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Abstract

The purpose of this work is to provide an overview of the most recent numerical devel-

opments in the field of nematic liquid crystals. The Ericksen-Leslie equations govern the

motion of a nematic liquid crystal. This system, in its simplest form, consists of the Navier-

Stokes equations coupled with an extra anisotropic stress tensor, which represents the effect

of the nematic liquid crystal on the fluid, and a convective harmonic map equation. The

sphere constraint must be enforced almost everywhere in order to obtain an energy estimate.

Since an almost everywhere satisfaction of this restriction is not appropriate at a numerical

level, two alternative approaches have been introduced: a penalty method and a saddle-point

method. These approaches are suitable for their numerical approximation by finite elements,

since a discrete version of the restriction is enough to prove the desired energy estimate.

The Ginzburg-Landau penalty function is usually used to enforce the sphere constraint.

Finite element methods of mixed type will play an important role when designing numerical

approximations for the penalty method in order to preserve the intrinsic energy estimate.

The inf-sup condition that makes the saddle-point method well-posed is not clear yet.

The only inf-sup condition for the Lagrange multiplier is obtained in the dual space ofH1(Ω).

But such an inf-sup condition requires more regularity for the director vector than the one

provided by the energy estimate. Herein, we will present an alternative inf-sup condition

whose proof for its discrete counterpart with finite elements is still open.
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1 Introduction

Liquid crystals are commonly considered as the fourth state of matter, different to gases, liquids,

and solids. This is due to the fact that liquid crystals exhibit phases between a liquid and a

crystalline solid which are known as mesophases. There are various types of liquid crystals,

according to the degree of positional or orientational ordering shown by the molecules that

compose them. Different degrees of ordering can be achieved, depending on the temperature

(thermotropic) and/or the concentration of a solute in a solvent (lyotropic). The simplest liquid

crystal phase is the nematic one, which is made of elongated rod-like molecules with similar

size, whose centers of mass have no positional order (as in an isotropic liquid), but tending

to align along certain locally preferred directions, confering the anisotropic structure. The

orientational order is typically modeled by a unit vector field, the director field d, with |d| = 1,

which represents the average orientation of the long axes of the molecules in a volume element

at a point. As the temperature is lowered in the thermotropic case, or the concentration is

increased in the lyotropic case, new thermodynamical states appear, and the molecules begin

to separate into parallel, equally spaced layers. This is the smectic liquid crystal phase. In a

smectic liquid crystal, the positions of the molecular centers of mass flow freely in each layer

without correlation from one layer to the next. The angle between the director field d and the

local smectic layer normal n is denoted by θ. When θ = 0, the structure is called a smectic-A

liquid crystal, otherwise it is called a smectic-C liquid crystal. On some occasions there are

transitions from smectic-A to the smectic-C phase, i.e. the angle θ grows smoothly from zero in

response to a decrease of temperature or an increase of concentration.

In the last years, the study of liquid crystals has aroused an increasing interest in biology

(cell membranes), physics and engineering (in the growing technological industry of electronic

devices) owing to their optical properties. The alignment of the director field d is affected by

applied electric or magnetic fields, that can rotate the director so that it is aligned parallel to

them; the molecules of a liquid crystal exhibit dielectric or diamagnetic properties. The director

field can also be affected by boundary conditions.

A usual geometry for liquid crystal display (LCD) devices is that of a thin film made of

pixels which are filled by a liquid crystal. Each pixel consists of two transparent electrodes,

and two polarizing filters. The surfaces are treated to keep the director of molecules at the top

and the bottom perpendicular to each other and to the surface normals. The molecules in the

pixel describe a helicoidal structure in the transition between surfaces. If a polarized ray of light

parallel to the molecules in the external surface enters the pixel, the plane of the polarization

rotates with the director field. Under external electric fields normal to the surfaces, the helicoidal

structure is broken, the rotation is not possible, and light is blocked by the polarizer. On the
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other hand, liquid crystals also provide a description of some interesting materials, as DNA or

petroleum.

The two main phenomenological theories describing spatial configurations in nematic liquid

crystals are the Oseen-Frank [53, 25] and Landau-de Gennes [20, 21] theories. Both approaches

consist in modeling equilibrium states as minima of a free-energy functional. Such functionals are

constructed subject to symmetry and invariance principles, to capture some properties observed

from experiments.

The Oseen-Frank free energy is considered as a functional of the director vector d. In its

most basic form, the free energy functional is given by

E(d) =

∫

Ω
{K1|∇ · d|2 +K2(d · (∇× d))2 +K3(d× (∇× d))2}, (1)

where K1, K2, and K3 are the splay, twist, and bend elastic constants, respectively. Note that

when these constants are equal, the Dirichlet energy becomes

E(d) = K

∫

Ω
|∇d|2.

Upon minimizing this energy subject to the sphere constraint |d| = 1, the following optimality

system appears

−∆d− |∇d|2d = 0 in Ω. (2)

The Oseen-Frank theory is limited in the sense that it can only explain point defects in

liquid crystal materials but not the more complicated line and surface defects that are also

observed experimentally. The defect points or singularities in liquid crystals are regions where

the anisotropic properties of molecules are broken. That is, the liquid crystal behaves as an

isotropic fluid. Therefore, the director field cannot be defined. Mathematically, they are modeled

by |d| = 0. The defect points can be achieved by means of the boundaries conditions.

The Landau-de Gennes functional is established in terms of the order parameter tensor Q

(traceless and symmetric) as

E(d) =

∫

Ω
{
K1

2
|∇Q|2 +

K2

2
|∇ ·Q|2 + a tr(Q2)− b tr(Q3) + c(tr(Q2))2},

where Q depends on the components of the director vector d as Qij = didj −
1
dδi,j; δ is the

Kronecker delta, d is the space dimension and tr(·) indicates the trace of the matrix. This

theory was one of the major achievements of P. G. de Gennes, who was awarded a Nobel prize

in physics in 1991.

An alternative strategy to study the motion of defect points in liquid crystals is to consider

the long-time behavior of the harmonic map flow for which it is also interesting to incorporate the

influence of the velocity. On the contrary, in many situations, the anisotropic local orientation of
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the director field influences the stress tensors that govern the fluid velocity. The hydrodynamic

theory of nematic liquid crystals was established by Ericksen [22, 23] and Leslie [39, 40]. The

fundamental system consists of a set of fully coupled, macroscopic equations, that contains the

Oseen-Frank elastic theory governing the steady state, equilibrium solutions. A variant of the

Ericksen-Leslie equations was proposed by Lin in [41]. The equation therein is written in such

a way that the sphere constraint is not explicitly enforced. The obtention of the energy law

for this equation uses the fact that the director field satisfies the constraint everywhere. So, it

is not suitable for numerical purposes, since the numerical approximation does not satisfy the

constraint everywhere, and so, does not have an associated energy law. Then, some alternatives

are introduced. In order to get numerical methods with an associated energy law, the sphere

constraint is usually penalized with the Ginzburg-Landau penalty function such as in the works

of Becker, Feng and Prohl [8], and Lin, Liu, and Zhang [45]. An alternative recently proposed

by Badia, Guillén-González and Gutiérrez-Santacreu in [5] is to use an equivalent saddle-point

formulation of the system proposed by Lin in [41]. It provides a system of partial differential

equations equivalent to the one in [41] that also leads to numerical methods with an energy

law. Furthermore, a Ginzburg-Landau-type penalization can be introduced in the saddle-point

version, and treat both the original and penalized problems using a unified numerical approach.

The goal of this paper is to present the different approaches used so far for the numerical

approximation of nematic liquid crystal flows. Section 2 begins with a description of the function

spaces which we will draw on throughout this work. We then describe the differential approaches

commented above. In Section 3, we will analyze the advantages and disadvantages of existing

finite element approximations in the literature for the Ginzburg-Landau penalization in terms

of stability and convergence. We will make some remarks on the efficiency of the algorithms

and linearization techniques in case of nonlinear schemes. Next, in Section 4, we review the

numerical schemes designed for the saddle-point version. So far, the numerical analysis of these

schemes is an open problem, mainly because the associated inf-sup condition for the director

Lagrange multiplier is still not well-understood.

2 Problem statement

2.1 Some function spaces

We will assume the following notation throughout this paper. Let Ω ⊂ IRd, with d = 2 or 3,

be a Lebesgue-measurable domain and let 1 ≤ p ≤ ∞. We denote by Lp(Ω) the space of all

Lesbegue-measurable real-valued functions, f : Ω → IR, being pth-summable in Ω for p < ∞ o

or essentially bounded for p = ∞, and by ‖f‖Lp(Ω) its norm. When p = 2, the L2(Ω) space is a
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Hilbert space whose inner product is denoted by
(
·, ·
)
.

Let α = (α1, α2, ..., αd) ∈ INd be a multi-index with |α| = α1 + α2 + ... + αd, and let ∂α be

the differential operator such that

∂α =
( ∂

∂x1

)α1

...
( ∂

∂xd

)αd

.

For m ≥ 0 and 1 ≤ p ≤ ∞, we define Wm,p(Ω) (see [1, 52]) to be the Sobolev space of m

derivatives in Lp(Ω) whose norm is defined by

‖f‖Wm,p(Ω) =



∑

|α|≤m

‖∂αf‖pLp(Ω)




1/p

for 1 ≤ p < ∞,

‖f‖Wm,p(Ω) = max
|α|≤m

‖∂αf‖L∞(Ω), for p = ∞,

where ∂α is understood in the distributional sense. In the particular case of p = 2, Wm,p(Ω) =

Hm(Ω). Let C∞
c (Ω) be the space of infinitely differentiable functions with compact support

in Ω. Then Wm,p
0 (Ω) (analogously, Hm

0 (Ω) when p = 2) is defined as the closure of C∞
c (Ω)

in Wm,p(Ω). The dual spaces of Hs(Ω) and Hs
0(Ω) will be denoted by (Hs(Ω))′ and H−s(Ω),

respectively. For any space X, we shall denote the vector space Xd by its bold letter X. For

example, (L2(Ω))d is denoted by L2(Ω), (Hm(Ω))d by Hm(Ω), etc. Consequently, in order to

distinguish scalar-valued fields, such as the pressure p, from vector-valued fields, such as the

velocity u, we denote them by roman letters and bold-face letters, respectively.

For a real Banach space X, Lp(0, T ;X) denotes the space of X-valued functions f defined on

(0, T ) such that ‖ · ‖Lp(0,T ;X) =

(∫ T

0
‖f‖pX

)1/p

< ∞. C1([0, T ];X) is the space of continuously

differentiable X-valued functions in [0, T ] such that supt∈[0,T ]{‖f(t)‖X + ‖f ′(t)‖X} < ∞.

We will now introduce the function spaces in the context of the Navier-Stokes equations.

Firstly, we define

L2
0(Ω) =

{
p : p ∈ L2(Ω),

∫

Ω
p = 0

}
,

ϑ =
{
v ∈ C∞

c (Ω);∇ · v = 0
}
.

Then, let H and V be the closure of ϑ in L2(Ω) and H1
0(Ω), respectively, characterized by

H = {u ∈ L2(Ω);∇ · u = 0,u · n = 0 on ∂Ω},

V = {u ∈H1(Ω);∇ · u = 0,u = 0 on ∂Ω}.

provided that Ω is Lipschitz [59].
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2.2 The Ericksen-Leslie equations

Let Ω be a bounded open subset of Rd (d = 2 or 3) with boundary ∂Ω, and T > 0 the final

time of observation. We will use the notation Q = Ω× (0, T ), Σ = ∂Ω × (0, T ), and n the unit

outward normal to ∂Ω. The Ericksen-Leslie equations for the flow of a nematic liquid crystal

can be written as




∂tu+ (u · ∇)u− ν∆u

+∇p+ λ∇ · ((∇d)t∇d) = 0 in Q,

∇·u = 0 in Q,

∂td+ (u · ∇)d− γ∆d− γ|∇d|2d = 0 in Q,

|d| = 1 in Q,

(3)

where u : Q → IRd denotes the solenoidal velocity field, p : Q → IR denotes the pressure, and

d : Q → IRd represents the director field that describes the average molecular alignment.

The parameter ν > 0 is a constant depending on the fluid viscosity, λ > 0 is an elastic

constant and γ > 0 is a relaxation time constant. The expression (u ·∇)u is the vector function

whose ith component is
∑d

j=1 uj · ∂jui, ∇d is the gradient operator (∂jdi), (∇d)
t denotes its

transpose and |d| = |d(x, t)| is the Euclidean norm in IRd.

From the point of view of continuum mechanics, system (3) is essentially the simplest set of

equations describing the motion of a nematic liquid crystal. System (3) was proposed by Lin in

[41] from the macroscopic hydrodynamic theory of nematic liquid crystals established by Erick-

sen [22, 23] and Leslie [39, 40]. Since the original Ericksen-Leslie equations are mathematically

untractable, further simplifications must be done in order to reduce the many reactive coupling

terms between the fields d and u in the Oseen-Frank free energy functional. Although one could

argue that system (3) is over-simplified, it keeps the core of the mathematical structure, such as

strong nonlinearities and constraints, as well as the physical structure, such as the anisotropic

effect of elasticity on the velocity vector field u. Thus, system (3) can be viewed as a good initial

step towards the theoretical and numerical analysis of the original problem.

Equation (3)1 is the conservation of the linear momentum. The term λ∇ · ((∇d)t∇d) rep-

resents the anisotropic effect of the alignment on the fluid velocity. So, (3)1−2 reduces to the

classical Navier-Stokes equations for λ = 0, which indicates that the molecular centers of mass

have no positional order; equation (3)2 stands for the incompressibility of the fluid. Equation

(3)3 is the conservation of the angular momentum. Equation (3)4 indicates that d is not a state

variable, it only describes the orientation of the nematic liquid crystal molecules.

As explained above, liquid crystals are in general sensitive to temperature. Herein, we only

consider the thermally uncoupled model (3). To these equations we will add homogeneous
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Dirichlet and Neumann boundary conditions for the velocity and director vector fields, respec-

tively:

u(x, t) = 0, ∂nd(x, t) = 0 on (x, t) ∈ Σ, (4)

and the initial conditions

u(x, 0) = u0(x), d(x, 0) = d0(x) on x ∈ Ω. (5)

Here u0 : Ω → IRd and d0 : Ω → IRd are given functions such that ∇ · u0 = 0 and |d0| = 1

in Ω. Pre-twist boundary conditions for the director d modeled by non-homogeneous Dirichlet

conditions as for the pixels could be straightforwardly considered but we have not included them

here for the sake of clarity.

A natural question that arises is: Does system (3) have an energy estimate? In other words,

we want to know if system (3) is energetically dissipative. The next analysis is just done formally.

Let us start observing that the elastic stress tensor can be re-written [42] as

λ∇ · ((∇d)t∇d) = λ∇

(
1

2
|∇d|2

)
− λ(∇d)t(−∆d), (6)

where λ/2|∇d|2 can be incorporated as part of the pressure. Then, multiply (3)1 by u and (3)3

by λ(−∆d− |∇d|2d), and integrate over Ω. Provided that |d| = 1 can be proved previously in

some way, it follows that

λ

∫

Ω
(∇d)t∆d · u− λ

∫

Ω
(u · ∇)d ·∆d = 0,

λ

∫

Ω
(u · ∇)d · |∇d|2d =

λ

2

∫

Ω
(|∇d|2u · ∇)|d|2 = 0,

and ∫

Ω
∂td · |∇d|2d =

1

2

∫

Ω
|∇d|2

d

dt
|d|2 = 0.

As usual for the Navier-Stokes framework, the free-divergence constraint causes that pressure

and convective term vanish together with the boundary condition for u. Therefore, one sees

that problem (3) has the following energy law:

d

dt

(
1

2
‖u‖2L2(Ω) +

λ

2
‖∇d‖2L2(Ω)

)
+ ν‖∇u‖2L2(Ω) + λγ‖∆d+ |∇d|2d‖2L2(Ω) = 0. (7)

Here we have used the homogeneous Dirichlet and Neumann boundary condition for the velocity

and vector director field, respectively, to eliminate the boundary terms stemmed from integration

by parts.

Clearly, the sphere constraint over d has been crucial to obtain the energy equality (7). This

energy equality, which has been formally established, is called the first energy equality for (3).
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It expresses the balance of energy in the system between the kinetic and elastic energies, i.e.

the dependence between the linear and angular momentum equations along with the incom-

pressibility and unit Euclidean norm constraint. Since any body force is considered, the rate of

decay of the kinetic and elastic energy is dictated by the viscous term ν‖∇u‖2L2(Ω) and by the

term λγ‖∆d+ |∇d|2d‖2L2(Ω) which is the L2(Ω)-norm of the residual with respect to the steady

equation (2).

