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Abstract

We study the existence of fixed points in the context of uniformly convex geodesic
metric spaces, hyperconvex spaces and Banach spaces for single and multivalued
mappings satisfying conditions that generalize the concept of nonexpansivity. Be-
sides, we use the fixed point theorems proved here to give common fixed point results
for commuting mappings.

Key-words: fixed point, selection of multifunctions, generalized nonexpansive map-
pings, commuting mappings, metric space, Banach space.

1 Introduction

In [26], T. Suzuki extends the concept of singlevalued nonexpansive mapping in the fol-
lowing way: a mapping f defined on a subset K of a Banach space is said to satisfy con-
dition (C) if for 2,y € K with (1/2) e — f(@)]| < [l —yll, then || f(x) — fW)I| < llz -yl
T. Suzuki [26] proves some basic properties and gives fixed point theorems and con-
vergence results for mappings satisfying condition (C). Following [26], A. Razani and

H. Salahifard [23] state part of T. Suzuki’s [26] results in the context of a complete
CAT(0) space and generalize condition (C) to the multivalued case: a multivalued map-
ping T defined on subset of a CAT(0) space is said to satisfy condition (C) if for each
z,y € K and u, € T(x) with (1/2)d(x,u;) < d(z,y) there exists u, € T(y) such that
d(tug,uy) < d(x,y). This condition is used in [23] to prove a fixed point theorem for
multivalued mappings and some common fixed point results. Motivated by the results
in [26], J. Garcia-Falset, E. Llorens-Fuster and T. Suzuki consider in [7] two generaliza-
tions in the singlevalued case of condition (C) giving examples and establishing fixed
point results.

The purpose of this paper is to study condition (C') for multivalued mappings in the
context of geodesic metric spaces (with special attention to the case of R-trees) and Ba-
nach spaces, and condition (C') for singlevalued mappings in the context of hyperconvex
spaces. After some preliminary contents in Section 2, we begin Section 3 by studying the
multivalued case in geodesic spaces. We assume condition (C') for multivalued mappings
as in [23] where different results in this direction were obtained for CAT(0) spaces. In
our work, we derive a technical lemma (Lemma 3.2) which is a multivalued version of
the key fact which is behind the main results in [7, 26]. Our results are first obtained
for as general as complete uniformly convex geodesic spaces and then particularized for
more precise geometries. Since CAT(0) spaces are a particular class of uniformly convex
geodesic spaces, we obtain more general results than those from [23]. Moreover, thanks
mainly to Lemma 3.2, we fill in a gap in the proof of the main multivalued result in [23].
We continue Section 3 by introducing a new condition for multivalued mappings in the
spirit of (C'). We give examples showing that this condition is actually weaker than con-
dition (C') and prove a selection theorem in R-trees for mappings satisfying this newly
introduced condition from where a stronger fixed point result for multivalued mappings
follows. This selection result resembles a very important one, see for instance [12, 25], for
hyperconvex spaces (notice, see [14], that complete R-trees are hyperconvex) although
the approach here is completely different as the proof relies on very particular properties

of R-trees rather than on hyperconvexity. It is worthwhile to point out that R-trees find
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a lot of applications in different areas as, for instance, the indexing of information or
phylogenetics. We close Section 3 with an appendix where we study the existence of
fixed points for singlevalued mappings with property (C') in hyperconvex metric spaces.
It is very well-known (see [17, Chapter 13]) that nonexpansive self-mappings defined on
nonempty bounded and closed hyperconvex spaces have fixed points. Therefore it is
natural to wonder about this problem for mappings with condition (C). We first study
the compact case providing a positive answer. For the more general case we need to
introduce a new condition on the mapping under consideration. In particular it is shown
that a 2-lipschitzian self-mapping with condition (C') defined on a nonempty closed and
bounded hyperconvex space has a fixed point. This result is significant among the class
of known results for mappings with condition (C') since it is the first one without com-
pactness conditions for which neither the uniqueness of asymptotic centers nor anything
similar to the Opial property is required (see Sections 2 and 4 for definitions). Therefore,
this result follows through a completely new approach compared to those in [7, 23, 26]
and implies new results even, for instance, in injective Banach spaces.

In Section 4 we revisit the classical theory of nonexpansive multivalued mappings on
Banach spaces to study it under condition (C'). We show the existence of fixed points for
such a mapping in a Banach space with the Opial property. The method of asymptotic
centers allows us to establish the same result in a uniformly convex in every direction
(UCED) Banach space. Moreover, if we also assume the continuity of the mapping we
can prove the existence of fixed points in a Banach space for which the asymptotic center
of a bounded sequence with respect to a bounded closed convex subset is nonempty and
compact, that is, a counterpart of the Kirk-Massa theorem. Finally, in Section 5, we
appeal to the fixed point theorems proved in this paper in order to give some common
fixed point results for commuting mappings.

2 Preliminaries

Let (X, d) be a metric space. A geodesic path from x to y is a mapping ¢ : [0,{]] CR — X
with ¢(0) = z,¢(l) = y and d(c(t),c(t')) = |t —t'| for every ¢,t € [0,]]. The image
¢ ([0,1]) of ¢ forms a geodesic segment which joins x and y and is not necessarily unique.
If no confusion arises, we will use [z,y] to denote a geodesic segment joining x and y.
(X,d) is a (uniquely) geodesic space if every two points z,y € X can be joined by a
(unique) geodesic path. A point z € X belongs to the geodesic segment [z, y] if and only
if there exists ¢ € [0, 1] such that d(z,z) = td(z,y) and d(z,y) = (1 — t)d(z,y), and we
will write z = (1 — t)x + ty for simplicity. A subset K of X is conver if it contains any
geodesic segment that joins every two points of it.

In a geodesic space (X, d), the metric d : X x X — R is convez if for any z,y,z € X
one has

dz,(1—t)y +tz) < (1 —t)d(z,y) + td(z, z) for all ¢t € [0, 1].

