditions) of the convective term in theuh problem:

c̃(uh,vh, ūh) = ((uh · ∇)vh, ūh) +
1

2
((∇ · uh)vh, ūh).

https://www.researchgate.net/publication/51992242_Mixed_and_Hybrid_Finite_Element_Method?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/220179606_A_Convergent_and_Constraint-Preserving_Finite_Element_Method_for_the_p_-Harmonic_Flow_into_Spheres?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/262165779_A_New_Algorithm_For_Computing_Liquid_Crystal_Stable_Configurations_The_Harmonic_Mapping_Case?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/38443465_A_Saddle_Point_Approach_to_the_Computation_of_Harmonic_Maps?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/38443465_A_Saddle_Point_Approach_to_the_Computation_of_Harmonic_Maps?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/27299322_Stability_and_Convergence_of_Finite-Element_Approximation_Schemes_for_Harmonic_Maps?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
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The finite element approximation of system (2.6) reads as: find (dh(t), qh(t),uh(t), ph(t)) ∈

Dh×Qh×Vh×Ph such that

(∂tdh, d̄h) + γ(∇dh,∇d̄h) + c(uh,dh, d̄h) + γbd(qh,dh, d̄h)δρ = 0,(3.6a)

bd(q̄h,dh,dh)δρ − ǫ2 (qh, q̄h)ρ = (1, q̄h)ρ,(3.6b)

(∂tuh, ūh) + ν(∇uh,∇ūh) + c̃(uh,uh, ūh)

+
λ

γ
c(ūh,dh, ∂tdh + (uh · ∇)dh)− bu(ph, ūh) = 〈g, ūh〉 ,(3.6c)

bu(p̄h,uh) = 0,(3.6d)

at almost everyt ∈ (0, T ], for any(d̄h, q̄h, ūh, p̄h) ∈ Dh ×Qh × Vh × Ph. The sub-labelδ

takes the valuesh when usingπh(·) in bd; ρ takes the values when sub-integration is used.

REMARK 3.3. Many existing liquid crystal finite element approximationsinvolve an

auxiliary variable (see e.g. [17, 4]). We can re-formulate the problem, by introducing an

auxiliary variablewh and its corresponding finite element spaceWh; Eq. (3.6a) is replaced

by

(wh, d̄h) + γ(∇dh,∇d̄h) + γ bd(qh,dh, d̄h)δρ = 0,

(∂tdh, w̄h) + c(uh,dh, w̄h)− (wh, w̄h) = 0,

for any(d̄h, w̄h) ∈ Dh ×Wh. Then, the elastic stress termc(ūh,dh, ∂tdh + (uh · ∇)dh) is

replaced by
∫

Ω

(∇dh)
twh · ūhdx.

This approach would in principle introduce extra unknowns to the problem, which would

preferably be avoided. In most existing liquid crystal algorithms, always for the penalized

GL problem, the space forWh is taken equal toDh, i.e. (P1
h)

d (see [17, 4]). The method is

proved to be stable and convergent but, since(uh ·∇)dh /∈ Dh, the problem forwh is global

andwh cannot be locally eliminated. However, takingWh ≡ (Vh · ∇)Dh andDh ⊂ Wh,

we simply havewh = ∂tdh +(uh · ∇)dh. Implicitly, this is the approach that has been used

above and the one used in [23] for the approximation of the penalized GL method.

The saddle-point approach has a clear advantage with respect to the previous finite ele-

ment approximations of liquid crystal flows. In the frame proposed herein, we can approxi-

mate numerically both the limit problem and GL penalized versions using the same numerical

approximation. Existing algorithms [23, 25, 26, 4, 17] could not takeǫ arbitrarily small, since

the condition number of the matrix blows up withǫ−2. As a rule of thumb,ǫ = 0.05 was

the limit value used in numerical experiments. Since the stability of the saddle-point struc-

ture asǫ ց 0 is kept by virtue of the discrete inf-sup condition (3.4), the linear system is

non-singular even for the limit problem. In the numerical experiments section we analyze

https://www.researchgate.net/publication/222410462_Simulations_of_singularity_dynamics_in_liquid_crystal_flows_A_C0_finite_element_approach?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/222410462_Simulations_of_singularity_dynamics_in_liquid_crystal_flows_A_C0_finite_element_approach?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/220179768_Finite_Element_Approximations_of_the_Ericksen-Leslie_Model_for_Nematic_Liquid_Crystal_Flow?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/220179768_Finite_Element_Approximations_of_the_Ericksen-Leslie_Model_for_Nematic_Liquid_Crystal_Flow?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/267436973_A_linear_mixed_finite_element_scheme_for_a_nematic_Ericksen-Leslie_liquid_crystal_model?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/231947844_Mixed_Methods_for_the_Approximation_of_Liquid_Crystal_Flows?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/238189399_Approximation_of_Liquid_Crystal_Flows?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
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all these properties, identifying an interesting assymptotic behavior asǫ ց 0 that has not

been observed yet. In any case, it is interesting to relate our approach with the existing GL

penalized techniques, i.e. forǫ > 0. From (3.6b) with the constraint as in (3.2), the penalty

function takes the value

qh =
1

ǫ2
PQh

(dh · dh − 1) .

So,qhdh acts asfhǫ (dh) =
1
ǫ2PQh

(dh·dh−1)dh in the penalized finite element formulations.

Taking a Lagrange multiplier space such thatDh · Dh ⊂ Qh, the penalized saddle-point

problem can be written in the frame of the GL approximation bytaking fǫ(dh) := 1
ǫ2 (dh ·

dh − 1)dh. We can easily check that it coincides with the choice offǫ(dh) in [17, 25, 26].

For first order finite element approximations of the directorfield, we can easily prove that

fǫ(dh) = 0 is only possible fordh a constant function. So, these schemes exhibit a locking

phenomenon asǫց 0. This choice is not appropriate for the limit problem.

When using the constraint form as in (3.3) withQh asP1
h, we have:

qh =
1

ǫ2
PQh

(πh(dh · dh − 1)) =
1

ǫ2
(πh(dh · dh − 1)) ,

sincePQh
(πh(·)) = πh(·). It is also interesting to note that, when consideringbd as in (3.5),

the evaluation ofqh is local at every node of the mesh, with the expression:

qah =
1

ǫ2
(da

h · da
h − 1) ∀ a ∈ Nh.

Using this term inbd(qh,dh, d̄h)hs, we obtain:

bd(qh,dh, d̄h)hs =
∑

a∈Nh

1

ǫ2
(da

h · da
h − 1)da

h · d̄a
h

∫

Ω

πadx.

This penalization term is in fact the one used in [4] for the GLterm. The method proposed by

Walkington and Liu in [25, 26] consideredC1 Hermite polynomial approximations for which

the lumping technique cannot be used.