What one may now expect is that the constraint |d| = 1 would be a consequence of (3)1−3,

such as the maximum principle for convection-diffusion equations, since it is an algebraic con-

straint. But this is not the case. First of all, we establish an equation for |d|. If we take the dot

product of (3)3 with d, this leads to

1

2

d

dt
|d(t)|2 +

1

2
(u(t) · ∇)|d(t)|2 − γ∆d(t) · d(t)− γ|∇d(t)|2|d(t)|2 = 0.

Next, observe that
1

2
∆|d|2 = ∆d · d+ |∇d|2. (8)

Then,
1

2

d

dt
|d(t)|2 +

1

2
(u(t) · ∇)|d(t)|2 −

γ

2
∆|d(t)|2 + γ|∇d(t)|2(1− |d(t)|2) = 0.

Equivalently, we have

1

2

d

dt
(|d(t)|2 − 1) +

1

2
(u(t) · ∇)(|d(t)|2 − 1)

−
γ

2
∆(|d(t)|2 − 1)− γ|∇d(t)|2(|d(t)|2 − 1) = 0. (9)

Finally, if we multiply this equality by |d|2 − 1 and integrate over Ω, integration by parts yields

that the convective term in this equality vanishes, since u ∈ V , and

1

4

d

dt

∫

Ω
(|d(t)|2 − 1)2 +

γ

2

∫

Ω
(∇(|d(t)|2 − 1))2 = γ

∫

Ω
|∇d(t)|2(|d(t)|2 − 1)2. (10)

In order to apply the Gronwall lemma, we would need to assume a regularity over d stronger

than the one obtained from the energy estimate (7). To be more precise, ∇d ∈ L2(0, T ;L∞(Ω)).

Subsequently, we are not able to prove the maximum principle this way; and hence the sphere

constraint must be imposed in system (3).

The energy law (7) shows the proper functional spaces where a feasible definition of global-

in-time weak solutions for (3) might be defined.

Definition 1 A pair (u,d) is said to be a weak solution of (3)-(4)-(5) in (0, T ) if:

a)

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ),
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d ∈ L∞(0, T ;H1(Ω)),

|d(x, t)| = 1, a.e. (x, t) ∈ Q.

b) ∀φ ∈ C1([0, T ];V ∩W 1,∞(Ω)) such that φ(T ) = 0,

∫ T

0
{−(u, ∂tφ) + ((u · ∇)u,φ) + ν(∇u,∇φ)

−λ((∇d)t∇d,∇φ)
}
dt = (u0,φ(0)).

c) ∀ψ ∈ C1([0, T ];H1
0(Ω) ∩L

∞(Ω)) such that ψ(T ) = 0,

∫ T

0
{−(d, ∂tψ) + ((u · ∇)d,ψ) + γ(∇d,∇ψ)

−γ(|∇d|2d,ψ)
}
dt = (d0,ψ(0)).

To our knowledge, the existence of a global-in-time weak solution for (3) still remains as an open

problem.

System (3) in its present formulation is overdetermined. There are four equations for three

unknowns, and none of them seems to be dependent on the rest. Hence, the obtention of an

energy estimates from (3) seems to be unaffordable. Of course, this is an important aspect

when designing a numerical approximation for (3), because it could affect the robustness and

uniqueness of the numerical method.

As observed, equations (3)1 (along with (3)2) and (3)3 (along with (3)4) share a similar

structure. But it is worth mentioning that (3)2 is a linear differential constraint whereas (3)4

is a nonlinear algebraic constraint, which does not imply that the techniques in order to prove

some results for one can be useful for the other. Of course, one expects that the constraints (3)2

and (3)4 will be satisfied in some sense.

With regard to (3)2, approximating solenoidal functions with conforming finite elements

is difficult, in the sense that these finite-element basis functions are hard to construct and

computationally inefficient. Thus, the treatment of the incompressibility (3)2, related to the

pressure Lagrange multiplier, is enforced by means of velocity-pressure saddle-point methods

which provide discrete divergence-free approximations and a well-known energy estimate. The

corresponding velocity-pressure spaces must satisfy a discrete inf-sup condition, in order to get a

well-posed discrete problem. This compatibility conditions between spaces can be circumvented

via stabilized finite element methods (see e.g. [4]). Alternatively, the incompressibility condition

can be penalized and the pressure unknown eliminated. This last approach does not require the

computation of the pressure, but consistency is lost and the condition number blows up with the

penalty, making the solution of the system too expensive for acceptable values of the penalty

parameter (see e.g. [13]).
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To enforce the unit Euclidean norm for the director d, we can also consider a penalty or a

saddle-point approach.

A penalty method. A well-known penalty formulation for (3) uses the Ginzburg-Landau

function fε(d) = ε−2(|d|2 − 1)d, associated with the penalty parameter ε > 0. Then, the

penalty formulation is obtained from (3) by weakening the constraint |d| = 1 by |d| ≤ 1, and

replacing the strongly nonlinear term |∇d|2d by f ε(d) . Note that f ε is the gradient of the

scalar potential function

Fε(d) =
1

4ε2
(|d|2 − 1)2,

that is, f ε(d) = ∇dFε(d) for all d ∈ IRd. This fact is basic to obtain an energy estimate for the

penalized problem. Thus, we arrive at




∂tu+ (u · ∇)u− ν∆u

+∇p+ λ∇ · ((∇d)t∇d) = 0 in Q,

∇·u = 0 in Q,

∂td+ (u · ∇)d+ γ(f ε(d)−∆d) = 0 in Q,

|d| ≤ 1 in Q.

(11)

The energy estimate for (11) was established in [42]. First of all, we have to re-write the elastic

stress tensor as in (6) below. Then, (11)1 is multiplied by u and (11)2 by λ(−∆d + f ε(d)).

After integrating over Ω and using the fact that

λ

∫

Ω
(∇d)t∆d · u− λ

∫

Ω
(u · ∇)d ·∆d = 0,

λ

∫

Ω
(u · ∇)d · f ε(d) = −λ

∫

Ω
(∇ · u)Fε(d) = 0,

and

λ

∫

Ω
∂td · fε(d) = λ

d

dt

∫

Ω
Fε(d),

one infers that problem (11) has the energy law:

d

dt

(
1

2
‖u‖2L2(Ω) +

λ

2
‖∇d‖2L2(Ω) + λ

∫

Ω
Fε(d)

)

+ ν‖∇u‖2L2(Ω) + λγ‖ −∆d+ f ε(d)‖
2
L2(Ω) = 0.

(12)

As far as we know, this is the best energy estimate for (11) independent of ε.

In contrast to what happens for (3), the relaxed constraint |d| ≤ 1 can now be accomplished

[54, 48, 27] as a maximum principle for convection-diffusion-reaction equations, allowing us to

eliminate it from (11). That is, if |d0| ≤ 1 in Ω, then |d(t)| ≤ 1 in Ω for t ∈ (0, T ). Indeed, if we

multiply (11)3 by d, we see that |d| satisfies

1

2

d

dt
|d(t)|2 +

1

2
(u(t) · ∇)|d(t)|2 − γ∆d(t) · d(t) + γf ε(d) · d = 0.
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The identity (8) leads to

1

2

d

dt
(|d(t)|2 − 1) +

1

2
(u(t) · ∇)(|d(t)|2 − 1) (13)

−
1

2
γ∆(|d(t)|2 − 1) + γf ε(d) · d ≤ 0, (14)

where we have used the fact that γ|∇d|2 ≥ 0. Testing the above equation by (|d|2−1)+ ∈ H1(Ω),

with (·)+ being the positive part, one observes that

fε(d) · d (|d|
2 − 1)+ ≥ 0

and ∫

Ω
((u · ∇)(|d|2 − 1))(|d|2 − 1)+ = −

1

2

∫

Ω
∇ · u[(|d|2 − 1)+]

2 = 0,

and hence
d

dt
‖(|d|2 − 1)+‖

2
L2(Ω) + γ ‖∇(|d|2 − 1)+‖

2
L2(Ω) ≤ 0.

Since (|d0|
2 − 1)+ = 0 in Ω, then |d| ≤ 1 in Q.

Now, the question that arises is how one recovers a solution of system (3) from system (11)

as ε → 0, at least formally. We follow the ideas in [42] based on those developed for harmonic

maps [57, 11]. To do so, we note that equations (3)1−2 and (11)1−2 are exactly the same. So,

the difference between the two approaches strives in the d-system, i.e. (3)3−4 and (11)3−4. From

(12) one easily deduces that

1

2
‖u(t)‖2L2(Ω) +

λ

2
‖∇d(t)‖2L2(Ω) + λ

∫

Ω
Fε(d(t)) ≤ C for all t ∈ [0, T ], (15)

where C = C(u0,d0) is independent of ε since
∫
Ω Fε(d0) = 0. Therefore, in the limit as ε → 0

from
∫
Ω Fε(d(t)) ≤ C, we find |d| = 1. On the other hand, applying the cross product of (11)4

with d, and passing to the limit as ε → 0, we would obtain

∂td× d+ (u · ∇)d× d− γ∆d× d = 0,

which indicates that ∂td + (u · ∇)d − γ∆d = 0 is parallel to d. Hence, there exists a function

κ = κ(d) such that

∂td+ (u · ∇)d− γ∆d = κ(d)d.

Now, taking the dot product with respect to d and using the fact that |d| = 1, we find −γ∆d·d =

κ(d) concluding that κ(d) = γ|∇d|2, owing to (8).

However, a little bit more can be said about system (11) [8]. Define

w = −∆d+ fε(d), (16)
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then w ∈ L2(0, T ;L2(Ω)) from (12). Next, multiply equation (16) by −∆d and integrate over

Ω to get

‖∆d‖2L2(Ω) = −(w,∆d) + (f ε(d),∆d)

≤ ‖w‖L2(Ω)‖∆d‖L2(Ω) − (∇df ε(d)∇d,∇d)

≤ ‖w‖L2(Ω)‖∆d‖L2(Ω) +
C

ε2
‖∇d‖2L2(Ω),

where in the last line we have used the fact that |d| ≤ 1 a.e. in Q. Young’s inequality gives

‖∆d‖2L2(Ω) ≤ ‖w‖2L2(Ω) +
C

ε2
‖∇d‖2L2(Ω).

Next, integrating over (0, T ) jointly with estimate (15) yield

∫ T

0
‖∆d‖2L2(Ω) ≤ Cε−2. (17)

This is the best dependence on ε for theH2-norm for the director vector. Therefore, the limiting

problem (3) does not hold the L2(0, T ;H2(Ω)) regularity as ε → 0.

The following estimate can be also proved [48] by multiplying equation (11)1 by u, equation

(11)3 by −λ∆d, and bounding the term λγ(f ε(d),d) as before:

d

dt

(
1

2
‖u‖2L2(Ω) +

λ

2
‖∇d‖2L2(Ω)

)

+ ν‖∇u‖2L2(Ω) + λγ‖∆d‖2L2(Ω) ≤
C

ε2
‖∇d‖2L2(Ω).

(18)

Thus, Gronwall’s inequality gives the bound

‖u‖2L2(Ω) + ‖∇d‖2L2(Ω) +

∫ t

0
(ν‖∇u(s)‖2 + ‖∆d(s)‖2L2(Ω)) ds ≤ C exp(t/ε2).

However, the dependence with respect to ε can be improved by bounding

γλ(f ε(d),∆d) ≤
γλ

2
‖∆d‖2L2(Ω) +

C

ε4
,

where we have used the fact that |d| ≤ 1 in Ω. Thus, we have

d

dt

(
1

2
‖u‖2L2(Ω) +

λ

2
‖∇d‖2L2(Ω)

)

+ ν‖∇u‖2L2(Ω) + λγ‖∆d‖2L2(Ω) ≤
C

ε4
.

(19)

The energy estimate (18) is better in order to obtain error estimates, but the energy estimate

(19) is more adequate from the point of view of stability.

The energy estimate (12) jointly with (17) allows then to define global-in-time weak solutions

in the following functional frame.
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Definition 2 A pair (d,u) is called a weak solution of (11)-(4)-(5) in (0, T ) if:

a)

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ),

d ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)),

|d(x, t)| ≤ 1, a.e. (x, t) ∈ Q.

b) ∀φ ∈ C1([0, T ];V ) such that φ(T ) = 0,

∫ T

0
{−(u, ∂tφ) + ((u · ∇)u,φ) + ν(∇u,∇φ)

−λ((∇d)t∇d,∇φ)
}
dt = (u0,φ(0))

c)

∂td+ u · ∇d− γ∆d+ γf ε(d) = 0 a.e. in Q,

d(0) = d0 a.e. in Ω.

So far, the best convergence from (11) to (3), based on an energy method and a compactness

result, is towards measure-valued solutions. By a semi-Galerkin approach, the approximate

solutions are constructed so that the energy law (12) holds and hence stability is attained

in L∞(0, T ;H1(Ω)) for the director field and in L2(0, T ;V ) ∩ L∞(0, T ;H) for the velocity

field independent of ε. It is well-known that the weak convergences associated with the a

priori estimates do not suffice to pass to the limit in the nonlinear terms. Therefore, some

sort of compactness argument for time-dependent functions is required. Using the bounds for

the approximate solutions in (11)3, we find that the time derivative of the sequence of the

approximate director vectors is bounded in L4/3(0, T ;L2(Ω)). Then a result of compactness

[46, 47] shows that the sequence of the approximated director vectors has a cluster point in

Lq(0, T ;Lr(Ω)) with 1 ≤ r < 6 and 1 ≤ q < ∞. Unfortunately, this compactness is too weak

to pass to the limit in the elastic tensor (∇d)t∇d, since it is only bounded in L∞(0, T ;L1(Ω)).

Therefore, the elastic tensor only tends to a certain measure (see [51, 43, 42]). One way to identify

the tensor in the limit in L∞(0, T ;L1(Ω)) would involve a H2(Ω) regularity independent of ε.

However, the best bound in this sense depends polynomially on ε (see (17)).

A Lagrange multiplier method. This sort of method introduces a new variable, the Lagrange

multiplier q that allows to enforce the sphere condition |d| = 1. The saddle-point formulation

of problem (3) reads as follows:




∂tu+ (u · ∇)u− ν∆u+∇p+ λ∇ · ((∇d)t∇d) = 0 in Q,

∇·u = 0 in Q,

∂td+ (u · ∇)d+ γ(qd−∆d) = 0 in Q,

|d| = 1 in Q.

(20)
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The energy estimate associated with problem (20) was derived in [5]. Assuming that |d| = 1

holds, the elastic stress tensor can be written as

λ∇ · ((∇d)t∇d) =
λ

2
∇
(
|∇d|2

)
− λ(∇d)t(−∆d+ qd), (21)

since (∇d)t(qd) = 1
2q∇(|d|2) = 0. If we multiply (20)1 by u and (20)3 by λ(−∆d + qd), and

integrate over Ω, we have

d

dt

(
1

2
‖u‖2L2(Ω) +

λ

2
‖∇d‖2L2(Ω)

)
+ ν‖∇u‖2L2(Ω) + λγ‖ −∆d+ qd‖2L2(Ω) = −

∫

Ω
∂td · qd. (22)

To control the right hand side of (22), we take the time derivative of |d|2 = 1. Thus, it follows

that ∂td · d = 0, i.e. ∂td and d are orthogonal. Therefore,

d

dt

(
1

2
‖u‖2L2(Ω) +

λ

2
‖∇d‖2L2(Ω)

)
+ ν‖∇u‖2L2(Ω) + λ‖ −∆d+ qd‖2L2(Ω) = 0. (23)

From (23), no control over q is obtained. Typically, the control over the Lagrange multiplier

is achieved by virtue of an inf-sup condition. Unfortunately, the inf-sup condition associated

to the nonlinear algebraic constraint |d| = 1 is not well-understood yet at the continuum level,

unlike the one for the Navier-Stokes equations. The best result is due to Hu, Tai, and Winther

[36] in the context of steady harmonic map problems, that is, for u = 0 and ∂td = 0. They

proved

‖q‖H−1(Ω) ≤ α sup
d̄∈H1

0(Ω)\{0}

〈
q,d · d̄

〉

‖d̄‖H1
0
(Ω)

∀ q ∈ H−1(Ω) (24)

where α > 0 depends on the W 1,∞(Ω)-norm of d. But such a regularity assumption, d ∈

W 1,∞(Ω), is not a consequence of (23). The natural inf-sup condition for problem (20) is

‖q‖L∞(Ω)′ ≤ α sup
d̄∈L∞(Ω)\{0}

〈
q,d · d̄

〉

‖d̄‖L∞(Ω)

∀ q ∈ L∞(Ω)′ (25)

since q = −|∇d|2 ∈ L∞(0, T ;L1(Ω)) and L1(Ω) ⊂ L∞(Ω)′. To prove the inf-sup condition (25)

we need to assume that |d|2 > 1/α a.e. in Ω for some α > 0. First of all, we will see that the

mapping d· : L∞(Ω) → L∞(Ω) is surjective. Indeed, let e ∈ L∞(Ω), then choose d̄ = d/|d|2e.