A geodesic space which metric is convex will be referred as a space with convex metric.
A trivial example of a uniquely geodesic space with convex metric is a strictly convex
Banach space. For more details about geodesic metric spaces one may check [2].

A geodesic space (X, d) is uniformly convex if for any r > 0 and e € (0, 2] there exists
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9 € (0,1] such that if a,z,y € X with d(x,a) <r, d(y,a) <r and d(z,y) > er then

d(%x + %y,a) < (1 —=20)r.

From the definition, it is easy to see that uniformly convex metric spaces are uniquely
geodesic.

A mapping § : (0,00) x (0,2] — (0, 1] providing such a § = 6(r,€) for a given r > 0 and
e € (0,2] is called a modulus of uniform convexity. The mapping ¢ is monotone (resp.
lower semi-continuous from the right) if for every fixed e it decreases (resp. is lower
semi-continuous from the right) with respect to r (see also [5], [18]). CAT(0) spaces in
the sense of Gromov (see [2]) are uniformly convex metric spaces with convex metric.
Let (X,d) be a metric space and let (x,)nen be a bounded sequence in X. For x € X,
define r(z, (x,)) = limsup,,_, ., d(x,z,). The asymptotic radius of (x,)nen is given by

r((zn)) = inf {r(z, (z,)) : x € X},
and the asymptotic center of (zy)nen is the set

A((zn)) = {z € X o r(z, (2n)) = r((zn))} -

Throughout this paper we will denote a uniformly convex metric space with monotone
(or lower semi-continuous from the right) modulus of uniform convexity as a UC space.
In [5], the authors prove that every bounded sequence in a UC space has a unique
asymptotic center.

A bounded sequence (xy,)nen in a complete UC space is regular if r((zy)) = r((2n,))
for every subsequence (xy, )ren of (Zn)nen. It is known that in a Banach space every
bounded sequence contains a regular subsequence (see, for instance, [17], Chapter 2,
Lemma 5.2). Since the proof has a metric nature we can conclude that every bounded
sequence (zp)nen in a complete UC space has a regular subsequence (x,, )reny and thus
every subsequence of (2, )ken has the same asymptotic center as (zp, )ren.

Let (X,d) be a metric space. Taking z € X and r > 0 we denote the closed ball
centered at z with radius r by B(z,7). Given Y a nonempty subset of X, we define the
distance of a point z € X to Y by dist(z,Y) = inf ey d(2,y). The metric projection (or
nearest point mapping) Py onto Y is the mapping

Py(z)={y €Y :d(z,y) =dist(z,Y)}, for every z € X.

If Y is additionally bounded, the diameter of Y is given by diamY” = sup, , ¢y d(z,y).
In this paper we also consider the following families of sets:

P(X)={Y C X :Y is nonempty},

Py(X)={Y C X :Y is nonempty and bounded},
Pyoy(X) ={Y C X : Y is nonempty, bounded and convex} ,
P cp(X) ={Y C X :Y is nonempty, closed and convex},

Py c1eo(X) ={Y C X : Y is nonempty, bounded, closed and convex} ,
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P, (X)={Y C X :Y is nonempty and compact},
Pepev(X) ={Y C X :Y is nonempty, compact and convex} .

A metric space (X,d) is metrically convex if for any two distinct points z,y € X

and any a, 3 > 0 such that d(z,y) = a + B there exists z € X with d(x,z) = a and
d(y,z) = . X has the binary intersection property if (\,c; B; # () for every collection of
balls (B;)ics such that any two of these balls intersect.
A metric space (X,d) is hyperconvex if (;c; B(xs,r;) # 0 for every collection of points
(xi)ier in X and positive numbers (r;);er such that d(x;,x;) < r; +r; for any 4,5 €
I. Hyperconvexity is equivalent to the binary intersection property and the metric
convexity. More about hyperconvex spaces can be found in [1, 12, 25] or in Chapter 13
of [17].

Given (X, d) a metric space and A C X, the number 7;(A) = sup,¢ 4 d(7,y) is called
the radius of A relative to x € X. The radius of A is r(A) = infyex r:(A), the center
of A'is the set C(A) ={z € X : r,(A) = r(A)} and the admissible cover of A is defined
by cov(A) = ({B: B is a closed ball and A C B}. The set A is said to be admissible if
A = cov(A). For X a hyperconvex space and A C X, cov(A4) = (,cx B(z,r:(A)) and
diam(A) = 2r(A) (for details see Chapter 13 of [17]).

An R-tree is a uniquely geodesic metric space X such that if [y, z] N[z, z] = {z} then
[y, z]U [z, 2] = [y, 2] for each z,y, z € X. From the definition it immediately follows that
if z,y,z € X, then [z,y] N [z, z] = [x,w] for some w € X. Likewise, if K is a closed
and convex subset of an R-tree X, then for every x € X, Px(x) is a singleton and for
any y € K, d(z,y) = d(x, Pk (z)) + d(Pk(z),y). A standard example of an R-tree is R?
endowed with the so-called river metric. For x = (z1,72),y = (y1,72) € R?, the river
metric (denoted by p) is defined by

_ [ |z =y if 2y =y,
p(r,y) = { |za| + |y2| + |21 — y1| otherwise.

It is known that R-trees are CAT(0) spaces and that a metric space is a complete R-tree
if and only if it is hyperconvex and has unique geodesic segments (see [14]). More about
the fixed point theory in R-trees can be found in [4, 15, 21, 22].

In [26], T. Suzuki considered the following generalized family of nonexpansive map-
pings in the setting of a Banach space. We will use in the sequel the norm notation, but
the same definitions also hold when working in the metric setting (naturally, the norm

will be replaced by the distance).