4. Time discretization. Let us consider a uniform partition of the time interval[0, T ]

into N elements(tn, tn+1) for n = 0, ..., N − 1, wheretn := nk. The element size is

denoted byk := T
N . The mid-point value is written asfn+ 1

2 := fn+1+fn

2 . We also denote
fn+1

−fn

k asδtfn+1. Since the forcing termg(t) does not have pointwise sense in time, we

definegn+1 := 1
k

∫ tn+1

tn g(s) ds andgn+ 1
2 := gn+1.

We will design both implicit and semi-implicit schemes thatsatisfy a discrete version of

the energy equality (2.7) forǫ = 0 or (2.8) forǫ > 0. Both the implicit and semi-implicit

scheme are unconditionally stable. Further, the semi-implicit scheme is linear. As far as we

know, this is the first linear scheme that exhibits unconditional stability.

https://www.researchgate.net/publication/220179768_Finite_Element_Approximations_of_the_Ericksen-Leslie_Model_for_Nematic_Liquid_Crystal_Flow?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/267436973_A_linear_mixed_finite_element_scheme_for_a_nematic_Ericksen-Leslie_liquid_crystal_model?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/231947844_Mixed_Methods_for_the_Approximation_of_Liquid_Crystal_Flows?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/231947844_Mixed_Methods_for_the_Approximation_of_Liquid_Crystal_Flows?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/238189399_Approximation_of_Liquid_Crystal_Flows?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/238189399_Approximation_of_Liquid_Crystal_Flows?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
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4.1. Implicit algorithm. The most straightforward approximation of the problem at

hand consists of a Backward-Euler first order time integration. In this case, givendn
h ∈ Dh

andun
h ∈ Vh, the problem at the time steptn+1 reads as: find(dn+1

h , qn+1
h ,un+1

h , pn+1
h ) ∈

Dh ×Qh × Vh × Ph such that

(δtd
n+1
h , d̄h) + γ(∇dn+1

h ,∇d̄h)

+ c(un+1
h ,dn+1

h , d̄h) + γbd(q
n+1
h ,dn+1

h , d̄h)δρ = 0,(4.1a)

bd(q̄h,d
n+1
h ,dn+1

h )δρ − ǫ2
(
qn+1
h , q̄h

)
ρ
= (1, q̄h)ρ,(4.1b)

(δtu
n+1
h , ūh) + ν(∇un+1

h ,∇ūh) + c̃(un+1
h ,un+1

h , ūh)

+
λ

γ
c(ūh,d

n+1
h , δtd

n+1
h + (un+1

h · ∇)dn+1
h )− bu(p

n+1
h , ūh) =

〈
gn+1, ūh

〉
,(4.1c)

bu(p̄h,u
n+1
h ) = 0,(4.1d)

for any(d̄n+1
h , q̄n+1

h , ūn+1
h , p̄n+1

h ) ∈ Dh ×Qh × Vh × Ph. However, this first order approx-

imation is only conditionally stable. The proof of an energyequality for this fully discrete

system follows the line of the one for the continuum problem.In order to provedh-stability,

we have to test the equation for the director field (4.1a) againstδtd
n+1
h , appearing the term

bd(q
n+1
h ,dn+1

h , δtd
n+1
h )δρ =

1

2k
(qn+1

h , |dn+1
h |2 − |dn

h|
2 + |dn+1

h − dn
h|

2)ρ,

where 1
2k (q

n+1
h , |dn+1

h −dn
h|

2)ρ cannot be controlled. So, a straightforward first order approx-

imation of the problem at hand is not appropriate. In any case, in the numerical experiments

we have performed, this instability has not been activated.One way to circumvent that prob-

lem is to replace equation (4.1b) by the discrete time derivative bd(q̄h,d
n+1
h , ∂td

n+1
h )δρ =

ǫ2

2 (δtq
n+1
h , q̄h)ρ; see Subsection 4.2 for more details and a semi-implicit version of (4.1).

Alternatively, in order to get an unconditionally stable algorithm, we have considered a

Crank-Nicolson time integration scheme. Analogously, givendn
h ∈ Dh andun

h ∈ Vh, the

problem at the time steptn+1reads as: find(dn+1
h , qn+1

h ,un+1
h , pn+1

h ) ∈ Dh×Qh×Vh×Ph

such that

(δtd
n+1
h , d̄h) + γ(∇d

n+ 1
2

h ,∇d̄h) + c(u
n+ 1

2

h ,d
n+ 1

2

h , d̄h)

+ γbd(q
n+ 1

2

h ,d
n+ 1

2

h , d̄h)δρ = 0,(4.2a)

bd(q̄h,d
n+1
h ,dn+1

h )δρ − ǫ2
(
qn+1
h , q̄h

)
ρ
= 〈1, q̄h〉ρ ,(4.2b)

(δtu
n+1
h , ūh) + ν(∇u

n+ 1
2

h ,∇ūh) + c̃(u
n+ 1

2

h ,u
n+ 1

2

h , ūh)− bu(p
n+ 1

2

h , ūh)

+
λ

γ
c(ūh,d

n+ 1
2

h , δtd
n+1
h + (u

n+ 1
2

h · ∇)dn+ 1
2 ) =

〈
gn+ 1

2 , ūh

〉
,(4.2c)

bu(p̄h,u
n+ 1

2

h ) = 0,(4.2d)

for any(d̄h, q̄h, ūh, p̄h) ∈ Dh × Qh × Vh × Ph. We can check that the restriction overdh

(4.2b) has been enforced at the time nodes, instead of mid-points. The reason is that, in its
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present form, the method is unconditionally stable. This system satisfies the semi-discrete

version in time of the energy equality in Theorem 2.1, and so it is energy preserving for the

limit case withǫ = 0. It is interesting to note the effect of the initial condition d0
h in the

equality.

As we will infer from the next theorem, we must take care of thechoice ford0
h. An

initial condition that does not satisfy the discrete constraint (4.2b) introduces an initial energy

that blows up asǫց 0. The use of this kind of initial approximation is ill-posed for the limit

problem.1 On the other hand, this initial condition has been used as a test problem in some

numerical articles based on GL penalty problem approximations (see [23, 25, 26, 4, 17]). We

refer to the numerical experimentation section for more details.

In the limit case, for ad0 with |d0| = 1 a.e. inΩ, a typical finite element projection,

e.g. Scott-Zhang or Clement projector, will fail to satisfythe discrete constraint (4.2b). As

an alternative when the constraint form (3.2) is used, we canconsider the following projector

for d0: givend0, findd0
h ∈ Dh andq0h ∈ Qh such that

γ
(
∇d0

h,∇d̄h

)
+ γbd(q

0
h,d

0
h, d̄h) = γ

(
∇πh(d

0),∇d̄h

)
, ∀d̄h ∈ Dh,(4.3a)

bd(q̄h,d
0
h,d

0
h) = (1, q̄h), ∀q̄h ∈ Qh.(4.3b)

Assuming thatd0 ∈ H2(Ω) ∩W 1,∞(Ω), it has been proved in [19, Theorem 5.3] that this

harmonic maps problem admits a unique solutiond0
h such that‖d0

h − d0‖1 ≤ Ch.

