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Abstract

This paper deals with the control of a differential turbulence model
of the Ladyzhenskaya-Smagorinsky kind. In the equations we find local
and nonlocal nonlinearities: the usual transport terms and a turbulent
viscosity that depends on the global in space energy dissipated by the
mean flow. We prove that the system is locally null-controllable, with
distributed controls locally supported in space. The proof relies on rather
well known arguments. However, some specific difficulties are found here
because of the occurrence of nonlocal nonlinear terms. We also present
an iterative algorithm of the quasi-Newton kind that provides a sequence
of states and controls that converge towards a solution to the control
problem. Finally, we give the details of a numerical approximation and
we illustrate the behavior of the algorithm with a numerical experiment.

1 Introduction and main results

Let Ω ⊂ RN (N = 2 or 3) be a non-empty open bounded connected set,
with C2 boundary ∂Ω and let us set Q = Ω× (0, T ), where T > 0. The lateral
boundary of Q is Σ = ∂Ω × (0, T ) and we denote by n(x) the outward unit
normal to Ω at the point x ∈ ∂Ω.

In the sequel, we denote by (· , ·) and ‖ · ‖ respectively the L2 scalar product
and norm in Ω. The symbol C is used to design a generic positive constant.

Let ω ⊂ Ω be a non-empty open set. We deal with the null controllability
of the nonlinear system

yt −∇ ·
(
(ν0 + ν1(‖Dy‖2))Dy

)
+ (y · ∇)y +∇p = v1ω in Q,

∇ · y = 0 in Q,
y = 0 on Σ,
y(x, 0) = y0(x) in Ω.

(1)

Here, y = y(x, t) and p = p(x, t) represent the “averaged” velocity field and
pressure of a turbulent fluid whose particles are in Ω during the time inter-
val (0, T ); y0 is the averaged velocity at time t = 0; 1ω is the characteristic
function of ω; ν0 is a positive constant (the kinematic viscosity of the fluid);
ν1 ∈ C1

b (R) with ν1 ≥ 0 (that is, ν1 is continuously differentiable, 0 ≤ ν1 ≤ C
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and |ν′1| ≤ C; ν1 is the so called turbulent viscosity) and Dy stands for the
symmetrized gradient of y: Dy = ∇y +∇T y.

On the other hand, ω × (0, T ) is the control domain and v must be viewed
as a control (an averaged force) acting on the system.

The nonlocal term in (1) has an important physical motivation. Indeed, it
is the result of assuming that the following Boussinesq hypothesis holds:

R = ν1(‖Dy‖2)Dy,

where R is the Reynolds tensor; see for instance [5, 23, 28].
The following vector spaces, usual in the context of incompressible fluids,

will be used along the paper:

H = {w ∈ L2(Ω)N : ∇ · w = 0 in Ω, w · n = 0 on ∂Ω }

and
V = {w ∈ H1

0 (Ω)N : ∇ · w = 0 in Ω }.
We will denote by A : D(A) 7→ H the Stokes operator. By definition, one

has
D(A) = H2(Ω)N ∩ V, Aw = P (−∆w) ∀w ∈ D(A),

where P : L2(Ω)N 7→ H is the usual orthogonal projector.
When N = 2, for any y0 ∈ V and any v ∈ L2(ω × (0, T )), (1) possesses

exactly one strong solution (y, p), with

y ∈ L2(0, T ;D(A)) ∩ C0([0, T ];V ), yt ∈ L2(0, T ;H). (2)

When N = 3, this is true if y0 and v are sufficiently small in their respective
spaces.

These assertions can be deduced arguing (for instance) as in [11]; see the
main ideas of the proofs in Appendix A.

Definition 1.1. It will be said that (1) is (globally) null-controllable at time T
if, for any y0 ∈ V , there exist controls v ∈ L2(ω× (0, T ))N and associated states
y satisfying (2) and

y(x, T ) = 0 in Ω. (3)

On the other hand, it will be said that (1) is locally null-controllable at time T
if there exists ε > 0 such that, for any y0 ∈ V with

‖y0‖H1
0
≤ ε, (4)

there exist controls v ∈ L2(ω × (0, T ))N and associated states y satisfying (2)
and (3).

Recently, important progress has been made in the controllability analysis
of linear and nonlinear parabolic equations and systems; we refer to the works
[8, 13, 20, 24, 30, 31, 32] and the references therein; in particular, for the Navier-
Stokes system, the first null controllability results have been established by
Fursikov and Imanuvilov in [19] and Fursikov in [18]. Consequently, it is natural
to try to extend the known results to systems like (1).

In this paper, the first main result is the following:
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Theorem 1.1. The nonlinear system (1) is locally null-controllable at any T >
0.

We will employ some techniques relying on the so called Liusternik’s Inverse
Mapping Theorem in Hilbert spaces, see [1]. The arguments are inspired by the
work of Fursikov and Imanuvilov, see [19]–[20]. See also [6], for some similar
results concerning other control systems with local and nonlocal nonlinearities.

Thus, in a first step, we consider a linearized system at zero
yt − (ν0 + ν1(0))∆y +∇p = v1ω + f in Q,
∇ · y = 0 in Q,
y = 0 on Σ,
y(x, 0) = y0(x) in Ω.

(5)

The adjoint of (5) is given by
−ϕt − (ν0 + ν1(0))∆ϕ+∇π = F in Q,
∇ · ϕ = 0 in Q,
ϕ = 0 on Σ,
ϕ(x, T ) = ϕT (x) in Ω.

(6)

Following well known ideas, the null controllability of (5) is obtained as a con-
sequence of suitable Carleman estimates for the solutions to (6) with arbitrary
final data ϕT .

In a second step, following the ideas introduced by Fursikov and Imanuvilov,
we rewrite the null controllability property of (1) as an equation of the form

A(y, p, v) = (0, y0)

in a well chosen space EN of “admissible” state-controls; see (28) and (29). In
fact, the definitions of EN and A : EN 7→ FN are nontrivial. Below, we make
a particular choice that allows A to be well defined and C1 near zero (to this
purpose, EN and FN must be large enough) and, also, allows A′(0, 0, 0) to be
onto (accordingly, EN and FN cannot be too large). Actually, the surjectivity
of A′(0, 0, 0) is, in a certain sense, equivalent to the (global) null controllability
of (5).

Due to the nonlocal nonlinear term in (5), we find some difficulties in this
process that are new with respect to a similar argument for the classical Navier-
Stokes equations. Indeed, in order to ensure that, for any (y, p, v) ∈ EN ,
A(y, p, v) makes sense and belongs to an appropriate space, we have to esti-
mate the growth of (ν1(‖Dy‖2) − ν1(0)) ∆y(· , t) as t → T . This needs some
previous work: see Propositions 2.2 and 2.3, used in the proofs of Lemmas 3.1
and 3.2.

Then, we apply Liusternik’s Theorem (see Theorem 3.1) and we deduce the
(local) desired result.

Notice that the null controllability of (5) can also be proved using other
relatively standard arguments.
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In particular, we can try to use a fixed point technique. Roughly speaking,
the main task would be to get a sufficiently regular fixed point of the mapping
z 7→ y, where y, p, and v satisfy yt − µ(t)∆y + (z · ∇)y +∇p = v1ω in Q,

∇ · y = 0 in Q,
etc.,

(7)

and (3) and µ = ν0 + ν1(‖Dz‖2). In view of the particular structure of this sys-
tem, we can perform a change of variable that leads to the following equivalent
form: ys −∆y +m(s)(z · ∇)y +∇(m(s)p) = m(s)v1ω in Ω× (0, S),

∇ · y = 0 in Ω× (0, S),
etc.

for some S > 0 and some m ∈ C0([0, S]) that is bounded from above and from
below by positive constants. Consequently, we can apply some already known
results on the null controllability of Stokes and Navier-Stokes systems to achieve
the proof.

However, we have preferred a strategy relying on Liusternik’s Theorem for
the following reasons:

• The fixed point argument needs the compactness of the mapping z 7→
y in a space ensuring (at least) the continuity of µ. Essentially, this
means compactness in C0([0, T ];V ) and, accordingly, we have to be able
to control (7) with controls in L∞(0, T ;L2(ω)N ), which is a little more
involved from the technical viewpoint.

• Our strategy can be generalized to cover other interesting PDEs with
more general nonlocal nonlinearities. For example, it can be applied to
the system yt −∇ · (M(‖∇y‖2)Dy) + (z · ∇)y +∇p = v1ω in Q,

∇ · y = 0 in Q,
etc.,

where M = M(r) is an appropriate (matrix-valued) viscosity tensor, which
can be used to model non-isotropic turbulence, see for instance [3, 27].

• Moreover, our approach leads to a formulation of the null controllability
problem whose solution can be approximated by the iterates of a conver-
gent algorithm, see below.

We are also interested in this paper by the computation of “good” null
controls. To this end, we will introduce below an iterative algorithm of the
quasi-Newton kind:

ALG 1:
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1. Choose (y0, p0, v0) ∈ EN .

2. Then, for given n ≥ 0 and (yn, pn, vn) ∈ EN , compute

(yn+1, pn+1, vn+1) = (yn, pn, vn)− B (A(yn, pn, vn)− (0, y0)) . (8)

Here, B is an inverse to A′(0, 0, 0), whose precise definition is furnished
in Section 3.

