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Abstract

A single facility has to be located in competition with fixed existing facilities of similar type.
Demand is supposed to be concentrated at a finite number of points, and consumers patronise
the facility to which they are attracted most. Attraction is expressed by some function of the
quality of the facility and its distance to demand. For existing facilities quality is fixed, while
quality of the new facility may be freely chosen at known costs. The total demand captured
by the new facility generates income. The question is to find that location and quality for the
new facility which maximises the resulting profits.

It is shown that this problem is well posed as soon as consumers are novelty oriented, i.e.
attraction ties are resolved in favor of the new facility. Solution of the problem then may
be reduced to a bicriterion maxcovering-minquantile problem for which solution methods are
known. In the planar case with Euclidean distances and a variety of attraction functions this
leads to a finite algorithm polynomial in the number of consumers, whereas, for more general
instances, the search of a maximal profit solution is reduced to solving a series of small-scale
nonlinear optimisation problems. Alternative tie-resolution rules are finally shown to result in
ill-posed problems.
Keywords: Competitive location, Consumer behaviour, Facility design, Maxcovering, Min-
quantile, Biobjective.

1 Introduction

This paper addresses the location of a new facility in a competitive environment. Competition
consists of a number of existing facilities having a known fixed location within the market. Typically
the expected income the new facility will generate directly depends upon the market share it
captures. This market share will be determined by several factors, among which we single out
its location and its quality as compared to the competing facilities. These two factors are both
controllable for a new facility and are considered as decision variables.

With respect to spatial consumer distribution, we assume that demand is concentrated at a
finite number of known fixed points in some metric space. Thinking of individual customers this is
the most correct description of reality, although one might have to be more precise by considering
customers not only as persons, but rather as “persons at a particular time period”— a same person
at home does not necessarily behave the same way as at work, and usually has different locations
in these two situations. The number of individuals to be considered is, however, usually too
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large for such a precise description of reality to be feasible, both in terms of amount of necessary
data as in terms of complexity for practical solution. Therefore one often resorts to either a
statistical description, in many cases pragmatically oversimplified into some uniform distributions,
as in Vaughan (1987), or to aggregation of demand into a few ‘conglomerate’ consumers, see
e.g. Goodchild (1979) and Francis-Lowe (1992). It is this latter approach that is followed here.
However, we allow for possible presence of several customer-groups at a same site, each with their
own particular behaviour towards facility choice. This enables the modeller to split the population
at a given site into several groups, e.g. by time period and/or, as is often done, by income, activity
and/or age. In what follows we will call each such customer-groups simply a customer, having its
own individual behaviour and location.

Spatial consumer behaviour has been studied in several disciplines such as geography, economics
and marketing, see Eiselt-Laporte-Thisse (1993). Generalising many of these models we start by
considering some measure of the attraction a consumer feels for a facility, often also called the utility
of the facility for this consumer. This attraction is some function of the distance between facility
and customer on the one hand, and on the other hand of internal characteristics of the facility,
which we express as one global positive measure we will call the quality. The particular function
describing attraction may differ from one customer to the other, but is always nonincreasing with
distance and nondecreasing with quality. Two typical examples of such attraction functions are
additive ones, i.e. a weighted difference of quality and distance (compare with T. Drezner (1994)),
with weights possibly differing between customers, or multiplicative ones, leading to gravity type
attraction, given by quality divided by some strictly positive power of distance (see Plastria (1997)).

We restrict our attention here to deterministic behavioural models. In these models each
customer is supposed to patronise that facility to which it is attracted most, in contrast to in
probabilistic behaviour models where attraction is interpreted as (proportional to) a probability,
and the expected value of the demand attracted to each facility is considered (see e.g. T. Drezner
(1995)).

When setting up the new facility the main decisions relate to its site and to its design. In
our models they consist of two choices: the location and the quality, and these decisions directly
influence both the level of sales at the facility and the operational costs. Sales or income are
generated in an increasing way by the total demand attracted to the facility. This will depend
upon the actual site to be chosen, but also on the quality of the facility. The costs involved
in starting up and running the facility are evidently related to its quality in an increasing way.
Indeed, quality is determined by a mixture of several facility attributes, e.g. floor area, number of
check-counters, point of sales-system (bar coding, bank-card readers, . . . ), product mix, price-level,
marketing in a retail context, and raising the level of any of these attributes always involves higher
costs.

Our aim in this paper is to maximise profit. We allow profit to be any indicator of profitability
with the minimal properties one may expect of such: it should increase with income and decrease
with cost. The standard examples are sales minus cost or sales divided by cost. We will show that
profit-maximisation with respect to both the location and the quality of the new facility may be
obtained under some mild conditions by inspecting only a finite number of solutions, obtained after
solving some biobjective maxcovering-minquantile location problem, as studied in Carrizosa and
Plastria (1995). More specific assumptions on the nature of the distance and attraction function
used will allow to obtain quite efficient algorithms for this task.

The first competitive location model involving both the choice of location and facility’s charac-
teristic simultaneously seems to have been Plastria (1997), of which the present study is a broad
generalisation. All other papers we are aware of either consider a fixed site and attempt to max-
imize profit by an adequate choice of quality (also called attractiveness), or consider the quality
fixed and construct an optimal site. Models of the first type are studied by Eiselt and Laporte
(1988a,b) with demand uniformly distributed on a linear market, while T. Drezner (1994) discusses
a model of the second type in a planar situation with discrete demand and Euclidean distance.
As such our model may be considered as a simultaneous generalization of both these studies. For
a general overview of competitive location models we refer to the survey of Eiselt, Laporte and

https://www.researchgate.net/publication/248243676_Urban_Spatial_Traffic_Patterns?el=1_x_8&enrichId=rgreq-f8cd13c876ee501c27edcb4f9367005f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDU4ODcxNjtBUzoyNjM0MzMxMzYzNzM3NjFAMTQzOTgxODc2MjQzOA==
https://www.researchgate.net/publication/265311166_Profit_maximising_single_competitive_facility_location_in_the_plane?el=1_x_8&enrichId=rgreq-f8cd13c876ee501c27edcb4f9367005f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDU4ODcxNjtBUzoyNjM0MzMxMzYzNzM3NjFAMTQzOTgxODc2MjQzOA==
https://www.researchgate.net/publication/265311166_Profit_maximising_single_competitive_facility_location_in_the_plane?el=1_x_8&enrichId=rgreq-f8cd13c876ee501c27edcb4f9367005f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDU4ODcxNjtBUzoyNjM0MzMxMzYzNzM3NjFAMTQzOTgxODc2MjQzOA==
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Thisse (1993) and to the more restricted but more recent survey by Plastria (2001).
The paper is organised as follows. Section 2 gives the formal description of the model and

introduces the notations to be used. In Section 3 we show how to reduce the solution of the model
to the biobjective location problem. Section 4 is devoted to the planar case, emphasising gravity-
type attraction models with Euclidean distances, illustrated with a small-size example showing the
power of our methodology to obtain optimal solutions and perform sensitivity analysis. Extensions
to different types of attraction functions or distances are also discussed, ending with a discussion
about alternative tie-breaking rules in Section 5.

2 The general profit-maximising competitive location model

A finite set of consumer(group)s is denoted by A. Each consumer a ∈ A has a known location
xa and a strictly positive weight ωa, supposed to be an indicator of its buying power, e.g. the
population or total wealth represented by consumer(group) a.

A finite set of competing facilities with which our new facility is to compete is denoted by CF .
Competing facility f ∈ CF is located at site xf and has a quality αf considered to be known and
fixed.