The use of a constraint-preserving Riestz projector is basic, in order to get an admisible

initial conditiond0
h for the limit problem. In case of using the nodal enforcement, i.e. the

constraint form (3.3) or (3.5), a more straightforward approach consists on projectingd0

with a typical finite element projectorPhd
0 anda posteriorinormalize the value at each

node(d0
h)

a = (Phd
0)a/|(Phd

0)a|.

In the next theorem, we prove that the scheme (4.2) satisfies adiscrete counterpart of the

energy equalities given in Theorem 2.1. As a result, the method is unconditionally stable.

THEOREM 4.1. The discrete solution of system (4.2) forǫ = 0 satisfies the following

energy equality:

‖un
h‖

2 + λ‖∇dn
h‖

2 + 2νk

n−1∑

m=0

‖∇u
m+ 1

2

h ‖2 + 2
λ

γ
k

n−1∑

m=0

‖δtd
m+1
h + (u

m+ 1
2

h · ∇)d
m+ 1

2

h ‖2

= 2k

n−1∑

m=0

〈
gm+ 1

2 ,u
m+ 1

2

h

〉
+ ‖u0

h‖
2 + λ‖∇d0

h‖
2,(4.4)

for any n ∈ {0, 1, ..., N}, where the initial conditiond0
h satisfies the discrete constraint

1Let us point out that a similar situation occurs for the Stokes problem, even though a constraint-preserving

(discrete solenoidal) initial velocity is only needed for the obtention of enhanced control over the time derivative of

the velocity and subsequently, the pressure (see [8]).

https://www.researchgate.net/publication/222410462_Simulations_of_singularity_dynamics_in_liquid_crystal_flows_A_C0_finite_element_approach?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/220179768_Finite_Element_Approximations_of_the_Ericksen-Leslie_Model_for_Nematic_Liquid_Crystal_Flow?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/267436973_A_linear_mixed_finite_element_scheme_for_a_nematic_Ericksen-Leslie_liquid_crystal_model?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/231947844_Mixed_Methods_for_the_Approximation_of_Liquid_Crystal_Flows?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/29634144_Galerkin_Finite_Element_Methods_with_Symmetric_Pressure_Stabilization_for_the_Transient_Stokes_Equations_Stability_and_Convergence_Analysis?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/238189399_Approximation_of_Liquid_Crystal_Flows?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
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(4.2b). On the other hand, the penalized version of (4.2), for ǫ > 0, satisfies:

‖un
h‖

2 + λ‖∇dn
h‖

2 +
λǫ2

2
‖qnh‖

2
ρ + 2k

n−1∑

m=0

ν‖∇u
m+ 1

2

h ‖2

+ 2k

n−1∑

m=0

λ

γ
‖δtd

m+1
h + (u

m+ 1
2

h · ∇)d
m+ 1

2

h ‖2

= 2k

n−1∑

m=0

〈
gm+ 1

2 ,u
m+ 1

2

h

〉
+ ‖u0

h‖
2 + λ‖∇d0

h‖
2 +

λǫ2

2
‖q0h‖

2
ρ,(4.5)

whereq0h is defined below in (4.8). In fact,q0h = 1
ǫ2PQh

(|d0
h|

2 − 1) for the constraint (3.2)

and q0h = 1
ǫ2πh(|d

0
h|

2 − 1) for the constraint form (3.3). In case of using (3.5),(q0h)
a =

1
ǫ2 (|(d

0
h)

a|2 − 1) and theL2 norm forqh is replaced by the lumped one.

Proof. The proof of this result follows that of Theorem 2.1. Let us start re-writing

thedh constraint equation (4.2b) in an incremental form. Using the fact thatδt(fn+1)2 =

2fn+ 1
2 δtf

n+1, we have that:

(4.6) bd(q̄h,d
n+ 1

2

h , δtd
n+1
h )δρ −

ǫ2

2

(
δtq

n+1
h , q̄h

)
ρ
= 0.

Then, takinḡqh = q
n+ 1

2

h and using thatδt‖q
n+1
h ‖2ρ = 2(q

n+ 1
2

h , δtq
n+1
h )ρ, we have that

bd(q
n+ 1

2

h ,d
n+ 1

2

h , δtd
n+1
h )δρ =

ǫ2

2
(q

n+ 1
2

h , δtq
n+1
h )ρ =

ǫ2

4k
(‖qn+1

h ‖2ρ − ‖qnh‖
2
ρ).(4.7)

At this point, since we have used the restriction (4.2b), then (4.7) is only true forn > 0,

because the restriction (4.2b) does not generally holds ford0
h. In the limit case (ǫ = 0) see

(4.3b). Forǫ > 0, but we can defineq0h ∈ Qh such that

bd(q̄h,d
0
h,d

0
h)δρ − ǫ2

(
q0h, q̄h

)
ρ
= (1, q̄h)ρ ∀ q̄h ∈ Qh.(4.8)

Using (4.7) and (4.8), we finally get (4.7) also forn = 0.

The rest of terms can be treated as at the continuous level. With regard to the time deriva-

tives, we use the fact that(δtfn+1, fn+ 1
2 ) = 1

2k (‖f
n+1‖2 − ‖fn‖2). The skew-symmetric

version of̃c is required, in order to get this result. Integrating in time, i.e. k
∑N−1

m=0(·) we get

the energy equality.

4.2. Semi-implicit algorithm. The implicit algorithms are nonlinear, and so, a lin-

earization technique and subsequent nonlinear iterationshave to be performed (see Section

5). Now, we consider a semi-implicit algorithm, which is implicit in the sense that a linear

system has to be solved at every iteration, but explicit in terms of nonlinearity; at every time

step, the problem to be solved is linear. In the sequel, we propose a new semi-implicit scheme

and prove its unconditional stability, showing the good design of the algorithm.

In order to motivate the method, we recall the incremental form (4.6) of thedh con-

straint (4.2b). But, in the following algorithm, we will consider the incremental form of the
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constraint equation with the linearizationd
n+ 1

2

h ≈ dn
h :

bd(q̄h,d
n
h, δtd

n+1
h )−

ǫ2

2

(
δtq

n+1
h , q̄h

)
= 0.

