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Abstract. Benardete, Gutierrez and Nitecki showed an important result which relates the
geometrical properties of a braid, as a homeomorphism of the punctured disk, to its algebraic

Garside-theoretical properties. Namely, they showed that if a braid sends a standard curve to
another standard curve, then the image of this curve after each factor of the left normal form
of the braid (with the classical Garside structure) is also standard. We provide a new simple,
geometric proof of the result by Benardete-Gutierrez-Nitecki, which can be easily adapted to the

case of the dual Garside structure of braid groups, with the appropriate definition of standard
curves in the dual setting. This yields a new algorithm for determining the Nielsen-Thurston
type of braids.

1. Introduction

Braid groups are both mapping class groups and Garside groups. The links between these two
features of braid groups seem to be very deep and their investigation is currently the goal of several
works. In particular the Garside-theoretic approach to the problem of deciding algorithmically
the Nielsen-Thurston type of a given braid turns out to be very fruitful [1],[19],[18],[17],[5].

The n-strand braid group is naturally identified with the mapping class group of the n-times
punctured disk Dn. Braids induce a (right) action on the set of isotopy classes of simple closed
curves in Dn: considering the isotopy class [C] of a simple closed curve C and an n-braid x, the
isotopy class of simple closed curves resulting from the action of x on [C] will be denoted by [C]x.
The simple closed curves we shall consider in the present paper will be nondegenerate, that is
surrounding more than one and less than n punctures.

Let us assume for the moment that Dn is parametrized as the disk with diameter [0, n + 1] in C
and points 1, 2, . . . , n removed. In this setting, a curve C is said to be standard, or round, if it is
isotopic to a geometric circle in Dn. That is, if the punctures enclosed by C are consecutive. An
isotopy class [C] is said to be standard, or round, if some (hence every) representative is round.
Round curves are particularly useful for decomposing a reducible braid into its corresponding
components [17]. As every reducible braid has a conjugate which preserves a family of round
curves [1], searching for such a conjugate becomes a possible strategy both for determining whether
a braid is reducible and for finding its geometric components. Benardete, Gutierrez and Nitecki [1]
explain how to determine whether such a conjugate exists, and also how to find it, thanks to the
classical Garside structure of braid groups.

Braid groups are the main examples of Garside groups [6]. This means that they admit a lattice
structure, and a special element denoted ∆, satifying some properties first discovered by Garside
in [12]. We will refer to this as the classical Garside structure of the braid group. Using this
structure, one can define the left normal form of a braid x, which is a unique decomposition of
the form x = ∆px1 · · ·xr (see [8],[7]) in which the factors belong to the set of the so-called simple
elements.
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The result by Benardete, Gutierrez and Nitecki, which relates round curves and left normal forms,
is the following:

Theorem 1 ([1],[19]). Let C be a standard curve in Dn. Let x = ∆px1 · · ·xr be a braid in
(classical) left normal form. If [C]x is standard, then [C]∆px1···xm is standard for m = 1, . . . , r.

Thanks to this result, and applying special conjugations called cyclings and decyclings, it is possible
to determine whether a braid has a conjugate which preserves a family of round curves, hence it
is possible to know whether a braid is reducible, with the aid of the Garside structure of the braid
group [1].

The method mentioned in the previous paragraph needs to compute a big subset of the conjugacy
class of a braid. This has been improved in [18], avoiding the computation of such a big subset,
at the cost of enlarging the set of standard curves to include round and also almost-round curves.
This raises the question whether the notion of round curves, and the use of the classical Garside
structure, are the best choices for this kind of techniques.

There is another well-known Garside structure of the braid group, discovered by Birman, Ko and
Lee [3], which is known as the dual Garside structure. With respect to this structure, the left
normal form of a braid is a unique decomposition x = δpx1 · · ·xr, where δ is the special (Garside)
element, and the factors are simple, with respect to the dual structure.

In this paper we prove the analogue of Theorem 1 in the dual setting. We remark that the proofs of
Theorem 1 given in [1] and [19] cannot be adapted in a natural way to the dual Garside structure
of the braid group. For that reason we give a new proof of Theorem 1, in the classical setting,
which can be naturally adapted to the dual setting. To this purpose we also introduce a natural
notion of standard curve related to the dual Garside structure of the braid group. Namely, as
round curves determine standard parabolic subgroups of the braid group, with the Artin strucure,
the standard curves in the dual setting will be those determining standard parabolic subgroups,
with the dual structure.