Definition 2.1. Let X be a Banach space, K € P(X) and f : K — X. Then f satisfies
condition (C) if

1
Sl = f@) < llz —yll = [1£(z) = I < llz =yl
forallxz,y € K.

Obviously, every nonexpansive mapping meets condition (C). We next summarize
some of the basic properties proved in [26] in relation to these mappings. The proofs

of these results are metric in nature so the properties also apply in the metric case.
Throughout this paper we denote the set of fixed points of a mapping f by Fix(f).
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Lemma 2.2. Let X be a Banach space and K € P(X). Assume that the mapping
f: K — X satisfies condition (C). Then for each x,y € K,

(i) if z € Fix(f), then ||z — f(x)|| < ||z — ||, that is, f is quasinonerpansive;
(i) [1f(@) = f)l < lle =yl or [1f2(z) = f)ll < [1f(z) = yll;

(ili) [lz = f)ll <3[If(x) — [l + [z =y
Using these properties, T. Suzuki [26] proves fixed point theorems for mappings
satisfying condition (C).
In [7], the authors study two generalizations of condition (C') giving examples and
establishing fixed point results. One of these conditions is the following.

Definition 2.3. Let X be a Banach space, K € P(X), f: K — X and u > 1. The
mapping [ satisfies condition (E,) if for all x,y € K,

e = FW)ll < pllf (@) — 2] + [l = yll

Lemma 2.2, (iii) yields that condition (C') implies (E3), but Example 3 of [7] shows
that (E3) does not imply (C). Other examples for different values of u are studied in
[7].

In the next sections we will make use of the lemma below which is a special case of
Proposition 2 in [9].

Lemma 2.4. Let X be a geodesic metric space with convex metric, a € (0,1) and
(zn)nen and (Yn)nen bounded sequences in X such that zp,+1 = (1 — @)z, + ay, and
A(Yn+1,Yn) < d(Tpt1, ) for every n € N. Then limy, o0 d(xp, yn) = 0.

The following two theorems were proved in [23], but in the setting of a complete

CAT(0) space. It is easy to see that these results hold in more general contexts. We will
formulate the first result in the framework of a uniquely geodesic metric space.

Theorem 2.5. Let X be a uniquely geodesic metric space and K € Py o,(X). Suppose
f: K — K satisfies condition (C) and Fix(f) # 0. Then Fix(f) is closed and convex.

The proof of the second theorem only requires the uniqueness of the asymptotic center
and the convexity of the metric. This is why we state this result under the hypothesis
of a complete UC' space with convex metric.

Theorem 2.6. Let X be a complete UC space with convexr metric and suppose K €
Py eo(X). If f: K — K satisfies condition (C) then Fix(f) is nonempty, closed and
convet.

In [23], the authors also extend Suzuki’s [26] condition (C) to the multivalued case
in the following way.

Definition 2.7. Let X be a metric space and K € P(X). A mapping T : K — P(X) is
said to satisfy condition (C) if for each x,y € K and uy € T(x) such that

1
id($a Um) < d(CL‘, y),

there exists uy € T(y) such that
d(uxauy) < d(x,y).
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The above condition is used in [23] to give a fixed point theorem for multivalued
mappings and some common fixed point results.

In the rest of this paper we use condition (C') for both single and multivalued map-
pings with the context distinguishing between the two cases. The same also holds for

other conditions we make use of.

3 Fixed points and selections in geodesic spaces

In this section we study the multivalued version of mappings with condition (C) in
geodesic metric spaces. Following the singlevalued case, we introduce the next condition
and prove that for g = 3 it is a generalization of condition (C').

Definition 3.1. Let X be a metric space, K € P(X), T : K — P(X) and pn > 1.
The mapping T satisfies condition (E,,) if for each x,y € K and u, € T'(x) there exists
uy € T'(y) such that

d(z,uy) < pd(x,uz) + d(z,y).

We prove next that a multivalued mapping which satisfies condition (C) also satisfies
(E3). This property will constitute a key tool in proving our results.

Lemma 3.2. Let X be a metric space, K € P(X) and let T : K — P(K) satisfy
condition (C). Then T satisfies condition (E3).

Proof. Let z,y € K and uy € T(x). Because (1/2)d(z,u;) < d(x,ug) there exists
vy € T'(uy) such that

d(ug,vy) < d(z,uy). (1)
We prove that either
() < dz,y) )
o 1
Sl v0) < dluz,y) ®

holds. Suppose (1/2)d(z,uy) > d(z,y) and (1/2)d(uy,vs) > d(ug,y). Then, using (1)
we obtain the following contradiction

1 1
d(x>ux) < d(x7y) + d(yv uz) < Ed(x7uw> + §d(u$7vm) < d(:c,ux)
Hence, if (2) holds, then there exists u, € T'(y) such that d(u,u,) < d(z,y), so
d(.%', uy) < d<1’7 uac) + d(uzy uy) < d(z, ux) + d<$v y)'

If (3) holds, then there exists u, € T'(y) such that d(vs, uy) < d(uy,y). Using again (1)
we have that

d(z, uy) < d(z, ug) + d(ug, v2) + d(va, uy) < 2d(2,ug) + d(Uz, y) < 3d(z, uz) + d(z,y).

Thus, the inequality holds in each of the two cases and we are done. O
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Definition 3.3. Let X be a metric space, K € P(X) and T : K — P(X). We say that
(n)nen C K is an approzimate fized point sequence for the mapping T if for eachn € N
there exists yn, € T'(xy) such that im,_o0 d(zy, yn) = 0.

The next result provides an approximate fixed point sequence for a multivalued
mapping satisfying condition (C'). We use this result in the rest of the paper because
many of our proofs rely on it.

Proposition 3.4. Let X be geodesic metric space with convexr metric, K € Pp o (X)
and T : K — P(K). If T satisfies condition (C), then T has an approximate fized point
sequence.