Clearly, e = d · d̄ ∈ L∞(Ω). Next, observe that ‖d̄‖L∞(Ω) ≤ α‖e‖L∞(Ω). Thus, we have

‖q‖L∞(Ω)′ = sup
e∈L∞(Ω)\{0}

〈
q, e
〉

‖e‖L∞(Ω)
≤ α sup

d̄∈L∞(Ω)\{0}

〈
q,d · d̄

〉

‖d̄‖L∞(Ω)

for all q ∈ L∞(Ω)′. But this inf-sup condition is not applicable owing to the presence of −γ∆d

in equation (20)3. Therefore, we need to weaken the norm for the Lagrange multiplier q as
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follows. Let q ∈ (H1(Ω) ∩L∞(Ω))′, then one can prove

‖q‖(H1(Ω)∩L∞(Ω))′ ≤ α sup
d̄∈H1(Ω)∩L∞(Ω)\{0}

〈
q,d · d̄

〉

‖∇d̄‖L2(Ω) + ‖d̄‖L∞(Ω)

, (26)

where d ∈H1(Ω) ∩L∞(Ω) such that |d|2 > 1/α a.e. in Ω.

A Ginzburg-Landau-Lagrange method. The penalized Ginzburg-Landau problem can also be

stated in a saddle-point framework. This way, we can consider both the penalized and limit

problem in a unified frame. This method consists in penalizing problem (20) as follows:





∂tu+ u · ∇u− ν∆u

+∇p+ λ∇ · ((∇d)t∇d) = 0 in Q,

∇·u = 0 in Q,

∂td+ u · ∇d+ γ(qd−∆d) = 0 in Q,

|d|2 − 1 = ε2q in Q.

(27)

As observed in [5], this method establishes a connection between (11) and (20). Clearly, from

(27)4, one sees that q = 1
ε2
(|d|2−1), which plugged into (27)3 leads to (11)3. On the other hand,

when ε = 0, one obtains (20). The energy estimate for (27) can be achieved analogously to the

energy estimate (23) given by the Lagrange method (20) (see [5]). We have:

d

dt

(
1

2
‖u‖2L2(Ω) +

λ

2
‖∇d‖2L2(Ω) +

ε2

4
‖q‖2L2(Ω)

)

+ ν‖∇u‖2L2(Ω) + λγ‖ −∆d+ qd‖2L2(Ω) = 0.

(28)

The numerical approximation of the Ericksen-Leslie equations is difficult due to the following

reasons:

1. The linear and angular momentum equations are nonlinear.

2. It involves two constraints, the incompressibility condition (3)2 and the sphere condition

(3)4, which is nonconvex.

3. The large number of unknowns that appear in the Ericksen-Leslie equations, due to the

coupling between the nonlinear terms and the constraint conditions. So, its numerical

approximation and more specifically the solution of the resulting linear systems is compu-

tationally expensive.

Upon analyzing a numerical scheme we must take into account two things:
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1. Stability. In numerical analysis, the terminology of stability is frequently associated with

bounding the approximate solutions in certain norms, which are related to the energy of

the model in question. Such estimates are called a priori or energy estimates. Moreover,

the existence and uniqueness of approximate solutions is based on them.

2. Convergence. Two types of convergence results for approximate solutions can be consid-

ered. Compactness shows that the approximate solutions converge to a weak solutions

under minimum regularity of the data, but no rate of convergence can be guaranteed.

On the other hand, if a solution with more regularity than the one provided by the en-

ergy estimate is fixed, a priori error estimates can be performed, establishing rates of

convergence.

System (3)1−2 becomes the classical Navier-Stokes equations plus an elastic stress tensor

λ∇ · ((∇d)t∇d). Therefore, we cannot expect better results than those known for the Navier-

Stokes equations (see [30, 59]). Since the numerical approximation of fluid flows is computation-

ally expensive, efficient low-order approximations are favoured. Roughly speaking, the discrete

velocity and pressure spaces are constructed by piecewise polynomials, globally continuous func-

tions, satisfying the corresponding inf-sup condition. This sort of method provides algorithms

which are easy to implement, well-conditioned with respect to the discretization parameters and

allows to deal with complex geometries. An alternative to inf-sup stable approximations are

the residual-based stabilization techniques (see e.g. [37]), that allow to choose the velocity and

pressure spaces without the need to satisfy any compatibility condition and solves the singularly

perturbed nature of the problem at hand for convection dominant flows.

With regard to the approximation of (3)3−4, each method explained above will give rise to

different variational formulations to be approximated by finite-dimensional spaces. In general,

we will consider globally continuous piecewise polynomial functions, even though the velocity

and director vector regularity are different. A notable exception is the method in [48], where C1

approximations are used to approximate the director vector; it was the first numerical scheme

to deal with the approximation of (11).

The Ginzburg-Landau method penalizes the constraint (7)4 in the L2 norm, say
∫
Ω(|d|

2 −

1)2 ≤ Cε2, from (12). Upon using this penalty method, an important choice is the size of the

penalty parameter ε. A very high penalty number leads to ill-conditioned algebraic systems,

when the off-diagonal blocks are multiplied by a large number. On the other hand, the rate

of convergence is spoiled by ε. Sometimes, the penalization parameter depends on the mesh

parameters.

The Lagrange multiplier method introduces a new variable to be computed, which represents

an increasement in the dimension of the resulting linear system. In any case, we will see that
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the numerical approximations of the Ginzburg-Landau approach require auxiliary variables in

order to prove an energy inequality, and in general the dimension of the resulting system is

larger than the one of the saddle-point formulation. Furthermore, this method allows one to

obtain numerical approximations of the original problem (without penalty) satisfying an energy

inequality. On the other hand, the inf-sup condition must be satisfied in order to be well-posed

(see [36]). As for the incompressibility condition, the constraint (11)4 is satisfied in a discrete

(weak) sense. Let us remark that, as far as we know, there are no finite element spaces capable

to satisfy the restriction pointwise in general. E.g. we can straightforwardly prove that the only

functions that belong to linear finite element spaces and satisfy the sphere constraint pointwise

are constant functions.

2.3 Finite element approximation

From now on, we assume that Ω is a bounded domain of IRd (d = 2 or 3) with a polygonal

o polyhedral Lipschitz-continuous boundary and that there exists a family of triangulations

{Th}h>0 of Ω made up of triangles or quadrilaterals in two dimensions and tetrahedra or hexa-

hedra in three dimensions, so that Ω = ∪K∈ThK. Further, any two elements K1,K2 ∈ Th satisfy

int(K1) ∩ int(K2) = ∅ and K1 ∩K2 is empty or a entire common vertex, face or side.

For an arbitrary element K, we denote by hK > 0 the diameter of K, with h = maxK∈Th hK ,

and by bK the radius of the largest ball inscribed in K, with b = minK∈Th bK . The family of

triangulations Th will be assumed to be quasi-unform, i.e. there exists ρ > 0 such that b ≥ ρh

for all K ∈ Th and for all h > 0. The space of polynomials of degree less or equal to k > 0 in a

finite element K is denoted by Pk(K). The space of continuous piecewise polynomials is defined

as

Pk
h =

{
vh ∈ C0(Ω) such that vh|K ∈ Pk(K) ∀K ∈ Th

}
. (29)

We also denote by Dk
h the space of piecewise polynomials of order no larger than k without C0

continuity. In particular, D0
h is the space of piecewise constant functions. The notation of the

finite element spaces to be used for approximating the primary variables are the following. For

the velocity and pressure we let (V h, Ph) to be two Lagrange finite element spaces associated

with Th. Otherwise stated, the velocity finite element space V h that we consider is ((P1
h)

d ⊕

(Bh)
d) ∩H1

0(Ω), where

Bh = {vb such that vb|K ∈ Pd+1(K), vb|∂K = 0, ∀K ∈ Th}

is the space of bubbles in every element (see e.g. [10]). The pressure space Ph is P1
h ∩ L2

0(Ω).
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This velocity-pressure finite element pair is known to satisfy the discrete inf-sup condition

‖ph‖L2
0
(Ω) ≤ β sup

v∈V h\{0}

(
qh,∇ · v

)

‖v‖H1(Ω)
∀ ph ∈ Ph, (30)

for β > 0 uniform with respect to h. On the other hand, for the director field, we usually

choose Dh to be again a Lagrange finite element space, i.e. (P1
h)

d. Otherwise stated, these

are the typical choices in the subsequent developments. In any case, the following results can

be extended to any other finite element spaces, provided the required inf-sup conditions are

satisfied. Throughout this work we will need to introduce some extra discrete spaces which will

describe when necessary.

We shall assume that Ω has the W 2,r × W 1,r-elliptic regularity property for the Stokes

problem. That is to say, for a prescribed f ∈ Lr with r > 1, there exists a unique solution

(u, p) ∈W 2,r(Ω)×W 1,r(Ω) of





−∆u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 in ∂Ω,

(31)

which satisfies the following continuous dependence with respect to f :

‖u‖W 2,r(Ω) + ‖p‖W 1,r(Ω) ≤ C‖f‖Lr(Ω). (32)

On the other hand, we also assume that Ω holds a W 2,r-elliptic regularity property for the

Neumann problem; given g ∈ Lr(Ω) with
∫
Ω g = 0, there exists a unique solution d ∈ W 2,r(Ω)

with
∫
Ω d = 0 of {

−∆d = g in Ω,

∂nd = 0 in ∂Ω,
(33)

which satisfies the following continuous dependence with respect to g:

‖d‖W 2,r(Ω) ≤ C‖g‖Lr(Ω). (34)

For r = 2, properties (32) and (34) can be demonstrated for convex Ω [34, 38, 17, 18] or

C1,1 boundary [16, 55]. For r > 2, in two dimensions, properties (32) and (34) hold when Ω is

convex, and r depends on ∂Ω [34, 16]. However, in three dimensions, r depends strongly on ∂Ω

so that convexity is not suffice [16, 17].

An arbitrary triangulation of an arbitrary domain does not posses the C1,1 regularity in

general. Therefore, from the point of view of numerical analysis, we are limited to convex

domains. Isoparametric elements are needed to generalize to domains with curved boundaries.
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Usually, for the Navier-Stokes equation, the above regularity hypotheses are invoked when

error estimates are stated, but we will see here that such a regularity is required even for

convergence results by compactness.

The initial data are

u0 ∈H and d0 ∈H
1(Ω) with |d0| = 1 in Ω

when the convergence of the algorithm is established by compactness or

u0 ∈H
2
0(Ω) ∩ V and d0 ∈W

2,r(Ω) with |d0| = 1 in Ω

when the convergence of the algorithm is established by error estimates.

All the methods presented herein use a finite difference discretization in time. Let us therefore

introduce some notation related to the time variable that we will use throughout the work. For

simplicity, we suppose a uniform partition of [0, T ] into N pieces. So, the time step size is

k = T/N and the time values (tn = nk)n=N
n=0 . Let φn

h be a sequence in some Banach space X

computed by some time-stepping scheme, i.e. the sequence φn
h will represent an approximation

of φ(tn). We define δtφ
n+1
h =

φn+1

h −φn
h

k and φ
n+1/2
h =

φn+1

h +φn
h

2 . Let φr
h,k and φl

h,k be the piecewise

constant interpolation taking the value φn+1
h or φn

h on (tn, tn+1], respectively. Moreover, we

define the piecewise linear interpolation φh,k ∈ C0([0, T ];X) such that φh,k(tn) = φn
h, that is,

φh,k(t) =
t− tj
k

φn+1
h +

tj+1 − t

k
φn
h ∀t ∈ [tn, tn+1].

Let us introduce some short-hand notation, in order to simplify the writing of the different

schemes:

a(u,v) = (∇u,∇v) for all u,v ∈H1(Ω),

bu(u, q) = (∇ · u, q) for all u ∈H1(Ω), q ∈ L2(Ω),

bd(q,d, d̄) = 〈q,d · d̄〉 for all q ∈ (H1(Ω))′, d, d̄ ∈H1(Ω) ∩L∞(Ω),

c(w,u,v) = 〈(w · ∇)u · v〉 for all w,u,v ∈H1(Ω).

It is clear that c(w,u,u) = 0 for all w ∈ V . At the discrete level, the approximate velocity

does not satisfy the incompressibility condition in a pointwise sense. Thus, in order to keep

the skew-symmetry of the trilinear term, the stabilizing term 1
2〈(∇ · u)w,v〉 is added to the

convective term. Then the trilinear form reads:

c̃(u,w,v) = 〈(u · ∇)w,v〉+
1

2
〈(∇ · u)w,v〉, for all w,u,v ∈H1(Ω),

for which c̃(w,u,u) = 0 holds for all u,w ∈H1
0(Ω).
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3 On the approximation of the Ginzburg-Landau problem (11)

3.1 Direct approximation for the Ginzburg-Landau problem

3.1.1 A H2-conforming approximation

The first authors who dealt with the approximation of (11) for two-dimensional domains were

Liu and Walkington in [48]. They focused their work in the obtention of error estimates, but

they did not avoid the dependence on the penalty parameter ε. The best result for a Ginzburg-

Landau-type equation is proved in [26], where the dependence of ε is of polynomial order. Hence,

an interesting open problem is to obtain error estimates independent of the penalty parameter

ε, or at least a polynomial dependence.

The starting point of the scheme lies in the following weak reformulation of (11), which is

obtained by taking the L2 inner product of ū ∈ H1
0(Ω) with the linear momentum equation

(11)3 and the L2 inner product of −∆d̄ (for d̄ ∈H2(Ω)) with the angular momentum equation

(11)2. After using integration by parts, the problem reads as: find (u(t), p(t),d(t)) ∈H1
0(Ω)×

L2
0(Ω)×H

2(Ω) satisfying





(∂tu,v) + c(u,u,v) + νa(u,v)

−bu(p, ū) + λc(d,v,∆d) = 0,

bu(p̄,u) = 0,

(∂t∇d,∇d̄)− c(u,d,∆d̄)

+γ(∆d− fε(d),∆d̄) = 0,

(35)

for all (ū, p̄, d̄) ∈ H1
0(Ω) × L2

0(Ω) ×H
2(Ω). Observe that the elastic stress tensor has been

written as in (21), where the potential term λ
2∇(|∇d|2) has been absorbed into the definition

of the pressure, getting a modified pressure p ∼ p +
λ

2
|∇d|2. In [48], Fε was truncated to have

quadratic growth outside of the unit ball.

In order to obtain a conforming approximation of (35) by a Galerkin finite element ap-

proximation, one should use a Dh space based on H2 conforming finite elements for the third

equation in system (35). Thus, a general form for Dh is

Dh = {d̄h ∈ C1(Ω) : d̄|T ∈ Pd
k for all T ∈ Th}.

In two-dimensional domains, examples of C1 finite element spaces are the bicubic Hermite

elements or Argyris elements. However, for the first and second equation, one can use a classical

pair (V h, Ph) satisfying the inf-sup condition (30), as the one introduced above. In particular,

Vh = P2
h and Ph = P1

h were considered in [48]. With respect to the time integration, e.g. a

fully implicit time stepping scheme is used in [48]. All these considerations lead to the following
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scheme: given (un
h, p

n
h,d

n
h), find (un+1

h , pn+1
h ,dn+1

h ) ∈ V h × Ph ×Dh satisfying

(δtu
n+1
h , ūh) + c̃(un

h,u
n+1
h , ūh) + ν a(un+1, ūh)

−bu(p
n+1
h , ūh) + λ c(ūh,d

n+1
h ,∆dn+1

h ) = 0,

bu(p̄h,u
n+1
h ) = 0,

(∇δtd
n+1
h ,∇d̄h)− c(un+1

h ,dn+1
h ,∆d̄h)

+γ(∆dn+1
h − fε(d

n+1
h ),∆d̄h) = 0,

(36)

for all (ūh, p̄h, d̄h) ∈ V h × Qh × Dh. As pointed out in [8], existence of a discrete solution

(un+1
h , pn+1

h ,dn+1
h ) for (36) implies the relation between the time and penalty parameter k =

O(e−1/ε2). This is due to the lack of an energy estimate independent of ε. In [48], the following

discrete energy estimate for (36) was derived

1

2
‖un+1

h ‖2L2(Ω) +
λ

2
‖∇dn+1

h ‖2 + k

n∑

j=0

(ν‖∇uj+1
h ‖2 + γλ‖∆dj+1

h ‖2)

≤ C(
1

2
‖u0

h‖
2 +

λ

2
‖∇d0h‖

2) exp((n + 1) k/ε2) for all n.