A good property of ALG 1 is that, after discretization, it leads at each step
to a linear algebraic system where the coefficient matrix is always the same. Of
course, this is very convenient from the numerical viewpoint, since it makes it
possible to perform just one matrix factorization at the first iterate and then
compute very quickly every (yn+1, pn+1, vn+1).

Our second main result is the following:

Theorem 1.2. Let ε be the quantity furnished by Theorem 1.1 that ensures
null controllability for any initial state satisfying (4). Assume that ‖y0‖H1

0
≤ ε,

(y, p, v) satisfies (1) and (3) and ‖(y, p, v)‖EN
is sufficiently small. There exists

κ > 0 such that, if (y0, p0, v0) ∈ EN and

‖(y0, p0, v0)− (y, p, v)‖EN
≤ κ,

then the (yn, pn, vn) converge to (y, p, v) and satisfy

‖(yn+1, pn+1, vn+1)− (y, p, v)‖EN
≤ θ‖(yn, pn, vn)− (y, p, v)‖EN

(9)

for some θ ∈ (0, 1) for all n ≥ 0.

This convergence result is illustrated in Section 5 with some numerical ex-
periments.

This paper is organized as follows.
In Section 2, we prove some technical results and we establish the null con-

trollabilty of (5).
In Section 3, we give the proof of Theorem 1.1.
Section 4 is devoted to the formulation of ALG 1 and the proof of Theo-

rem 1.2.
We exhibit some numerical results in Section 5. Finally, some additional

comments and questions are presented in Section 6.

2 Preliminary results

2.1 Some Carleman estimates

In the sequel, we will set ν := ν0 + ν1(0).
We will need some results from [20], [14] , [25] and [26]. Also, it will be

convenient to introduce a new non-empty open set ω0, with ω0 b ω. The
following technical result, due to Fursikov and Imanuvilov [20], is fundamental:
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Lemma 2.1. There exists a function η0 ∈ C2(Ω) satisfying:{
η0(x) > 0 ∀x ∈ Ω, η0(x) = 0 ∀x ∈ ∂Ω and
|∇η0(x)| > 0 ∀x ∈ Ω \ ω0.

Let τ = τ(t) be a function satisfying

τ ∈ C∞([0, T ]), τ > 0 in (0, T ), τ(t) =

{
t if t ≤ T/4,
T − t if t ≥ 3T/4

and let us introduce the functions
α(x, t) :=

eλ(‖η0‖∞+m0+1) − eλ(η0(x)+m0)

τ(t)8
, ξ(x, t) :=

eλ(η0(x)+m0)

τ(t)8
,

ρ(x, t) := esα(x,t), ρ(t) := exp

(
smax
x∈Ω

α(x, t)

)
, ξ(t) := max

x∈Ω
ξ(x, t),

(10)
where λ, s > 0 and the constant m0 > 0 is fixed, sufficiently large to have
|αt| ≤ Cξ9/8 and |αtt| ≤ Cξ5/4 for all λ > 0.

There exists λ00 > 0 such that, for any λ ≥ λ00, one has

max
Ω

α0(x) < 2 min
Ω
α0(x). (11)

In the sequel, for future purposes, we will always take λ ≥ λ00.
The following global Carleman estimates hold for the solutions to (6):

Lemma 2.2. There exists λ0 > 0 such that, for each λ ≥ λ0, there exist s0

and C with the following property: for any F ∈ L2(Q)N , any ϕT ∈ H and
any s ≥ s0, the corresponding solution to (6) satisfies∫∫

Q

ρ−2(sξ)−1(|ϕt|2 + |∇π|2) dx dt+

∫∫
Q

ρ−2 (sξ)|∇ × ϕ|2 dx dt

+

∫∫
Q

ρ−2
(
(sξ)−1|∆ϕ|2 + |∇ϕ|2 + (sξ)2|ϕ|2

)
dx dt

≤ C

(∫∫
Q

ρ−2|F |2 dx dt+

∫∫
ω×(0,T )

ρ−2 (sξ)3|ϕ|2 dx dt

)
.

(12)

The proof relies on the results and ideas in [25] and [26]. For clarity, the
main steps are sketched in Appendix B.

Let us introduce the function ` = `(t), with

`(t) :=


τ(T/2) for 0 ≤ t ≤ T

2
,

τ(t) for
T

2
≤ t ≤ T

(13)
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and let us set
α̃(x, t) :=

eλ(‖η0‖∞+m0+1) − eλ(η0(x)+m0)

`(t)8
, ξ̃(x, t) :=

eλ(η0(x)+m0)

`(t)8
,

ρ̃(x, t) := esα̃(x,t), ρ∗(t) := exp

(
smax
x∈Ω

α̃(x, t)

)
, ξ∗(t) := max

x∈Ω
ξ̃(x, t).

(14)

Then, the functions ξ̃, ρ̃ and ρ∗ are strictly positive and bounded in any set
of the form Ω× [0, T − δ] with δ > 0.

One has the following:

Lemma 2.3. There exists λ0 > 0 such that, for each λ ≥ λ0, there exist s0

and C with the following property: for any F ∈ L2(Q)N , any ϕT ∈ H and
any s ≥ s0, the corresponding solution to (6) satisfies∫∫

Q

ρ−2
∗ (sξ∗)

−1(|ϕt|2 + |∇π|2) dx dt+

∫∫
Q

ρ̃−2 (sξ̃)|∇ × ϕ|2 dx dt

+

∫∫
Q

ρ̃−2
(

(sξ̃)−1|∆ϕ|2 + |∇ϕ|2 + (sξ̃)2|ϕ|2
)
dx dt

≤ C

(∫∫
Q

ρ̃−2|F |2 dx dt+

∫∫
ω×(0,T )

ρ̃−2 (sξ̃)3|ϕ|2 dx dt

)
.

(15)

Proof - The proof is not difficult and relies on (12) and the usual energy
estimates for ϕ. Since the main ideas are well known and can be found in many
papers, we will only give a sketch.

Let us take λ ≥ λ0 and s ≥ s0 and let us set

Γ(ϕ, π; a, b) :=

∫∫
Ω×(a,b)

ρ−2
∗ (sξ∗)

−1(|ϕt|2 + |∇π|2) dx dt

+

∫∫
Ω×(a,b)

ρ̃−2 (sξ̃)|∇ × ϕ|2 dx dt

+

∫∫
Ω×(a,b)

ρ̃−2
(

(sξ̃)−1|∆ϕ|2 + |∇ϕ|2 + (sξ̃)2|ϕ|2
)
dx dt

and

S(ϕ;F ) :=

∫∫
Q

ρ̃−2|F |2 dx dt+

∫∫
ω×(0,T )

ρ̃−2 (sξ̃)3|ϕ|2 dx dt.

Then Γ(ϕ, π; 0, T ) = Γ(ϕ, π; 0, T/2) + Γ(ϕ, π;T/2, T ) and, from Lemma 2.2,
we clearly have

Γ(ϕ, π;T/2, T ) ≤ CS(ϕ;F ).

On the other hand,

Γ(ϕ, π; 0, T/2) ≤ C
∫ T/2

0

(
‖ϕt‖2 + ‖∆ϕ‖2 + ‖∇ϕ‖2 + ‖ϕ‖2

)
dt.
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Let us check that this integral can be bounded similarly.
From (6), it is readily seen that

−1

2

d

dt
‖ϕ‖2 + ν‖∇ϕ‖2 = (F,ϕ) ≤ ν

2
‖∇ϕ‖2 + C‖F‖2 in (0, T ),

whence

‖ϕ(· , t1)‖2 +

∫ t2

t1

‖∇ϕ(· , s)‖2 ds ≤ ‖ϕ(· , t2)‖2 + C

∫ t2

t1

‖F (· , s)‖2 ds

for all 0 ≤ t1 ≤ t2 ≤ T . In particular, taking t1 ∈ [0, T/2] and t2 ∈ [T/2, 3T/4]
and integrating with respect to t1 and then with respect to t2, we see that∫ T/2

0

‖ϕ(· , t)‖2 dt ≤ C

(∫ 3T/4

T/2

‖ϕ(· , s)‖2 ds+

∫ 3T/4

0

‖F (· , s)‖2 ds

)
≤ CS(ϕ, F ).

Also, ∫ T/2

0

‖∇ϕ(· , t)‖2 dt ≤ ‖ϕ(· , t2)‖2 + C

∫ 3T/4

0

‖F (· , s)‖2 ds

for all t2 ∈ [T/2, 3T/4] and, integrating with respect to t2 in this interval, we
deduce an estimate of the integral of ‖∇ϕ‖2 in (0, T/2):∫ T/2

0

‖∇ϕ(· , t)‖2 dt ≤ C

(∫ 3T/4

T/2

‖ϕ(· , s)‖2 ds+

∫ 3T/4

0

‖F (· , s)‖2 ds

)
≤ CS(ϕ, F ).

A similar argument holds for the integral of ‖∆ϕ‖2. Indeed, one has

−1

2

d

dt
‖∇ϕ‖2 + ν‖∆ϕ‖2 = (F,−∆ϕ) ≤ ν

2
‖∆ϕ‖2 + C‖F‖2 in (0, T ).

Arguing as before, we see that∫ T/2

0

‖∆ϕ(· , t)‖2 dt ≤ ‖∇ϕ(· , t2)‖2 + C

∫ 3T/4

0

‖F (· , s)‖2 ds

for all t2 ∈ [T/2, 3T/4] and, after integration with respect to t2, we arrive at
the estimate∫ T/2

0

‖∆ϕ(· , t)‖2 dt≤C

(∫ 3T/4

T/2

‖∇ϕ(· , s)‖2 ds+

∫ 3T/4

0

‖F (· , s)‖2 ds

)
≤ CS(ϕ, F ).