Any consumer a ∈ A feels an attraction attr(a, f) towards facility f at xf , which depends on
factors such as the distance from xa to xf , the facility (and its firm’s) attractiveness, tradition,
etc.

Consider a new facility with unknown site x and unknown quality α, of at least some minimal
quality α0 > 0. Its attraction on consumer a ∈ A is given by Aa(α,dista(x)), a function of its
quality α and the distance dista(x) from the consumer to the facility. The possibly +∞-valued
function Aa : [α0,+∞[×[0,+∞[−→ [0,+∞] satisfies

1. For each fixed d ≥ 0, the function Aa(·, d) is nondecreasing and upper-semicontinuous

2. For each fixed α ≥ α0, the function Aa(α, ·) is nonincreasing and upper-semicontinuous.

Note that these functions are allowed to differ from one customer to the other, enabling differ-
entiation in their spatial behaviour.

Examples 1

Example 1.1

A typical example is attraction of (generalised) gravity type, given by

Agrav
a (α, d) =

αka

dp
∀d ≥ 0, α ≥ α0 > 0, (1)

where p is any strictly positive exponent, and ka > 0 represents some proportionality constant
depending on a.

The exponent p allows the analyst to finetune the sensitivity of attraction to distance. In pure
gravity type models p = 2, by similarity with the gravitational law in Physics, see the iso-attraction
curves in Figure 1. The models considered by Eiselt and Laporte (1988a,b) use p = 1, whereas the
case of general p > 0 was considered in Plastria (1997).

One small technical point should be raised here, which is apparently ignored, but probably
implicitly assumed in all literature on these types of consumer behaviour models : gravity-type
attraction is infinite as soon as dista(x) = 0, e.g. when the facility location coincides with the
location xa of consumer a. This might also happen with other types of attraction functions. In
general we will evidently consider that in such a case the attraction is infinite (+∞). In other
words, it is impossible for a to be attracted more by some other facility located elsewhere than at
zero distance of xa.
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Figure 1: Iso-attraction curves for Agrav (p = 2)
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Figure 2: Iso-attraction curves for Aadd
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Example 1.2

Note, however, that for attraction functions with a finite value for d = 0, it might be possible for a
consumer to be attracted less to a facility located at its own site than to some facility elsewhere, as
soon as the quality of the latter is sufficiently high. Such a situation might arise with an additive
attraction function,

Aadd
a (α, d) = max{0, αka − ca(d)} (2)

where ka > 0 and ca any nondecreasing lower-semicontinuous function. One example of an additive
attraction function is obtained when considering the real prices carried by a customer in a mill-
pricing system (see e.g. Hansen et al., 1995). In this interpretation ka represents the normal
price to pay for the quantity of some good consumer a needs to obtain per trip, ca(d) denotes
the transport cost carried by the consumer a when travelling over distance d, and α is the price-
reduction factor (per unit) offered. The attraction Aadd

a (α, d) then expresses the reduction on the
total cost the consumer obtains at a facility with price reduction factor α at distance d. Obviously
it might be better to go to a cheaper shop further (but not too far) away than to buy at high price
right here. See in Figure 2 iso-attraction curves for c(d) =

√
d.

Example 1.3

Quality and distances might also be combined through an attraction of the minimum disutility
form

Amin
a (α, d) = min {αka, ca(d)} (3)

for some upper-semicontinuous nonincreasing ca, in which consumers measure facility attraction
through its least favourable feature: either the utility due to its quality (kaα) or the utility due to

travel cost (ca(d)). See in Figure 3 iso-attraction curves for c(d) = d− 1

2 .
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Figure 3: Iso-attraction curves for Amin

Example 1.4

In fact one might also consider max-type functions as

Amax
a (α, d) = max {αka, ca(d)} (4)

with shape something like in next figure.
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Figure 4: Iso-attraction curves for Amax

Example 1.5

Observe also that, since functions Aa are not assumed to be continuous, one can also consider
within this framework non-compensatory models, such as

Astep
a (α, d) =

{

βa, if α ≥ αa and d ≤ da

0, else
(5)

for which the attraction felt is null unless the quality is sufficiently high (α ≥ αa) and the facility
is not too distant (d ≤ da), see e.g. Roberts and Lilien (1993). See figure 5 for its shape.
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α

d̄

Figure 5: Iso-attraction curves for Astep
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Example 1.6

Partially non-compensatory models can also be considered; indeed, define Apart
a as

Apart
a (α, d) =

{

Aa(α, d), if d ≤ da

0, else
(6)

where Aa is, e.g., of types (1)-(4) and da is a given non-negative threshold value. This yields
an attraction function which behaves exactly as Aa when distances are not too high (up to the
threshold distance da), but drops to zero (thus no compensation is possible) as soon as distances
exceed this threshold. In Figure 6 the reader can see the effect produced when altering (1), as
depicted in Figure 1, by introducing a threshold distance d.

α0

α
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0
d

-

High attraction

Low attraction

attraction = 0

k

d̄

Figure 6: Iso-attraction curves for Apart

We denote the attraction felt by consumer a ∈ A towards an existing facility f ∈ CF
by attr(a, f), whereas the attraction towards the new facility at x with quality α is given by
Aa(α,dista(x)), where dista(x) denotes the distance between xa and x. Hence, with the determin-
istic consumer choice rule, it will capture those consumers attracted more to the new facility than
to any competing facility in CF . The set of captured consumers is thus given by

Capt(α, x) = {a ∈ A | ∀f ∈ CF : Aa(α,dista(x)) ≥ attr(a, f)}.

Note the use of ≥ in this definition, which means that for consumers equally attracted by the
new facility and any existing facility they patronised before, we assume they will start patronising
the new facility as soon as it arrives on the market. In other words we consider consumers to be
novelty oriented. It will turn out in Section 3 that this assumption leads to clear results in our
model, while, as shown in Section 5, any other assumption on the resolution of attraction ties leads
to technical difficulties, more precisely non-existence of optimal solutions (strictu sensu) when α
may vary continuously.

The total weight captured by the new facility is now given by

CW (α, x) =
∑

a∈Capt(α,x)

ωa (7)
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The sales income at the new facility is given as some strictly increasing function σ of the captured
weight. The operating costs of the new facility are given by a strictly increasing function γ of its
quality α. Profit is expressed by some profit-indicator function π which is strictly increasing in
sales and strictly decreasing in costs, yielding a profit indicator

Π(α, x) = π( σ(CW (α, x)) , γ(α) ) (8)

Typical examples of such indicator functions are the standard notion of profit, i.e. the difference
of sales minus costs, π(s, c) = s − c, yielding

Π(α, x) = σ(CW (α, x)) − γ(α), (9)

or a profitability ratio like sales divided by costs, π(s, c) = s
c , giving rise to

Π(α, x) =
σ(CW (α, x))

γ(α)

It is the profit-indicator Π in (8) we want to optimise by an adequate choice of both the quality
α ≥ α0 and the site x within some set of feasible sites S :

max{Π(α, x) | x ∈ S, α ≥ α0}. (10)

Given a fixed quality α, profit maximisation is achieved by maximisation of the total captured
weight, in other words we obtain a maximal covering problem as studied in the planar context
by Z. Drezner (1981) and Mehrez and Stulman (1982). This is in fact what T. Drezner (1994)
proposes. Since to us α is a variable, we would have to solve such a maximal covering problem
for each possible value of α. At first glance this seems possible only when no more than a finite
number of feasible quality values are available.