(37)

In order to obtain bounds for enu := un
h−u(tn) and en

d
:= dnh −d(tn), we must assume some sort

of regularity for the solution of problem (11):

u ∈ C(0, T ;H2
0(Ω)), ∂tu ∈ L2(0, T ;L2(Ω)), ∂ttu ∈ L2(0, T ;H−1(Ω))

p ∈ C(0, T ;H1(Ω))

and

d ∈ C(0, T ;W 2,4(Ω)), ∂td ∈ L2(0, T ;H1(Ω)), ∂ttd ∈ L2(0, T ;L2(Ω)).

In addition,

∆d ∈ L2(0, T ;H1(Ω)).

In [48] it is shown the following error estimates:

‖enu‖
2
L2(Ω) + ‖end‖

2
H1(Ω) + k

n∑

m=0

(
‖emu ‖2H1(Ω) + ‖emd ‖2H2(Ω)

)
≤ C (k2 + h2) for all n,

where the constant C > 0 depends on the penalty parameter ε and, obviously, on the regularity

of the solution. To obtain such error estimates, the differential form of (11) at t = tn+1 was

used with the corresponding consistency errors. This approach needs the velocity vector u

to satisfy an extra compatibility condition established in [35] on the data at t = 0 to get

∂ttu ∈ L2(0, T ;H−1(Ω)).

Moreover, the regularity for the director vector d requires the Neumann problem (33) holding

the regularity (34) for r = 4, which leads to a restriction on the angles of the boundary ∂Ω.
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Clearly, C1-finite elements provide high order approximations because they consider a huge

degree of approximations. The Argyris element is constructed with polynomials of degree less

than or equal to 5, and it has 21 degree of freedom per triangle for a scalar problem in dimension

2, whereas the bicubic Hermite element is obtained by products of polynomials of degree less than

or equal to 3, involving 16 degree of freedom for the same case. The huge number of unknowns

per element for a vectorial problem in two and three dimensions make this C1 approximation

extremely intensive in terms of computational cost. Furthermore, these approximations involve

the derivatives of the unknowns, complicating their implementation. Although this scheme has

demonstrated that can capture the behavior of singularities, it is not appropriate in terms of

computation. The use of low order Lagrangian element is favoured for computational efficiency

reasons.

3.1.2 A H1-conforming approximation

The energy estimate (12) can be writen without the need to have d ∈H2(Ω):

d

dt

(
1

2
‖u‖2L2(Ω) +

λ

2
‖∇d‖2L2(Ω) + λ

∫

Ω
Fε(d)

)

+ ν‖∇u‖2L2(Ω) +
λ

γ
‖∂td+ (u · ∇)d‖2L2(Ω) = 0,

(38)

since −∆d + f ε(d), the equation for critical points of the energy
∫
Ω

1
2 |∇d|

2 + Fε(d), has been

replaced by the material derivative ∂td+(u·∇)d. Lin and Liu presented in [44] one of the simplest

time-stepping schemes for the two-dimensional Ginzburg-Landau problem (11), in which space is

discretized byH1-conforming finite elements and time is discretized implicitly with respect to the

linear terms and semi-implicitly with respect to the nonlinear terms, except for the anisotropic

stress tensor that is fully explicit; so, the penalty term is discretized semi-implicitly. Thus, the

resulting scheme reads

(δtu
n+1
h , ūh) + c̃(un

h,u
n+1
h , ūh) + νa(un+1, ūh)

−bu(p
n+1
h , ūh)− λ((∇dnh)

t∇dnh,∇ūh) = 0,

bu(p̄h,u
n+1
h ) = 0,

(δtd
n+1
h , d̄h) + c(un

h,d
n+1
h , d̄h)

+γa(dn+1
h , d̄h) +

γ

ε2
((|dnh|

2 − 1)dn+1
h , d̄h) = 0,

(39)

for all (ūh, p̄h, d̄h) ∈ V h × Ph ×Dh. In [44], the discrete spaces were V h = P2
h, Ph = P1

h and

Dh = P2
h.

Since no energy estimates can be proved independent of the mesh and penalty parameter,

the unique solvability of (39) is conditional, that is, there exist a polynomial relation k = R(ε, h)

for which existence and uniqueness of discrete solutions for the scheme (39) may be established.
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Obviously, this scheme reduces significantly the computational cost, allowing larger scale

numerical simulations. The most important feature is that, at each time step, one only needs to

solve a sequence of two decoupled linear problems for the velocity-pressure pair and the director

field, separately. However, the authors were not able to derive the discrete analog to the energy

estimate (38), which is basic for unconditional stability and also important with regard to the

error analysis, if one wants to prove

‖enu‖
2
L2(Ω) + ‖end‖

2
H1(Ω) + k

n∑

m=0

(
‖emu ‖2H1(Ω) + ‖emd ‖2H2(Ω)

)
≤ C (k2 + h2) for all n.

A second algorithm based on the finite element method of characteristics was presented in

[44]. Fixed (un
h, p

n
h,d

n
h), find (un+1

h , pn+1
h ,dn+1

h ) ∈ V h × Ph ×Dh such that

(δtu
n+1
h (Xn

h), ūh) + νa(un+1, ūh)− bu(p
n+1
h ,uh)− λ

(
(∇dnh)

t∇dnh,∇ūh

)
= 0,

bu(p̄h,u
n+1
h ) = 0,

(δtd
n+1
h (Xn+1

h ), d̄h) + γa(dn+1
h , d̄h) +

γ

ε2
((|dnh|

2 − 1)dn+1
h , d̄h) = 0, (40)

where we have denoted by

δtu
n+1
h (Xn

h) =
un+1
h − un

h(X
n
h)

k
and δtd

n+1
h (Xn+1

h ) =
dn+1
h − dnh(X

n+1
h )

k
,

and Xn
h := x+ kun

h(x) and X
n+1
h := x+ kun+1

h (x), which is a backward Euler time discretiza-

tion of the characteristic system

X(x, tn+1; tn) = x−

∫ tn+1

tn

u(X(x, tn+1; t), t) dt. (41)

Note that the convective velocity for dn+1
h is updated, due to the sequential feature of the

method. The discrete spaces (V h, Ph,Dh) are considered as above.

The finite element method of characteristics for equations (11)1−2 leads to linear algebraic

problems with time-independent matrices, reducing the computational; we can decompose (at

least approximately) the associated matrix just once at the beginning of computation. However,

the same method does not avoid to compute for (11)3 and (11)4, that lead to time-dependent

matrices. For this reason, they proposed an iterative method for (40) in such a way the matrices

do not change at each iteration. Given dn+1,j
h , find dn+1,j

h ∈Dh such that

(
d
n+1,j+1
h − dnh(X

n+1
h )

k
, d̄h

)
+ a(dn+1,j+1

h , d̄h) +
γ

ε2

(
(|dnh|

2 − 1)dn+1,j
h , d̄h

)
= 0.

It is proved the convergence of dn+1,j
h to dn+1

h in the L2 norm, but it requires the relation

γk/ε2 < 1 between the time and penalty parameter. In any case, for large scale problems and
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reasonably large time step sizes (e.g. ten times the explicit time step size), the assembling

of the linear matrix is almost negligible compared to the solver time, and so, it is not clear

the computational gain of this approach. On top of that, the iterations introduced over the d

system are simple Richardson iterations, and so, it is expected to have a worse convergence than

a Krylov-based solver.

3.2 Mixed Methods for the Ginzburg-Landau problem

3.2.1 Using w = ∇d as an auxiliary variable

In a second work [49], Liu and Walkington avoided using Hermite finite elements for the ap-

proximation of the director equation in problem (11). The key idea is to introduce the auxiliary

variable w = ∇d which allows one to formulate the director equation in the framework of mixed

methods. Then, (35) can be written as finding (u(t), p(t),d(t),w(t)) ∈H1
0(Ω)×L

2
0(Ω)×H

1(Ω)×

H(div,Ω) such that




(ut,v) + c(u,u,v) + νa(u,v)

+bu(p,v) + λc(u,d,∇ ·w) = 0,

bu(p,u) = 0,

(∂tw, w̄)− c(u,d,∇ · w̄)

+γ(∇ ·w,∇ · w̄)− γ(f ε(d),∇ · w̄) = 0,

a(d, d̄) + (∇ ·w, d̄) = 0,

(42)

for all (v̄, p̄, d̄, w̄) ∈ H1
0 (Ω)×L2

0(Ω)×H1(Ω)×H(div,Ω). Note that ∆d = ∇ ·w, which will be

the extra equation to compute d, and the elastic stress tensor is written as (∇d)t∇ ·w rather

than wt∇·w; the convective term in the director equation remains the same (u ·∇)d = (∇d)tw,

rather than wtu. This is an important issue when obtaining error estimates, because one would

need to establish high order norms for w, e.g. an L4 norm, as used in [49]. However, this

extra regularity is easier to obtain from the elliptic equation (42)4. Let us stress that w has d2

components, where d is the dimension space.

A fully discrete scheme to approximate (42) is used in [49], which is implicit with respect to

time: given (un
h,d

n
h), compute (un+1

h , pn+1
h ,wn+1

h ,dn+1
h ) ∈ (V h, Ph,W h,Dh) such that

(δtu
n+1
h , ūh) + c̃(un+1

h ,un+1
h , ūh) + νa(un+1, ūh)

−bu(p
n+1
h , ūh) + λc(ūh,∇d

n+1
h ,∇ ·wn+1

h ) = 0,

bu(p̄h,u
n+1
h ) = 0,

(δtw
n+1
h , w̄h)− c(un+1

h ,dn+1
h ,∇ · w̄h)

+γ(∇ ·wn+1
h − f ε(d

n+1
h ),∇ · w̄h) = 0,

a(dn+1
h , d̄h)− (∇ ·wn+1

h , d̄h) = 0,

(43)
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for all (ūh, p̄h, w̄h, d̄h) ∈ V h ×Ph ×W h ×Dh, whereW h is an finite element approximation of

H(Ω, div), e.g. the Raviart-Thomas [60] or the BDFM finite element [10].

The introduction of w allows to compute the director field and its first derivatives in an

independent manner to keep an energy estimate similar to (37). However, the price to pay in

terms of CPU cost is too large to be acceptable. The auxiliary unknown introduces four new

components to be computed in dimension two, and nine in three dimensions, more than the

number of unknowns of the original problem! Moreover, such a scheme is nonlinear, and some

sort of iterative method must be performed at every time step.

The solvability of scheme (43) by Brouwer fixed point argument is subject to satisfying

k = O(e−1/ε2), which requires a very small time step for moderate values of ε. That restriction

is a consequence of the energy estimate that scheme (43) provides, which is the same as for

scheme (36), but expressed in terms of w as follows:

1

2
‖un+1

h ‖2L2(Ω) +
λ

2
‖wn+1

h ‖2L2(Ω) + k
n∑

m=0

(
ν‖∇um+1

h ‖2L2(Ω) +
λ

2
γ‖∇ ·wm+1

h ‖2L2(Ω)

)

≤ C exp((n+ 1) k/ε2)
(1
2
‖u0

h‖
2
L2(Ω) +

λ

2
‖w0

h‖
2
L2(Ω)

)
for all n,

where the constant C is a constant independent of ε. This bound blows up exponentially with

ε−2.

The hypotheses of regularity for a solution (u, p,d) of problem (11) are:

u ∈ C(0, T ;H2
0(Ω)), ∂tu ∈ L2(0, T ;L2(Ω)), ∂ttu ∈ L2(0, T ;H−1(Ω)),

p ∈ C(0, T ;H1(Ω))

and

d ∈ C(0, T ;W 2,4(Ω)), ∂td ∈ L2(0, T ;H1(Ω)), ∂ttd ∈ L2(0, T ;L2(Ω)).

In addition, w ∈ C(0, T ;H2(Ω)). Then the following error estimates hold:

‖un
h − u(tn)‖

2
L2(Ω) + ‖wn

h −∇d(tn)‖
2
L2(Ω)

+k

N∑

n=0

(
‖un

h − u(tn)‖
2
H1(Ω) + ‖∇ ·wn

h −∆d(tn)‖L2(Ω)

)
≤ C (k2 + h2) for all n.

As for scheme (36), the regularity required for ∂ttu ∈ L2(0, T ;H−1(Ω)) needs a compatibility

condition at t = 0 to be satisfied (see [35]).

We would like to mention that this regularity assumption about the director vector to be

approximated requires the domain Ω to hold (34) for the Neumann problem (33) with r = 4;

therefore a restriction on the angles of the boundary must be imposed.
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3.2.2 Using w = −∆d as an auxiliary variable

In order to avoid the large number of extra degrees of freedom and the nonlinearity of the

numerical schemes above, Girault and Guillén-González [27] considered instead the auxiliary

variable −∆d, constructing a fully discrete mixed scheme for (11) which is totally coupled but

linear, unconditionally stable and convergent towards (11). Here we present a slight adaptation

of the scheme given in [27] for the Neumann boundary condition.

Given (un
h,d

n
h) ∈ (V h,Dh), seek (un+1

h , pn+1
h ,wn+1

h ,dn+1
h ) ∈ V h×Ph×Dh×W h the solution

of the linear algebraic system:

(δtu
n+1
h , ūh) + c̃(un

h,u
n+1
h , ūh) + νa(un+1, ūh)

−bu(p
n+1
h , ūh)− λ c(ūh,d

n
h,w

n+1
h ) = 0,

bu(p̄h,u
n+1
h ) = 0,

(δtd
n+1
h , w̄h) + c(un+1

h ,dnh, w̄h)

+γ(f̃ ε(d
n
h) +w

n+1
h , w̄h) = 0,

a(dn+1
h , d̄h)− (wn+1

h , d̄h) = 0,

(44)

for all (ūh, p̄h, w̄h, d̄h) ∈ V h × Ph ×Dh ×W h where Wh is (D0
h)

d and

f̃ε(d) =

{
f ε(d) if |d| ≤ 1,

0 otherwise.

In [27], it was observed that f̃ ε = f ε(T (d)), where

T (d) =




d if |d| ≤ 1,
d

|d|
otherwise.

This truncation is impracticable from a numerical point of view. Therefore, a way to perform a

tractable truncation is

f̃
h

ε (d) =
1

ε2
(T (P0(|d|

2))− 1)d,

where P0 is the L2 orthogonal projection onto W h; it implies a loop on the triangles.

After a slight adaptation of the stability proof in [27] for the Neumann boundary condition,

we can prove that system (44) satisfies the following discrete energy law:

1

2
‖un+1

h ‖2L2(Ω) +
λ

2
‖∇dn+1

h ‖2 + k
n∑

m=1

(
ν‖∇um

h ‖2L2(Ω) + λγ‖wm
h ‖2L2(Ω)

)

≤ (
1

2
‖u0

h‖
2 +

λ

2
‖∇d0h‖

2) exp((n+ 1) k/ε2) for all n.

which again blows up exponentially with ε−2.
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This scheme reduces the degrees of freedom from schemes (36) and (43), leading to smaller

linear algebraic problems, with the corresponding saving in terms of CPU time and storage,

and only involves a linear system per time step. Although it is not immediate, scheme (44)

can sligthly be modified in such a way that it satisfies an energy estimate independent of ε,

under some assumptions over the choice of the discrete spaces. Let us introduce the following

assumptions:

(S) Stability conditions:

lim
(h,k,ε)→0

k

h2ε2
= 0 and

h

ε
≤ C, (45)

(C) Convergence conditions:

lim
(h,ε)→0

h

ε2
= 0. (46)

(H) The discrete spaces (V h,Dh) hold:

(V h · ∇)Dh ⊂W h and Dh ⊂W h,

Hypothesis (H) indicates that W h must be a discontinuous finite element space consisting of

polynomial functions of degree more than or equal to that of Dh and (V h ·∇)Dh, i.e. the space

(D2
h)

d.

Moreover, the stabilizing term bu(Fε(d
n
h), ūh), related to a potential, must be added and

(dn+1
h −dnh, d̄h), which introduces some numerical dissipation. Therefore, the modified algorithm

reads as: given (un
h,d

n
h) ∈ (V h,Dh), seek (un+1

h , pn+1
h ,wn+1

h ,dn+1
h ) ∈ V b

h × Ph ×Dh ×W h the

solution of the linear algebraic system:

(δtu
n+1
h , ūh) + c̃(un

h,u
n+1
h , ūh) + ν a(un+1, ūh)

+λ bu(Fε(d
n
h), ūh)− bu(p

n+1
h , ūh)− λ c(ūh,d

n
h,w

n+1
h ) = 0,

bu(p̄h,u
n+1
h ) = 0,

(δtd
n+1
h , w̄h) + c(un+1

h ,dnh, w̄h)

+γ(f ε(d
n
h) +w

n+1
h , w̄h) = 0,

a(dn+1
h , d̄h) + (dn+1

h − dnh, d̄h)− (wn+1
h , d̄h) = 0.