Finally, using that ‖ϕt‖2 = (ν∆ϕ+ F,ϕ), we find that∫ T/2

0

‖ϕt‖2 dt ≤ CS(ϕ, F ).
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As a consequence, Γ(ϕ, π; 0, T/2) ≤ CS(ϕ;F ) and the proof is done. �

From now on, we will fix λ and s as in this lemma and we will consider the
corresponding functions α, α̃, ρ, etc. in (10) and (14). Also, we will introduce
the function

η̃ := ρ̃ ξ̃−1. (16)

An immediate consequence of Lemma 2.3 is the following:

Corollary 2.1. There exist positive constants λ, s and C only depending on Ω,
ω, T and ν such that, for any F ∈ L2(Q)N and any ϕT ∈ H, the corresponding
solution to (6) satisfies∫∫

Q

η̃−2|ϕ|2 dx dt ≤ C

(∫∫
Q

ρ̃−2|F |2 dx dt+

∫∫
ω×(0,T )

η̃−2|ϕ|2 dx dt

)
. (17)

2.2 The null controllability of (5)

We are dealing here with the Stokes system (5).
We will need some specific conditions on f and y0 to get the null controlla-

bility of (5); we will use the arguments in [14].
The following result holds:

Proposition 2.1. Let us assume that

y0 ∈ H and η̃f ∈ L2(Q)N .

Then, we can find a control-state pair (v, y) for (5) satisfying

v ∈ L2(ω × (0, T ))N , y ∈ L2(0, T ;V ) ∩ C0([0, T ];H), (18)

such that ∫∫
Q

ρ̃2|y|2 dx dt+

∫∫
ω×(0,T )

η̃2|v|2 dx dt < +∞. (19)

In particular, one has y(· , T ) = 0.

The proof relies on (15) and can be easily obtained arguing as in [20]; see
also [14]. The key idea is to consider the extremal problem Minimize

∫∫
Q

ρ̃ 2|y|2 dx dt+

∫∫
ω×(0,T )

η̃2|v|2 dx dt,

Subject to v ∈ L2(ω × (0, T ))N , (y, p, v) satisfies (5).

(20)

Thanks to (15), there exists exactly one solution to (20) and this solution is the
desired control-state pair.

9
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It is also true that, in a certain sense, the solution to (20) depends continu-
ously on the data (f, y0). In particular, if the (fn, y0n) satisfy

‖y0n − y0‖ → 0 and

∫∫
Q

η̃2|fn − f |2 dx dt→ 0

then the control-state pairs (vn, yn) associated by Proposition 2.1 satisfy∫∫
Q

ρ̃ 2|yn − y|2 dx dt→ 0 and

∫∫
ω×(0,T )

η̃2|vn − v|2 dx dt→ 0, (21)

where (v, y) is the pair that corresponds to (f, y0). This will be used below,
in Section 4.

For brevity we omit the details, that can be found in [14].

2.3 Some additional estimates

The state found in Proposition 2.1 satisfies some additional properties, that
will be needed below, in Section 3. More precisely, we will show in this Section
that not only y, but also ∇y, yt and ∆y belong to weighted L2 spaces.

Let us introduce the spatially homogeneous weights

ρ̂(t) := exp

(
smin
x∈Ω

α̃(x, t)

)
, ζ(t) := ρ̂(t) `(t)12, γ(t) := ρ̂(t) `(t)33/2. (22)

Then the following holds:

Proposition 2.2. Let the hypotheses in Proposition 2.1 be satisfied and let
(y, p, v) satisfy (5) and (19). Then

max
[0,T ]

∫
Ω

ζ2|y|2 dx+

∫∫
Q

ζ2|∇y|2 dx dt ≤ C
(
‖y0‖2 +

∫∫
Q

ρ̃ 2|y|2 dx dt

+

∫∫
ω×(0,T )

η̃2|v|2 dx dt+

∫∫
Q

η̃ 2|f |2 dx dt

) (23)

Proof - Let us multiply the PDE in (5) by ζ2y and let us integrate in Ω. We
obtain: ∫

Ω

ζ2 (yt − ν∆y +∇p) · y dx =

∫
Ω

ζ2 (v1ω + f) · y dx.

In view of the definitions of ρ̃, η̃ and ζ respectively in (14), (16) and (22), one
has:

ζ ≤ Cη̃, |ζ ζt| ≤ Cρ̃ 2.
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Consequently, the following estimates hold:∫
Ω

ζ2v1ω · y dx ≤ C
(∫

ω

η̃2|v|2 dx
)1/2(∫

Ω

ζ4η̃−2|y|2 dx
)1/2

≤ 1

2

∫
ω

η̃2|v|2 dx+ C

∫
Ω

ρ̃ 2|y|2 dx,∫
Ω

ζ2f · y dx ≤ 1

2

∫
Ω

η̃ 2|f |2 dx+ C

∫
Ω

ρ̃ 2|y|2 dx,∫
Ω

ζ2yt · y dx =
1

2

d

dt

∫
Ω

ζ2|y|2 dx−
∫

Ω

ζ ζt|y|2 dx

≥ 1

2

d

dt

∫
Ω

ζ2|y|2 dx− C
∫

Ω

ρ̃ 2|y|2 dx.

On the other hand,∫
Ω

ζ2∇p · y dx dt = 0 and

∫
Ω

ζ2(−∆y) · y dx =

∫
Ω

ζ2|∇y|2 dx.

Accordingly, one has:

1

2

d

dt

∫
Ω

ζ2|y|2 dx+ ν

∫
Ω

ζ2|∇y|2 dx

≤ C
(∫

Ω

η̃ 2|f |2 dx+

∫
ω

η̃2|v|2 dx+

∫
Ω

ρ̃ 2|y|2 dx
)
.

Now, integrating in time, the estimate (23) is easily found. �

Proposition 2.3. Let the hypotheses in Proposition 2.1 be satisfied and let
(y, p, v) satisfy (5) and (19). Let us assume that

y0 ∈ V. (24)

Then one has

max
[0,T ]

∫
Ω

γ2|∇y|2 dx+

∫∫
Q

γ2
(
|yt|2 + |∆y|2

)
dx dt ≤ C

(
‖y0‖2H1

0

+

∫∫
Q

ρ̃ 2|y|2 dx dt+

∫∫
ω×(0,T )

η̃2|v|2 dx dt+

∫∫
Q

η̃ 2|f |2 dx dt

)
.

(25)

Proof - Notice that, under the assumption (24), the solution (y, p) to (5) sat-
isfies

y ∈ L2(0, T ;D(A)) ∩ C0([0, T ];V ), yt ∈ L2(0, T ;H),

where A : D(A) 7→ H is the Stokes operator.
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Let us multiply the PDE in (5) by γ2yt and let us integrate in Ω. The
following holds:∫

Ω

γ 2 (yt − ν∆y +∇p) · yt dx =

∫
Ω

γ2 (v1ω + f) · yt dx.

From the definition of γ, we see that

γ ≤ Cζ ≤ Cη̃, |γ γt| ≤ Cζ2.

Consequently, for any small ε > 0, we find that∫
Ω

γ2v1ω · yt dx ≤ ε
∫

Ω

γ2|yt|2 dx+ Cε

∫
ω

η̃2|v|2 dx,∫
Ω

γ2f · yt dx ≤ ε
∫

Ω

γ2|yt|2 dx+ Cε

∫
Ω

η̃ 2|f |2 dx

and, also,

−
∫

Ω

γ2∆y · yt dx =
1

2

d

dt

∫
Ω

γ2|∇y|2 dx−
∫

Ω

γγt|∇y|2 dx

≥ 1

2

d

dt

∫
Ω

γ2|∇y|2 dx− C
∫

Ω

ζ2|∇y|2 dx.

On the other hand, the integral involving the pressure vanishes. Therefore, the
following is found integrating in time:∫∫

Q

γ2|yt|2 dx+ max
[0,T ]

∫
Ω

γ2|∇y|2 dx ≤ C
(
‖y0‖2H1

0 (Ω)

+

∫∫
Q

ζ2|∇y|2 dx dt+

∫∫
ω×(0,T )

η̃2|v|2 dx dt+

∫∫
Q

η̃ 2|f |2 dx dt
)
.

(26)

This furnishes the estimates of γ2|yt|2 and γ2|∇y|2 in (25).
In order to estimate the weighted integral of |∆y|2, let us multiply the PDE

in (5) by γ2Ay (recall that A is the Stokes operator). After integration in Ω,
we have: ∫

Ω

γ 2 (yt − ν∆y +∇p) ·Ay dx =

∫
Ω

γ 2 (v1ω + f) ·Ay dx.

Observe that∫
Ω

γ2v1ω ·Ay dx ≤ ε
∫

Ω

γ2|∆y|2 dx+ Cε

∫
ω

η̃2|v|2 dx,∫
Ω

γ2f ·Ay dx ≤ ε
∫

Ω

γ2|∆y|2 dx+ Cε

∫
Ω

η̃ 2|f |2 dx∫
Ω

γ2yt ·Ay dx =

∫
Ω

γ2yt · (−∆y) dx

≤ ε
∫

Ω

γ2|∆y|2 dx+ Cε

∫
Ω

γ2|yt|2 dx

12



for any small ε > 0,∫
Ω

γ2∇p ·Ay dx = 0 and

∫
Ω

γ2(−∆y) ·Ay dx =

∫
Ω

γ2|∆y|2 dx.