Givendn
h ∈ Dh andun

h ∈ Vh, the problem at the time steptn+1 reads as: find the finite

element functions(dn+1
h , qn+1

h ,un+1
h , pn+1

h ) ∈ Dh ×Qh × Vh × Ph such that

(δtd
n+1
h , d̄h) + γ(∇dn+1

h ,∇d̄h) + cd(u
n+1
h ,dn

h, d̄h) + γbd(q
n+1
h ,dn

h, d̄h)δρ = 0,(4.9a)

bd(q̄h,d
n
h, δtd

n+1
h )δρ −

ǫ2

2

(
δtq

n+1
h , q̄h

)
ρ
= 0,(4.9b)

(δtu
n+1
h , ūh) + ν(∇un+1

h ,∇ūh) + c̃(un
h ,u

n+1
h , ūh)

+
λ

γ
c(ūh,d

n
h, δtd

n+1
h + (un+1

h · ∇)dn)− bu(p
n+1
h , ūh) =

〈
gn+1, ūh

〉
,(4.9c)

bu(p̄h,u
n+1
h ) = 0.(4.9d)

for any(d̄h, q̄h, ūh, p̄h) ∈ Dh ×Qh × Vh × Ph.

In the next theorem, we prove that in fact, this semi-implicit algorithm is unconditionally

stable and satisfies an energy equality.

THEOREM 4.2. System (4.9) withǫ = 0 satisfies the following energy equality:

‖un
h‖

2 + λ‖∇dn
h‖

2 + k2
n−1∑

m=0

(
‖δtu

m+1
h ‖2 + λ‖δt∇dm+1

h ‖2
)

+ 2k

n−1∑

m=0

(
ν‖∇um+1

h ‖2 +
λ

γ
‖δtd

m+1
h + (um+1

h · ∇)dm
h ‖2

)

= 2k

n−1∑

m=0

〈
gm+1,um+1

h

〉
+ ‖u0

h‖
2 + λ‖∇d0

h‖
2,

for anyn ∈ {0, 1, ..., N}. For ǫ > 0, system (4.9) satisfies:

‖un
h‖

2 + λ‖∇dn
h‖

2 +
λǫ2

2
‖qnh‖

2
ρ

+ k2
n−1∑

m=0

(
‖δtu

m+1
h ‖2 + λ‖δt∇dm+1

h ‖2 +
λǫ2

2
‖δtq

m+1
h ‖2ρ

)

+ 2k

N−1∑

m=0

(
ν‖∇um+1

h ‖2 +
λ

γ
‖δtd

m+1
h + (um+1

h · ∇)dm+1
h ‖2

)

= 2k

n−1∑

m=0

〈
gm+1,um+1

h

〉
+ ‖u0

h‖
2 + λ‖∇d0

h‖
2 +

λǫ2

2
‖q0h‖

2
ρ,

for anyn ∈ {0, 1, ..., N}, whereq0h is defined as in Theorem 4.1.

Proof. In order to prove the theorem, we need to show some relations. Now, let us define
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wn+1
h := δtd

n+1
h + (un+1

h · ∇)dn
h. We have:

c(un+1
h ,dn

h , δtd
n+1
h + (un+1

h · ∇)dn
h)

=

∫

Ω

(un+1
h · ∇)dn

h · (δtd
n+1
h + (un+1

h · ∇)dn
h) =

∫

Ω

(un+1
h · ∇)dn

h) ·w
n+1
h(4.10)

= ‖wn+1
h ‖2 −

(
δtd

n+1
h ,wn+1

h

)
.

By definition ofwn+1
h , Eq. (4.9a) can be written as

(wn+1
h , d̄h) + γ(∇dn+1

h ,∇d̄h) + γ bd(q
n+1
h ,dn

h, d̄h)δρ = 0.(4.11)

So, testing this equation againstδtd
n+1
h , we easily get

−
(
δtd

n+1
h ,wn+1

h

)
=
γ

2
δt‖∇dn+1

h ‖2 +
γk

2
‖δt∇dn+1

h ‖2 + γ bd(q
n+1,dn

h, δtd
n+1
h )

=
γ

2
δt‖∇dn+1

h ‖2 +
γk

2
‖δt∇dn+1

h ‖2 + γ
ǫ2

4
δt‖q

n+1
h ‖2ρ + γ

ǫ2k

4
‖δtq

n+1
h ‖2ρ,(4.12)

where we have invoked the constraint equation (4.9b) and used the fact that(δtfn+1)fn+1 =
1
2δt‖f

n+1‖2 + k
2‖δtf

n+1‖2. Accordingly (4.10), (4.11) and (4.12), we have

λ

γ
c(un+1

h ,dn
h, δtd

n+1
h + (un+1

h · ∇)dn
h) =

λ

γ
‖wn+1

h ‖2

+
λ

2
δt‖∇dn+1

h ‖2 +
λk

2
‖δt∇dn+1

h ‖2 +
λǫ2

4
δt‖q

n+1
h ‖2ρ +

λǫ2k

4
‖δtq

n+1
h ‖2ρ,(4.13)

Taking(ūh, p̄h) = (un+1
h , pn+1

h ) in (4.9c)-(4.9d), using (4.13) and applyingk
∑N−1

m=0(·),

we prove the theorem.

As far as we know, this is the first finite element approximation of the liquid crystal

problem (2.6), both for the penalized and limit case, that isunconditionally stable and linear.

The penalized method in [4] was unconditionally stable but nonlinear, whereas the method in

[17] was linear but conditionally stable. Furthermore, both methods introduced an extra vec-

torial unknown to the problem, with the corresponding increasement of computational cost.

The method proposed herein is more efficient because it does not introduce new unknowns

and does not require nonlinear iterations. Furthermore, the method is unconditionally stable.

Compared to the implicit algorithm introduced above, this method solves one linear system

per time step, without the need to perform nonlinear iterations.

5. Nonlinear solvers. In order to use the implicit algorithms previously introduced, a

linearization must be performed. For the subsequent exposition, let us write system (4.2) (or

equivalently (4.1)) at the time steptn+1in a compact manner as follows:

〈
Ld(d

n+1
h , qn+1

h ,un+1
h ), (d̄h, q̄h)

〉
= 0,

〈
Lu(u

n+1
h , pn+1

h ,dn+1
h ), (ūh, p̄h)

〉
= 0.(5.1)

https://www.researchgate.net/publication/220179768_Finite_Element_Approximations_of_the_Ericksen-Leslie_Model_for_Nematic_Liquid_Crystal_Flow?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/267436973_A_linear_mixed_finite_element_scheme_for_a_nematic_Ericksen-Leslie_liquid_crystal_model?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
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5.1. Exact Newton scheme. It is clear that both operators are nonlinear. At this point,

we can linearize the problem using an exact Newton linearization. Given a previous iterate

(dn+1,k
h , qn+1,k

h ,un+1,k
h , pn+1,k

h ), the new iterate

(dn+1,k+1
h , qn+1,k+1

h ,un+1,k+1
h , pn+1,k+1

h )

= (dn+1,k
h , qn+1,k

h ,un+1,k
h , pn+1,k

h ) + (δdk+1
h , δqk+1

h , δuk+1
h , δpk+1

h )

is obtained after solving the linear system:
〈
dLd(d

n+1,k
h , qn+1,k

h ,un+1,k
h )

d(dh, qh,uh)
· (δdk+1

h , δqk+1
h , δuk+1

h ), (d̄h, q̄h)