(47)

The key pass to get the energy estimates independent of ε for scheme (44) is taken form

[33], which is based on an induction argument on the time step. Firstly, one obtains a discrete

version of (12) at time tn+1 by assuming that we have a control of the discrete kinetic, elastic

and penalty energy at time tn. The following proof is in fact new, since the bounds in [27] for

the original scheme (without the previous modifications) blow up exponentially with ε−2.
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Lemma 3 Suppose that there exists a constant Cd > 0 independent of h, k and, ε such that

‖un
h‖

2
L2(Ω) + λ‖∇dnh‖

2
L2(Ω) + 2λ

∫

Ω
Fε(d

n
h) ≤ Cd. (48)

Then there exist h0 > 0, k0 > 0, and ε0 > 0 such that for all h ≤ h0, k ≤ k0, and ε ≤ ε0

satisfying hypothesis (S), the corresponding solution (un+1
h ,dn+1

h ,wn+1
h ) of the discrete problem

(47) satisfies the following inequality:




(
‖un+1

h ‖2L2(Ω) − ‖un
h‖

2
L2(Ω)

)
+ λ
(
‖∇dn+1

h ‖2L2(Ω) − ‖∇dnh‖
2
L2(Ω)

)

+2λ

∫

Ω
(Fε(d

n+1
h )− Fε(d

n
h))

+k
(
ν‖∇un+1

h ‖2L2(Ω) + λγ‖PWh
(f ε(d

n
h)) +w

n+1
h ‖2L2(Ω)

)
≤ 0,

(49)

where PWh
indicates the L2(Ω)-orthogonal projection onto W h.

Proof: Take ūh = 2 k un+1
h in (47)1 and p̄h = pn+1

h in (47)2. Then, the term bu(p
n+1
h ,un+1

h )

vanishes. Thus, the identity (a− b, 2a) = |a|2 − |b|2 + |a− b|2 provides

‖un+1
h ‖2L2(Ω) − ‖un

h‖
2
L2(Ω) + ‖un+1

h − un
h‖

2
L2(Ω) + 2 ν k‖∇un+1

h ‖2L2(Ω)

+2λk bu(Fε(d
n
h),u

n+1
h )− 2λk c(un+1

h ,dnh,w
n+1
h ) = 0.

(50)

On the other hand, consider w̄h = 2λk
(
wn+1

h + PWh
(f ε(d

n
h))
)
in (47)3 and d̄h = 2λ(dn+1

h −dnh)

in (47)4. Next, using the fact that (un+1
h ·∇)dnh ∈W h and dn+1

h −dnh ∈W h due to (H), we get

λ
(
‖∇dn+1

h ‖2L2(Ω) − ‖∇dnh‖
2
L2(Ω) + ‖dn+1

h − dnh‖
2
H1(Ω)

)

+2λ
(
dn+1
h − dnh,f ε(d

n
h)
)

+2λk c(un+1
h ,dnh,w

n+1
h + f ε(d

n
h))

+2λ γ k‖PWh
(f ε(d

n
h)) +w

n+1
h ‖2 = 0.

(51)

Now, if we add (50) and (51) and use

c(un+1
h ,dnh,f ε(d

n
h)) + bu(Fε(d

n
h),u

n+1
h ) = 0,

we have (
‖un+1

h ‖2L2(Ω) + λ‖∇dn+1
h ‖2L2(Ω)

)
−
(
‖un

h‖
2
L2(Ω) + λ‖∇dnh‖

2
L2(Ω)

)

+
(
‖un+1

h − un
h‖

2
L2(Ω) + λ‖∇(dn+1

h − dnh)‖
2
L2(Ω) + 2λ‖dn+1

h − dnh‖
2
L2(Ω)

)

+2k
(
ν‖∇un+1

h ‖2L2(Ω) + γλ‖wn+1
h + PWh

(f ε(d
n
h))‖

2
L2(Ω)

)

+2λ
(
dn+1
h − dnh,f ε(d

n
h)
)
≤ 0.

(52)

Next, we decompose the last term on the left-hand side of (52) as follows:

2λ
(
dn+1
h − dnh,f ε(d

n
h)
)
=
2λ

ε2

(
dn+1
h − dnh, (|d

n+1
h |2 − 1)dnh

)

+
2λ

ε2

(
dn+1
h − dnh, (|d

n
h|

2 − |dn+1
h |2)dnh

)

:=I1 − I2.
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Rewriting I1 as

I1 =
λ

ε2

∫

Ω
(|dn+1

h |2 − 1)(|dn+1
h |2 − |dnh|

2 − |dn+1
h − dnh|

2)

=
λ

2ε2

∫

Ω

(
(Fε(d

n+1
h )− Fε(d

n
h) + (|dn+1

h |2 − |dnh|
2)2
)

+
λ

ε2

∫

Ω
(1− |dn+1

h |2)|dn+1
h − dnh|

2

and bounding I2 as

I2 ≤
C

ε2
‖dnh‖

2
L∞(Ω)‖d

n+1
h − dnh‖

2
L2(Ω) +

λ

4ε2

∫

Ω
(|dn+1

h |2 − |dnh|
2)2,

we arrive at




(
‖un+1

h ‖2L2(Ω) + λ‖∇dn+1
h ‖2L2(Ω) + 2λ

∫

Ω
Fε(d

n+1
h )

)

−
(
‖un

h‖
2
L2(Ω) + λ‖∇dnh‖

2
L2(Ω) + 2λ

∫

Ω
Fε(d

n
h)
)

+‖un+1
h − un

h‖
2
L2(Ω) + λ‖∇(dn+1

h − dnh)‖
2
L2(Ω) + 2λ‖dn+1

h − dnh‖
2
L2(Ω)

+
λ

ε2

∫

Ω

(
1

4
(|dn+1

h |2 − |dnh|
2)2) + |dn+1

h − dnh|
2

)

+2k
(
ν‖∇un+1

h ‖2L2(Ω) + λγ‖PWh
(f ε(d

n
h)) +w

n+1
h ‖2L2(Ω)

)

≤
C

ε2

(
‖dnh‖

2
L∞(Ω) + ‖dn+1

h ‖2L∞(Ω)

)
‖dn+1

h − dnh‖
2
L2(Ω) := I3.

(53)

We next want to bound the term ‖dn+1
h −dnh‖

2
L2(Ω) of I3. Take as a test function w̄h = PWh

(w̄)

with w̄ ∈ L3(Ω) into (47)3. Then, by a duality argument, we have

‖δtd
n+1
h ‖L3/2(Ω) ≤ ‖un+1

h ‖L6(Ω)‖∇d
n
h‖L2(Ω) + γ‖PWh

(f ε(d
n
h)) +w

n+1
h ‖L2(Ω).

≤ C(ν‖∇un+1
h ‖L2(Ω) + γλ‖PWh

(f ε(d
n
h)) +w

n+1
h ‖L2(Ω))

where we have used in the last line hypothesis (48). Next, the term I3 can be handled as

I3 ≤
Ck2

ε2

(
‖dnh‖

2
L∞(Ω) + ‖dn+1

h ‖2L∞(Ω)

)
‖δtd

n+1
h ‖2L2(Ω)

≤
Ck2

h2ε2

(
‖dnh‖

2
H1(Ω) + ‖dn+1

h ‖2H1(Ω)

)
‖δtd

n+1
h ‖2

L3/2(Ω)
,

where the inverse inequalities ‖d̄h‖L2(Ω) ≤ C h−1/2‖d̄h‖L3/2(Ω) and ‖d̄h‖L∞(Ω) ≤ C h−1/2‖d̄h‖H1(Ω)

for all d̄h ∈Dh have been used. Then the bound of I3 remains as

I3 ≤
C k

h2ε2

(
‖dn+1

h ‖2H1(Ω) + ‖dnh‖
2
H1(Ω)

)(
k ν‖∇un+1

h ‖2L2(Ω) + λ γ k‖PWh
(f ε(d

n
h)) +w

n+1
h ‖2L2(Ω)

)
.

(54)

Our next goal is to bound ‖dn+1
h ‖H1(Ω) in terms of ‖dnh‖H1(Ω) and ‖un

h‖L2(Ω). We consider

(52) rewritten as
(
‖un+1

h ‖2L2(Ω) + λ‖dn+1
h ‖2H1(Ω)

)
+
(
‖un+1

h − un
h‖

2
L2(Ω) + λ‖dn+1

h − dnh‖
2
H1(Ω)

)

+2k
(
ν‖∇un+1

h ‖2L2(Ω) + γλ‖wn+1
h + PWh

(f ε(d
n
h))‖

2
L2(Ω)

)

=
(
‖un

h‖
2
L2(Ω) + λ‖dnh‖

2
H1(Ω)

)
− 2λ(dn+1

h − dnh,f ε(d
n
h)) + 2λ (dnh,d

n+1
h − dnh).

(55)
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The right-hand side of (55) can be estimated as

2λ
(
dn+1
h − dnh,f ε(d

n
h)
)
≤ C k‖δtd

n+1
h ‖L3/2(Ω)

1

h1/2
‖f ε(d

n
h)‖L2(Ω)

≤ δ k‖δdn+1
h ‖2

L3/2(Ω)
+ Cδ

1

h
‖f ε(d

n
h)‖

2
L2(Ω)

≤ δ k‖δtd
n+1
h ‖2

L3/2(Ω)
+ Cδ

1

hε2
‖dnh‖

2
L∞(Ω)Fε(d

n
h)

≤ δ k‖δtd
n+1
h ‖2

L3/2(Ω)
+ Cδ

1

h2ε2
Fε(d

n
h)‖d

n
h‖

2
H1(Ω),

≤ C δ k
(
ν‖∇un+1

h ‖2L2(Ω) + γλ‖wn+1
h + PWh

(f ε(d
n
h))‖

2
L2(Ω)

)
+

Cδk

h2ε2
.

(56)

The control of ‖dnh‖H1(Ω) in the fourth line of (56) comes from the inverse triangle inequality

applied to
∫
Ω Fε(d

n
h) ≤ Cd to give

∣∣∣‖dnh‖2L4(Ω) − |Ω|1/2
∣∣∣
2
≤ ‖|dnh|

2 − 1‖2L2(Ω) = 4 ε2
∫

Ω
Fε(d

n
h) ≤ Cd ε

2.

Hence, we have

‖dnh‖
2
L4(Ω) ≤ Cd(ε+ |Ω|1/2).

Thus, we complete the seminorm ‖∇dnh‖
2 ≤ Cd in (48) to ‖dnh‖

2
H1(Ω) ≤ C, where C is indepen-

dent of h, k, and ε. Therefore, from (56), we get, for δ small enough,

2λ
(
dn+1
h − dnh,f ε(d

n
h)
)
≤ k

(
ν‖∇un+1

h ‖2L2(Ω) + γλ‖wn+1
h + PWh

(f ε(d
n
h))‖

2
L2(Ω)

)
+

Ck

h2ε2
. (57)

It is easy to bound the last term on the right-hand side of (55) in a similar way:

2λ (dnh,d
n+1
h − dnh) ≤ 2λk ‖dnh‖L3(Ω)‖δtd

n+1
h ‖L3/2(Ω) ≤ δ k ‖δtd

n+1
h ‖2

L3/2(Ω)
+ Cδk. (58)

Thus, incorporating the bounds (57) and (58) to (55), one obtains

‖dn+1
h ‖2H1(Ω) ≤ C

(
‖dnh‖

2
H1(Ω) + ‖un

h‖
2
L2(Ω) +

Ck

h2ε2
+ C k

)
.

Therefore, using hypothesis (48) and (S), we get the bound

‖dn+1
h ‖2H1(Ω) ≤ C. (59)

Finally, applying (59) in (54), the term I3 is bounded as

I3 ≤ C
k

h2ε2

(
k ν|∇un+1

h |2 + λ γ k|PWh
(f ε(d

n
h)) +w

n+1
h |2

)
.

Using hypothesis (S), we can select (k0, h0, ε0) such that for all k ≤ k0, h ≤ h0 and ε ≤ ε0,

C
k

h2 ε2
≤ 1
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and we arrive at

I3 ≤ k
(
ν‖∇un+1

h ‖2L2(Ω) + λ γ ‖PWh
(f ε(d

n
h)) +w

n+1
h ‖2L2(Ω)

)
.

Therefore, we obtain inequality (49) using this estimate for I3 in (53). It ends the proof. �

In order to get stability estimates for scheme (47), we will need to assume the following

estimates over the initial condition approximations d0h and u0
h:

λ‖∇d0h‖
2
L2(Ω) ≤ K1, ‖u0

h‖
2
L2(Ω) ≤ K2, 2λ

∫

Ω
Fε(d

0
h) dx ≤ K3,

where Ki > 0 (i = 1, 2, 3) are constants independent of h and k.

The two first properties can be guaranteed e.g. considering d0h = Ih(d0) and u0
h = Jh(u0)

where Ih and Jh are interpolation operators being stable in H1(Ω)∩L∞(Ω) and L2(Ω), respec-

tively, and having optimal error properties; for instance, the Scott-Zhang [56] or Clement [24]

interpolant. It is not an easy task to construct initial approximations satisfying |d0h| = 1 (only

constant linear finite element functions satisfy the restriction pointwise), so the only thing we

can prove is a uniform bound with respect to ε for
∫
Ω Fε(d

0
h). Indeed, we have that the initial

orientation of the liquid crystal molecules verifies the constraint |d0| = 1. Therefore we can

write ∫

Ω
Fε(d

0
h) =

1

ε2

∫

Ω
(|d0h|

2 − |d0|
2)2 =

2

ε2

∫

Ω

(
d0 + d

0
h,d0 − d

0
h

)2

≤
1

ε2
‖d0 + d

0
h‖

2
L∞(Ω)‖d0 − d

0
h‖

2
L2(Ω).

Now, an optimal interpolation error implies that there is a positive constant K3 such that

2λ

∫

Ω
Fε(d

0
h) ≤ C

h2

ε2
≤ K3, (60)

which involves the new restriction for the parameters h/ε ≤ K3 announced in (C).

We now state the new results about the global-in-time stability for scheme (47):

Theorem 4 There exist h0, k0 and ε0 so that for any h ≤ h0, k ≤ k0 and ε ≤ ε0 satisfying

the stability condition (S), the corresponding solutions of the discrete problem (44) satisfies the

estimates:

i) max
0≤n≤N

‖un
h‖L2(Ω) ≤ C, ii) k

N−1∑

n=0

‖∇un+1
h ‖2L2(Ω) ≤ C,

iv) max
0≤n≤N

‖dnh‖H1(Ω) ≤ C, v) k

N−1∑

n=0

‖PWh
(f ε(d

n
h)) +w

n+1
h ‖2L2(Ω) ≤ C

vii) max
0≤n≤N

∫

Ω
Fε(d

n
h) ≤ C

where C > 0 is independent of (h, k, ε).
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Proof: It suffices to prove (49) for all n = 0, . . . , N−1. For this, we argue by induction on n. Let

us define Cd = K1+K2+K3 withKi the bounds for the initial data. Then, in particular, (u0
h,d

0
h)

satisfies the hypothesis of Lemma 3 for n = 0: ‖u0
h‖

2
L2(Ω) + λ‖∇d0h‖

2
L2(Ω) + 2λ

∫
Ω Fε(d

0
h) ≤ Cd,

then (49) holds for n = 0 (and, in particular, ‖u1
h‖

2
L2(Ω) + λ‖∇d1h‖

2
L2(Ω) + 2λ

∫
Ω Fε(d

1
h) ≤ Cd).

Now, we assume that (us
h,d

s
h) holds (49) for s = 1, ..., n− 1. Adding (49) for s = 1, ..., n− 1,

one has

‖un
h‖

2
L2(Ω) + λ‖∇dnh‖

2
L2(Ω) + 2λ

∫

Ω
Fε(d

n
h) ≤ ‖u0

h‖
2
L2(Ω) + λ‖∇d0h‖

2
L2(Ω) + 2λ

∫
Ω Fε(d

0
h)

≤ K1 +K2 +K3 = Cd,

which implies from Lemma 3 that (49) holds for n. �

The convergence for scheme (44) is demonstrated by two different ways: compactness and

error estimates. The compactness for the discrete velocity is attained by estimating a discrete

fractional time estimate for the velocity and director field. The line of argument is as follows.