Proof. Let 1 € K, y1 € T'(x1) and take xo = (1/2)z1 + (1/2)y;. Then (1/2)d(z1,y1) =
d(x1,2z2) so, by condition (C), there exists yo € T'(z2) such that d(y1,y2) < d(x1,x2).
Continuing in this vein, we can build the sequences (x,)nen and (yn)nen such that
Yn € T(xn), Tpy1 = (1/2)zy, + (1/2)yn and d(yn+t1,yn) < d(zp41,2,) for every n € N.
Using Lemma 2.4 we obtain that lim,, o d(zy, yn) = 0.

O

Our first fixed point result for multivalued mappings is given for self-mappings on a
compact set.

Theorem 3.5. Let X be a geodesic space with convex metric and K € Pey oy(X). Sup-
pose T : K — P, (K) satisfies condition (C). Then Fix(T) # (.

Proof. By Proposition 3.4, there exist two sequences (2, )nen and (yn )nen in K such that
Yn € T(xy,) and limy, o0 d(2n,yn) = 0. Since K is compact, we can find a subsequence
(@, )ken of (zn)nen such that (z,, )ken converges to some x € K.

Using Lemma 3.2, we have that for all k € N

dist(zp,, T'(x)) < 3d(zn,, Yn, ) + d(Tn,, T).

Taking the limit as & — oo we obtain that dist(z,T(z)) = 0. Since T'(z) is closed it
follows that x € T'(z). O

In the following theorem we move the compactness condition from the domain to the
images of the mapping. This theorem is actually an extension of Theorem 3.2 of [23] in
the context of a complete UC' space with convex metric. We also remove the convexity
condition on the image sets of the mapping. Moreover, we obtain our results in a simple
way as a consequence of Lemma 3.2 which avoids to go through a delicate point in the

proof of Theorem 3.2 of [23].

Theorem 3.6. Let X be a complete UC' space with convex metric and K € Py ¢ ¢, (X).
Suppose T : K — Po,(K) satisfies condition (C). Then Fix(T) # 0.

Proof. By Proposition 3.4, we can find the sequences (z,)nen and (yn)nen in K such
that y, € T'(x,) and lim,,_ o0 d(zp, yn) = 0. As explained in Section 2, we may suppose
that (z,,)nen is regular (otherwise choose a regular subsequence of it). Denote the unique
asymptotic center of (zp)nen by z. Let n € N. Applying Lemma 3.2 for z,,z and yj,
respectively it follows that there exists z, € T'(z) such that

d(.’L’n, Zn) < 3d(55n7 yn) + d(:ﬂn, l‘)
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Let (zn, )ren be a subsequence of (zy)nen that converges to some z € T'(x). Then, for
each k € N,

Taking the superior limit as k — oo and knowing that the asymptotic center of (2, )ken
is precisely = we obtain that x = z € T'(x). Hence, the proof is complete. O

Remark 3.7. From the above proof it is immediate that in Theorem 3.6 we can drop
the convexity of the metric and assume instead that the mapping admits an approximate
fixed point sequence.

In the next result we will consider the following new condition for multivalued map-
pings which will be shown to be weaker than condition (C).

Definition 3.8. Let X be a metric space, K € P(X) and T : K — P(X). The mapping
T satisfies condition (C') if for each x,y € K and u, € T(x) with

1
d(x,uy) = dist(z, T(x)) and §d(:1:,um) <d(z,y),
there exists uy € T(y) such that
d(uxauy) < d(x,y).

We prove next a selection theorem in R-trees for multivalued mappings satisfying
condition (C’) and analyze afterwards the relation of (C’) to (C) and (FE3) respectively.

Theorem 3.9. Let X be an R-tree, K € P(X) and T : K — Py ,(X) a mapping which
satisfies (C"). Then the mapping f : K — X defined by f(x) = Py (x) for each x € K
is a selection of T' that satisfies condition (C).

Proof. Notice that the properties of R-trees (see Section 2) guarantee that f is well-
defined. Let z,y € K such that f( ) # f(y) and (1/2)d(z, f(x)) < d(z,y). Consider
p(x) = Prg,)(f(z)) and p(y) = Pre)(f(y))-

First, suppose p(z) # f(y) and p( ) # f(x). Since p(x) is the projection of f(z) onto
T(y) it follows that

d(f(x), f(y)) = d(f(z),p(x)) + d(p(x), f(y)),

ie., p(z) € [f(x), f(y)]. Since T(y) is convex, [p(x),f(y)] € T(y). This implies
[f(x), f(y)] N [f(y),y] = {f(y)} because otherwise the minimality of f(y) would be
contradicted. Thus, f(y) € [f(z),y]. Similarly, f(z) € [f(y),z]. Then f(z), f(y) € [z,y]
(otherwise supposing for example that z € [z, f(y)|N[f(y), y] with z # f(y) we have that
f(z) € [z, f(y)] and f(y) € [z, f(x)] which is false). Therefore, d(f(x), f(y)) < d(z,y).

In fact, d(f(x), f(y)) = d(z,y) - dist(z, T(2)) — dist(y, T(3)).
Now assume p(z) = f(y). Then d(f(x), f(y)) = dist(f(x),T(y)) and so, by condition

(),
d(f(x), f(y)) = dist(f(x), T(y)) < d(z,y)-



Finally, suppose p(x) # f(y) and p(y) = f(x). As above, if p(z) # f(y), we have that
f(y) € [f(z),y]. If (1/2)d(y, f(y)) < d(z,y) then (C") yields that

d(f(z), f(y)) = dist(f(y), T'(z)) < d(z,y).
Otherwise, if (1/2)d(y, f(y)) > d(x,y), then

d(f(x), F(y)) + 2d(z,y) < d(f(x), f(y)) +d(f(y),y) = d(f(2),y) < d(f(x),z) + d(z,y)
< 2d(z,y) + d(z,y).
Consequently, d(f(x), f(y)) < d(x,y). This completes the proof. O

Remark 3.10. Notice the similarity of the statement of this selection result with the
classical selection results on hyperconvex spaces for multivalued nonexpansive mappings
with admissible values (see [12, 25]).