This is however not the approach we want to use here: we want to optimise over the full range
of positive α-values no less than α0. Instead, we show in Section 3 how to solve Problem (10) by
reducing it to a bicriterion problem, which was addressed by the authors in Carrizosa and Plastria
(1995). In particular, this will enable to solve (10) in a number of cases by inspecting a finite
number of points, polynomial in the cardinality of A.

3 Bicriterion minquantile/maxcovering view

We now take a closer look at the capturing process. Consumer a is captured by the new facility
given by (α, x) iff for any facility f ∈ CF we have Aa(α,dista(x)) ≥ attr(a, f). Let us define
µa ∈ [0,+∞], the decisive attraction of a, as the highest attraction consumer a felt before the
advent of the new facility, i.e.,

µa = max{attr(a, f) | f ∈ CF}, (11)

We may now write the capturing of a by the new facility at x as

a ∈ Capt(α, x) ⇐⇒ Aa(α,dista(x)) ≥ µa

⇐⇒ α ∈ {ᾱ ≥ α0 : Aa(ᾱ,dista(x)) ≥ µa}
Since, by assumption, for each a ∈ A and d ≥ 0, the function Aa(·, d) is nondecreasing and

upper semicontinuous, the set {ᾱ ≥ α0 : Aa(ᾱ, d) ≥ µa} is a closed (possibly empty) subinterval
of [α0,+∞]. It then has either the form [Ba(d),+∞], or it is empty, in which case we define Ba(d)
as +∞.

¿From this definition one immediately obtains that

Ba(d) ≤ α ⇐⇒ Aa(α, d) ≥ µa, (12)

This means that Ba(d) indicates, as a function of d, the quality threshold above which customer a
at distance d is captured. We call this partial inverse function of Aa the decisive quality function.

We have the following property
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Theorem 2 For each a ∈ A, Ba is a nondecreasing lower-semicontinuous function satisfying

a ∈ Capt(α, x) iff α ≥ Ba(dista(x)) (13)

Proof.

Since, for any d2 ≥ d1 ≥ 0, one has for each α that

Aa(α, d1) ≥ Aa(α, d2),

it follows that
{α ≥ α0 | Aa(α, d1) ≥ µa} ⊃ {α ≥ α0 | Aa(α, d2) ≥ µa},

thus Ba(d1) ≤ Ba(d2).
Moreover, by (12), we have

{d ≥ 0 | Ba(d) ≤ α} = {d ≥ 0 | Aa(α, d) ≥ µa}

and this is a closed set by the upper semicontinuity of Aa(α, ·). Hence, Ba is lower semicontinuous.
Finally, (13) follows from the definition. 2

Observe that by (12) the graph of Ba is shown in the figures 1-6 as the iso-attraction curve at
attraction level µa. Analytically Ba can be easily constructed for the attraction functions in the
examples of previous section, as discussed below.

Examples 3

Example 3.1

For the gravity model (1), we see that, for any d > 0 and µa ∈ [0,+∞],

{ᾱ ≥ α0 : Agrav
a (ᾱ, d) ≥ µa} = {ᾱ ≥ α0 :

kaᾱ

dp
≥ µa}

= {ᾱ ≥ α0 : ᾱ ≥ µadp

ka
}

= [max{α0,
µadp

ka
},+∞[,

whilst for d = 0, one has that

{ᾱ ≥ α0 : Agrav
a (ᾱ, 0) ≥ µa} = [α0,+∞[

In other words, for finite µa, Bgrav
a is given by

Bgrav
a (d) = max{α0,

µadp

ka
}

whereas for µa = +∞, Bgrav
a is given by

Bgrav
a (d) =

{

α0, if d = 0
+∞, if d > 0

2

Example 3.2

For the additive model (2) we obtain for µa = 0 that Badd
a (d) = α0 for each d ≥ 0, whereas for

each µa > 0 it follows that

{ᾱ ≥ α0 : Aadd
a (ᾱ, d) ≥ µa} = {ᾱ ≥ α0 : kaᾱ − ca(d) ≥ µa}

= [max{α0,
µa + ca(d)

ka
},+∞[
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Hence, if µa = 0 then Badd
a (d) = α0 for all d whereas, for µa > 0, Badd

a has the form

Badd
a (d) = max{α0,

µa + ca(d)

ka
}

2

Example 3.3

For the minimum disutility model (3), Bmin
a takes the form

Bmin
a (d) =

{

max{α0,
µa

ka

}, if ca(d) ≥ µa

+∞, else

Since ca is assumed to be non-increasing, it follows that, for µa > ca(0), Bmin
a = +∞. For µa ≤

ca(0), since ca is upper-semicontinuous, we can define da as

da := max {d ≥ 0 : ca(d) ≥ µa} ∈ [0,+∞], (14)

yielding the following equivalent expression of Bmin
a

Bmin
a (d) =

{

max{α0,
µa

ka

}, if d ≤ da

+∞, else,
(15)

Example 3.4

Similarly for the max-type model (4),

Bmax
a (d) =

{

max{α0,
µa

ka

}, if ca(d) < µa

α0, else

yielding

Bmax
a (d) =

{

max{α0,
µa

ka

}, if d > da

α0, else
(16)

with da defined by (14).

Example 3.5

For the step model (5), one has that, for µa ≤ βa,

Bstep
a (d) =

{

αa, if d ≤ da

+∞, else,
(17)

whereas, for µa > βa, one obtains that Bstep
a is constantly +∞. Observe that this expression has

the same form as (15), obtained for a different attraction model.

Example 3.6

For Apart
a given in (6) for some given Aa with corresponding partial inverse Ba, the construction

of Bpart
a is straightforward; indeed, since, for µa = 0,

{α ≥ α0 : Apart
a (α, d) ≥ 0} = [α0,+∞[,

we get for µa = 0 that Bpart
a (d) = α0 for all d ≥ 0. On the other hand, for µa > 0,

{α ≥ α0 : Apart
a (α, d) ≥ µa} =

{

{α ≥ α0 : Aa(α, d) ≥ µa} if d ≤ da

∅, else

Hence, for µa > 0 we obtain

Bpart
a (d) =

{

Ba(d), if d ≤ da

+∞, else

2
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Our optimisation problem may now be stated as follows. For each a ∈ A we have a function
dista(·), a weight ωa and a threshold value µa as defined in (11). For any quality α ≥ α0 ≥ 0, the
captured weight CW (α, x) is defined in (7) as

CW (α, x) =
∑

{ωa | a ∈ Capt(α, x)}

=
∑

a

{ωa | Aa(α,dista(x)) ≥ µa}

=
∑

a

{ωa | Ba(dista(x)) ≤ α}

and the maximisation of the profit-indicator function Π defined in (8) yields

max

α ≥ α0, x ∈ S

Π(α, x) := π(σ(CW (α, x)), γ(α))
(18)

Following Plastria (1997), we propose to find a maximal profit solution (i.e., to solve (18))
through the determination of the efficient (or nondominated, or Pareto-optimal) solutions of the
bi-objective problem

min α
max CW (α, x)

α ≥ α0 ; x ∈ S
(19)

We first recall that a feasible solution (α, x) is said to be efficient for (19) iff there exists no
feasible pair (α∗, x∗) satisfying

α∗ ≤ α

CW (α∗, x∗) ≥ CW (α, x),

with at least one of the two inequalities above as strict (see e.g. Steuer, 1986).
As a direct consequence of this definition of efficient solutions, and the fact that, by assumption,

σ, γ, π are strictly monotonic in their arguments, one obtains the following

Theorem 4 Any maximal profit solution is an efficient solution for (19).