Add (44)1 from n = m to m + r − 1 and take ū = um+r
h − um

h as a test function. Then, use

adequately equation (44)2 and add from m = 1 to N − r to get

k
N−r∑

m=1

‖um+r
h − um

h ‖2L2(Ω) = −ν k2
N−r∑

m=1

m+r∑

n=m

a(un+1
h ,um+r

h − um
h )

−k2
N−r∑

m=1

m+r∑

n=m

ch(u
n
h,u

n+1
h ,um+r

h − um
h )

−λk2
N−r∑

m=1

m+r∑

n=m

c(um+r
h − um

h ,dnh,w
n+1
h ).

Let us now focus on how to control the last term. A discrete integration by parts and Sobolev’s

inequality leads to

λk2
N−r∑

m=1

m+r∑

n=m

c(um+r
h − um

h ,dnh,w
n+1
h )

≤ C(k r)1/2

(
N−1∑

n=1

k‖wn+1
h ‖2L2(Ω)

)1/2(N−1∑

n=1

k‖∇dnh‖
2
L3(Ω)

)1/2(N−r∑

m=1

k‖∇(um+r
h − um

h )‖2L2(Ω)

)1/2

≤ C(k r)1/2. (61)

Obviously, we need the control k
∑N−1

n=1 ‖dnh‖
2
W 1,3(Ω) ≤ C to obtain (61), which takes advantage

of k
∑N−1

n=1 ‖wn
h‖

2
L2(Ω) ≤ C, proved in [27] by assuming ∂Ω to be only Lipschitz. Therefore, we

arrive at
N−r∑

m=0

‖um
h − um+r

h ‖2L2(Ω) dt ≤ C (rk)1/2 for all r = 1, ..., N − 1.
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A similar bound for the discrete director can be obtained:

N−r∑

m=0

‖dm+r
h − dmh ‖2H1(Ω) dt ≤ C (rk)1/2 for all r = 1, ..., N − 1.

The expressions above, in term of time interpolations associated with the sequences {un
h} and

{dnh}, are written as

∫ T−δ

0
‖ur

h,k(t+ δ)− ur
h,k(t)‖

2
L2(Ω) dt ≤ C δ1/2 for all δ ∈ (0, T ), (62)

∫ T−δ

0
‖drhk(t+ δ) − drhk(t)‖

2
H1(Ω) dt ≤ C δ1/2 for all δ ∈ (0, T ). (63)

Next, a compactness result from [58] provides that the sequences {drh,k} and {ur
h,k} are

compact in L2(0, T ;L2(Ω)), which is extensible to {dlh,k} and {ul
h,k}. This strong convergence

for {drh,k} is not enough to pass to the limit in the elastic stress tensor of equation (44)1.

Testing equation (44)4 with d̄ = dn+1
h one can prove the strong convergence of {∇drh,k} and

{∇dlh,k} towards ∇d in L2(0, T ;L2(Ω)) as obtained in [27]. Therefore, one gets the existence of

a global-in-time weak solution to (11) (see Definition 2).

On the other hand, error estimates are obtained in [27]. Indeed, if the solution (u, p,d) to

(11) has the following regularity:

(u,d,w) ∈ L2(H2(Ω)×W 2,3(Ω)×H1(Ω)) , u ∈ L∞(W 1,3(Ω) ∩L∞(Ω)) , p ∈ L2(H1(Ω)),

(∂tu, ∂td, ∂tw) ∈ L2(H1(Ω)×H2(Ω)×W 1,6/5(Ω)),

then scheme (44) satisfies the error estimates:

‖enu‖
2
L2(Ω) + ‖∇end‖

2
L2(Ω) + k

n+1∑

m=1

(
‖∇emu ‖2L2(Ω) + ‖emw‖2L2(Ω)

)
≤ C(h2 + k2) for all n.

where we recall that enu := un
h − u(tn), e

n
d
:= un

h − d(tn), and enw := wn
h −w(tn). These error

estimates are derived by using an integral formulation for problem (11) which avoids to assume

nonlocal compatibility conditions on the initial data [35]. Instead, the integral formulation

requires more regularity for the time derivatives of the solution to be approximated.

Three iterative methods to decouple (un+1
h , pn+1

h ) from (dn+1
h ,wn+1

h ) at each time step are

also obtained for scheme (44) in [27]. For any n ≥ 0, given wn
h, d

n
h, u

n
h and pnh, these schemes

compute wn+1
h , dn+1

h , un+1
h and pn+1

h as follows:

1. (a) Given w0 = wn
h, if n > 1, or w0 = −PWh

(∆d0), if n = 1, where PWh
is the L2

orthogonal projection onto W h.
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(b) For i ≥ 1, known wi−1, compute (ui, pi) ∈ V h × Ph such that

1

k
(ui − u

n
h, ū) + νa(∇ui,∇v)− bu(pi,∇ · v)

+ch(u
n
h,ui, ūh) = c(ūh,d

n
hwi−1),

bu(p̄h,ui) = 0.

(c) Next, compute (wi,di) ∈W h ×Dh the solution of:

1

k
(di − d

n
h, w̄h) + γ(wi,wh) = −c(ui,d

n
h, w̄h)− γ(f̃ ε(d

n
h), w̄h),

a(di, d̄h)− (wi, w̄h) = 0.

2. (a) Let u0 = u
n
h.

(b) Known ui−1, compute (wi,di) ∈W h ×Dh, solution of:

1

k
(di − d

n
h, w̄h) + γ(wi, w̄h) = −c(ui−1,d

n
h, w̄h)− γ(f̃ ε(d

n
h), w̄h),

(di, d̄h)− (wi, d̄h) = 0.

(c) Next, compute (ui, pi) ∈ V h × Ph such that

1

k
(ui − u

n
h, ūh) + νa(ui, ūh)− bu(pi, ūh)

+ch(u
n
h,ui, ūh) = c(ūh,d

n
h)

t,wi),

bu(p̄h,ui) = 0.

3. (a) Let u0 = u
n
h and w0 = w

n
h, if n > 0, or w0 = −PWh

(∆d0), if n = 1.

(b) Known ui−1 and wi−1, compute in a parallel way

• (wi,di) ∈W h ×Dh such that

1

k
(di − d

n
h, w̄h) + γ(wi, d̄h) = −c(ui−1,d

n
h, w̄h)− γ(f̃(dnh), w̄h),

a(di, d̄h)− (wi,dh) = 0,

• and (ui, pi) ∈ V h × Ph such that

1

k
(ui − u

n
h, ūh) + νa(ui, ūh)− bu(pi,uh)

= −ch(u
n
h,ui−1, ūh) + c(ūh,d

n
h,wi−1),

bu(p̄hui) = 0.

The convergence of these iterative methods is established under the condition h2 ≤ Ck, where

C > 0 is a constant depending on ε.
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3.2.3 Using w = −∆d+ f ε(d) as an auxiliary variable

So far, the finite element schemes that have been presented to approximate a solution to the

Ericksen-Leslie equations (3) by means of the Ginzburg-Landau equations (11) do not preserve

a discrete version of the energy law (12). In fact, the only exception is the novel modification of

(44), i.e. system (47). This is basically due to the fact that the nonlinear function f ε(d) does

not belong to the discrete space Dh. In order to get such an energy law one must write the

elastic tensor λ∇ · ((∇d)t∇d) in terms of the critical point equation −∆d+ fε(d) like

λ∇ · ((∇d)t∇d) = λ∇

(
1

2
|∇d|2 + Fε(d)

)
− λ(∇d)t(−∆d+ fε(d)), (64)

as in [8, 33]. Then, if one defines the variable w = −∆d + f ε(d), which represents the Euler-

Lagrange equation related to the Ginzburg-Landau free energy functional
∫
Ω

1
2 |∇d|

2 + Fε(d),

model (11) can be reformulated as





∂tu+ u · ∇u− ν∆u+∇p− λ(∇d)tw = 0 in Q,

∇·u = 0 in Q,

|d| ≤ 1, ∂td+ u · ∇d+ γw = 0 in Q,

−∆d+ f ε(d)−w = 0 in Q,

(65)

where the pressure p is modified by the potential function p+ λ
2 |∇d|

2 + λFε(d) (which is called

again p for simplicity).

The vector spaces where the weak formulation of problem (65) is well-posed are as follows:

find (u(t), p(t),d(t),w(t)) ∈H1
0(Ω)× L2

0(Ω)×H
1(Ω)×L2(Ω) such that

(∂tu, ū) + c(u,u, ū) + ν a(u, ū)

−bu(p, ū)− λ c(ū,d,w) = 0,

bu(p̄,u) = 0,

(∂td, w̄) + c(u,d, w̄) + γ(w, w̄) = 0,

a(d, d̄) + (f ε(d), d̄)− (w, d̄) = 0,

(66)

for all (ū, p̄, w̄, d̄) ∈H1
0(Ω)× L2

0(Ω)×L
2(Ω)×H1(Ω).

Two finite-element Euler time-stepping schemes [8, 33] have been developed to approximate

(66), being both implicit for the linear terms and semi-implicit for the nonlinear ones. The

main difference among them lies in the way of treating the time integration of fε. Becker, Feng

and Prohl proposed in [8] a fully implicit approximation while Guillén-González and Gutiérrez-

Santacreu suggested a fully explicit one.

Thus, the scheme developed in [8] is expressed as follows. Let (un
h,d

n
h) ∈ (V h,Dh) be given,
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then find the solution (un+1
h , pn+1

h ,dn+1
h ,wn+1

h ) ∈ V h ×Ph ×Dh×W h of the nonlinear system:





(δtu
n+1
h , ūh) + c̃(un

h,u
n+1
h , ūh) + νa(un+1

h , ūh)

−bu(p
n+1
h , ūh)− λc(ūh,d

n
h,w

n+1
h ) = 0,

bu(p̄h,u
n+1
h ) = 0,

(δtd
n+1
h , w̄h) + c(un+1

h ,dnh, w̄h) + γ(wn+1
h , w̄h) = 0,

a(dn+1
h , d̄h) + (f ε(d

n+1
h ,dnh), d̄h)h − (wn+1

h , d̄h) = 0,

(67)

for all (ūh, p̄h, w̄h, d̄h) ∈ V h×Ph×W h×Dh, where f ε(d
n+1
h ,dnh) =

1
2ε2 |d

n+1
h |2dn+1

h −dnh. Here,

a discrete inner product is used (·, ·)h, which is defined as follows. Let {φa : a ∈ Nh} denote the

nodal basis associated the set of all nodes Nh = {al}l∈L of Th. Thus, the nodal interpolation

operator IDh
: C(Ω) → Dh is such that IDh

ψ :=
∑

a∈Nh
ψ(a)φa. Then the discrete inner

product (·, ·)h is defined in the following way: for all Ψ,ψ ∈ C(Ω), one has

(Ψ,ψ)h :=

∫

Ω
Ih(Ψ ·ψ) =

∑

a∈Nh

Ψ(a) ·ψ(a)

∫

Ω
φa.

This discrete inner-product applied to the potential term (f ε(d
n+1
h ,dnh), d̄h)h produces a 1/ε2-

diagonal lumped mass matrix. A Newton method is considered in [8] to linearize the problem.

Scheme (67) provides a discrete energy law which mimics the continuous energy law (12):

1

2
‖un+1

h ‖2L2(Ω) +
λ

2
‖∇dn+1

h ‖2L2(Ω)

+λ

∫

Ω
Fε(d

n+1
h ) + k

n+1∑

m=1

(
ν‖∇um

h ‖2L2(Ω) + λγ‖wm
h ‖2L2(Ω)

)

≤
(1
2
‖u0

h‖
2
L2(Ω) +

λ

2
‖∇d0h‖

2
L2(Ω) +

∫

Ω
Fε(d

0
h)
)

for all n.

(68)

This scheme is unconditionally stable and convergent towards a measured-valued solution of

(3). This convergence is attained in two steps; firstly, when the time and space discretization

parameters go to zero, the convergence towards a weak solution of the penalized problem (65)

is proved, and afterwards, when the penalty parameter ε goes to zero, one arrives at a measure-

valued solution of problem (3), where the elastic tensor (∇d)t∇d only tends to a certain measure

(see [43]).

The scheme presented in [33] was designed for nonhomogeneous Dirichlet boundary con-

ditions. This scheme should be redesigned appropriately in order to guarantee stability for

homogeneous Neumann boundary conditions. The renewed scheme preserves the time dis-

cretization of the penalty function in a fully explicit way. Then, the scheme becomes: given

(un
h,d

n
h) ∈ (V h,Dh), find (un+1

h , pn+1
h ,dn+1

h ,wn+1
h ) ∈ V h × Ph ×Dh ×W h solving the finite
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element linear system:





(δtu
n+1
h , ūh) + c̃(un

h,u
n+1
h , ūh) + νa(un+1

h , ūh)

−bu(p
n+1
h , ūh)− λc(ūh,d

n
h,w

n+1
h ) = 0,

bu(p̄h,u
n+1
h ) = 0,

(δtd
n+1
h , w̄h) + c(un+1

h ,dnh, w̄h) + γ(wn+1
h , w̄h) = 0,

a(dn+1
h , d̄h) + (f ε(d

n
h), d̄h)h − (wn+1

h , d̄h) = 0,

(69)

for all (ūh, p̄h, w̄h, d̄h) ∈ V h × Ph ×W h ×Dh.

Scheme (69) is conditionally stable in the terms of scheme (47) (assuming (S)) and convergent

(assuming (C)) to a measure-valued solution, but this time the convergence is attained by making

the mesh parameter (h, k) and the penalty parameter ε go to zero at the same time, what could

be done for scheme (67) as well. Since the approximation of fε is explicit, the linear algebraic

problem (69) does not depend on ε, which assures that the conditional number of the system

at every time step is not affected by ε. However, the stability condition (S) implies that the

time step k must be quite small if the size of ε is proportional to the space parameter h, but

numerical experiences in [33] have demonstrated to be optimal.

The convergence of schemes (67) and (69) is obtained by means of compactness results. For

the discrete director vector, it is easy to check that

k

N−1∑

n=0

∥∥δtdn+1
h

∥∥2
L3/2(Ω)

≤ C,

by choosing as a test function w̄h = PWh
w̄ in (67) or (69); we have also used the fact that w ∈

L3(Ω) and the L3(Ω)-stability of the L2 projection operator PWh
(see [19]). As a consequence of

the energy estimates and a compactness result in [58], one gets the compactness of the sequence

{dh,k,ε} in Lq(0, T ;Lr(Ω)) with 1 ≤ r < 6 and 1 ≤ q < ∞, where dh,k,ε is the linear piecewise

continuous function such that dh,k,ε(tn) = d
n
h.

We think the way how the compactness for the discrete velocity in L2(0, T ;L2(Ω)) is proved

in [8] is not clear. From (68), the sequence of discrete velocities is bounded in L∞(0, T ;L2(Ω))∩

L2(0, T ;H1
0(Ω)). Afterwards, by a duality argument, the discrete time derivative for the velocity

is bounded in the dual space of V ∩ H2(Ω). Then the Aubin-Lions compactness lemma is

used. To apply this compactness result, one needs the embeddings H1
0(Ω)

compact
7→ L2(Ω) →֒

(V ∩H2(Ω))′, but the embedding from L2(Ω) into (V ∩H2(Ω))′ is not injective. Obtaining

a compactness result for the discrete velocity turns out to be harder than for the Ginzburg-

Landau problem (11) for a fixed ε, even for problems with a similar structure such as the

density-dependent Navier-Stokes equations ([50], [31] and [32]).
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Now we cannot prove the time fractional estimate

N−r∑

m=0

‖um
h − um+r

h ‖2L2(Ω) dt ≤ C (rk)1/2 for all r = 1, ..., N − 1

obtained in [27], since no control over k
∑N−1

n=1 ‖dnh‖
2
W 1,3(Ω) ≤ C is available with C being in-

dependent of ε. Let us sketch the way of getting compactness for the discrete velocity in an

appropriate way. Let

Xh = {ūh ∈ V h : bu(p̄h, ūh) = 0 ∀ p̄h ∈ Ph}

be the discrete divergence-free space associated with V h and consider A−1
h : V h → Xh the

inverse discrete Stokes operator defined as

(∇A−1
h uh,∇vh) = (uh,vh) ∀ vh ∈Xh. (70)

Notice that (70) is well-defined owing to the inf-sup condition (30).