Integrating in time, we see now that∫∫
Q

γ 2|∆y|2dx dt≤C

(∫∫
ω×(0,T )

η̃2|v|2dx dt+
∫∫
Q

η̃ 2|f |2dx dt+
∫∫
Q

γ2|yt|2 dx dt

)
.

From (26) and this last inequality, we obtain (25). �

3 The proof of Theorem 1.1

In this Section, we will prove the local null controllability of the system (1).
Thus, let us set

Ly := yt − ν∆y (27)

and let us introduce the space

EN :={ (y, p, v) : ρ̃y ∈ L2(Q)N , η̃v ∈ L2(ω×(0, T ))N ,

y ∈ L2(0, T ;D(A)), p ∈ L2(0, T ;H1(Ω)),

∫
Ω

p dx = 0 a.e.,

η̃ (Ly +∇p− v1ω) ∈ L2(Q)N }.

(28)

It is clear that EN is a Hilbert space for the norm ‖ · ‖EN
, where

‖(y, p, v)‖EN
:=
(
‖ρ̃y‖2L2(Q) + ‖η̃v‖2L2(ω×(0,T ))

+ ‖y‖2L2(0,T ;D(A)) + ‖p‖2L2(0,T ;H1(Ω))

+ ‖η̃ (Ly +∇p− v1ω) ‖2L2(Q)

)1/2

.

Notice that, if (y, p, v) ∈ EN , then yt ∈ L2(Q)N , whence y : [0, T ] 7→ V is
(absolutely) continuous and, in particular, we have y(· , 0) ∈ V and

‖y(· , 0)‖V ≤ C‖(y, p, v)‖EN
∀(y, p, v) ∈ EN .

Furthermore, in view of Propositions 2.2 and 2.3, one also has ζy ∈ L2(0, T ;V )∩
L∞(0, T ;H) and γy ∈ L2(0, T ;D(A))∩L∞(0, T ;V ), with norms bounded again
by C‖(y, p, v)‖EN

.
Let L2(η̃ 2;Q) be the Hilbert space formed by the measurable functions w =

w(x, t) such that η̃w ∈ L2(Q), i.e.

‖w‖2L2(η̃ 2;Q) :=

∫∫
Q

η̃ 2|w|2 dx dt < +∞.
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Let us introduce the Hilbert space ZN := L2(η̃ 2;Q)N × V and the mapping
A : EN 7→ ZN , given by

A(y, p, v) :=(yt−∇ ·
(
(ν0+ν1(‖Dy‖2))Dy

)
+(y · ∇)y+∇p−v1ω, y(· , 0)). (29)

Notice that, in this definition, ∇·
(
(ν0 + ν1(‖Dy‖2))Dy

)
can be rewritten in the

form (ν0 + ν1(‖Dy‖2))∆y.
Our aim is to apply the following version of Liusternik’s Inverse Function

Theorem in infinite dimensional spaces, that can be found for instance in [1]. In
the following statement, Br(0) and Bε(ζ0) are open balls, respectively of radius
r and ε.

Theorem 3.1. Let Y and Z be Banach spaces and let H : Br(0) ⊂ Y 7→ Z be
a C1 mapping. Let us assume that the derivative H ′(0) : Y 7→ Z is onto and let
us set ζ0 = H(0). Then there exist ε > 0, a mapping W : Bε(ζ0) ⊂ Z 7→ Y and
a constant K > 0 satisfying:{

W (z) ∈ Br(0) and H(W (z)) = z ∀z ∈ Bε(ζ0),
‖W (z)‖Y ≤ K‖z −H(0)‖Z ∀z ∈ Bε(ζ0).

Notice that, in this theorem, W is the inverse-to-the-right of H.

In order to show that Theorem 3.1 can be applied in this setting, we will use
several lemmas.

Lemma 3.1. Let A : EN 7→ ZN be the mapping defined by (29). Then, A is
well defined and continuous.

Proof - First, note that, in view of (11) and (22), we have

η̃2 ≤ Cζγ3 ≤ Cγ6. (30)

Let us denote by Ai the components of A for 1 ≤ i ≤ N + 1. Then
Ai(y, p, v) ∈ L2(η̃ 2;Q) for 1 ≤ i ≤ N and AN+1(y, p, v) ∈ V for every (y, p, v) ∈
EN .

Indeed, one has:∫∫
Q

η̃ 2
N∑
i=1

|Ai(y, p, v)|2 dx dt

≤ 3

∫∫
Q

η̃ 2|yt − ν∆y +∇p− v1ω|2 dx dt

+3

∫∫
Q

η̃ 2|∇ ·
(
(ν1(0)− ν1(‖Dy‖2))Dy

)
|2 dx dt

+3

∫∫
Q

η̃ 2|(y · ∇)y|2 dx dt

:= 3M1 + 3M2 + 3M3.

(31)
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From the definition of EN , we have:

M1 ≤ ‖(y, p, v)‖2EN
.

On the other hand, taking into account that ‖∇w‖L3 ≤ C‖∇w‖1/2‖∆w‖1/2 and

‖(w · ∇)w‖2 ≤ C‖w‖2L6‖∇w‖2L3 ≤ C‖∇w‖3‖∆w‖

for all w ∈ D(A), we have:

M3 ≤ C
∫ T

0

ζγ3‖(y(· , t) · ∇)y(· , t)‖2 dt

≤ C
∫ T

0

ζγ3‖∇y(· , t)‖3‖∆y(· , t)‖ dt

≤ C‖ζy‖L2(0,T ;V )‖γy‖2L∞(0,T ;V )‖γy‖L2(0,T ;D(A)) ≤ C‖(y, p, v)‖4EN
.

Finally, from Proposition 2.3, the hypotheses on ν1 and (30), we deduce that

M2 =

∫∫
Q

η̃ 2|ν1(0)− ν1(‖Dy‖2)|2 |∆y|2 dx dt

≤ C
∫∫
Q

γ6‖∇y‖4|∆y|2 dx dt

≤ C

(
sup
[0,T ]

γ2‖∇y‖2
)2(∫∫

Q

γ2|∆y|2 dx dt
)

≤ C‖(y, p, v)‖6EN
.

Consequently, A takes values in ZN .
That the mapping A is continuous is easy to prove using similar arguments.

Thus, let us assume that (yn, pn, vn) → (y, p, v) in EN and let us see that
A(yn, pn, vn)→ A(y, p, v) in ZN .

Obviously, yn(· , 0)→ y(· , 0) in V . Moreover,∫∫
Q

η̃ 2
N∑
i=1

|Ai(yn, pn, vn)−Ai(y, p, v)|2 dx dt

≤ 3

∫∫
Q

η̃ 2|(Lyn +∇pn − vn1ω)− (Ly +∇p− v1ω)|2 dx dt

+3

∫∫
Q

η̃ 2|(ν1(0)−ν1(‖Dyn‖2))∆yn−(ν1(0)−ν1(‖Dy‖2))∆y|2 dx dt

+3

∫∫
Q

η̃ 2|(yn · ∇)yn − (y · ∇)y|2 dx dt

:= 3Z1,n + 3Z2,n + 3Z3,n .

Since Z1,n ≤ ‖(yn, pn, vn)− (y, p, v)‖2EN
, one has Z1,n → 0.
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On the other hand,

Z2,n ≤ 2

∫∫
Q

η̃ 2|ν1(0)−ν1(‖Dyn‖2)|2|∆(yn − y)|2 dx dt

+2

∫∫
Q

η̃ 2|ν1(‖Dyn‖2)−ν1(‖Dy‖2)|2|∆y|2 dx dt

≤ C
∫∫
Q

γ6‖Dyn‖2|∆(yn − y)|2 dx dt

+C

∫∫
Q

γ6‖D(yn − y)‖2‖D(yn + y)‖2|∆y|2 dx dt

≤ C
(
‖(yn, pn, vn)‖4EN

+ ‖(y, p, v)‖4EN

)
‖(yn, pn, vn)− (y, p, v)‖2EN

,

whence we also have Z2,n → 0.
Finally,

Z3,n ≤ 2

∫∫
Q

η̃ 2
[
|((yn − y) · ∇)yn|2 + |(y · ∇)(yn − y)|2

]
dx dt

≤ C
∫ T

0

ζγ3
[
‖yn − y‖2L6‖∇yn‖2L3 + ‖y‖2L6‖∇(yn − y)‖2L3

]
dt

≤ C
∫ T

0

ζγ3‖∇(yn − y)‖2‖∇yn‖‖∆yn‖ dt

+C

∫ T

0

ζγ3‖∇y‖2‖∇(yn − y)‖‖∆(yn − y)‖ dt

≤ C
(
‖(yn, pn, vn)‖2EN

+ ‖(y, p, v)‖2EN

)
‖(yn, pn, vn)− (y, p, v)‖2EN

and we see that Z3,n → 0.
This shows that A(yn, pn, vn)→ A(y, p, v) in ZN and ends the proof. �

Lemma 3.2. The mapping A : EN 7→ ZN is continuously differentiable.