Problems of type (19), called biobjective minquantile-maxcovering problems were defined and
studied in Carrizosa and Plastria (1995) in a general theoretical setting. In the next section we
show that, under mild conditions, the general theory developed there leads, in the planar context,
to a finite number of candidates for being maximal profit solutions, obtained through a geometrical
procedure in the most common model (gravity-type attraction, Euclidean distances) or after solving
a finite number of small-scale nonlinear optimisation problems.

Theorem 4 asserts that, if maximal profit solutions exist, then they all are efficient for the
biobjective problem (19). Sufficient conditions for the existence of such maximal profit solutions
are given in the next result.

Theorem 5 Suppose that, for each a ∈ A, dista is a continuous function of the location x, and,
for any β ≥ 0, the set {x ∈ S : dista(x) ≤ β} is compact. Then, under novelty orientation, there
exists a maximal profit solution.

Proof.

For a given α ≥ α0, let Q(α) denote the highest market capture which can be obtained for a quality
α, if the facility is properly located,

Q(α) = sup
x∈S

CW (α, x) = max
x∈S

CW (α, x)



F.Plastria & E.Carrizosa / Profit maximal competitive facility location 12

where the last equality is a consequence of the fact that CW can take only finitely many values.
Then,

Q(α) = max
A∗⊆A

{
∑

a∈A∗

wa : for some x ∈ S we have (∀a ∈ A∗ : Ba(dista(x)) ≤ α ) }

= max
A∗⊆A

{
∑

a∈A∗

wa : for some x ∈ S we have max
a∈A∗

Ba(dista(x)) ≤ α }

Since each function dista is assumed to be continuous, and, by Theorem 2, Ba is lower-semicontinuous,
then, for any A∗ ⊆ A, the function x 7−→ maxa∈A∗ Ba(dista(x)) is also lower-semicontinuous.

By Theorem 2, each Ba is non-decreasing, and, by assumption, the sets {x ∈ S : dista(x) ≤ β}
are compact, thus, given x0 ∈ S, for each A∗ ⊆ A,

inf {max
a∈A∗

Ba(dista(x)) : x ∈ S} =

= inf {max
a∈A∗

Ba(dista(x)) : x ∈ S,dista(x) ≤ dista(x0) for some a ∈ A∗},

and the latter infimum is attained, since it is the infimum of a lower-semicontinuous function over
the compact set

⋂

a∈A∗

{x ∈ S : dista(x) ≤ dista(x0)}

Hence, for each non-empty A∗ ⊆ A, there exists some x(A∗) such that

inf {max
a∈A∗

Ba(dista(x)) : x ∈ S} = max
a∈A∗

Ba(dista(x(A∗)))

Therefore,

Q(α) = max
A∗⊆A

{
∑

a∈A∗

wa : max
a∈A∗

Ba(dista(x(A∗))) ≤ α} (20)

=
∑

a∈A∗

α

wa

for some A∗
α ⊆ A satisfying

max
a∈A∗

α

Ba(dista(x(A∗
α))) ≤ α

Hence, for any α ≥ α0,

Q(α) ≥ β iff α ≥ max

{

min
x∈S

max
a∈A∗

Ba(dista(x)) : A∗ ⊆ A,
∑

a∈A∗

wa ≥ β

}

(21)

Now observe that, by the finiteness of A, the set of values taken by CW (α, x) when α ranges
[α0,+∞[ and x ranges S is finite: c1, . . . , cN . Then,

max
α≥α0, x∈S

π(σ(CW (α, x), γ(α))) = max
1≤i≤N

max
α≥α0,Q(α)≥ci

π(σ(ci), γ(α)),

thus, since by assumption, γ is strictly increasing, and π is strictly decreasing in its second argu-
ment, it follows from (21) that

max
α≥α0, x∈S

π(σ(CW (α, x), γ(α))) = max
1≤i≤N

π(σ(ci), γ(min{α ≥ α0 : Q(α) ≥ ci})),

and this value is attained at a certain quality level α∗, from which an optimal location x∗ is
obtained by (20). 2

Hence, under mild assumptions (which are automatically satisfied, e.g., under the assumptions
of the model in Section 4, namely, S is a closed set in the plane and each dista is induced by a
norm), novelty orientation leads to optimization problems which are well behaved, in the sense
that an optimal solution (α, x) exists.
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4 Location in the plane

4.1 General attraction and distance measure

When the facility is to be located in a closed convex subset S of the plane R
2, distances are usually

assumed to be measured by some norm (or gauge, when non-symmetric), possibly differing with
demand point, see e.g. Plastria (1995). It follows that the distance function dista(x) to a fixed
point a is convex in x, see e.g. Michelot (1993) for this and further results on distances. This key
property induces (quasi)convexity properties on the objective function of (19). We refer the reader
to Avriel et al. (1988) for concepts and properties on quasiconvex functions.

Lemma 6 Let Da : R
2 −→ [0,+∞] be defined as

Da : x 7−→ Ba(dista(x))

One then has:

1. Da is quasiconvex and lower-semicontinuous.

2. If Aa is quasiconcave, then Ba and Da are convex.

Proof.

Since distances dista are assumed to be induced by gauges, they are convex functions and therefore
continuous. By Theorem 2, Ba is non-decreasing and lower-semicontinuous, thus, by composition,
Da is quasiconvex and lower-semicontinuous, showing part 1.

To show part 2, we first show that Ba is convex. Indeed, let d1, d2 ≥ 0 and 0 < λ < 1. By
definition, for i = 1, 2, Ba(di) is the optimal solution to the problem

inf α
s.t. α ≥ α0

Aa(α, di) ≥ µa

(22)

Obviously, if any of these problems is infeasible, then the inequality

Ba((1 − λ)d1 + λd2) ≤ (1 − λ)Ba(d1) + λBa(d2) (23)

immediately follows since the right hand side equals +∞.
If both problems are feasible, the upper semicontinuity of Aa(·, di) implies that their feasible

regions are closed intervals, thus their optimal values, Ba(d1),Ba(d2), are attained. In other words,

Aa(Ba(di), di) ≥ µa for i = 1, 2

The quasiconcavity of Aa implies

µa ≤ min{Aa(Ba(d1), d1),Aa(Ba(d2), d2)}
≤ Aa((1 − λ)(Ba(d1), d1) + λ(Ba(d2), d2))

= Aa((1 − λ)Ba(d1) + λBa(d2), (1 − λ)d1 + λd2),

thus (1 − λ)Ba(d1) + λBa(d2) is feasible for the optimization problem

min{α ≥ α0 : Aa(α, (1 − λ)d1 + λd2) ≥ µa},

the optimal solution of which is, by definition, Ba((1 − λ)d1 + λd2). Therefore (23) follows, thus
Ba is convex.

Finally, Da is the composition of the convex nondecreasing function Ba with the convex function
dista, thus Da is convex, which concludes part 2. 2

https://www.researchgate.net/publication/292812110_The_mathematics_of_continuous_location?el=1_x_8&enrichId=rgreq-f8cd13c876ee501c27edcb4f9367005f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDU4ODcxNjtBUzoyNjM0MzMxMzYzNzM3NjFAMTQzOTgxODc2MjQzOA==
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Remark 7 Quasiconcavity of Aa (thus convexity of Da) is easily checked for the gravity-type
model (1), the additive attraction model (2) for convex ca, models (3)–(5), and for model (6)
induced by an attraction function Aa which is quasiconcave.