By multiplying (67)1 by k2, summing for n = m, ...,m−1+r, setting ūh = A−1
h (um+r

h −um
h )

as a test function in (67)1, and summing for m = 0, ..., N − r, we get

k
N−r∑

m=0

|∇A−1
h (um+r

h − um
h )|2 = −k2

N−r∑

m=0

m−1+r∑

n=m

c
(
un
h,u

n+1
h , A−1

h (um+r
h − um

h )
)

+ν k2
N−r∑

m=0

m−1+r∑

n=m

(
∇un+1,∇A−1

h (um+r
h − um

h )
)

+λk2
N−r∑

m=0

m−1+r∑

n=m

(
(∇dnh)

twn+1
h , A−1

h (um+r
h − um

h )
)

:= J1 + J2 + J3.

(71)

Let us only focus on how to estimate J3

J3 ≤ C k2
N−r∑

m=0

m−1+r∑

n=m

|∇dnh||w
n+1
h |‖A−1

h (um+r
h − um

h )‖L∞(Ω)

≤ C k2
N−r∑

m=0

m−1+r∑

n=m

|wn+1
h |‖A−1

h (um+r
h − um

h )‖L∞(Ω).

Sobolev’s inequality shows that

‖A−1
h (um+r

h − um
h )‖L∞(Ω) ≤ C ‖A−1(um+r

h − um
h )‖W 1,r(Ω)

with r > d, d being the dimension of Ω. The following bound

‖A−1
h (um+r

h − um
h )‖W 1,r(Ω) ≤ C ‖A−1(um+r

h − um
h )‖W 1,r(Ω),

38



is proved in [28], under the regularity (32) with r > d for A−1 the Stokes operator (31). Thus,

applying Sobolev’s inequality, H2(Ω) →֒ W 1,r(Ω), with r ≤ 6, gives

‖A−1(um+r
h − um

h )‖L∞(Ω) ≤ C‖A−1(um+r
h − um

h )‖H2(Ω) ≤ C‖um+r
h − um

h ‖L2(Ω), (72)

where we have used the regularity result (32) for r = 2. Therefore,

J3 ≤ C k2
N−r∑

m=0

m−1+r∑

n=m

‖wn+1
h ‖L2(Ω)‖u

m+r
h − um

h ‖L2(Ω)

≤ k

N−r∑

m=0

‖um+r
h − um

h ‖L2(Ω)

(
k

m−1+r∑

n=m

‖wn+1
h ‖2L2(Ω)

)1/2

(r k)1/2 ≤ C(r k)1/2.

Finally, we conclude that

k

N−r∑

m=0

‖∇A−1
h (um+r

h − um
h )‖2L2(Ω) ≤ C (r k)1/2,

which is equivalent to
∫ T−δ

0
‖uh,k,ε(t+ δ) − uh,k,ε(t)‖

2
X′

h
dt ≤ C δ1/2 ∀ δ : 0 < δ < T.

due to the fact that ‖∇A−1
h uh‖L2(Ω) and ‖uh‖X′

h
are equivalent norms.

Note that the time fractional time estimate for the discrete velocity is bounded in the V ′
h

norm, which depends on the space parameter h; therefore we cannot apply the compactness

results given by Simon in [58]. Then the idea will be to encounter a fractional time norm being

independent of the mesh parameters. Consider the space V = {u ∈ H1
0(Ω) : ∇ · u = 0} and

the orthogonal projection Rh : V h → V such that
(
∇(Rhuh − uh),∇v

)
= 0, ∀ v ∈ V .

One knows from [33] that ‖Rhuh‖V ′ ≤ C
(
h|∇ · uh|+ ‖uh‖V ′

h

)
and

∫ T−δ

0
‖Rhuh,k,ε(t+ δ)−Rhuh,k,ε(t)‖

2
V

′ dt ≤ C δ1/2 + C h.

Finally, the compactness of {Rhu
l
h,k,ε} in L2(0, T ;L2(Ω)) follows by a perturbed compactness

result due to Azérad and Guillén-González in [3]. To conclude with the strong convergence, one

uses the external approximation from Xh to V , in order to prove that the sequence {ul
h,k,ε}

is compact in L2(0, T ;L2(Ω)). To complete with the convergence we must pass to the limit.

In [33], the authors needed to impose the additional hypothesis (C) in the process. Although,

scheme (67) is unconditionally stable, it may need such a condition.

An interesting issue is to prove compactness under the minimum assumptions over the bound-

ary of Ω. At the continuous level, one would need the Neumann problem to have the regularity

(34) for r = 2 when a semi-Galerkin method is used, while the discrete compactness result needs

the Stokes problem to have the regularity (32) for r > d, with d the space dimension. For the

Ginzburg-Landau problem (11), it was attained in [27] for fixed ε.
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3.2.4 A second-order scheme for the Ginzburg-Landau problem

We next discuss the work of Lin, Liu and Zhang in [45]. They presented the first numerical work

preserving an exact discrete energy law for (38), i.e. without introducing numerical diffusion

provided by the time-stepping schemes. It relies on a modified Crank-Nicolson or midpoint

scheme: given (un
h,d

n
h) ∈ (V h,Dh) , find (un+1

h ,wn+1
h ) ∈ V h×W h and (pn+1

h ,dn+1
h ) ∈ Ph×Dh

solving the finite element nonlinear system:




(δtu
n+1
h , ūh) + c̃(u

n+1/2
h ,u

n+1/2
h , ūh)

+νa(u
n+1/2
h , ūh)− bu(p

n+1/2
h , ūh)

−λ
γ c(ūh,d

n+1/2
h , δtd

n+1
h + (u

n+1/2
h · ∇)d

n+1/2
h ) = 0,

bu(p̄h,u
n+1/2
h ) = 0,

(δtd
n+1
h , d̄h) + c(u

n+1/2
h ,d

n+1/2
h , d̄h)

+γa(d
n+1/2
h , d̄h) + γ(f ε(d

n+1
h ,dnh), d̄h) = 0,

(73)

where

f ε(d
n
h,d

n+1
h ) =

1

ε2
(|dn+1

h |2 − 1) + (|dnh|
2 − 1)

2
d
n+1/2
h .

Clearly, this approximation of f ε(d) has second order of accuracy in time. The energy law given

by (73) takes the form

1

2
‖un+1

h ‖2L2(Ω) +
λ

2
‖∇dn+1

h ‖2L2(Ω) + λ

∫

Ω
Fε(d

n+1
h )

+ν k

n+1∑

m=1

‖∇u
m+1/2
h ‖2L2(Ω) +

λ

γ
k

n+1∑

m=1

‖δtd
m+1
h + (u

m+ 1

2

h · ∇)d
m+ 1

2

h ‖2L2(Ω)

=
1

2
‖u0

h‖
2
L2(Ω) +

λ

2
‖∇d0h‖

2
L2(Ω) +

∫

Ω
Fε(d

0
h) for all n.

The fact that no auxiliary variable is introduced is a clear benefit of this approach. In contract,

since scheme (73) is nonlinear, one needs to perform nonlinear iterations. The authors proposed a

Picard type linearization together with a block Gauss-Seidel solver and a fully explicit treatment

of the nonlinear terms, in order to have a time-independent time matrix and use an exact LU or

Cholesky decomposition only once. Let us define φs−1/2 =
φn
h+φs−1

h
2 and φs+1/2 =

φs
h+φn

h
2 . Then,

given (un
h,d

n
h) ∈ (V h,Dh), the methods reads as:

1. Known us−1, find (us, ps) ∈ V h × Ph such that

(
us
h − u

n
h

k
, ūh) + c̃(us−1/2,us−1/2, ūh)

+νa(us+1/2, ūh)− bu(ps+1/2, ūh)

−λc(ūh,ds−1/2,
ds−1
h − dnh

k
+ (us−1/2 · ∇)ds−1/2) = 0,

bu(p̄h,us+1/2) = 0.
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2. Next, find ds ∈Dh such that

(
dsh − d

n
h

k
, d̄h) + c(us−1/2,ds−1/2, d̄h)

+a(ds+1/2, d̄h) + (f ε(d
n
h,d

s−1
h ), d̄h) = 0.

The use of direct solvers is restricted to very small problems. For real applications, iterative

methods are the only choice, due to CPU and memory limitations. In those cases, this way to deal

with coupling and nonlinearities is very rudimentary. More modern approaches to linearization

and linear solvers, e.g. Newton-Krylov-type solvers, surely provide better results.

There is no numerical analysis for scheme (73). The convergence in the sense of error

estimates or compactness is a interesting question that is open.

4 On the approximation of the Ericksen-Leslie problem (3)

This section is devoted to finite element schemes for the Ericksen-Leslie equations (3) that

provide a discrete energy law. To obtain the energy law (7) we need the sphere constraint |d| = 1

to be fulfilled almost everywhere in Q which is difficult to achieve at the discrete level due to the

own nature of Lagrange finite elements. Therefore, constructing stable numerical approximations

directly for (3) results a more difficult task than for the Ginzburg-Landau problem (11).

4.1 A direct approximation

The next scheme we will present is due to Becker, Feng, and Prohl in [8]. The numerical

approximations are based on the ideas given in [7] for the unsteady harmonic map equation

which utilizes the Galerkin method with Lagrange finite elements of order 1. The vector identity

a× (b× c) = (a · c) b− (a · b) c for all a, b, c ∈ IR3 and |d| = 1 lead to the identity

d× (d×∆d) = −|∇d|2d−∆d.

Therefore, problem (3) becomes





∂tu+ u · ∇u− ν∆u

+∇p+ λ∇ · ((∇d)t∇d) = 0 in Q,

∇·u = 0 in Q,

∂td+ u · ∇d+ γd× (d×∆d) = 0 in Q,

|d| = 1 in Q.

(74)

From equation (74)3, it is not hard to prove that |d| = 1 holds almost everywhere in Q. There-

fore, the set of equations (3)3−4 is equivalent to equation (74)3. Based on that, we consider
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that system (74) is the best differential reformulation of (3). But it has its limitations when

designing numerical schemes.

Let us first state the variational formulation by using the elastic stress expression (6). Find

(u(t), p(t),d(t)) ∈H1
0(Ω)× L2

0(Ω)×H
2(Ω) such that





(∂tu, ū) + c(u,u, ū) + ν a(u, ū)

−bu(p, ū) + λ c(ū,d,w) = 0,

bu(p̄,u) = 0,

(∂td, d̄) + c(u,d, d̄)

+γ(d× (d×∆d), d̄) = 0,

(75)

for all (ū, p̄, d̄) ∈H1
0(Ω)× L2

0(Ω)×L
2(Ω).

In order to reach the energy law that stems form (74) we multiply (74)1 by u and (74)3 by

−∆d and integrate over Ω. Then the identity (a× b) · a = −(a× c) · b leads to

d

dt

(1
2
‖u‖2L2(Ω) +

λ

2
‖∇d‖2L2(Ω)

)
+ ν‖∇u‖2L2(Ω) + λγ‖∆d× d‖2L2(Ω) = 0. (76)

The discrete problem for (75) proposed in [8] uses the finite element spaces Vh = ((P1
h)

d⊕(Bh)
d)∩

H1
0(Ω), Ph = P1

h ∩ L2
0(Ω), and Dh = (P1

h)
d for the discrete velocity, pressure and director,

respectively. Moreover, the scheme uses an implicit time integration for the linear terms, semi-

implicit time integration for the convective terms, a midpoint time integration for the trilinear

term in (75)3 and semi-midpoint rule for the elastic stress tensor in (75)1. Therefore, if we are

given (un
h,d

n
h) ∈ (V h,Dh), we want to find a discrete solution (un+1

h , pn+1
h ,dn+1

h ) ∈ V h×Ph×Dh

solving the finite nonlinear system:





(δtu
n+1
h , ūh) + c̃(un

h,u
n+1
h , ūh)

+νa(un+1
h , ūh)− bu(p

n+1
h , ūh)

+λc(ūh,d
n+1
h ,∆hd

n+1/2
h ) = 0,

bu(p̄h,u
n
h) = 0,

(δtd
n+1
h , d̄h) + c(un+1

h ,dnh, d̄h)

+γ(d
n+1/2
h × (d

n+1/2
h ×∆hd

n+1/2
h ), d̄h) = 0

(77)

for all (ūh, p̄h, d̄h) ∈ V h × Ph ×Dh, where ∆h : H1(Ω) → Dh is the discrete Laplace operator

defined by

−(∆hd, d̄h) = (∇d,∇d̄h) for all d̄h ∈Dh.

It is not hard to prove the discrete analog to (76) from (77) without any extra condition for the

42

https://www.researchgate.net/publication/220179768_Finite_Element_Approximations_of_the_Ericksen-Leslie_Model_for_Nematic_Liquid_Crystal_Flow?el=1_x_8&enrichId=rgreq-75bee98934732f25ef8a0e90221353cd-XXX&enrichSource=Y292ZXJQYWdlOzIyNjA3NzIxNztBUzoxNDk3Mzc1MzM2MTIwMzNAMTQxMjcxMTYxODY3Mg==


parameters:

1

2
‖un+1

h ‖2L2(Ω) +
λ

2
‖∇dn+1

h ‖2L2(Ω) + ν k

n+1∑

m=1

‖∇u
m+1/2
h ‖2L2(Ω)

+λ γ k
n+1∑

m=1

‖d
m+1/2
h ×∆hd

m+1/2
h ‖2L2(Ω) ≤

1

2
‖u0

h‖
2
L2(Ω) +

λ

2
‖∇d0h‖

2
L2(Ω).

Since the Dirichlet seminorm ‖∇dn+1
h ‖L2(Ω) is not equivalent to the norm ‖dn+1

h ‖H1(Ω) in this

case, the existence of (un+1
h ,dn+1

h ) to (77) is established for the L2(Ω) norm under the restriction

k = O(h2+d/2) by means of a fixed point argument; we refer the reader to Corollary 1.1 on page

279 of [30] or Lemma 1.4 on page 164 of [59]. Of course, this problem does not appear for time-

independent nonhomogeneous Dirichlet boundary conditions. Therefore, scheme (77) seems to

be unconditionally solvable.

The following task is to know how the sphere constraint holds for the director field in the

limit for the scheme (77). In [7] a sharp proof is given for two-dimensional domains. If the initial

director field satisfied |d0h(z)| = 1 for all nodes z ∈ Nh and under the relation k = O(h3), one

gets

‖|dn+1
h |2 − 1‖L2(Ω) ≤ ‖|d0h|

2 − 1‖L2(Ω) + g(h), (78)

where g(h) → 0 when h → 0. Such an estimate can be seen in term of the potential function

associated to the Ginzburg-Landau penalty function as Fε(d
n+1
h ) ≤ C for ε = ‖|d0h|

2− 1‖2L2(Ω)+

g2(h). While the first term on the right-hand side of (78) is of order h, the second term is of

order hα for some α < 1. Along the proof the authors used some sort of Poincaré inequality to

be able to obtain ‖dnh‖H1(Ω) ≤ C‖∇dnh‖L2(Ω), but it is not clear from the Neumann boundary

condition imposed on the director vector. However, for time-independent Dirichlet boundary

conditions, that Poincaré inequality is straightforwardly obtained by a lifting of the boundary

condition. Note that the restriction k = O(h3) is equivalent to hypothesis (S) for scheme (47)

in two-dimensional domains.

The following estimate for the discrete time derivative of the discrete director field is needed

to obtain (78):

k

N−1∑

n=0

∥∥δtdn+1
h

∥∥2
Lp(Ω)

≤ C

for p < 2 and p = 3/2 in two- and three-dimensional domains, respectively. This estimate is

attained by a duality argument. But again a Poincaré inequality is needed.

The convergence of scheme (77) is as an open problem even towards measure-valued solutions

[42, 43].
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4.2 A saddle-point formulation

When expressed in the appropriate mathematical setting, one realizes that all the above nu-

merical method described are connected. Lagrange multiplier methods allow one to introduce

a unified formulation leading to a numerical algorithm for the Ginzburg-Landau equations (11)

and the Ericksen-Leslie equations (3). The following variational form of (27) was proposed in

[5]. Consider the term λ∇ · ((∇d)t∇d) written in a similar way to (38) done in [44, 45] which

saves to compute an extra variable as for schemes (43), (47), (67) and (69). Then the problem

consists of finding (u(t), p(t),d(t), q(t)) ∈H1
0(Ω)×L2

0(Ω)×W
1,3(Ω)∩L∞(Ω)×Q(Ω) such that





(∂tu, ū) + c(u,u, ū) + νa(u, ū)

−bu(p, ū) +
λ

γ
c(ū,d, ∂td+ (u · ∇)d) = 0,

bu(p̄,u) = 0,

(∂td, d̄) + c(u,d, d̄) + γa(d, d̄) + γbd(q,d, d̄) = 0,

bd(q̄,d,d)− ε2(q, q̄) = 〈1, q̄〉,

(79)

for all (u(t), p(t),d(t), q(t)) ∈H1
0(Ω)×L2

0(Ω)×H
1(Ω)×Q(Ω)′. The space Q(Ω) is L2(Ω) when

ε > 0 or Q(Ω) is the dual space of H1(Ω) denoted by (H1(Ω))′ when ε = 0. It is easy to see that

the weak formulation (79) is well-defined on the previous spaces. Note that for two-dimensional

domains dmay only belong toW 1,3(Ω) due to Sobolev’s inequality W 1,3(Ω) →֒ L∞(Ω). The idea

to consider the Lagrange multiplier to belong to (H1(Ω))′ stemmed from the inf-sup condition

(24).