Proof - We will present the proof when N = 3. The proof for N = 2 is similar.
Let us first prove that A is G-differentiable at any (y, p, v) ∈ EN and let us

compute the G-derivative A′(x, y, z).
Thus, let us fix (y, p, v) in E3 and let us take (y′, p′, v′) ∈ E3 and σ > 0. For

simplicity, we will use the notation

ν1,σ := ν1(‖D(y + σy′)‖2), ν′1,σ := ν′1(‖D(y + σy′)‖2),

ν̃1,n := ν1(‖Dyn‖2), ν̃′1,n := ν′1(‖Dyn‖2).

We have:

1

σ

[
Ai ((y, p, v) + σ(y′, p′, v′))−Ai(y, p, v)

]
= y′it − (ν0 + ν1,σ)∆y′i −

1

σ
(ν1,σ − ν1,0) ∆yi +

∂p′

∂xi
− v′i1ω

+ y′ · ∇yi + y · ∇y′i + σy′ · ∇y′i,

(32)
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for 1 ≤ i ≤ 3.
Let us introduce the linear mapping DA : E3 7→ Z3, with

DA(y, p, v) = DA = (DA1, DA2, DA3, DA4) , (33)

DAi(y′, p′, v′) = y′it − (ν0 + ν1,0)∆y′i − 2ν′1,0(∇y,∇y′)∆yi +
∂p′

∂xi
− v′i1ω + y′ · ∇yi + y · ∇y′i

(34)

for 1 ≤ i ≤ 3 and
DA4(y′, p′, v′) = y′(· , 0) (35)

for all (y′, p′, v′) ∈ E3.
From the definition of the spaces E3 and Z3 and (34)–(35), it becomes clear

that DA ∈ L (E3;Z3). Furthermore,

1

σ

[
Ai ((y, p, v) + σ(y′, p′, v′))−Ai(y, p, v)

]
→ DAi(y′, p′, v′) (36)

strongly in L2(η̃ 2;Q) for 1 ≤ i ≤ 3 as σ → 0. Indeed, we have:

‖ 1

σ

[
Ai ((y, p, v) + σ(y′, p′, v′))−Ai(y, p, v)

]
−DAi(y′, p′, v′)‖L2(η̃ 2;Q)

≤ ‖(ν1,σ − ν1,0)∆y′i‖L2(η̃ 2;Q)

+‖
[ 1

σ
(ν1σ − ν1,0)−2ν′1,0(∇y,∇y′)

]
∆yi‖L2(η̃ 2;Q) + ‖σy′ · ∇y′i‖L2(η̃ 2;Q)

:= B1 +B2 +B3.

Let us check that the Bi converge to zero as σ → 0.
First, using Proposition 2.3 and taking into account that ν1 ∈ C1

b (R), we get
the following as σ → 0:

B2
1 ≤

∫∫
Q

η̃ 2|ν1,σ − ν1,0|2|∆y′|2 dx dt

≤ C
∫∫
Q

η̃ 2
∣∣‖∇(y + σy′)‖2 − ‖∇y‖2

∣∣2 |∆y′|2 dx dt
≤ Cσ2 sup

[0,T ]

(
γ2
[
‖∇y‖2 + ‖∇y′‖2

])2
∫∫
Q

γ2|∆y′|2 dx dt

≤ Cσ2
(
‖(y, p, v)‖4E3

+ ‖(y′, p′, v′)‖4E3

)
‖(y′, p′, v′)‖2E3

→ 0.

(37)

Also,

B2
2 ≤

∫∫
Q

η̃ 2|ν′1,r − ν′1,σ|2‖∇y‖2‖∇y′‖2|∆y′|2 dx dt

≤ C sup
[0,T ]

(
γ4‖∇y‖2‖∇y′‖2

) ∫∫
Q

γ2|ν′1,r − ν′1,0|2|∆y′|2 dx dt,
(38)
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where r = r(t) and 0 < |r| ≤ |σ|. Using Proposition 2.3 and Lebesgue’s Theo-
rem, we easily find that B2 → 0.

For B3, the argument is very similar.
Taking into account the behaviour of B1, B2 and B3, we see that (36) is

true, whence we deduce that A is G-differentiable at any (y, p, v) ∈ E3, with a
G-derivative A′(y, p, v) = DA.

Now, we shall prove that the mapping (y, p, v) 7→ A′(y, p, v) is continuous
from E3 into L (E3;Z3). As a consequence, in view of classical results, we will
have that A is not only G-differentiable but also F-differentiable and C1 and
we will get the desired result (see for instance Theorem 1-2, p. 21 in [29]).

Thus, let us assume that (yn, pn, vn)→ (y, p, v) in E3 and let us check that

‖(DA(yn, pn, vn)−DA(y, p, v))(y′, p′, v′)‖2Z3
≤ εn ‖(y′, p′, v′)‖2E3

(39)

for all (y, p, v) ∈ E3, for some εn → 0.
The following holds:

‖ (DAi(yn, pn, vn)−DAi(y, p, v)) (y′, p′, v′)‖|2L2(η̃ 2;Q)

≤ 3

∫∫
Q

η̃ 2|ν̃1,n − ν1,0|2|∆y′i|2 dx dt

+12

∫∫
Q

η̃ 2|ν̃′1,n(∇yn,∇y′)∆yni − ν′1,0(∇y,∇y′)∆yi|2 dx dt

+3

∫∫
Q

η̃ 2|y′ · (∇yni −∇yi) + (yn − y) · ∇y′i|2 dx dt

:= 3D1,n + 12D2,n + 3D3,n.

(40)

It is tedious (but in fact not difficult) to check that the Di,n can be bounded
as in (39). For instance, using again Proposition 2.3 and the fact that ν1 ∈
C1
b (R), we have

D1,n ≤ C
∫∫
Q

η̃ 2‖∇yn −∇y‖2
(
‖∇yn‖2 + ‖∇y‖

)2

|∆y′|2 dx dt

≤ C sup
[0,T ]

(
γ4‖∇(yn − y)‖2(‖∇yn‖2 + ‖∇y‖2)

) ∫∫
Q

γ2|∆y′|2 dx dt

≤ Cε1,n‖(y′, p′, v′)‖2E3
,

where

ε1,n := ‖(yn − y, pn − p, vn − v)‖2E3

(
‖(yn, pn, vn)‖2E3

+ ‖(y, p, v)‖2E3

)
.

For the other Di,n, similar arguments lead to the same conclusion.
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Thus,

D2,n ≤ 3

∫∫
Q

η̃ 2|ν̃′1,n|2‖∇yn‖2‖∇y′‖2|∆(yni − yi)|2 dx dt

+3

∫∫
Q

η̃ 2|ν̃′1,n|2‖∇(yn − y)‖2‖∇y′‖2|∆yi|2 dx dt

+3

∫∫
Q

η̃ 2|ν̃′1,n − ν̃′1,0|2‖∇y‖2‖∇y′‖2|∆yi|2 dx dt

≤ Cε2,n‖(y′, p′, v′)‖2E3
,

where

ε2,n :=

(
sup
[0,T ]

γ‖∇yn‖

)2 ∫∫
Q

γ2|∆(yni − yi)|2 dx dt

+

(
sup
[0,T ]

γ‖∇(yn − y)‖

)2 ∫∫
Q

γ2|∆yi|2 dx dt

+

(
sup
[0,T ]

γ‖∇y‖

)2 ∫∫
Q

γ2|ν̃′1,n − ν̃′1,0|2|∆yi|2 dx dt.

Also, one has

D3,n ≤ 2

∫∫
Q

η̃ 2‖y′‖2L6‖∇(yni − yi)‖2L3 dx dt

+2

∫∫
Q

η̃ 2‖yn − y‖2L6‖∇y′i‖2L3 dx dt

≤ C
∫ T

0

ζγ3‖∇y′‖2‖∇(yni − yi)‖‖∆(yni − yi)‖ dt

+C

∫ T

0

ζγ3‖∇(yn − y)‖2‖∇y′i‖‖∆y′i‖ dt

≤ Cε3,n‖(y′, p′, v′)‖2E3
,

where

ε3,n :=

∫ T

0

ζγ‖∇(yni − yi)‖‖∆(yni − yi)‖ dt

+

(
sup
[0,T ]

γ‖∇(yn − y)‖

)2

.

Since εi,n → 0 as n → +∞ for 1 ≤ i ≤ 3, this shows that (39) is satisfied.
�

Lemma 3.3. Let A be the mapping defined by (29). Then A′(0, 0, 0) is onto.
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Proof - Let us fix (f, y0) ∈ ZN . From Proposition 2.1 we know that there
exists (y, p, v) satisfying (18), (19) and (5). From the usual regularity results
for the Stokes system, we have y ∈ L2(0, T ;D(A)) and p ∈ L2(0, T ;H1(Ω)).
Consequently, (y, p, v) ∈ EN and

A′(0, 0, 0)(y, p, v) = (yt − ν∆y +∇p− v1ω, y(· , 0)) = (f, y0).

This ends the proof. �

In accordance with Lemmas 3.2 and 3.3, we can apply Liusternik’s Theorem
(Theorem 3.1) and deduce that, at least in a neighborhood of the origin in ZN ,
the equation

A(y, p, v) = (f, y0), (y, p, v) ∈ EN
possesses at least one solution.

Therefore, (1) is locally null-controllable and Theorem 1.1 is proved.

4 The proof of Theorem 1.2

We will now prove Theorem 1.2. We will use an argument appropriate for
quasi-Newton methods that rely on the C1 regularity of A; see for instance [2].