Since complete R-trees are CAT(0) spaces, using the above result and Theorem 2.6
we obtain the following consequence which, as we will show below, is an improvement
of Theorem 3.6 for R-trees.

Corollary 3.11. Let X be a bounded complete R-tree. Suppose T : X — Py cy(X)
satisfies condition (C"). Then Fix(T) is a nonempty complete R-tree.

Proof. Applying Theorem 2.6 to the selection f provided by Theorem 3.9, we obtain
that Fix(f) is nonempty and convex (an so an R-tree). Noticing that Fix(f) = Fix(T)
it is now clear that the conclusion follows. O

We study now the relations between conditions (C), (C”) and (F3).

Proposition 3.12. Let K be a bounded, closed and convex subset of a complete R-tree
and T : K — Py oy(K). The following hold:

(i) if T satisfies (C), then it also satisfies (C"), but the converse does not hold;
(i) if T satisfies (C"), then it also satisfies (Es3), but the converse is false.

Proof. Clearly, (C) implies (C"). To show that (C”) does not imply (C) consider R? with
the river metric. Let

K = {{0} x [-9,3]} U {[0,2] x {0}} U {{2} x [-1,0]}.

and define T : K — Py .,(K) by
({(0,-3)} if x=0andy € [-9,-3],
iEO,y)})} ifr=0andye€ E 3,) l,
0,—y ifxr=0and y € (0,3
T@9) =9 oy x [=9,-3]} ifz=0andy=3,
{(z,0)} if x € (0,2] and y =0,
L {(2,0)} if 2 =2 and y € [~1,0).

I
o
I

To see that T' does not satisfy (C) take z = (0,3),y = (2,—1),uy = (0,—9). Notice
that T(y) = {(2,0)}. Then, (1/2)d(z,us) (x,y) but d(ugz,uy) = 11 > 6 for

10
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uy = (2,0).

The fact that T satisfies condition (C’) can be proved by an exhaustive case-by-case
study. We omit the proof since this is a simple exercise. This will end the proof of (i).
To prove that (C’) implies (F3), let 2,y € K and u, € T'(z). According to Theorem 3.9,
the function f : K — K defined by f(z) = Pr(y)(z) for each z € K satisfies condition
(C), so, by Lemma 2.2, (iii) it also satisfies (E3). Thus,

d(z, f(y)) < 3dist(x,T'(z)) + d(z,y) < 3d(x,ug) + d(z,y).

Since f(y) € T(y) it is clear that (E3) holds. To show that (Es3) does not imply (C”) we
give a very simple example on R with the usual distance. This fact can also be justified
via Example 3 of [7] because in the singlevalued case condition (C”) is equivalent to
condition (C). Set K = [0, 3] and define T': K — Py ¢,(K) by

[ [1,3] ifxz=0,
T(@) _{ {3} ifze (0,3

The mapping T does not satisfy (C’). Indeed, take x = 0,y = 1 and u, = 1. Then
(1/2)d(z, uy) < d(z,y) but d(ug,uy) > d(z,y), where u, = 3. It is also easy to see that
T satisfies condition (E3). This will complete the proof. O

The following condition for singlevalued mappings given in [7] is another natural
extension of condition (C).

Definition 3.13. Let X be a Banach space, K € P(X), f: K = X and A € (0,1). The
mapping f satisfies condition (Cy) if for all x,y € K,
Mz —f@)] < llz—yll = [If (@) = fFWI < [lz =yl

For more details about this condition and its relation to conditions (C) and (E,)
one may consult [7]. Following this idea, we introduce the next generalized version of

condition (C") for multivalued mappings.

Definition 3.14. Let X be a metric space, K € P(X),T : K — P(X) and A € (0,1).
The mapping T satisfies condition (C}) if for each x,y € K and ug, € T(x) with

d(z,uy) = dist(x, T'(x)) and \d(z,u,) < d(x,y),
there exists uy € T(y) such that
d(ug, uy) < d(z,y).
From the proof of Theorem 3.9 it is easy to see that the following result also holds.

Theorem 3.15. Let X be an R-tree, K € P(X) and T : K — P, ,(X) a mapping
which satisfies (C). Then the mapping f : K — X defined by f(x) = Pp () for each
x € K is a selection of T that satisfies condition (C)).

Using the results of [7] in relation to the condition (Cy), one can further study
(similarly as in the case of condition (C')) properties of multivalued mappings satisfying
condition (C}) and (C)) (defined in a similar manner).

11
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3.1 Appendix: The hyperconvex case.

Hyperconvex metric spaces provide a very specific and interesting class of metric spaces
with a large literature on fixed point results for nonexpansive mappings (see [17, Chapter
13] or [12, 25] and references therein). In particular, complete R-trees are hyperconvex
[14]. Therefore it is natural to wonder whether (singlevalued) mappings with property
(C) will also have fixed points when defined from a bounded and closed hyperconvex
space into itself. The goal of this appendix is to take up this question. As a result, we
provide partial positive answers to it.

Although a mapping with condition (C') need not be continuous, it is shown in
Theorem 2 of [26] that if 7" is a self-mapping on a nonempty compact and convex subset
of a Banach space with condition (C) then it has a fixed point. This result follows as
a consequence of Lemmas 2.2 and 2.4 in this work. In order to obtain the same result
for hyperconvex metric spaces, we first need to give a meaning to convex combinations
of two points in such spaces. Let H be a hyperconvex space and consider ¢>°(I), where
I stands for a certain index set, such that H can be embedded into ¢°°(I). Then, see
Chapter 13 in [17] for details, there exists a nonexpansive retraction R from ¢>°(I) into
H.

Definition 3.16. Let H be a hyperconver metric space and I and R as above. Then,
for x,y € H and X\ € [0,1], define

I-=XNzdly=R((1—-Nz+ \y),
where (1 — N)x + Ay stands for the usual convexr combination in £>°(I).

Notice that this definition provides a structure of segments (also called bicombing
in the literature) which makes the metric convex as it is required in Lemma 2.4. In
consequence, the adaptation of this lemma to this new setting (see [9, Proposition 2]) is
straightforward.