One can then use the application of Helly-Drezner theorem presented in Carrizosa and Plastria
(1995) to conclude that efficient solutions for (19) are optimal solutions to simple single-objective
problems:

Theorem 8 Let (α∗, x∗) be an efficient solution for (19). Then, one has:

1. When Capt(α∗, x∗) 6= ∅ there exists a nonempty subset T ⊂ A, with cardinality at most 3
such that

(a) x∗ solves the generalized single-facility minmax location problem

min
x∈S

max
a∈T

Da(x) (PT )

(b) α∗ is the optimal value of (PT ), which is finite.

2. In case Capt(α∗, x∗) = ∅ (i.e. µa ≥ A(α0, 0) for all a ) one must have α∗ = α0, and any
other pair (α0, x) is then also efficient for (19).

By Theorem 4, any profit-maximising solution (α∗, x∗) is also efficient for (19). Hence, Theorem
8 implies that, after finding the optimal value αT of each of the O(n3) problems of the form (PT ),
and finding the set ST of optimal solutions for (PT ) we end up with a list L of pairs (αT , xT )
known to contain the set of efficient solutions for (19). Therefore we obtain the following

General Algorithm in the Plane

Step 1 Initialise the list of candidate solutions L with the singleton {(α0, x0)}, with x0 ∈ S
arbitrarily chosen.

Step 2 For all T ⊂ A, with cardinality 1, 2 or 3, do

1. Compute αT , the optimal value of (PT )

2. If αT < +∞ then find the set ST of optimal solutions for (PT ) and add {(αT , xT ) :
xT ∈ ST } to L.

Step 3 For each (α̂, x̂) ∈ L evaluate Π(α̂, x̂) and select the one yielding the maximal value.

Observe that in step 2.2 all optimal solutions xT ∈ ST will have the same corresponding quality
value αT . In step 3 only the ones with maximal captured weight will be retained. Therefore we
may replace step 2.2 by

2. If αT < +∞ then find the set ST of optimal solutions for (PT )

3. find the set S∗
T of optimal solutions to the subproblem

max{CW (αT , x) | x ∈ ST } (24)

and add {(αT , xT ) : xT ∈ S∗
T } to L.

In general the problems (PT ), or its subproblem (24), may have an infinite number of optimal
solutions, thus the algorithm as such does not always yield a finite procedure. When ST , or S∗

T , is
infinite we may retain just one solution in S∗

T which will still guarantee finding at least one optimal
solution.

Observe that the subproblem (24) to be solved is just a maximal covering location problem,
but with a peculiar locational constraint x ∈ ST . If the corresponding solution (αT , x∗

T ) turns out
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to be the optimal profit-mix, then all optimal solutions to this subproblem will be optimal profit
locations, all combined with the same quality αT .

As we will see in the next section, in several important cases the problems (PT ) have a finite,
often unique solution. Although (quasi)convex (see Lemma 6 and Theorem 8)), solving (PT ) is
usually not straightforward, and will involve a convergent iterative search, see e.g. Plastria (1988)
and Section 4.4. Step 2 involves solving O(n3) problems (PT ), so this will take quite some time.

For a given solution (α, x) the captured weight can be computed in O(n) time in a straightfor-
ward manner. Therefore, when ST (or S′

T ) is finite for all T , Step 3 can be performed in O(n|L|),
where |L| denotes the cardinality of the list L generated in Step 2.

In the following we show how in some very relevant cases, the structure of the function Aa and
the geometry of the distances dista can be used to obtain finite and low-complexity procedures.

4.2 Gravity-type attraction and Euclidean distances

Let us now focus on the case of gravity-type attraction functions and Euclidean distances in the
Euclidean plane. This means that for any a ∈ A we have, as introduced in (1),

Aa(α, x) =
kaα

‖x − xa‖p
, (25)

(‖x− xa‖ standing here for the Euclidean distance from xa to x), which leads to (see Example
3.1)

Da(x) = max

{

α0,

(

µa

ka

)

‖x − xa‖p

}

Under these assumptions, the problems (PT ) introduced in Section 4.1 have a rich structure
which will allow us to easily identify their optima. First we have that (PT ) can be re-written as

min
x∈S

max

(

α0,max
a∈T

Da(x)

)

Defining Problem (QT ) as

min
x∈S

max
a∈T

µa

ka
‖x − xa‖p (QT )

we see that both problems are equivalent (same optimal solutions, same objective value), except
for the degenerate case in which (QT ) has an optimal value not greater than α0. This enables us
to rephrase Theorem 8 as

Theorem 9 Let (α∗, x∗) be an efficient solution for (19). Then, one has:

1. If Capt(α∗, x∗) 6= ∅ then there exists a nonempty subset T ⊂ A, with cardinality at most 3
such that

(a) x∗ solves the single-facility minmax location problem (QT )

(b) α∗ is the maximum between α0 and the optimal value of (QT ), which is finite.

2. If Capt(α∗, x∗) = ∅ (i.e. µa ≥ A(α0, 0) for all a ) then α∗ = α0, and any pair (α0, x) is also
efficient for (19).

For Problem (QT ) we first have:

Lemma 10 For each T ⊂ A, Problem (QT ) has exactly one optimal solution xT .



F.Plastria & E.Carrizosa / Profit maximal competitive facility location 16

Proof.

With the current assumptions Ba is strictly increasing and ‖·‖ is a round norm, thus the uniqueness
of solution follows from the general results on minmax problems with round norms described in
Pelegŕın-Michelot-Plastria (1985). 2

Since, at the optimal solution xT of (QT ), at least one function Da is active, i.e. Da(xT ) =
maxb∈T Db(xT ), in order to find xT we can search for it sequentially in the locus of points where
exactly one, then where exactly two, and finally where exactly three of the functions are active.

It follows that we will need to consider sets of points of following form. Define the mediatrix of
two consumers a, b located at different sites (xa 6= xb) — it would be empty otherwise — as the
following set of points of the plane

med(a, b) = {x ∈ R
2 :

µa

ka
‖x − xa‖p =

µb

kb
‖x − xb‖p}

Denoting λa ≡ (µa/ka)1/p and by da(x) ≡ λa‖x − xa‖ the Euclidean distance between con-
sumer’s a’s site and x, inflated by the factor λa, we may also write

med(a, b) = {x ∈ R
2 : da(x) = db(x)}

which is much better known. This set is a circle, the Appolonius circle (also called equicircle by
Hearn and Vijay, 1982), which degenerates into a straight line when inflation factors are equal. As
shown e.g. in Okabe-Boots-Sugihara (1992), for λa 6= λb the mediatrix med(a, b) is the circle with
centre the point

mab =
λ2

axa − λ2
bxb

λ2
a − λ2

b

of the line joining xa and xb, and radius

ρab =
λaλb ‖ xa − xb ‖

|λ2
a − λ2

b |
.

For λa = λb we obtain as med(a, b) the straight line of equation

〈 xa − xb , x − xa + xb

2
〉 = 0

(where 〈·, ·〉 denotes scalar product), which is the well known perpendicular bisector of the segment
[xa, xb].