From Section 2 we know that, for each (f, y0) ∈ ZN , the corresponding
extremal problem (20) possesses exactly one solution. Let us consider the
surjective operator A′(0, 0, 0) and let us introduce the associated inverse B =
A′(0, 0, 0)−1 : ZN 7→ EN , defined as follows: for each (f, y0), we set (y, p, v) =
B(f, y0) if and only if (y, p, v) solves (20).

Then, B is well defined and continuous. Indeed, as noticed in Section 2.2, if
(fn, y0n) → (f, y0) in ZN , (21) holds. Using again the regularity properties of
the solutions to the Stokes system, we also have

yn → y in L2(0, T ;D(A)) and pn → p in L2(0, T ;H1(Ω)).

Consequently, (yn, pn, vn)→ (y, p, v), which means that B is continuous.
Let us consider the iterative algorithm ALG 1 introduced in Section 1,

see (8). Then, for any initial (y0, p0, v0) ∈ EN , the iterates in ALG 1 are well
defined.

Let us assume that ‖y0‖H1
0
≤ ε (ε is furnished by Theorem 1.1) and (y, p, v) ∈

EN satisfies A(y, p, v) = (0, y0); let us set

C0 := ‖B‖L(ZN ;EN )

and let us assume that 0 < θ < 1/(2C0). Since A is continuously differentiable,
there exists δ > 0 such that

‖(ỹ, p̃, ṽ)‖EN
, ‖(y′, p′, v′)‖EN

≤ δ ⇒ ‖A′(ỹ, p̃, ṽ)−A′(y′, p′, v′)‖L(EN ;ZN ) ≤ θ.

We will assume that ‖(y, p, v)‖EN
≤ δ and we will prove that there exists κ > 0

such that, if (y0, p0, v0) ∈ EN and

‖(y0, p0, v0)− (y, p, v)‖EN
≤ κ, (41)
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then (yn, pn, vn) converges to (y, p, v) as n→ +∞.
Let κ be such that

(ỹ, p̃, ṽ) ∈ EN , ‖(ỹ, p̃, ṽ)− (y, p, v)‖EN
≤ κ

⇒

{
‖A(ỹ, p̃, ṽ)−A(y, p, v)−A′(y, p, v) ((ỹ, p̃, ṽ)− (y, p, v)) ‖ZN

≤ θ‖(ỹ, p̃, ṽ)− (y, p, v)‖EN

and let us choose (y0, p0, v0) ∈ EN satisfying (41). Then, if we introduce en :=
(yn, pn, vn)− (y, p, v), the following holds:

en+1 = en − B (A(yn, pn, vn)−A(y, p, v))

= −B (A(yn, pn, vn)−A(y, p, v)−A′(0, 0, 0)en)

= −B (A(yn, pn, vn)−A(y, p, v)−A′(y, p, v)en)

− B (A′(y, p, v)−A′(0, 0, 0)) en.

Therefore,

‖en+1‖EN
≤ C0‖A(yn, pn, vn)−A(y, p, v)−A′(y, p, v)en‖ZN

+ C0‖A′(y, p, v)−A′(0, 0, 0)‖L(EN ;ZN )‖en‖EN
.

Since ‖e0‖EN
≤ κ, this inequality for n = 0 yields

‖e1‖EN
≤ 2C0θ‖e0‖EN

and, in particular, we also have ‖e1‖EN
≤ κ. By induction, we then see that

‖en‖EN
≤ 2C0θ‖en−1‖EN

≤ · · · ≤ (2C0θ)
n‖e0‖EN

for all n ≥ 1. This proves that en → 0 in EN and the inequalities (9) hold with
θ = 2C0θ.

This ends the proof.

5 Numerical approximation and numerical ex-
periments

In this Section, we solve numerically the null controllability problem (1)–
(3) in a particular case and we check that the previous quasi-Newton iterates
converge satisfactorily.

5.1 Reformulation and numerical approximation of (20)

As indicated in Section 4, at each step of ALG 1 we have to find the solution
to an extremal problem of the kind (20). In this Section, it will be shown that,
in practice, this can be achieved by solving a high-order linear problem.
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Figure 1: The domain Q = Ω× (0, T ) and the mesh. Number of vertices: 2 800.
Number of tetrahedra: 14 094. Total number of unknowns: 8× 2 800 = 22 400.

Figure 2: The initial state: the streamlines ψ0 = Const., with y0 = ∇× ψ0.
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More precisely, let us introduce the linear space

P0 ={ (ζ, σ)∈C2(Q)N×C2(Q) : ∇ · ζ=0 in Q, ζ=0 on Σ,

∫
Ω

σ dx=0 a.e. }

and let us denote by P the completion of P0 for the scalar product

( (ζ, σ), (ζ ′, σ′) )P :=

∫∫
Q

ρ̃−2(L∗ζ +∇σ)(L∗ζ ′ +∇σ′) dx dt

+

∫∫
ω×(0,T )

η̃−2ζζ ′ dx dt,

where we have used the notation L∗ζ := −ζt − ν∆ζ. In view of (16) and the
Carleman inequality (15), (· , ·)P is a scalar product in P0.

Another consequence of (15) is that the functions (ζ, σ) ∈ P satisfy∫∫
Q

ρ−2
∗ (sξ∗)

−1(|ζt|2 + |∇σ|2) dx dt

+

∫∫
Q

ρ̃−2 (sξ̃)λ2|∇ × ζ|2 dx dt

+

∫∫
Q

ρ̃−2
(

(sξ̃)−1|∆ζ|2 + λ2|∇ζ|2 + (sξ̃)2λ4|ζ|2
)
dx dt

< +∞.

In particular, one has ∫∫
Q

η̃−2|ζ|2 dx dt < +∞.

Also, ζ ∈ L2(0, T/2;D(A)) and ζt ∈ L2(0, T/2;H), whence ζ ∈ C0([0, T/2];V ),
with appropriate estimates.

Let us assume that (f, y0) is given in ZN (recall that ZN = L2(η̃ 2;Q)N ×V )
and let us denote by Ψ the following linear form on P :

〈Ψ, (ζ, σ)〉 :=

∫∫
Q

f ζ dx dt+

∫
Ω

y0(x) ζ(x, 0) dx.

Then, Ψ is well defined and continuous.
Therefore, there exists exactly one solution (ζ, σ) to the variational problem:{

( (ζ, σ), (ζ ′, σ′) )P = 〈Ψ, (ζ ′, σ′)〉
∀(ζ ′, σ′) ∈ P ; (ζ, σ) ∈ P.

(42)

The connection of (42) and (20) is explained in the following result:

Theorem 5.1. Let us assume that (f, y0) ∈ ZN and let (y, v) and (ζ, σ) be the
unique solutions to the corresponding problems (20) and (42). Then

y := ρ̃−2(L∗ζ +∇σ), v := −η̃−2ζ
∣∣
ω×(0,T )

. (43)
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Proof - The argument relies on the ideas introduced by Fursikov and Imanuvilov
in [20], that are adapted here to the case of the Stokes system (5).

Let y and v be given by (43), where (ζ, σ) is the unique solution to (42).
Then

J(y, v) :=
1

2

∫∫
Q

ρ̃ 2|y|2 dx dt+
1

2

∫∫
ω×(0,T )

η̃2|v|2 dx dt < +∞.

and one has∫∫
Q

y · (L∗ζ ′ +∇σ′) dx dt =

∫∫
ω×(0,T )

v · ζ ′ dx dt

+

∫∫
Q

f · ζ ′ dx dt+

∫
Ω

y0(x) · ζ ′(x, 0) dx ∀(ζ ′, σ′) ∈ P.
(44)

Taking ζ ′ = 0 and σ′ arbitrary in L2(0, T ;H1(Ω)) with
∫

Ω
σ dx = 0 a.e., we

first deduce from (44) that y ∈ L2(0, T ;H). Consequently,∫∫
Q

y · L∗ζ ′ dx dt =

∫∫
ω×(0,T )

v · ζ ′ dx dt

+

∫∫
Q

f · ζ ′ dx dt+

∫
Ω

y0(x) · ζ ′(x, 0) dx ∀(ζ ′, σ′) ∈ P.

In particular, this must hold for any (ζ ′, 0) with ζ ′ ∈ L2(0, T ;D(A)). This
means that y solves, in the transposition sense, the Stokes system (5).

But this system possesses exactly one strong solution. Therefore, y is, to-
gether with some p ∈ L2(0, T ;H1(Ω)), the unique strong solution to (5).

Let (y′, v′) be another state-control pair satisfying (5) (together with some p′)
and (19). In order to prove that (y, v) solves (20), let us compare J(y, v)
and J(y′, v′). We see that

J(y′, v′)≥J(y, v)+

∫∫
Q

ρ̃ 2y · (y′ − y) dx dt+

∫∫
ω×(0,T )

η̃2v · (v′ − v) dx dt

=J(y, v)+

∫∫
Q

(L∗ζ +∇σ) · (y′ − y) dx dt+

∫∫
ω×(0,T )

ζ · (v′ − v) dx dt

=J(y, v)+

∫∫
Q

L∗ζ · (y′ − y) dx dt+

∫∫
ω×(0,T )

ζ · (v′ − v) dx dt.