Lemma 3.17. Let H be a hyperconver metric space and consider the bicombing given
by any I and R as above. Let o € (0,1) and (xy)nen and (yYn)nen two bounded sequences
in H such that x, 11 = (1 — a)zy, @ ayn and d(Yn+1,Yn) < d(Tpt1,2n) for every n € N.
Then limy, o0 d(2p, yn) = 0.

Theorem 2 from [26] can also be adapted in an straightforward way.

Theorem 3.18. Let T be a self-mapping on a compact hyperconvex set H. Consider any
bicombing as above on H and assume that T satisfies condition (C). Define a sequence
{zn}nen in H with x1 € H arbitrary and

Tyl = AT(2) ® (1 — Ny,
forn € N, where A\ € [1/2,1). Then (zy)nen converges to a fized point of T

Compactness in the previous theorem is only used to obtain the fixed point once it
is known that lim,,_,o d(zy, T (x,)) = 0. Therefore, the following corollary follows.

Corollary 3.19. If T and (z,)nen are as above, and H is a hyperconver metric space,
not necessarily compact, then (zn)nen is a sequence of approzimate fixed points for T,
that is, a sequence such that lim,_, o d(zy, T (zy,)) = 0.
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The next corollary follows from the fact that mappings with condition (C') are quasi-
nonexpansive (see Lemma 2.2 (i)).

Corollary 3.20. In the conditions of the previous theorem, the set of fized points of T
18 hyperconvex.

Proof. We prove first that Fix(7T) is metrically convex. Let z,y € Fix(T), o, > 0
with d(z,y) = o + 8. Set M = B(z,a) N B(y,3). Then M is nonempty, bounded
and hyperconvex. Let z € T(M). Then there exists v € M with T'(v) = 2. By the
quasinonexpansivity of T, z € B(ac o) N B(y, B). Therefore, T(M) C M and applying
the above, Fix(T) N M # .

Next we show the binary intersection property. Let (B(wi,r;))ics be a collection
of balls with centers in Fix(f) and such that B(z;, ;) N E(xj,rj) # 0 for all 4,5 € J.
Set M = ;s (xl,n) Then M is nonempty, compact, hyperconvex and T-invariant
(thanks to the quasinonexpansivity). Thus, Fix(f) N M # (. O

To take up the noncompact case we will consider a new condition.

Definition 3.21. Let X be a metric space and T: X — X. Then T satisfies condition
(D) if ,
7d@, T(2)) 2 d(z,y) = d(T'(2),T(y)) < d(z,T(2))

for all x,y € X.

It is interesting to remark at this point that any 2-lipschitzian mapping satisfies
condition (D). Notice also that this condition does not imply continuity and that it is
implied by condition (C) for x,y such that (1/2)d(x,T(z)) = d(z,y). This last relation
explains why it is not that easy to find a mapping with condition (C') but failing condition
(D). The next example shows, however, that this is possible.

Example 3.22. Let T : [0,5] — [0, 5] be defined as follows:

0 if x € [0;2],

x —2 if x € (2;4],
Ty~ 41020 e (4.0)

0,8 z‘fxe(4648}

1 if v € (4,8;5),

3 if x = 5.

It is immediate to see that T does not satisfy condition (D) by taking x = 5 and
y=4,6. A case by case analysis shows that T satisfies condition (C').

In the conjunction of conditions (C) and (D) we can adapt the classical proof of
Baillon (see [1, Theorem 5]) for the existence of fixed points for nonexpansive mappings
in hyperconvex spaces.

Theorem 3.23. Let X be a nonempty bounded hyperconvex space. Suppose T: X — X
satisfies conditions (C) and (D). Then Fix(T) is nonempty and hyperconvex.
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Proof. Let U = {AC X :A#0,A=cov(A), T(A) C A} and order this family in the
following way: for Uy, Us € U,

Uy, < Uy < Uy CU;.

The family U # () since X € U. Take (U;);en an increasing chain, that is, a decreasing
sequence of sets in U. Since U; = (N cx E(x,m(Ui)) and X is hyperconvex it follows
that (),enyUs # 0. Because [);cn Us is also T-invariant, we have an upper bound for
the chain, so, by Zorn’s lemma, there exists a maximal element and thus minimal with
respect to the set inclusion. We shall denote this minimal element by A.

We show next that cov(T(A)) € U. This amounts to showing that cov(T(A)) is
T-invariant. Let y € T'(cov(T'(A))). Since cov(T'(A)) C cov(A) = A, it follows that for
every ¢ € X, d(z,y) < ry(T(cov(T(A)))) < rz(T(A)). This implies that y € cov(T(A))
because cov(T'(A)) is admissible. Hence, cov(T'(A)) € U and is at the same time a subset
of A. By the minimality of A we obtain that A = cov(T'(A)) which yields that for all
T € X,

ro(4) = 1 (T(4)). (4)

Let C(A) be the center of A. Then C(A) = (N,ca B(xz,r(A)) and C(A)N A # 0
since r(A) = (1/2)diamA and X is hyperconvex. We claim that C'(A) N A is also
T-invariant. Take y € C(A) N A. We want to show that rp(,)(A) = r(A). Let x € A.
Then, if (1/2)d(y,T(y)) < d(z,y) we can apply (C) to obtain that d(T'(z),T(y)) <
d(z,y) < r(A). Otherwise, (1/2)d(y,T(y)) > d(z,y) and we can apply (D) to ob-
tain that d(T(x),T(y)) < d(y,T(y)) < r(A). Joining both cases, we obtain that
r7(y)(T(A)) < r(A). Now it is enough to recall (4) to prove our claim.

It is now easy to see that ANC(A) € U. Using again the minimality of A we obtain
that A = ANC(A). But this yields that diam(A) = diam(A N C(A)) < (1/2)diam(A),
so A is a singleton and hence Fix(T') # 0.