Another possible formulation studied in [5] consists in replacing the weak formulation bd(q̄,d,d)−

ε−2(q, q̄) = 〈1, q̄〉 of the sphere constraint by its derivative in time

2bd(q̄,d, ∂td)− ε2(∂tq, q̄) = 0 for all q̄ ∈ Q(Ω). (80)

An implicit algorithm. A first attempt to discretize (79) is an implicit Euler scheme. So, let

dnh ∈ Dh and un
h ∈ V h be given. Then find (un+1

h , pn+1
h ,dn+1

h , qn+1
h , ) ∈ V h × Ph ×Dh × Qh

such that




(δtu
n+1
h , ūh) + c̃(un+1

h ,un+1
h , ūh) + νa(un+1

h , ūh)

+bu(p
n+1
h , ūh) +

λ

γ
c(ūh,d

n+1
h , δtd

n+1
h + (un+1

h · ∇)dn+1
h ) = 0,

bu(q̄h,u
n+1
h ) = 0,

(δtd
n+1
h , d̄h) + γa(dn+1

h , d̄h)

+c(un+1
h ,dn+1

h , d̄h) + γbd(q
n+1
h ,dn+1

h , d̄h) = 0,

2bd(q̄h,d
n+1
h , δtd

n+1
h )− ε2(δtq

n+1
h , q̄h) = 0,

(81)
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for all (ūh, p̄h, d̄h, q̄h) ∈ V h × Ph ×Dh ×Qh where the finite element spaces are Vh = ((P1
h)

d ⊕

(Bh)
d) ∩H1

0(Ω), Ph = P1
h ∩ L2

0(Ω, Dh = (P1
h)

d, and Qh = P1
h. Observe that equation (81)4 is

the discrete version of the alternative equation (80) since if we considered

bd(q̄h,d
n+1
h ,dn+1

h )− ε−2(qn+1
h , q̄h) = 〈1, q̄h〉 (82)

an energy estimate would not be clear.

The following energy inequality holds for scheme (81):

1

2
‖un+1

h ‖2L2(Ω) +
λ

2
‖∇dn+1

h ‖2L2(Ω) +
λǫ2

4
‖qn+1

h ‖2L2(Ω)

+νk
n∑

m=0

‖∇um+1
h ‖2L2(Ω) +

λ

γ
k

n∑

m=0

‖δtd
m+1
h + (um+1

h · ∇)dm+1
h ‖2L2(Ω)

≤
1

2
‖u0

h‖
2
L2(Ω) +

λ

2
‖∇d0h‖

2
L2(Ω) +

λε2

4
‖q0h‖

2
L2(Ω) for all n.

A Crank-Nicolson algorithm. If we want to get an unconditionally stable scheme preserving

the energy law (7) for ε = 0 or (12) for ε > 0, we should consider a Crank-Nicolson time integra-

tion. Thus, given (un
h,d

n
h) ∈ V h ×Dh, we seek the discrete solution (un+1

h , pn+1
h ,dn+1

h , qn+1
h ) ∈

V h × Ph ×Dh ×Qh such that




(δtu
n+1
h , ūh) + c̃(u

n+1/2
h ,u

n+1/2
h , ūh) + νa(u

n+1/2
h , ūh)

+bu(p
n+1/2
h , ūh) +

λ

γ
c(ūh,d

n+1/2
h , δtd

n+1
h + (u

n+1/2
h · ∇)d

n+1/2
h ) = 0,

bu(q̄h,u
n+1/2
h ) = 0,

(δtd
n+1/2
h , d̄h) + γa(d

n+1/2
h , d̄h)

+c(u
n+1/2
h ,d

n+1/2
h , d̄h) + γbd(q

n+1/2
h ,d

n+1/2
h , d̄h) = 0,

bd(q̄h,d
n+1
h ,dn+1

h )− ε2(qn+1
h , q̄h) = 〈1, q̄h〉,

(83)

for all (ūh, p̄h, d̄h, q̄h) ∈ V h×Ph×Dh×Qh. Note that the restriction over dh has been discretized

by using an implicit time integration.

The following a priori energy equality holds for scheme (83):

1

2
‖un+1

h ‖2L2(Ω) +
λ

2
‖∇dn+1

h ‖2L2(Ω) +
λε2

4
‖qn+1

h ‖2L2(Ω)

+νk

n∑

m=0

‖∇u
m+ 1

2

h ‖2L2(Ω) + k

n∑

m=0

β

γ
‖δtd

m+ 1

2

h + (u
m+ 1

2

h · ∇)d
m+ 1

2

h ‖2L2(Ω)

=
1

2
‖u0

h‖
2
L2(Ω) +

λ

2
‖∇d0h‖

2
L2(Ω) +

λε2

4
‖q0h‖

2
L2(Ω) for all n.

Note that an equality is now obtained, that is, the energy law is exactly conserved, since scheme

(83) introduces no numerical dissipation.

A semi-implicit algorithm. We next show a linear algorithm developed in [5], which is implicit

for the linear terms and semi-implicit for the nonlinear terms.
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Given (un
h,d

n
h) ∈ V h×Dh, we want to find finite element functions (un+1

h , pn+1
h ,dn+1

h , qn+1
h ) ∈

V h × Ph ×Dh ×Qh such that




(δtu
n+1
h , ūh) + c̃(un

h,u
n+1
h , ūh) + νa(un+1

h , ūh)

+bu(p
n+1
h , ūh) +

λ

γ
c(ūh,d

n
h, δtd

n+1
h + (un+1

h · ∇)dnh) = 0,

bu(q̄h,u
n+1
h ) = 0,

(δtd
n+1
h , d̄h) + γa(dn+1

h , d̄h)

+c(un+1
h ,dnh, d̄h) + γbd(q

n
h ,d

n+1
h , d̄h) = 0,

2bd(q̄h,d
n
h, δtd

n+1
h )− ε2(δtq

n+1
h , q̄h) = 0,

(84)

for all (ūh, p̄h, d̄h, q̄h) ∈ V h×Ph×Dh×Qh. The discrete energy inequality that provides scheme

(84) is as follows:

1

2
‖un+1

h ‖2L2(Ω) +
λ

2
‖∇dn+1

h ‖2L2(Ω) +
λǫ2

4
‖qn+1

h ‖2L2(Ω)

+νk

n∑

m=0

‖∇um+1
h ‖2L2(Ω) +

λ

γ
k

n∑

m=0

‖δtd
m+1
h + (um+1

h · ∇)dmh ‖2L2(Ω)

≤
1

2
‖u0

h‖
2
L2(Ω) +

λ

2
‖∇d0h‖

2
L2(Ω) +

λε2

4
‖q0h‖

2
L2(Ω) for all n.

Schemes (81), (83) and (84) turn out to be unconditionally long-time stable with decreasing

discrete energy. In particular, scheme (84) is the first linear scheme for both the Ginzburg-

Landau problem and the Ericksen-Leslie problem which is unconditionally stable.

If we want to prove existence of discrete solutions for scheme (81) we will find the following

problems. For ε > 0, scheme (81) is conditionally solvable for the same reasons explained for

scheme (77). In order to solve that problem one may consider

a(dh, d̄h) = (∇dh,∇d̄h) + ε2(dh, d̄h)

to complete the H1(Ω) norm. Therefore, the energy estimate remains

1

2
‖un+1

h ‖2L2(Ω) +
λ

2
‖∇dn+1

h ‖2L2(Ω) +
λ ε2

4
‖dn+1

h ‖2L2(Ω) +
λǫ2

4
‖qn+1

h ‖2L2(Ω)

+νk
n∑

m=0

‖∇um+1
h ‖2L2(Ω) +

λ

γ
k

n∑

m=0

‖δtd
m+1
h + (um+1

h · ∇)dm+1
h ‖2L2(Ω)

≤
1

2
‖u0

h‖
2
L2(Ω) +

λ

2
‖∇d0h‖

2
L2(Ω) +

λε2

2
‖d0h‖

2
L2(Ω) +

λε2

4
‖q0h‖

2
L2(Ω) for all n.

Nevertheless, for ε = 0, the existence of the discrete Lagrange multiplier would be estab-

lished by making use of a discrete version of the inf-sup condition (26) which is far away to be

understood. So far, it is known [36] the following discrete version of the inf-sup condition (24)

inf
qh∈Qh,0

sup
dh∈Dh

bd(qh,dh, d̄h)

‖qh‖H−1(Ω)‖d̄h‖H1(Ω)

≥ β(dh) > 0, (85)
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where now the constraint equation is

bd(qh,dh, d̄h) =

∫

Ω
qhIQh,0

(dh · d̄h) (86)

and Qh,0 = P1
h ∩H1

0 (Ω). We recall that IQh,0
is the nodal projection operator into Qh,0. The

inf-sup condition (85) has been used in [36] to numerically study the steady-state harmonic

map problem whose solution is characterized by a nonlinear saddle-point problem. The discrete

solutions are computed by a full Newton linealization which is well-posed if it starts close to

a local minimum regular enough. To prove the inf-sup condition (85), the nodal projection

operator IQh,0
played an important role. This projection can be considered without spoiling the

stability of schemes (81), (83), and (84). For nodes on the Dirichlet boundaries, it is natural

to set the Lagrange multiplier to zero, since the sphere constraint is (hopefully) satisfied by the

boundary conditions. However, it is nonsense on Neumann boundaries, since we also need to

enforce the sphere constraint there. As was point out in [36], the inf-sup condition (85) is not

clear for Neumann boundaries, but numerical experiences showed in [5] indicate that the inf-sup

condition also holds in these cases, and subsequently, schemes (81), (83) and (84) are well-posed.

Schemes (81) and (83) enforce the sphere constraint in a discrete sense, as the incompress-

ibility condition for the Navier-Stokes equations. If we consider the modification of the con-

straint equation (86) proposed in [36] for the projection operator IQh
, then one can prove

that |dn+1
h (a)|2 − |dnh(a)|

2 + |dn+1
h (a) − dnh(a)|

2 = ε2(qn+1
h (a) − qnh(a)) for scheme (81) and

ε2qn+1
h (a) = |dn+1

h (a)|2 − 1 for scheme (83) at every node a ∈ Nh. To be more precise, we have

qn+1
h (a) = ε−2(|dn+1

h (a)|2 − 1) +
∑n

j=1 |d
j+1
h (a) − djh(a)|

2 if we choose q0h = 0 and |d0h(a)| = 1

and qn+1
h (a) = ε−2(|dn+1

h (a)|2 − 1) for all nodes a ∈ Nh, respectively. Clearly, computing the

time derivative of the sphere constraint provides a weaker enforcement at the nodes.

On the other hand, for ε = 0, we have that |dn+1
h (a)|2 +

∑n
j=1 |d

j+1
h (a) − djh(a)|

2 = 1 and

|dn+1
h (a)|2 = 1 for schemes (81) and (83), respectively.

It was pointed out in [5] that the closed integration of the constraint trilinear form

bd(qh,dh, d̄h) ≃
∑

a∈Nh

q(a)d(a) · d̄(a)

∫

Ω
φ(a), (87)

provides the same statement than for the constraint equation (86). Moreover, the dh−qh block

matrices in the corresponding linear system are diagonal matrices and hence computationally

more appealing.

Iterative algorithms for the implicit schemes (81) and (83) have been developed. For scheme

(84), a modified Newton method is designed in order to decouple the computation of the velocity-

pressure pair from the director vector and its Lagrange multiplier. For scheme (81) with (82)

taking ε = 0, a Gauss-Seidel method combined jointly with the projection method due to Alouges
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[2, 6] is also performed. The idea is to consider a Picard linearization of (81) with (82) together

with a normalization of the director field approximation.

Let (un+1,k
h , pn+1,k

h ,dn+1,k
h , qn+1,k

h , ) ∈ V h × Ph ×Dh ×Qh be known.

1. Compute (d̃
n+1,k+1
h , qn+1,k+1

h ) ∈Dh ×Qh, solution of

(δtd̃
n+1,k+1
h , d̄h) + c(un+1,k

h , d̃
n+1,k+1
h , d̄h)

+γa(d̃
n+1,k+1
h , d̄h) + γbd(q

n+1,k+1
h ,dn+1,k

h , d̄h) = 0,

bd(q̄h,d
n+1,k
h , d̃

n+1,k+1
h ) = 〈1, q̄h〉.

2. Compute dn+1,k+1
h ∈Dh as

d
n+1,k+1
h (a) =

d̃
n+1,k+1
h (a)

|(d̃
n+1,k+1
h (a)|

for all a ∈ Nh.

3. Known dn+1,k+1
h ∈Dh, compute (un+1,k+1

h , pn+1,k+1
h ) ∈ V h×Ph by a Picard linearization:

(δtu
n+1,k+1
h , ūh) + c̃(un+1,k

h ,un+1,k+1
h , ūh) + νa(un+1,k+1

h , ūh)

+bu(p
n+1,k+1
h ,vh) +

λ
γ c(ūh,d

n+1,k+1
h , ∂td

n+1,k+1
h + (un+1,k+1

h · ∇)dn+1,k+1
h ) = 0,

bu(p̄h,u
n+1,k+1
h ) = 0.

Obviously, dn+1,k+1
h satisfies the nonlinear constraint (87) since Step 2 enforces the sphere con-

straint on the nodes.

With regard to CPU cost, the saddle-point structure needs eight degrees of freedom per node,

only beated by schemes (39), (73), and (77) which do not introduced any auxiliary variable. The

numerical analysis of schemes (81), (83), and (84) is still open.

5 Conclusions

In this work, we have analyzed the existing numerical schemes in the literature to approximate

the Ericksen-Leslie equations (3) by means of low-order finite elements. We have distinguished

between implicit and semi-implicit methods. Existence of discrete solutions have been detailed

for the implicit schemes, as well as their linearization. The convergence of these algorithms is

presented by two different ways: compactness and error estimates.

Clearly, schemes (36) and (43) have been designed to satisfy the energy law (17). This

is the reason why we think that there is no way to adapt them to hold an energy estimate

independent of the penalty parameter ε. The large number of degrees of freedom make them

somehow impracticable for large scale simulations.
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Probably, scheme (39) is the most efficient algorithm among the linear methods presented

herein since it does not compute any extra auxiliary variable. In contrast, there is no mean

of finding an energy estimate independent of ε. Schemes (47), (67) and (69), designed for

approximating the Ginzburg-Landau equation, need to compute extra variables in order to keep

a discrete version of the energy law (7). They introduce between d and d2 additional degrees

of freedom per node (d being the space dimension), which implies a too high computationally

cost. In particular, although scheme (69) has such an energy estimate, there is no control over

the auxiliary unknown w = −∆d independent of ε, which could clearly deteriorate the resulting

linear system. Another important drawback of schemes (47) and (69) is the fact that they are

conditionally stable. The relation (45) is quite restrictive, in the sense that one needs a time

step small for moderate values of ε if ε = O(h). It is interesting to note that scheme (67)

is unconditionally stable, but it requires the extra relation (46) to pass to the limit towards

measure-valued solutions, as was pointed out in [33].

One of the main advantages of using the saddle-point approach is that it allows to approxi-

mate numerically both the Ericksen-Leslie problem and the Ginzburg-Landau problem by means

of the same numerical approximation. Moreover, it allows to take ε arbitrary small (or even

zero) in comparison with the previous algorithms, since the condition number is independent of

ε. However, the proof of the inf-sup condition that would allow to prove the well-posedness of

the algorithm is still open. Numerical tests have shown an (H1)′ stability in [5]. We would also

mention that the nonlinearity in the equation for the director vector is quadratic while for other

alternatives it is cubic.

The best choice to approximate the Eriscksen-Leslie equations in terms of the number of

degrees of freedom is scheme (77), since it does not introduce any extra variable. Neverthe-

less, the convergence is not clear even for two-dimensional problems due to the fact the cubic

nonlinearity involves second derivatives.
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[17] M. Dauge. Problèmes mixtes pour le laplacien dans des domaines polyédraux courbes.
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