〉

= −
〈
Ld(d

n+1,k
h , qn+1,k

h ,un+1,k
h ), (d̄h, q̄h)

〉
,(5.2)

〈
dLu(u

n+1,k
h , pn+1,k

h ,dn+1,k
h )

d(uh, ph,dh)
· (δuk+1

h , δpk+1
h , δdk+1

h ), (ūh, p̄h)

〉

= −
〈
Lu(u

n+1,k
h , pn+1,k

h ,dn+1,k
h ), (ūh, p̄h)

〉
,

wheredF(x∗)
dx · δx ∈ Y ′ denotes the weak Gâteaux derivative of the functionalF : X → Y

atx∗ with respect tox in the directionδx ∈ X , for X , Y Banach spaces. Problem (5.2) is

the tangent problem of (5.1) around(dn+1,k
h , qn+1,k

h ,un+1,k
h , pn+1,k

h ). Every nonlinear iter-

ationk of the exact Newton linearization requires to solve a linearsystem coupling all the

unknowns(δdk+1
h , δqk+1

h , δuk+1
h , δpk+1

h ) in the problem, with the corresponding computa-

tional cost; in dimension 3, it involves eight degrees of freedom per node.

5.2. Quasi-Newton scheme. For numerical purposes, it is convenient to decouple the

different variables in the problem, in order to reduce the CPU time and memory usage. In par-

ticular, since we want to decouple sub-problems (4.2a)-(4.2b) and (4.2c)-(4.2d), we consider

a quasi-Newton method in which the tangent matrix decouplesproblems. Given the iter-

ate(dn+1,k
h , qn+1,k

h ,un+1,k
h , pn+1,k

h ), the new iterate is obtained after solving the two linear

sub-problems:
〈
dLd((d

n+1,k
h , qn+1,k

h ),un+1,k
h )

d(dh, qh)
· (δdk+1

h , δqk+1
h ), (d̄h, q̄h)

〉

= −
〈
Ld((d

n+1,k
h , qn+1,k

h ),un+1,k
h ), (d̄h, q̄h)

〉
,

〈
dLu((u

n+1,k
h , pn+1,k

h ),dn+1,k+1
h )

d(uh, ph)
· (δuk+1

h , δpk+1
h ), (ūh, p̄h)

〉

= −
〈
Lu((u

n+1,k
h , pn+1,k

h ),dn+1,k+1
h ), (ūh, p̄h)

〉
,

Doing that, we have reduced the number of terms in the tangentproblem, since we have

neglected cross derivatives, i.e. the variation ofLd with respect touh and vice-versa. A

nice property of this approach is the fact that it allowsmodularity. Separate codes can be
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used to solve the two sub-problems, only needing to pass the unknowns from one code to

the other at every iteration. So, even though this method involves nonlinear iterations, it has

been linearized in such a way that the computation of(uh, ph) is segregated from the one for

(dh, qh), notably reducing the solver CPU time per iteration with respect to the semi-implicit

method.

5.3. Nonlinear block Gauss-Seidel scheme with Alouges’ method. The linearization

of equations (4.2a)-(4.2b), that are equivalent to the harmonic maps problem plus a convec-

tion term, can be linearized by extending the strategy proposed by Alouges in [1]. We refer

to [1, 3] for a mathematical analysis of the Alouges’ method in the frame of steady harmonic

maps. The idea is to consider a Picard linearization of (4.2a)-(4.2b) together with a normal-

ization of the director field approximation. Obviously, this approach only has sense when

the constraint overdh is exactly enforced on the nodes, using one of the alternatives pro-

posed above, and no penalty is introduced, i.e.ǫ = 0. Let us consider the previous iterate

(dn+1,k
h , qn+1,k

h ,un+1,k
h , pn+1,k

h ). First, we compute(d̃n+1,k+1
h , qn+1,k+1

h ), solution of the

linear system

(δtd̃
n+1,k+1
h , d̄h) + γ(∇d̃

n+1,k+1
h ,∇d̄h)

+ c(un+1,k
h , d̃n+1,k+1

h , d̄h) + γbd(q
n+1,k+1
h ,dn+1,k

h , d̄h)hρ = 0,

bd(q̄h,d
n+1,k
h , d̃n+1,k+1

h )hρ = 〈1, q̄h〉ρ .

Then, we computedn+1,k+1
h , as the normalization of̃dn+1,k+1

h on the nodes. So, at every

node, we compute

(dn+1,k+1)a =
(d̃n+1,k+1)a

|(d̃n+1,k+1)a|
.

Obviously,dn+1,k+1
h satisfies the nonlinear constraint

bd(q̄h,d
n+1,k+1
h , d̃n+1,k+1

h )hρ = 〈1, q̄h〉ρ .

The third step of the algorithm consists of solving (4.2c)-(4.2d) with the known value of

d
n+1,k+1
h , e.g. using a Picard linearization: we compute(un+1,k+1

h , pn+1,k+1
h ) solution of

(δtu
n+1,k+1
h , ūh) + ν(∇u

n+1,k+1
h ,∇ūh) + c̃(un+1,k

h ,un+1,k+1
h , ūh)h + bu(p

n+1,k+1
h , ūh)

+
λ

γ
c(ūh,d

n+1,k+1
h , ∂td

n+1,k+1
h + (un+1,k+1

h · ∇)dn+1,k+1
h ) =

〈
gn+1, ūh

〉
,

bu(p̄h,u
n+1,k+1
h ) = 0.

So, the final procedure involves a linearized harmonic map-like system, with a convection

term, a normalization of the director field, and the linearized Navier-Stokes equations, e.g.

using Picard, evaluating the coupling elastic term with thedirector field of the second step.

The final problem has a computational cost per iteration similar to the quasi-Newton algo-

rithm above, since the two sub-problems have been decoupled.

https://www.researchgate.net/publication/262165779_A_New_Algorithm_For_Computing_Liquid_Crystal_Stable_Configurations_The_Harmonic_Mapping_Case?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/262165779_A_New_Algorithm_For_Computing_Liquid_Crystal_Stable_Configurations_The_Harmonic_Mapping_Case?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/27299322_Stability_and_Convergence_of_Finite-Element_Approximation_Schemes_for_Harmonic_Maps?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
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FIG. 6.1.Example 1:Ed(t) andEu(t) plots for the nodal implicit,P1 implicit and explicit methods, forǫ = 0

andk = 10−2. The explicit method is also used withk = 10−3.
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6. Numerical experimentation. In this section, we perform some numerical experi-

ments, in order to check the behavior of the methods proposedabove. We will distinguish

between three different numerical methods:

• The implicit method with nodally exact enforcement of the constraint and Crank-



19

Nicolson time integration. Thus, the method consists of system (4.2) withρ = s

andδ = h, that is to say, using a closed integration rule for the constraint equation

and the bilinear formbd in (3.3), i.e. Eq. (3.5). The problem is linearized using the

quasi-Newton scheme in Section 5.2, that decouplesdh anduh computation at the

linear solver level. We will denote this method asnodal implicit method.