Finally, the fact that Fix(T") follows in the same way as in Corollary 3.20. O

The following corollary is a particular case of this theorem.

Corollary 3.24. Let X be a nonempty bounded hyperconvex space. Suppose T: X — X
is a 2-lipschitzian mapping with condition (C). Then Fix(f) is nonempty and hypercon-
ver.

4 Fixed points in Banach spaces

The goal of this section is to revisit classical theorems for existence of fixed points for
nonexpansive multivalued mappings in Banach spaces from the perspective of multival-
ued mappings with condition (C).

Definition 4.1. Let X be a Banach space endowed with a linear topology 7. The space
X is said to have the Opial property with respect to T if

liminf ||z, — x| < liminf ||z, —y|,
n—00 n—oo

for every y € X, y # x and for every bounded sequence (zy)nen in X T-convergent to
x. When 7 is the weak topology we will say, in short, that X has the Opial property.
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Theorem 4.2. Let X be a Banach space which has the Opial property with respect
to 7. Suppose K is a bounded, conver and T-sequentially compact subset of X and
T : K — P.,(K) is a mapping satisfying condition (C). Then Fizx(T) # (.

Proof. By Proposition 3.4 there exist two sequences (zp)nen and (yn)neny in K such
that y,, € T'(zy,) and lim, o ||y — yn|| = 0. Since K is 7-sequentially compact we may
assume that (z,)nen is T-convergent to a point z € K.

Using Lemma 3.2, for each n € N, there exists v, € T'(z) such that

[0 = vnll < 3llzn = ynll + [lzn — 2]

By the compactness of T'(z), we can assume that (v, )nen converges to a point v € T'(2).
From the above it follows that

liminf ||z, — v|| < liminf ||z, — z||.
n—oo n—oo

From the Opial property we have that v = z € T'(z) and the proof is complete. ]

Remark 4.3. Notice that the class of spaces for which the preceding theorem can be
applied includes the space ¢; where 7 is the weak star topology (¢, ¢1) and K is a weak
star compact convex subset of /7.

Now, we are going to set out some useful results concerning the asymptotic centers.
Let (zy,)nen be a bounded sequence in X. Define

r(K, (zy,)) = inf{limsup ||z, — z|| : z € K},

n—oo

and
A(K, (zy)) = {x € K : limsup ||z, — z|| = 7(K, (z,)) }.
n—oo
The number (K, (x,)) and the (possibly empty) set A(K, (x,,)) are called the asymp-

totic radius and the asymptotic center of (x,)nen in K respectively. It should be noted
that A(K, (x,)) is a nonempty, weakly compact and convex set whenever K is weakly
compact and convex.

Definition 4.4. A bounded sequence is said to be regular with respect to K if each of
its subsequences has the same asymptotic radius in K, and asymptotically uniform with
respect to K if each of its subsequence has the same asymptotic center in K.

Lemma 4.5. (Goebel [8], Lim [20], Kirk [13]) Let K be a subset of a Banach space X
and (zn)nen a bounded sequence in X. Then

(i) there always exists a subsequence (Ty)nen which is reqular with respect to K ;

(ii) if K is separable, then (z)nen contains a subsequence which is asymptotically
uniform with respect to K.
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Recall that X is said to be uniformly convex in every direction (UCED, in short) if
d,(€) >0 for all e >0 and z € X with ||z]| = 1, where §,(¢) is the modulus of convexity
of X in the direction z defined by

) 1
00 = int {1 oty ol < 1.l < o -y = s}

Obviously, uniformly convex Banach spaces are UCED. It is known that in a UCED
Banach space, the asymptotic center of a sequence with respect to a weakly compact
convex set is a singleton. Hence, every regular sequence with respect to such a set is
asymptotically uniform.

Theorem 4.6. Let K be a weakly compact and convex subset of a UCED Banach space
X. Suppose T : K — Po,p(K) is a mapping satisfying condition (C'). Then Fiz(T) # (.

Proof. Let (xn)neny and (yn)nen be two sequences in K such that y, € T(x,) and
limy, o0 ||Zn, — yn|| = 0. Without loss of generality, me may assume that (z,)nen is
regular with respect to K. Let z be the unique point in the asymptotic center of (x,)nen
in K. By Lemma 3.2, for each n € N there exists v, € T(z) such that

[0 = vnll < 3llzn = ynll + [lzn — 2]

From the compactness of T'(z) we can assume that (v, )nen converges to a point v € T'(2).
It follows that
limsup ||z, — v|| < limsup ||z, — 2|
n—oo

n—0o0

Since (xp)nen is regular we conclude that v = z € T'(z2). O

Dhompongsa et al. [3] have recently proved the 7" invariance of the asymptotic center
in K of an approximate fixed point sequence for T, when T is a singlevalued mapping
satisfying condition (C'). We now state a result which can be seen as an adaptation of

this fact to the multivalued case.

Proposition 4.7. Let K be a weakly compact subset of a Banach space X. Suppose
T : K — Py(K) satisfies condition (C') and (zn)nen is an approximate fized point
sequence for T. Then, there exists a subsequence (zp)nen Of (Tn)nen Such that

T(x)NA#0D, forallx € A:= A(K, (2p))-

Proof. Since T is a self-mapping we can build a subsequence (2, )nen of (25, )nen Which is
regular and asymptotically uniform with respect to K. Denote r(K, (z,)) by r. Taking
any x € A and following the same argument as in the proof of the above theorem we
obtain a sequence (v, )nen C T'(x) norm convergent to a point v € T'(x) such that

limsup ||z, — v|| < limsup ||z, — z| = 7.
n—oo n—oo
This shows that v € A, and so T'(z) N A # (). O

Now we are ready to prove an analogous result to the Kirk-Massa theorem [16] for
mappings satisfying condition (C).
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Theorem 4.8. Let K be a bounded, closed and convex subset of a Banach space X
and T : K — Py o (K) be a continuous mapping with respect to the Pompeiu-Hausdorff
distance satisfying condition (C'). Suppose that each sequence in K has a nonempty and
compact asymptotic center relative to K. Then Fix(T) # 0.