In order to describe the geometric properties of this mediatrix, it is convenient to choose
momentarily a new orthonormal coordinate axis with origin xa and xb − xa as first unit vector,
and to define λab = λa/λb > 0 . In this coordinate system xa = (0, 0), xb = (1, 0) and, for λab 6= 1,
med(a, b) is the circle with centre

mab = (
1

1 − λ2
ab

, 0)

and radius

ρab =| λab

1 − λ2
ab

|,

while for λab = 1 it is the vertical line through (1/2, 0). The intersection points of med(a, b) with
the horizontal axis are

zab = (
1

1 + λab
, 0)

and

Zab = (
1

1 − λab
, 0)

(note that these formulae remain valid for λab = 1, pushing the latter Zab to infinity). Observe
that the first of these intersection-points always lies on the segment [xa, xb]. Note also that for
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λab = 0.2

λab = 0.5

λab = 1

λab = 1.25

λab = 2

λab = 5

λab = 0.8

a b

Figure 7: med(a, b) for different values of λab = λa/λb

λab 6= 1 the centre mab lies on the line xaxb, but always outside the segment [xa, xb], closest to that
point among xa, xb with highest corresponding λ, and that it is this latter point that lies inside
the circle. Figure 7 illustrates these properties.

Assuming λab < 1, the points of med(a, b) may be described parametrically as x = (t, h) with

1

1 + λab
≤ t ≤ 1

1 − λab

and

h2 = (t − 1

1 + λab
)(

1

1 − λab
− t)

while the inflated distances to xa and xb are given by

da(x) = db(x) =

√

2t − 1

1 − λ2
ab

which is an increasing function of t. For λab > 1 the first inequalities above should simply be
inverted, and the inflated distance then decreases with t.

In any case inflated distance is always minimised on med(a, b) at the point zab for t = 1
1+λab

and

grows continuously along both upper and lower half-circles in symmetric way towards its (common)
maximum at Zab reached when t = 1

1−λab

.

Lemma 11 Let a, b and c be three non-collinear points in the plane with strictly positive inflation
factors λa, λb and λc. Then at most one point equidistant from a, b and c exists lying within the
triangle formed by them.
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mbc

mac

maba 1 b 2

c 3

Figure 8: med(a, b), med(a, c) and med(b, c)

Proof.

The case of equal inflation factors is trivial, so we assume the inflation factors to be different.
The non-collinearity of points a, b, c implies that med(a, b),med(a, c) and med(b, c) are different

circles. Any point common to at least two of the mediatrices med(a, b), med(b, c) and med(c, a) is
a point equidistant from a, b and c, hence is common to all three of them.

Two (or three) different circles have at most two points in common. So we may assume further
there are exactly two equidistant points. Three circles can only have two points in common if they
have a common symmetry axis and this axis separates these two points. Any symmetry axis of a
circle contains the circle’s centre. It follows that the centres mab, mbc and mca lie on one line; in
fact they are the points of intersection of this symmetry axis with each of the boundary lines of
the triangle (this is illustrated by Figure 8). Since we know that the centre of any mediatrix lies
outside the segment joining the two defining points, it follows easily that the triangle lies fully at
one side of the symmetry axis. And since this axis separates the two equidistant points the triangle
may contain at most one of them. 2

With these preparatory results we have obtained

Theorem 12 Let T = {a, b, c} ⊂ A. Let xT be the optimal solution of (QT ), and denote by act(T )
the set of objectives of (QT ) active at xT , i.e.,

act(T ) =

{

e∗ ∈ T : de∗(xT ) = max
e∈T

de(xT )

}
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1. If act(T ) = {a}, then xT is the point of S closest (with respect to the Euclidean distance) to
xa

2. If act(T ) = {a, b}, then xT is the point of S on med(a, b) minimising da(x), if any, and is
found

• either on the line segment joining xa and xb, if this (unique) point zab of med(a, b) lies
in S

• or by intersecting med(a, b) with S’s boundary and selecting among the intersection
points (if any) the one(s) (at most two of such) closest to xa (or equivalently to xb)

3. If act(T ) = {a, b, c}, then xT is the intersection of the three mediatrices corresponding to
each choice of two points among them and the triangle with vertices the points in T and lies
in S.

It follows that the list of candidate efficient solutions is of length at most n + 2n(n − 1)/2 +
n(n − 1)(n − 2)/6 = n(n + 1)(n + 2)/6, where n is the cardinality of A. It is therefore an easy
task to construct this full list of length O(n3), and to evaluate each candidate, taking O(n) time
for evaluating the captured weight each time, which leads to an overall O(n4) method.

In fact this same task may be done more efficiently by mixing the evaluation of each candidate
solution with the generation process, leading to a much better algorithm of complexity O(n3 log n).
For the technical details of this method the interested reader is referred to Plastria (1996).

Now we illustrate the method just described by means of a small-size example.

Example 13

Consider a set A = {a1, . . . , a10} of consumers, located at the points plotted as empty circles in
Figure 9, with coordinates xa and weights ωa given in Table 2.

a1

a7

a8

a5

a6

a4

a10

a9 a3

a2

f1
f2

S

Figure 9: Consumers and existing facilities

A set of two facilities, CF = {f1, f2}, plotted as solid circles in Figure 9, already compete in
the region. Their coordinates xf and qualities αf are given in Table 1.
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f xf αf

f1 (20, 73) 1250
f2 (50, 70) 1000

Table 1: Existing facilities

We assume that for each consumer a the attraction to any facility has the form (25) with each
ka = 1, α0 ≈ 0, α0 = 0.000001, say, and p = 2 for each a, i.e.

Aa(α, x) =
α

‖x − xa‖2

Before the advent of the new facility, consumer a is captured by the existing facility yielding highest
attraction. This is determined by calculating the decisive attractions µa following (11):

µa = max

{

αf

‖xa − xf‖2
| f ∈ CF

}

which are listed together with the currently attracting facility f(a) in the last two columns of Table
2. See also Figure 9 for the current patronisings.

a xa ωa µa f(a)
a1 (64, 34) 600 0.6702 f2

a2 (60, 19) 100 0.3702 f2

a3 (50, 38) 100 0.9766 f2

a4 (45, 55) 100 4.0000 f2

a5 (20, 52) 400 2.8345 f1

a6 (27.8, 7) 300 0.2830 f1

a7 (24, 40) 100 1.1312 f1

a8 (20, 31) 100 0.7086 f1

a9 (9, 36) 100 0.8389 f1

a10 (3.8, 7) 600 0.2707 f1

Table 2: Attraction parameters

A new facility must be located within the region S, — represented in Figure 9 by the convex
polygon with endpoints (0, 0), (50, 0), (50, 20), (25, 45), (0, 45) — to maximize a profit indicator
function Π of type (8), whose parameters σ and γ will be specified later.

With this information, we already know, by Theorems 4 and 12, that an optimal solution
(α∗, x∗) can be found within a finite set of candidate points, the locations and qualities of which
are obtained by intersecting discs in the plane. This set of candidate locations is plotted in Figure
10 as small solid circles. One can see that 10 candidate points with a single active objective are
present (the closest-point projections of each customer-site on S — coinciding with the site when
in S), the other candidate points along S’s boundary where two objectives are active, and several
candidate points within S \ A where three objectives are active.

However, most of the elements in this set are not real candidates, since they are not efficient
for problem (19). After eliminating dominated elements, (see Carrizosa -Plastria 1995, 1998b for
details), one obtains the reduced list of 12 candidates (αi, xi), given in Table 3 and shown in Figure
11 as small solid circles. Figure 12 shows a plot of attractiveness αi versus market share CW (xi)
for these efficient solutions.