• The implicit method withP1
h as Lagrange multiplier space and Crank-Nicholson

time integration. In this case, the method consists of system (4.2) with the expression

of bd in (3.2). Again, we use the quasi-Newton scheme for linearization. We will

denote this method asP1 implicit method.

• The semi-implicit method (4.9) with a closed integration rule for the constraint equa-

tion and the bilinear formbd in (3.3). We will denote this method assemi-implicit

method.

For all the methods, we will consider both exact and penalized formulations. In all cases, we

have used quadrature rules that integrate exactly all the terms in the linear system.

One of the outputs of the simulations are the time behavior ofthe different energies

interacting in the system. Let us define the elastic and kynetic energies respectively as:

Ed(t) = ‖∇dh(t)‖
2, Eu(t) = ‖uh(t)‖

2.

The validation of the code has been carried out by using the method of manufactured solutions

and checking that the implicit methods under considerationare energy preserving, i.e. the

equality (4.4) is satisfied up to convergence tolerance. So,for the implicit methods with

ǫ = 0 and zero forcing terms, the energy equality has been checked:

λEd(t
n) + Eu(t

n) +

n−1∑

m=0

Edis(t
m+ 1

2 ) = E0

where

Edis(t) = 2νk‖∇uh(t)‖
2 + 2

λ

γ
k‖δtdh(t) + uh(t) · ∇dh(t)‖

2

denotes the energy dissipation andE0 the initial energy (see (4.4)). We have analyzed three

different test problems. Two of them have been presented in previous numerical works about

the approximation of liquid crystals and serve for comparison with pre-existing techniques.

The third example is a problem with known analytical solution that clearly serves to assess

the algorithms.

6.1. Example 1: A smooth harmonic map. The first test under consideration has been

previously solved in [4]. We consider the problem (2.2) forǫ = 0 in the square domain

Ω = (−1, 1)2 andg = 0. The initial conditions are:

u0 = 0, d0 = (sin(a), cos(a))t, a = 2.0π( cos(x) − sin(y)),

https://www.researchgate.net/publication/220179768_Finite_Element_Approximations_of_the_Ericksen-Leslie_Model_for_Nematic_Liquid_Crystal_Flow?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
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whereas homogeneous Dirichlet and Neumann boundary conditions are enforced overu and

d respectively. So, the only energy introduced to the system is via the initial energyE0. The

physical parameters areλ = γ = 1.0 andν = 0.1, and the numerical parameters are chosen

ash = 2−5, k = 0.01, andǫ = 0, unless otherwise stated.

In Fig. 1 we show the elastic and kynetic energiesEd(t) andEu(t) with respect to time.

The initial conditions introduce energy to the system via the initial elastic energyλ‖∇d0‖
2,

that is related to (4.5) (see [4, Fig. 5.1]). It is clear out ofthe results that most of the initial

elastic energy is (unsurprisingly) transferred toEd, whereas the kynetic energy for the velocity

Eu at its peak (t = 0.1 s) is only about a5% of Ed. The steady-state that is reached for the

initial condition stated above has no energy ast → ∞, since the steady-statedh is constant

in space (see [4, Fig. 5.1]).

We have plot the energy results for the three methods under consideration, whereas for

the semi-implicit method, we have also included the resultsfor k = 10−3. Out of these plots,

we can conclude that the nodal constraint and theP1 Lagrange multiplier lead to very similar

results. As expected, the semi-implicit method shows some lag in the dynamics to the steady

state, but reducing by 10 the time step size, the results are almost identical to those with an

implicit method.

Now, we considerλ = 0.0, reducing the problem to the transient harmonic maps system.

We do this since we want to evaluate the dependence of the condition number and the constant

in the discrete inf-sup condition (3.4), for thed problem; these features are well-known for

the Navier-Stokes block. We compute the condition number ofthe system matrix for a given

time step value, a penalty parameterǫ = 0, 10−2, 10−3 andh = 2−i with i = 2, 3, 4, 5;

the results are collected in Fig. 6.2. In 6.2(a) we see that the condition number of the matrix

is not sensitive toǫ, which means that the stability of the Lagrange multiplier comes from the

discrete inf-sup condition. Let us remark that for the GL formulations in the literature (see

e.g. [4, 23, 17, 25, 26]) the condition number blows up forǫց 0. We also plot in Fig. 6.2(b)

the condition number in terms of the mesh sizeh for different values ofǫ. We see that the

condition number is almostO(h−4). Finally, we want to analyze the constant in the inf-sup

condition (3.4). In order to do this, we evaluate theL2 norm, theH1 norm and a discrete

H−1 norm. Givenqh ∈ Qh, let us find the discrete Riestz projectiongh ∈ Qh such that

(gh, fh)H1 = 〈qh, fh〉H−1×H1 .

We define the discreteH−1 norm as follows:

‖qh‖H−1

d

:= sup
fh∈Qh

〈qh, fh〉H−1×H1

‖fh‖1
= sup

fh∈Lh

(gh, fh)H1

‖fh‖1
= ‖gh‖1.

In Fig. 6.3 we plot the norm of the Lagrange multiplier at a given time step size, for the

uniform partition introduced above. We can easily see that the Lagrange multiplierqh is

stable in both theH−1 andL2 norms. As expected, theH1 norm blows up withh. This test

indicates that for smooth enough solutions,qh ∈ L2(Ω).

https://www.researchgate.net/publication/222410462_Simulations_of_singularity_dynamics_in_liquid_crystal_flows_A_C0_finite_element_approach?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/220179768_Finite_Element_Approximations_of_the_Ericksen-Leslie_Model_for_Nematic_Liquid_Crystal_Flow?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/231947844_Mixed_Methods_for_the_Approximation_of_Liquid_Crystal_Flows?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
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FIG. 6.4.Example 2: Elastic energyEd(t) plots for the nodal implicit,P1 implicit and semi-implicit methods.

The results are shown for different values ofǫ.

6.2. Example 2: Annihilation and stable defects. The second test we consider can be

found in any article about GL-based numerical approximations of liquid crystals. It consists

on the annihilation of regularized initial singularities.The problem is solved in the square

domainΩ = (−1, 1)2 andg = 0. The initial conditions are:

u0 = 0, d0 = d̃/

√
|d̃|2 + ǫ2, for d̃ = (x2 + y2 − 0.25, y)t.

The physical parameters areλ = γ = ν = 1.0, and the numerical parameters are chosen as

h = 2−5, k = 0.001, unless otherwise stated. We have consideredǫ = 0, 2.5 · 10−3, 5 ·

10−3, 7.5 · 10−3, 10−2.

As commented in [4, Section 5.2] the solution critically depends on the initial data and

so, onǫ. It was also pointed out by Lin and Liu in [23, Example 2.2] that the evolution of the

singularities was very sensitive to the algorithm and the mesh selected in the computation.