The last identity holds because y′ − y belongs to L2(0, T ;V ).
However, since y′ − y is (among other things) the solution in the transposi-

tion sense to the system (5) with v and (f, y0) respectively replaced by v′ − v
and (0, 0), it is clear that∫∫

Q

L∗ζ · (y′ − y) dx dt+

∫∫
ω×(0,T )

ζ · (v′ − v) dx dt = 0.

Accordingly, J(y′, v′) ≥ J(y, v).
This ends the proof. �
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Remark 5.1. Obviously, (42) can be equivalently rewritten as follows: Minimize
1

2
‖(ζ, σ)‖2P − 〈Ψ, (ζ, σ)〉,

Subject to (ζ, σ) ∈ P,
(45)

where ‖ · ‖P is the norm induced by (· , ·)P . It is not difficult to check that
the extremal problems (20) and (45) are dual to each other in the sense of
Fenchel-Rockafellar, see for instance [12]. Both possess unique solutions and
the optimality relations connecting them is just (43). Also, notice that ζ and
σ solve (together with some p), at least in a weak sense, the following partial
differential system, that is fourth-order in space and second-order in time:

L(ρ̃−2(L∗ζ +∇σ)) +∇p+ 1ω η̃
−2ζ = f(x, t), (x, t) ∈ Q,

∇ · (ρ̃−2(L∗ζ +∇σ)) = 0, ∇ · ζ = 0, (x, t) ∈ Q,
ζ = 0, (x, t) ∈ Σ,

ρ̃−2(L∗ζ +∇σ) = 0, (x, t) ∈ Σ,

ρ̃−2(L∗ζ +∇σ)
∣∣
t=0

= y0(x), ρ̃−2(L∗ζ +∇σ)
∣∣
t=T

= 0, x ∈ Ω.

�

There are several ways to introduce finite element approximations to (42).
In the sequel, we will recall the main ideas of one of them; more details and
other approaches can be found in [17]; see also [15, 16] for similar results in the
context of the controlability of linear and semilinear heat equations.

For simplicity, it will be assumed in the following that N = 2 and Ω is
polygonal. Our approach needs a reformulation of (42) that is obtained in three
steps:

1. First, let us introduce the new variables z := ρ̃− 1(L∗ζ +∇σ), m := η̃−1ζ
and χ := η̃−1σ and the spaces

S0 := { (η̃−1ζ, η̃−1σ) : (ζ, σ) ∈ P }, Z̃ := L2(Q)2 × S0, Λ̃ := L2(Q)2.

Then (ζ, σ) ∈ P if and only if (z,m, χ) ∈ Z̃ and

z − ρ̃−1(L∗(η̃m) +∇(η̃χ)) = 0. (46)

The latter is equivalent to

b̃( (z,m, χ), λ ) :=

∫∫
Q

λ
(
z − ρ̃−1(L∗(η̃m) +∇(η̃χ)

)
dx dt = 0 ∀λ ∈ Λ̃.

Therefore, (42) can be equivalently rewritten in the form
a( (z,m, χ), (z′,m′, χ′) ) + b̃( (z′,m′, χ′), λ ) = 〈Ψ̃, (z′,m′, χ′)〉

b̃( (z,m, χ), λ′ ) = 0

∀(z′,m′, χ′) ∈ Z̃, ∀λ′ ∈ Λ̃;

(z,m, χ) ∈ Z̃, λ ∈ Λ̃,

(47)
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where we have set

a( (z,m, χ), (z′,m′, χ′) ) :=

∫∫
Q

(zz′ + 1ωmm
′) dx dt

and

〈Ψ̃, (z,m, χ)〉 :=

∫∫
Q

η̃f mdx dt+

∫
Ω

η̃(x, 0)y0(x)m(x, 0) dx.

Of course, λ is a multiplier associated to the constraint (46). Note that
the functions (z′,m′, χ′) ∈ Z̃ must satisfy ∇ · (η̃m′) ≡ 0.

2. Secondly, by integrating by parts, we can slightly change the bilinear form
b̃(· , ·) and make disappear all the second-order derivatives in (47).

Thus, let us set

S1 := { (m,χ) : m ∈ L2(0, T ;V ), χ ∈ L2(0, T ;H1(Ω)),

mt ∈ L2(Q)2,

∫
Ω

χdx = 0 a.e. },

Ẑ := L2(Q)2 × S1, Λ̂ := L2(0, T ;H1
0 (Ω)2)

and

b̂( (z,m, χ), λ ) :=

∫∫
Q

[
λ
(
z+ρ̃−1(η̃m)t+∇(η̃χ)

)
−∇(ρ̃−1λ) · ∇(η̃m)

]
dx dt.

Then, (47) can also be written as follows:
a( (z,m, χ), (z′,m′, χ′) ) + b̂( (z′,m′, χ′), λ ) = 〈Ψ̃, (z′,m′, χ′)〉

b̂( (z,m, χ), λ′ ) = 0

∀(z′,m′, χ′) ∈ Ẑ, ∀λ′ ∈ Λ̂;

(z,m, χ) ∈ Ẑ, λ ∈ Λ̂.

(48)

Notice that the new spaces Ẑ and Λ̂ satisfy

Z̃ ⊂ Ẑ, Λ̃ ⊃ Λ̂.

Again, the functions (z′,m′, χ′) ∈ Z must satisfy ∇ · (η̃m′) ≡ 0.

3. In a third step, we introduce another multiplier, this time related to the
constraint ∇ · (η̃m) = 0. Thus, we set

S2 := { (m,χ) : m ∈ L2(0, T ;H1
0 (Ω)2), χ ∈ L2(0, T ;H1(Ω)),

mt ∈ L2(Q)2,

∫
Ω

χdx = 0 a.e. },
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W := L2(Q)2 × S2, M := Λ̂× L2(Q)

and

B( (z,m, χ), (λ, µ) ) := b̂( (z,m, χ), λ )−
∫∫
Q

ρ̃−1µ∇ · (η̃m) dx dt

and we arrive at the following reformulation:
a( (z,m, χ), (z′,m′, χ′) ) +B( (z′,m′, χ′), (λ, µ) ) = 〈Ψ̃, (z′,m′, χ′)〉

B( (z,m, χ), (λ′, µ′) ) = 0

∀(z′,m′, χ′) ∈W, ∀(λ′, µ′) ∈M ;

(z,m, χ) ∈W, (λ, µ) ∈M.
(49)

This way, we are led to a mixed formulation of (42) where the exponential
weights have disappeared. It will be seen later that, at the end, this property
has a positive numerical effect: after time-space approximation, we find linear
systems for which the condition numbers are moderate; for more details on this
phenomenon, see [15, 17].

A good property of (49) is that the involved bilinear and linear forms are
well defined in spaces of functions that possess first-order (and not necessar-
ily second-order) derivatives in L2

loc(Q). Another advantage is that, now, the
unknown m is not subject to any incompressibility constraint.

Accordingly, it is easy to construct finite dimensional subspaces of W and
M , for instance using the continuous piecewise polynomial functions associated
to a mesh of Q = Ω× (0, T ).

Iterate Abs. error Rel. error
1 13.4761 13.4761
2 0.61022 0.0452815
3 0.022168 0.00164313
4 0.00101488 7.52252× 10−5

5 4.9267× 10−5 3.65175× 10−6

Table 1: The behavior of ALG 1.

More precisely, let Th be a triangulation of Q formed by tetrahedra and let
Wh (resp. Mh) be the subspace of W (resp. M) formed by the usual P`-Lagrange
functions (` = 1 or ` = 2). Obviously, the Wh and Mh are finite dimensional
spaces and it is well known that they are easy to describe and manipulate.

The approximated problem is the following:
a( (z,m, χ), (z′,m′, χ′) ) +B( (z′,m′, χ′), (λ, µ) ) = 〈Ψ̃, (z′,m′, χ′)〉

B( (z,m, χ), (λ′, µ′) ) = 0

∀(z′,m′, χ′)∈Wh, ∀(λ, µ)∈Mh;

(z,m, χ)∈Wh, (λ, µ)∈Mh.

(50)
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Figure 3: Cut section of v1 (the first component of the control) at x1 = 0.4;
t goes from left to right, x2 goes from top to botttom; minimal and maximal
values of v1: -0.0173 and 0.1205.
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Figure 4: Cut section of v2 (the second component of the control) at x1 = 0.4;
t goes from left to right, x2 goes from top to botttom; minimal and maximal
values of v2: -0.0285 and 0.0607.
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5.2 A numerical experiment

The following computations have been performed with the FreeFem++ li-
brary; see http://www.freefem.org/ff++ for a detailed description. In par-
ticular, the solutions to the linear systems (50) have been computed by a UMF-
PACK solver, specially adequate for sparse unsymmetric large dimension ma-
trices of this kind.

The quasi-Newton method has been applied to the solution of the null con-
trollability problem for (1) with the following data:

• N = 2, Ω = (0, 1)× (0, 1), ω = (0.2, 0.6)× (0.2, 0.6), T = 1.

• y0 = ∇× ψ0, with ψ0(x) ≡ 104 x2
1(1− x1)2x2

2(1− x2)2.

• ν0 = 10, ν1(r) := (1 + r)−1 and consequently ν = 10.

At each step, we have solved the problem (50). Here, the spaces Wh, Λh
and Mh are P1-Lagrange approximations respectively of Wh, Λh and Mh, asso-
ciated to the mesh displayed in Fig. 5.