Proof. According to the previous proposition we can take a sequence (2, )nen in K such
that
T(x)NA#0D, forall z € A:= A(K, (x,)).

Now we define the mapping T : A — Py o»(A) by T(z) = T(x)NA. Since T is continuous,

from Proposition 2.45 in [11] we know that the mapping T is upper semi-continuous.

Since T'(x) N A is a compact convex set we can apply the Kakutani-Bohnenblust-Karlin
theorem (see [10]) to obtain a fixed point for 7" and hence for T O

Remark 4.9. Recall that a multivalued mapping T : K — P,(X) is said to be nonex-
pansive if
H(T(x),T(y)) < ||z -yl for all z,y € K,

where H denotes the Pompeiu-Hausdorff distance. It is worth pointing out that another
natural extension of the Suzuki’s condition (C') for a multivalued mapping 7' : K — P(X)
is the following: for all x,y € K

%dist(%T(w)) <z —yll = H(T(2), T(y)) < [lz -yl

Obviously, a nonexpansive mapping meets the above condition. However, it is not
clear if a mapping satisfying the above condition also satisfies (C'). Still, if T' takes
compact values is easy to see that this new condition implies condition (C'). Since in
our theorems 7' is assumed to be compact valued, such results generalize classical fixed
point theorems for multivalued mappings (see [16],[19],[20]).

5 Common fixed points

In our last section we will apply some of the fixed point theorems stated in previous
sections to obtain results on the existence of common fixed point.

Definition 5.1. Let X be a metric space and K € P(X). Suppose f : K — K and
T:K — P(K). Then f and T are commuting mappings if f(y) € T(f(x)) for allz € K
andy € T'(z).

We start by giving a lemma that will constitute a main tool in proving our results.

Lemma 5.2. Let X be a metric space, K € P(X), f: K — K satisfying condition (C)
and with Fix(f) # 0. Supppose T : K — P(K) is such that for every z,y € Fix(f),
the set Pry)(z) is a singleton. If f and T commute, then Pr,)(z) € Fix(f) for all
x,y € Fix(f).

Proof. Let x,y € Fix(f) and denote Pp(,)(z) by u. Because f meets condition (C') and
0 = (1/2)d(z, f(z)) < d(x,u) we obtain that d(z, f(u)) = d(f(x), f(u)) < d(z,u) =
dist(z,T'(y)). But f(u) € T(y) because f and T commute, y € Fix(f) and u € T(y).
Hence, f(u) = u and the conclusion follows. O
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The following theorem is an extension of Theorem 4.2 of [23] in the setting of a UC
space with convex metric. Notice that our approach is different in the second half of the
proof from that of [23]. In particular, ours fills a gap in the proof of [23]. Notice also
that this theorem extends some other results in the theory, see, for instance, [6, 24].

Theorem 5.3. Let X be a complete UC space with convex metric and K € Py ¢ ,(X) .
Suppose f: K — K and T : K — Peyp o (K) satisfy condition (C). If f and T commute,
then there exists z € K such that z = f(z) € T(z).

Proof. Using Theorem 2.6, it follows that Fix(f) is nonempty, closed and convex. Since
the setting we work in is a UC' space, the projection onto each compact and convex set is
a singleton. By Lemma 5.2, Pr(,(z) € T'(z) NFix(f) for each x € Fix(f) and so we can
consider the mapping T'(-) NFix(f) : Fix(f) — Pep(Fix(f)). We show that this mapping
satisfies condition (C). Let z,y € Fix(f),uy € T'(z) N Fix(f) such that (1/2)d(x,ug) <
d(z,y). Since T fulfills (C'), there exists v, € T'(y) such that d(us,vy) < d(z,y). Let u,
stand for Pr(,)(us). According to Lemma 5.2, u, € T'(y) N Fix(f). It is also clear that
d(ug, uy) < d(ug,vy) < d(x,y). Thus, the mapping T'(-) NFix(f) : Fix(f) = Pep(Fix(f))
satisfies (C') which means, using Theorem 3.6, that there exists z € K such that z =
f(z) € T(2). O

Likewise, one can prove the following result in the framework of R-trees.

Theorem 5.4. Let X be a bounded complete R-tree. Suppose f: X — X and T : X —
Puev(X) satisfy conditions (C) and (C”) respectively. If f and T commute, then there
exists z € K such that z = f(z) € T(z).

Proof. According to Theorem 2.6, it follows that Fix(f) is nonempty, closed and convex
(and so also hyperconvex). This means that Fix(f) is in its own turn a complete R-tree.
Since in an R-tree the projection onto each closed and convex set is a singleton we can
apply Lemma 5.2 and so T'(z) N Fix(f) # 0 for each € Fix(f). Now consider the
mapping T'(-) N Fix(f) : Fix(f) = Puco(Fix(f)). We show that this mapping satisfies
condition (C”). Let z,y € Fix(f), u, € T(x) NFix(f) such that d(x, u,) = dist(z, T'(x) N
Fix(f)) and (1/2)d(w,u;) < d(x,y). Applying Lemma 5.2, Prq(z) € T(z) N Fix(f)
which implies that dist(z,T(z)) = dist(x,T'(z) N Fix(f)), so d(z,u,) = dist(z, T(x)).
Because T satisfies (C”), there exists v, € T'(y) such that d(ug,vy) < d(z,y). Let u,
stand for Pr,(uz). According to Lemma 5.2, u, € T(y) N Fix(f). It is also clear
that d(ug,uy) < d(ug,vy) < d(x,y). Thus, the mapping T'(-) N Fix(f) : Fix(f) —
Py cv(Fix(f)) satisfies (C’) which means, using Corollary 3.11, that there exists z € K
such that z = f(z) € T'(2). O
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