Furthermore, in both references the authors point out that the local energy at the singularity

goes to infinity asǫ ց 0. In this article, we put particular attention on the solution with

respect toǫ. The initial condition introduces initial energy to the system in two different

ways. On one side, via the initial elastic energy, and on the other side, via theq0 term.
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FIG. 6.5.Example 2: Kynetic energyEu(t) plots for the nodal implicit,P1 implicit and semi-implicit methods.

The results are shown for different values ofǫ.

However, the second term reads as:

λǫ2

2
‖q0‖2 =

λ

2
‖d0 · d0 − 1‖2 =

λ

2

∫

Ω

(
ǫ2

|d̃|2 + ǫ2

)2

,(6.1)

which tends to zero asǫց 0. At the discrete level the energy also depends on the projection

that is used for obtainingd0
h fromd0. We use a nodal projection for the sake of comparison

with previous works. However, this projector is ill-posed as (ǫ, h) ց 0 in the singularity, but

can be solved by giving an average value for the node over the singularity, if there is one. In

the limit case (ǫ = 0), the initial energy is only coming from the initial elasticenergy.

In Fig. 6.4 we show the elastic energyEd(t) for the three formulations and different

values ofǫ. The implicit saddle-point Ginzburg-Landau formulation proposed herein leads

to very similar results to those obtained for classical GL formulation (see [17, 4, 23]). On

the other hand, it is clear that the annihilation time goes to∞ asǫ ց 0. For ǫ = 0.025 the

implicit methods converge to a stable solution with non-zero elastic energy and zero velocity.

In fact, as commented above, this long-term behavior is in agreement with the structure of

the dynamical system at hand. The steady-state solution fordh is a solution of the discrete

harmonic maps problem. These numerical results are in concordance with the mathematical

https://www.researchgate.net/publication/222410462_Simulations_of_singularity_dynamics_in_liquid_crystal_flows_A_C0_finite_element_approach?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/220179768_Finite_Element_Approximations_of_the_Ericksen-Leslie_Model_for_Nematic_Liquid_Crystal_Flow?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
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(a) t = 0.00 (b) t = 0.25

(c) t = 0.30 (d) t = 1.00

FIG. 6.6. Example 2: Director vectord fields at different time step values for the nodal implicit method and

ǫ = 5 · 10−3.

analysis of Brezis, Coron and Lieb in [6], which proves that this singular solution minimizes

the energy of a stationary pair of point defects. A physical justification of the existence of

stablecombed hedgehogpoint defects can be found in [28] using different approaches, e.g.

Peach-Köhler type arguments (see also [30, 29, 14, 9]).

The results obtained with nodal andP1 implicit methods are almost identical. We show

the director vector fields at different time values forǫ = 5 · 10−3 in Fig. 6.6. We see how the

singularities approach and annihilate at some point overt = 0.30 s, which coincides with an

abrupt decreasement of elastic energy (see Fig. 6.4(c)).

In Fig. 6.4 we also show the results for the explicit method. It is clear, out of these

results, that the effective penalty of the semi-implicit formulation is smaller that the one

for the implicit method. Forǫ large enough or small enough, the results are fairly similar.

However, in the transition between them, the explicit method exhibits a lag with respect

to the implicit solution, or can even tend to a different stationary point. Summarizing, the

solution is criticallyǫ-dependent. Forǫ = 0.0, the results are almost identical to those for

ǫ = 0.025. As far as we know, this behavior forǫ ց 0 has not been previously analyzed

because previous GL formulations were ill-posed in this assymptotic regime, and a minimum

value ofǫ = 0.05 was common practice. Herein, this problem has been solved byusing a

saddle-point GL approach.

https://www.researchgate.net/publication/233807582_Monte_Carlo_Simulations_of_Stable_Point_Defects_in_Hybrid_Nematic_Films?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
https://www.researchgate.net/publication/231051110_Physics_of_defects_in_nematic_liquid_crystals?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==
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FIG. 6.7. Example 2:Ed(t) andEu(t) plots for the nodal implicit method withǫ = 5 · 10−3 and different

values of(λ, h, k).

We also plot the kynetic energy in all cases (see Fig. 6.5). These results make clear that

this test problem is almost a harmonic maps problem, since the energy transferred tou is very

small. The results for the implicit methods are very similar, but forǫ = 2.5 ·10−3 the implicit

P1 method exhibits two picks of kynetic energy whereas the nodal version only one.

In Fig. 6.7(a)-6.7(b) we have considered the full liquid crystal problem withλ = 1.0 and

the transient harmonic maps problem, i.e.λ = 0.0. The elastic energy is almost identical in
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FIG. 6.8.Example 2:Es(t) plot for the nodal implicit method,ǫ = 0.0 andω = 5, 50.

(a) t = 0.04 (b) t = 0.08

(c) t = 0.12 (d) t = 0.23

FIG. 6.9.Example 2: Director vectord fields at different time step values for the nodal implicit method,ǫ = 0

andω = 50.

both cases, and so, theu influence almost neglectable. Obviously, the kynetic energy is zero

for λ = 0.0 in Fig. 6.7(b). With regard to the mesh size, we have comparedboth elastic and

kynetic energy forh = 2−5, 2−6, showing that the solution is well converged for the mesh

being used. Analogously, we show the results fork = 10−3, 10−2, that allows to say that the

time step size is also acceptable.

Since the initial energy introduced to the system is not enough for the annihilation of
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singularities for the limit problem, and the energy transferred to the velocity is erratic, we

have modified the initial velocity asu0 = ω(−y, x), with ω = 5, 50. We show somedh

vector fields at different values forω = 50 in Fig. 6.9. A comparison of the elastic energy for

these two different initial velocities can be found in Fig. 6.8. The case withω = 50 shows

richer dynamics, as expected. Since there is no forcing term, the initial velocity is dissipated,

and the elastic energy starts to show a linear and slow decay.The initial velocity withω = 5

seems to be not enough, leading to results similar to those with ω = 0.

(a) dh at t = 0.00 (b) dh at t = 2.00

(c) uh at t = 0.12
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FIG. 6.10. Example 2: Director vectord fields at different time step values, velocity vector field and Eu(t)

plot for the nodal implicit method withǫ = 0.

6.3. Example 3: Magical spiral. We end the numerical experiments section with the

magical spiralproblem. A nice presentation of the problem and the obtention of the analytical

solution can be found in [10, pag. 158]. It consists of two concentric cylinders with the

following anchoring boundary conditions: the molecules are normal to the inner cylinder

and tangential to the external cylinder. The numerical simulations have been performed for

λ = γ = 1.0, ǫ = 0 andk = 0.01. The initial velocity is zero and the initial director field we

have considered is ploted in Fig. 6.10(a).