Assume now that further assumptions on Π are made. For instance, suppose Π corresponds
a sales-minus-cost model (9) in which sales income are assumed to be proportional to the weight

https://www.researchgate.net/publication/24065591_Polynomial_algorithms_for_parametric_minquantile_and_maxcovering_planar_location_problems_with_locational_constraints?el=1_x_8&enrichId=rgreq-f8cd13c876ee501c27edcb4f9367005f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDU4ODcxNjtBUzoyNjM0MzMxMzYzNzM3NjFAMTQzOTgxODc2MjQzOA==
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f1
f2

S

Figure 10: Location of candidates

f1
f2

S

Figure 11: Location of efficient solutions

captured, with proportionality constant σ, and operating costs are proportional to the quality of
the facility, with proportionality constant γ. In this case, the profit indicator Π takes the simpler
form

Π(α, x) = σ · CW (α, x) − γ · α, (26)

for given constants σ, γ > 0.
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i xi αi CW (αi, xi)
1 (3.8000, 7.0000) 0.0000 600
2 (15.9339, 7.0000) 39.8488 900
3 (16.1018, 20.4373) 89.8289 1000
4 (15.9074, 25.3450) 135.2698 1100
5 (17.3649, 29.1604) 182.7161 1200
6 (34.0663, 27.3086) 359.5603 1300
7 (17.0163, 41.1000) 361.9952 1600
8 (40.6091, 23.5091) 440.4785 1800
9 (39.1179, 27.0960) 446.9055 1900
10 (34.9578, 35.0422) 566.0434 2000
11 (30.5932, 39.4068) 767.5907 2400
12 (30.0000, 40.0000) 1800.0000 2500

Table 3: Efficient elements

-

α
1000

6CW

2000

1

2
3
4

5
6

7

8
9

10

11
12

Figure 12: Plot of efficient solutions in value-space

Finding a profit maximising solution under model (26) amounts to evaluate the corresponding
Π at the candidate solutions (αi, xi), i = 1, 2, . . . , 12 of Table 3. For instance, for the choice
σ = 42, γ = 100, a profit maximising solution consists of locating at x9 = (39.1179, 27.0960) a
facility with quality α9 = 446.9055, as plotted in Figure 13. See also Table 6 in Section 4.4.

The fact that the candidate list is finite allows us to go much further: assuming model (26),
for unknown parameters σ, γ, a full parametric analysis is possible by pairwise comparison of each
solution in the candidate set. Indeed, observing that

Π(α, x) =

(

σ

γ
CW (α, x) − α

)

· γ,
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f1
f2

S

x9

Figure 13: Optimal location for (26) with σ = 42, γ = 100

we see that maximising Π(α, x) is equivalent to maximising

Πτ (α, x) = τCW (α, x) − α.

Comparing the solutions in Table 3 we obtain, for each (αi, xi), the interval [τi, τi] such that (αi, xi)
is a profit-maximising solution under model (26) if and only if τ belongs to [τi, τi]. The results are
summarized in Table 4, where it is readily seen that not all the efficient solutions of Table 3 can be
optimal under model (26): only the extreme efficient solutions, vertices of the upper left boundary
of the convex hull of the efficient value pairs, shown by a dotted line in Figure 12, appear. This is
due to the fact that profit is linear in α and CW .

i xi αi CW (αi, xi) τi τi

1 (3.8000, 7.0000) 0.0000 600 0.0000 0.1328
2 (15.9339, 7.0000) 39.8488 900 0.1328 0.4071
9 (39.1179, 27.0960) 446.9055 1900 0.4071 0.6414
11 (30.5932, 39.4068) 767.5907 2400 0.6414 10.3241
12 (30.0000, 40.0000) 1800.0000 2500 10.3241 ∞

Table 4: Full parametric analysis under model (26)

As mentioned before, the applicability of our methodology is not at all restricted to the sales-
minus-costs model (26), and a similar analysis can be carried out for other choices of the profit
indicator function Π. For instance, assume now that Π is of the type sales divided by operating
costs, where operating costs consist of a fixed cost γ0 and a cost proportional to quality, i.e.,

Π(α, x) = CW (α, x)/ (γ0 + γ · α, ) (27)

Again by inspecting the efficient solutions (αi, xi), we can find, for each (αi, xi) the interval
[τi, τi] such that (αi, xi) is a profit-maximising solution under model (27) if and only if γ0

γ belongs
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to [τi, τi]. See the results in Table 5, where we again only find the extreme efficient solutions, now
due to the fact that profit is a linear fractional function of quality and covered weight.

i xi αi CW (αi, xi) τi τi

1 (3.8000, 7.0000) 0.0000 600 0.0000 79.6976
2 (15.9339, 7.0000) 39.8488 900 79.6976 326.5023
9 (39.1179, 27.0960) 446.9056 1900 326.5023 771.6985
11 (30.5932, 39.4068) 767.5908 2400 771.6985 24010.2417
12 (30.0000, 40.0000) 1800.0005 2500 24010.2417 ∞

Table 5: Full parametric analysis under model (27)

Remark 14 The geometric approach described above has as cornerstone the fact that mediatrices
are circles. This property extends to slightly different attraction functions such as

A1
a(α, d) =

kaα

ha + d2

or the particular case of (2) given by

A2
a(α, d) = max{0, αka − had2}.

Indeed, one easily obtains

B1
a(d) = max{α0,

µa

ka
(ha + d2)}

and

B2
a(d) = max{α0,

µa + d2

ka
}

for µa > 0 or B2
a(d) = α0 for µa = 0, see Example 3.2.

In both cases mediatrices are of circular shape (see Carrizosa and Plastria, 1998a), and may be
handled in a way similar to the method explained in this section.

4.3 Step attractions and Euclidean distances

Both the minimum disutility attraction (3) and the step attraction (5) lead to a binary Ba of the
form (17),

Ba(d) =

{

αa, if d ≤ da

+∞, else,

Hence, the function Da will have under Euclidean distances the form

Da(x) =

{

αa, if ‖x − xa‖ ≤ da

+∞, else,

for some threshold value da.
This shows how different shapes for the attraction functions Aa can lead to the same function

Da, thus also to the same subproblems (PT ) to be solved and the same set of candidate points as
output of our general algorithm.

Let us now have a closer look at the optimisation problems (PT ) obtained in this particular
case. Since Ba is no longer strictly increasing (it is in fact constant when finite!) no analog to
Lemma 10 holds, and the list L obtained by directly using the general algorithm described in
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Section 4.1 would be infinite (and useless!). Nevertheless, the structure of this problem can be
used to develop simple procedures to skip this technical handicap.

Indeed, if we denote by DT the (possibly empty) intersection of the disks centered at xa, xb, xc

with radii da, db, dc, it follows that the set of optimal solutions for (PT ) is DT , whereas the optimal
value is αT := max{αa, αb, αc}.

This implies the following

Theorem 15 Let (α∗, x∗) be an efficient solution for (19) with CW (α∗, x∗) > 0. Then there exists
some a ∈ A such that

1. α∗ = αa

2. ‖x∗ − xa‖ ≤ da

Moreover, the set C(x∗) of points
{

x ∈ S : ‖x − xb‖ ≤ db for all b ∈ A such that ‖x∗ − xb‖ ≤ db

}

is such that any pair (α∗, x), with x ∈ C(x∗), is also efficient for (19), with same quality and
coverage than (α∗, x∗).

Consider for each a ∈ A a maxcovering problem as discussed by T. Drezner (1994) with cus-
tomerset reduced to A(αa) = {b ∈ A : αb ≤ αa}, keeping the original radii and weights. Then,
finding one optimal solution for each of these maxcovering problems leads to a list L∗ such that,
for any efficient solution (α, x), there is some (α∗, x∗) in L∗ which is equivalent (same coverage,
same quality) to (α, x).