The initial state is displayed in Fig. 5.
The stopping criterion has been

‖yn+1 − yn‖ ≤ ε

with ε = 10−5. Starting from (y0, z0, v0) = B(0, y0), convergence was reached
after 5 iterates, with a convergence rate ≈ 4.45. The absolute and relative errors
at each step are given in Table 1. The numerical control and state that solve
(1)–(3) are displayed in Fig. 5.1–6.

The condition numbers of the matrices of coefficients in the linear systems
that must be solved are given in Table 2 for several meshes. As already men-
tioned, the fact that we work with the variables z, m, χ, etc. lead to reasonable
quantities.

Number of nodes Number of unkowns Cond. number
305 2440 9.91× 105

960 7680 2.02× 106

2800 22400 1.31× 106

Table 2: Condition numbers of the matrices of coefficients in (50) for several
meshes.

6 Some additional comments and questions

The global null controllability of (1) is an open question. It does not seem
easy to solve. Indeed, the smallness assumption on the data in Theorem 1.1
is clearly necessary if one tries to apply Theorem 3.1 or another result playing
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Figure 5: Cut section of y1 (the first component of the state) at x1 = 0.4; t goes
from left to right, x2 goes from top to botttom; minimal and maximal values
of y1: -111.1570 and 112.7190.
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Figure 6: Cut section of y2 (the second component of the state) at x1 = 0.4;
t goes from left to right, x2 goes from top to botttom; minimal and maximal
values of y2: -60.6470 and 25.1871.
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the same role. To prove a global result, we would have to make use of a global
inverse mapping theorem, but this needs much more complicate estimates, that
do not seem affordable.

Notice that, with other or with no boundary conditions, global null control-
lability results have been established for Navier-Stokes and Boussinesq fluids by
Coron [7] and Coron and Fursikov [9] in the two-dimensional case and Fursikov
and Imanuvilov [21] in the three-dimensional case. Accordingly, it is reasonable
to expect results of the same kind when the PDEs in (1) are completed, for
instance, with Navier-slip or periodic boundary conditions.

Another open question, in part connected to the previous one, concerns the
exact controllability to the trajectories.

It is said that (1) is locally exactly controllable to the trajectories at time T
if, for any solution (ŷ, p̂) corresponding to a control v̂, there exists ε > 0 such
that, if

‖y0 − ŷ(· , 0)‖H1
0
≤ ε,

we can find controls v ∈ L2(ω × (0, T )) and associated states (y, p) satisfying

y(x, T ) = ŷ(x, T ) in Ω. (51)
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Figure 7: The computed null control; evolution in time of the L2 norms of v1,
v2 and v.

The previous property was established for Navier-Stokes and Boussinesq flu-
ids in [14]. However, to our knowledge, it is unknown whether it holds for (1).
If one tries to apply arguments as those above, one finds at once a major diffi-
culty: one is led to a system similar to (6) where linear nonlocal terms appear,
for which observability estimates are not clear at all.

Finally, let us indicate that it would be interesting to see whether the argu-
ments in [4] can be applied in this context to establish the local null controlla-
bility of (1) with N − 1 scalar controls; when N = 3, a similar question arises
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Figure 8: The computed state; evolution in time of the L2 norms of y1, y2 and y.

concerning the controllability of (1) with one single scalar control, in view of
the results in [10].

7 Appendix A: Existence and uniqueness results
for (1)

Let us set ν(s) := ν0 + ν1(s). The existence of a strong solution to (1) can
be proved as follows.

First, we introduce the eigenfunctions of the Stokes operator, i.e. the solu-
tions to 

−∆wj +∇qj = λjw
j in Ω,

wj = 0 on ∂Ω,

‖wj‖ = 1, λj → +∞,

the spaces Vm := [w1, . . . , wm] and the following associated Galerkin approxi-
mations{

(y′m, w)+ν(‖Dym‖2)(∇ym,∇w)+((ym · ∇)ym, w)=(v1ω, w) ∀w∈Vm,
ym : [0, T ] 7→ Vm, y(0) = y0m,

(52)
where y0m → y0 in V .

The existence and uniqueness of (local in time) solutions to the (52) is en-
sured by classical ODE theory. The following estimates show that, in fact, they
are defined for all t.

We can get uniform estimates of the ym in the usual way:
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• First, taking w = ym(t), we deduce that

1

2

d

dt
‖ym‖2 + ν(‖Dym‖2)‖∇ym‖2 = (v1ω, ym)

≤ C‖ym‖2 + C

∫
ω

|v|2 dx,

whence we easily obtain

‖ym‖L∞(0,T ;H) + ‖ym‖L2(0,T ;V ) ≤ C (53)

• Then, noticing that Aym(t) ∈ Vm and taking w = Aym(t), we see that

1

2

d

dt
‖∇ym‖2 + ν(‖Dym‖2)‖∆ym‖2 = (v1ω, Aym)− ((ym · ∇)ym, Aym).

When N = 2, one has

((ym · ∇)ym, Aym) ≤ C‖ym‖L4‖∇ym‖L4‖Aym‖

≤ C‖ym‖2‖∇ym‖2 +
ν0

2
‖Aym‖2.

Consequently,

1

2

d

dt
‖∇ym‖2 + ‖∆ym‖2 ≤ C‖∇ym‖2 + C

∫
ω

|v|2 dx

and, from Gronwall’s Lemma, we find that

‖ym‖L∞(0,T ;V ) + ‖ym‖L2(0,T ;D(A)) ≤ C. (54)

When N = 3, the nonlinear term can be bounded as follows:

((ym · ∇)ym, Aym) ≤ C‖ym‖L6‖∇ym‖L3‖Aym‖
≤ C‖∇ym‖3/2‖Aym‖3/2

≤ C‖∇ym‖6 +
ν0

2
‖Aym‖2.

Accordingly, we only have in this case that

1

2

d

dt
‖∇ym‖2 + ‖∆ym‖2 ≤ C‖∇ym‖6 + C

∫
ω

|v|2 dx

and, if y0 and v are sufficiently small respectively in V and L2(ω× (0, T ),
we get again (54).

• From these estimates, we see that

ν(‖Dym‖2)Aym − (ym · ∇)ym + v1ω

is uniformly bounded in L2(Q)N . In view of (52) and the fact that the
wj are orthonormal in L2(Ω)N , we deduce that

‖y′m‖L2(Q)N ≤ C. (55)
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The uniform bounds (53)–(55) allow to tke limits in (52) (at least for a sub-
sequence) as m→ +∞. Indeed, the unique delicate point is the a.e. convergence
of ν(‖Dym‖2). But this is a consequence of the fact that the sequence {ym} is
pre-compact in L2(0, T ;V ) and ν is continuous.

The uniqueness of the strong solution to (1) can be proved in a standard
way. Indeed, if (y1, p1) and (y2, p2) are strong solutions and we set y := y1−y2,
we find that

1

2

d

dt
‖∇y‖2 + ν(‖Dy1‖2)‖∆y‖2

= −
(
ν(‖Dy1‖2)− ν(‖Dy2‖2)

)
(∇y2,−∆y)− ((y1 · ∇)y + (y · ∇)y2,−∆y)

≤ C
[(
‖∇y1‖+ ‖∇y2‖

)
‖∇y2‖+ ‖∆y1‖+ ‖∆y2‖

]
‖∆y‖‖∇y‖

≤ k(t)‖∇y‖2 +
ν0

2
‖∆y‖2

for some k ∈ L2(0, T ). This suffices to deduce that y ≡ 0.

8 Appendix B: Proof of the Carleman estimate (12)

First, note that there exists λ0 such that, for any λ ≥ λ0, there exist s0 and
C with ∫∫

Q

ρ−2 (sξ)|∇ × ϕ|2 dx dt+

∫∫
Q

ρ−2(sξ)−1|∇(∇× ϕ)|2 dx dt

+

∫∫
Q

ρ−2
(
|∇ϕ|2 + (sξ)2|ϕ|2

)
dx dt

≤ C

(∫∫
Q

ρ−2|F |2 dx dt+

∫∫
ω×(0,T )

ρ−2 (sξ)3|ϕ|2 dx dt

) (56)

for any F ∈ L2(Q)N , any ϕT ∈ H and any s ≥ s0.
This is established in Theorem 4.1 in [26]; see also Theorem 3.1 in [25].

Then, we argue as follows:

• Since ∇ · ϕ ≡ 0, the second order term ∆ϕ satisfies

|∆ϕ|2 = |∇ × (∇× ϕ)|2 ≤ 2|∇(∇× ϕ)|2.

This, together with (56), provides a similar bound for |∆ϕ|2:∫∫
Q

ρ−2(sξ)−1|∆ϕ|2 dx dt≤C

(∫∫
Q

ρ−2|F |2 dx dt+
∫∫
ω×(0,T )

ρ−2(sξ)3λ4|ϕ|2 dx dt

)
.
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• On the other hand, one has

−ϕt +∇π = F + ν∆ϕ in Q.

Using again that ϕ is divergence-free and the fact that ρ and ξ are independent
of x, we see that∫∫

Q

ρ−2(sξ)−1(|ϕt|2 + |∇π|2) dx dt =

∫∫
Q

ρ−2(sξ)−1| − ϕt +∇π|2 dx dt

≤ C
∫∫
Q

ρ−2(sξ)−1
(
|F |2 + |∆ϕ|2

)
dx dt,

whence the estimates of |ϕt|2 and |∇π|2 in (12) are also obtained.
This ends the proof.
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