In Fig. 6.10(b) we show the magical spiral that is obtained inthe steady-state limit. With

regard to the velocity, we plot the kynetic energy in Fig. 6.10(c), and the vector field for the
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(a) t = 0.01 (b) t = 2.00

FIG. 6.11.Example 3: Plots ofψ onΩ at different time step values, obtained with the nodal implicit method

andǫ = 0.

0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

4

Time

lo
g(

E
rr

or
)

 

 

ε = 0.00
ε = 0.05

FIG. 6.12.Example 3:L2-error between exact and computed values ofψ vs. time forǫ = 0, 5 · 10−2 .

time stept = 0.12 s (the one with maximumEu) in Fig. 6.10(d). These results have been

obtained with the nodal implicit method.

The nice feature of this test problem is the fact that it can beexperimentally observed

and analytically solved. It can be proved that the angleψ betweend and the radial direction

(see [10, Fig. 3.23]) is equal to:

ψ =
π

2

ln(r/r0)

ln(r1/r0)
,

wherer is the radial coordinate andr0 andr1 the inner and outer cylinder radius. In this

particular case, we have consideredr0 = 1 m andr1 = 2 m. We plot the values ofψ for

the first time step value and the steady-state case in Fig. 6.11. In Fig. 6.12 we plot the

error between the numerical approximation forψ and the exact solution. We easily see that

the steady-state solution converges to the exact solution;the error is reduced to the order of

O(10−2), which is the numerical error associated to the mesh.

In order to evaluate the effect of the penalty in the accuracyof the solution, we have

solved the same problem withǫ = 5 · 10−3. The error plot can also be found in Fig. 6.12.
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We can easily see that, even for a fairly coarse mesh, the penalty error is more than one order

of magnitude larger than the discretization error. This result illustrates very well the dramatic

impact of the penalty term in the accuracy of the liquid crystal simulations. So, it seems

much more reasonable to stick to stable saddle-point formulations that do not require any

penalization.

7. Conclusions. In this work, we have considered a different approach to the numerical

approximation of nematic liquid crystals. The problem is posed in a saddle-point form. We

have also considered a penalty version of the problem, analogous to the Ginzburg-Landau

penalization, but using the saddle-point structure. The gain doing this is the fact that the

resulting numerical schemes are stable for any choice of thepenaltyǫ ≥ 0, based on the

theoretical results in [19] for the steady harmonic maps problem. This is a gain with respect

to the previous penalized formulations, since the condition number of the resulting linear

system does not blow up asǫ ց 0. Another important consequence is the fact that the limit

and penalized problems can be treated in a unified way. On the other hand, the saddle-point

formulation involves quadratic nonlinear terms whereas the Ginzburg-Landau formulation

includes cubic nonlinearities.

The time integration of the problem has also been considered. We have distinguished

between implicit methods and semi-implicit methods in which nonlinear iterations are not

performed. As far as we know, the semi-implicit method proposed herein is the first one

that is unconditionally stable, which has been possible to obtain by using the saddle-point

structure of the director vector problem. Furthermore, it is not needed to include any auxiliary

variable. On the other hand, as in the previous approaches, all the unknowns are coupled at

the linear system, which makes its solution expensive.

On the contrary, the implicit method includes nonlinear iterations. However, we have

designed a quasi-Newton linearization of the problem that allows to decouple the velocity

and director vector sub-problems at the linear system level, clearly reducing the CPU cost

of the solver per iteration. Another nice feature of the method proposed is the fact that it

is energy preserving, satisfying the same energy equality as the continuous problem. As the

semi-implicit method, it is unconditionally stable and does not require the introduction of any

auxiliary variable.

We have performed a set of test problems comparing differentapproaches. It is inter-

esting to note that we have obtained interesting results in the asymptotic regimeǫ ց 0 for

typical test problems including defects. Furthermore, we have checked the accuracy of the

method for a problem with analytical solution and assessed the serious effect of penalization

over it.

Let us finish comparing the methods considered in this work with the ones in the litera-

ture. Since the methods and the interesting features to be used for comparison are many, we

have included all in Table 7.1. From these results, we could easily extract some recommen-

https://www.researchgate.net/publication/38443465_A_Saddle_Point_Approach_to_the_Computation_of_Harmonic_Maps?el=1_x_8&enrichId=rgreq-e592a0b4ee769924d40009a9c0cbdd5f-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgzNTU4MjtBUzoxNDk3Mzc1MzM2MTIwMzRAMTQxMjcxMTYxODkzMQ==


29

Method ISP SSP [17] [23] [24] [25] [26] [4, P] [4, L] [16]

Aux. unknowns (#) 1 1 3 0 0 0 9 3 0 3

Semi-implicit × X X X × × × × × X

Uncond. stab.∀(ǫ, h, k) X X × × X × × X X ×

ǫ-indep. cond. number X X × × × × × × X ×

Energy preserving X × × × X × × × × ×

Quadratic nonlinear. X X × × × × × × × ×

C0 approx. ford X X X X X × X X X X

TABLE 7.1

Comparison of methods. ISP refers to the implicit saddle point method in this work and SSP refers to the

semi-implicit one. The rest of the methods are denoted by thereference in which they were proposed. In particular,

we have denoted the penalized scheme in [4] with [4, P] whereas the one for the limit problem as [4, L]. With regard

to auxiliary unknows, we have consideredq as an extra unknown, since it does not appear in previous works.

dations. The methods proposed herein are the only ones that unify the limit and penalized

problem and their condition number is independent ofǫ. The limit and penalized schemes

in [4] are different, and so, not treated in a unified way. The limit problem in [4] is the only

one in the existing literature that approximates the original problem, but the method ends up

being only conditionally stable. The sense in which the sphere constraint is enforced is much

weaker than the one in this article; the restriction does notappear explicitly in the problem.

With regard to CPU cost, the methods proposed herein end up having eight degrees of

freedom per node, only beated by the methods in [23, 24] (for the penalized problem) and

[4] (for the limit problem); the method in [25] does not introduce any auxiliary unknown but

it requiresC1 finite element approximations, dramatically increasing the CPU cost. Further-

more, the methods proposed herein are both unconditionallystable, as the ones in [24, 4]

(for the penalized problem). Another important benefit of the saddle-point structure is the

quadratic nonlinearity of the resulting system, in comparison to the cubic nonlinearity of all

the previous GL schemes and the scheme for the limit problem in [4]; this fact simplifies the

linearization of the problem and makes its convergence easier.

For small values ofǫ, the use of saddle-point methods should be favoured, since they

are unconditionally stable and the condition number of the resulting linear system for the rest

of unconditionally stable methods becomes too large to be solved. But this is not the only

improvement of these saddle-point methods, as we can see in the table and commented above.

For large enough values of the penalty, the scheme in [24] seems to be the most appealing

among the ones in the literature. However, it is unclear the physical interest of the results

obtained for large values of the penalty, since, out of our numerical experiments, they are

inaccurate.
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