One may then find the optimal profit quality α∗ by inspecting all pairs in L∗ and then apply
Theorem 15 using this α∗ in order to obtain all optimal profit locations.

4.4 Other planar distance measures

The question whether non-Euclidean distances in the plane might be handled is a quite subtle one.
The basic theory carries through since (inflated) distance functions remain convex, yielding

the same basic properties of the candidate efficient solutions, see Carrizosa and Plastria (1995).
However, it is less evident whether the corresponding candidate points may easily be calculated.

First it will not be easy to detect that all candidates have indeed been generated because (some
of) the problems (PT ) may have several (usually isolated) solutions. Assuming each Ba is strictly
increasing and round norms, e.g. `p distances (1 < p < ∞), Lemma 10 remains valid, so the
process reduces to finding the O(n3) optimal solutions of the (quasi)convex small-scale problems
(PT ).

However, the geometrical procedure described in Section 4.2 does not seem to extend to this
more general context. Indeed, although determining closest points to a polygon in a non-Euclidean
metric is not too hard, the notion of Appolonius circle does not work anymore; these should
be replaced by equidistance sets, which often do not have analytical equations, meaning that
intersecting them with S’s boundary will not be easy, nor finding points of equal distance to a
triplet of consumers.

In general one will have to rely on iterative techniques for determination of each type of point.
Since O(n3) such iterative algorithms should be carried out, it seems evident that the computational
burden will substantially increase with the number n of consumers.

This was attempted for different `r norms using the Optimization toolbox of Matlab to solve
each of the subproblems (QT ). Table 6 shows the results obtained for the additive model (26),
with σ = 42, γ = 100, for different values of r.

For simple distance measures like the rectangular `1, or any other block norm, these difficulties
are relatively easy to overcome and geometric procedures can again be used. A new difficulty
arises, however, when considering such norms because they are not round, hence the subproblems
(PT ) might have an infinite number of solutions and in each such case another subproblem of LP
type has to be solved to obtain S∗

T . See Carrizosa and Plastria (1998b) for further details.
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r x(r) α(r) CW (α(r), x(r)) Π
1.60 (16.0556, 7.0000) 38.0152 900 33998.4794
1.65 (16.0359, 7.0000) 38.3388 900 33966.1219
1.70 (16.0177, 7.0000) 38.6292 900 33937.0758
1.75 (38.4713, 27.2559) 457.7094 1900 34029.0640
1.80 (38.6153, 27.2240) 455.4035 1900 34259.6471
1.85 (38.7515, 27.1921) 453.1701 1900 34482.9870
1.90 (38.8805, 27.1601) 451.0095 1900 34699.0519
1.95 (39.0024, 27.1281) 448.9215 1900 34907.8543
2.00 (39.1179, 27.0960) 446.9055 1900 35109.4438

Table 6: Optimal solutions under (27) for varying distance measure `r

5 Alternate tie resolution rules

Throughout this paper we have assumed novelty orientation as tie breaking rule. The other extreme
tie resolution rule, as compared to novelty orientation, states that in case of an attraction tie with
the new facility the existing facility will be favored. This rule may be called conservative behaviour
by the customers.

T. Drezner’s (1995) rule takes the middle path in between novelty orientation and conservatism:
in case of attraction tie the demand is split equally between new and existing facility. When demand
points are considered as population centres and attraction is viewed as behaviour of individual
customers, this assumption means that customers are novelty oriented with probability of 0.5 and
otherwise conservative. It is clear that we may generalise this to a θ-mixed behaviour, θ being a
vector of the form (θa)a∈A, 0 ≤ θa ≤ 1∀a ∈ A, stating that in case of a tie for consumer a, a fraction
θa of his/her demand will patronise the new facility, the remaining fraction 1− θa patronising the
existing facilities.

Note that 0-mixed behaviour is the same as conservatism, while novelty orientation corresponds
with θ-mixed behaviour, θ being then a vector with all its coordinates equal to 1.

The following result states that in fact, novelty orientation is the unique θ−mixed behaviour
which is guaranteed to always yield well behaved problems.

For any (α, x) let us define the set of active demand points

act(α, x) ≡ {a ∈ A | Ba(dista(x)) = α}.

The total attracted weight in case of θ-mixed behaviour may then be written as

CWθ(α, x) ≡ CW (α, x) −
∑

a∈act(α,x)

(1 − θa)wa

The profit for θ-mixed behaviour is now given as

Πθ(α, x) = π( σ(CWθ(α, x)) , γ(α) ).

Theorem 16 Let the profit-indicator function π(t, ·) be continuous for any fixed t and the cost
function γ also be continuous. Under θ-mixed behaviour, if a profit-maximising pair (α∗, x∗) exists
with α∗ > α0, then at least one consumer a ∈ Capt(α, x) (i.e., Ba(dista(x∗)) ≤ α∗) is novelty-
oriented, i.e. θa = 1.

In particular if all θa are equal to some fixed θ0 and a profit-maximising pair (α∗, x∗) exists
with α∗ > α0, then θ0 = 1, i.e. we have full novelty orientation.

Proof.

Let (α∗, x∗) be a profit-maximising solution with α∗ > α0. We first show that act(α∗, x∗) is
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non-empty. Indeed, if act(α∗, x∗) = ∅, then any consumer a ∈ A is either strictly covered
(Ba(dista(x∗)) < α∗) or strictly uncovered, (Ba(dista(x∗) > α∗).

Defining ᾱ as the lowest possible quality yielding the same market share,

ᾱ = max{α0,max {Ba(dista(x∗)) : Ba(dista(x∗)) < α∗}} < α∗,

we then have that

CW (ᾱ, x∗) = CW (α∗, x∗)

γ(ᾱ) < γ(α∗),

thus, by the strictly decreasing character of π(t, ·),

Π(ᾱ, x∗) > Π(α∗, x∗),

contradicting the optimality of (α∗, x∗). Hence,

act(α∗, x∗) 6= ∅, (28)

as asserted.
We are now in position to show that there exists some (partially) captured a ∈ A such that

θa = 1. By contradiction, assume that

θa < 1 ∀a ∈ A such that Ba(dista(x∗)) ≤ α. (29)

Define α1 as

α1 = max{α0,min{Ba(dista(x∗)) : Ba(dista(x∗)) > α∗, a ∈ A}},

or α1 = +∞ if the latter set is empty.
In particular, α1 > α∗. Hence, for any α ∈]α∗, α1[

CWθ(α, x∗) = CW (α, x∗)

= CW (α∗, x∗)

> CWθ(α
∗, x∗)

In particular,
π(CWθ(α, x∗), γ(α)) = π(CWθ(α

∗, x∗), γ(α)),

thus, by the continuity of γ and π(t, ·),

lim
α↓α∗

π(CWθ(α, x∗), γ(α)) = lim
α↓α∗

π(CW (α∗, x∗), γ(α))

= π(CW (α∗, x∗), γ(α∗))

> π(CWθ(α
∗, x∗), γ(α∗))

Hence, for α (slightly) greater than α∗, one would obtain, at the same location, a strictly greater
profit, contradicting the optimality of (α∗, x∗).

The second claim is then straightforward. 2

In spite of this negative result for θ 6= 1 it turns out that the efficient solutions derived in
Section 3 for θ = 1 nevertheless yield interesting sites and information. Locating at such a point
indeed guarantees that any other location sufficiently nearby may be beaten by choosing a quality
slightly above the one of the corresponding θ = 1 efficient solution.
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