It is important to mention that a generalization of Theorem 1 to Artin-Tits groups of spherical
type, with the classical Garside structure, is given in [15]. The powerful algebraic methods used
in [15] are based in the theory of Garside categories and seem to allow further generalization of
Theorem 1 to dual Garside structures [16], although this does not appear in the literature. Here
we present simple, geometric proofs, for the particular but important cases of the two well known
structures of the braid groups.

Our proof of Theorem 1 can be sketched as follows. We show that if C is round and [C]∆px1 is
not round, then [C]∆px1···xm is not round for m = 1, . . . , r. Hence [C]∆px1···xr cannot be round,
contradicting the hypothesis.

We assume the usual Artin generator σi, for i = 1, . . . , n−1, to be the counterclockwise half Dehn
twist along the segment [i, i + 1]. We will see that if [C]∆px1 is not round, then a portion of (a
suitable representative of) [C]∆px1 crosses the real line in the way shown in Figure 1, for some
i < j < k. Moreover, x1σj is simple, meaning that the strands of x1 ending at j and j + 1 do not
cross.

Figure 1. Strands which arrive at positions j and j + 1 (depicted as crosses)
have not crossed in x1.

We then prove by recursion that, as x1 · · ·xr is in left normal form, the above properties must
hold for [C]∆px1···xm , for m = 1, . . . , r. That is, some portion of (a suitable representative of)
[C]∆px1···xm must cross the real line as in Figure 1, for some im < jm < km, where xmσjm is

simple. This implies in particular that [C]∆px1···xr is not round, showing Theorem 1.
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This proof can be adapted to the dual setting as follows. First, in order to work with the dual
Garside structure of the braid group, it is more convenient to parametrize Dn as the unit disk

in C with set of punctures { 1
2e

−2ikπ
n , k = 1, . . . , n}. Throughout the paper the puncture 1

2e
−2ikπ

n

will be denoted k for brevity, and the disk Dn with this parametrization will be denoted D∗
n. We

remark that, if one defines standard curves as isotopy classes of geometric circles, as above, then
the analogue of Theorem 1 is not true in the dual setting (see Example 12). Hence we need a
different definition for standard curves, adapted to the dual Garside structure:

Definition 2 (See also Definition 13). A simple closed curve in D∗
n is called standard if it is

isotopic to a curve which can be expressed, in polar coordinates, as a function ρ = ρ(θ), for
θ ∈ [0, 2π[. See Figure 2(a). An isotopy class [C] is said to be standard if some (hence every)
representative is standard.

The main result of this paper is the following:

Theorem 3. Let C be a standard curve in D∗
n. Let x = δpx1 · · ·xr be a braid in dual left normal

form. If [C]x is standard, then [C]δpx1···xm is standard for m = 1, . . . , r.

Figure 2. (a) shows a standard curve as in Definition 2. (b) A part of a non-
standard curve.

The proof of this result parallels the one of Theorem 1 and its simplicity allows to outline it
right here. First recall that the usual generators of the dual Garside structure are the braids
ai,j = aj,i corresponding to the counterclockwise half Dehn twist along the chord segment joining
the punctures i and j, for each pair 1 6 i, j 6 n, with i ̸= j.

We will see that if [C]δpx1 is not standard, then a portion of (a suitable representative of) [C]δpx1

crosses the circle of radius 1
2 in the way shown in Figure 2(b), for some 1 6 i, j 6 n. Moreover,

x1ai,j is simple. We then prove by recursion that, as x1 · · ·xr is in left normal form, the above

properties must hold for [C]δpx1···xm , form = 1, . . . , r. That is, some portion of (a suitable represen-
tative of) [C]δpx1···xm must cross the circle of radius 1

2 as in Figure 2(b), for some 1 6 im, jm 6 n,

where xmaim,jm is simple. This implies in particular that [C]δpx1···xr is not standard, showing
Theorem 3.

The following two sections contain the detailed proofs of Theorems 1 and 3, respectively. The last
section contains a new algorithm for solving the reducibility problem in braid groups, based on
Theorem 3.

Acknowledgements. Thanks to Eddy Godelle for his receptiveness to questions about his papers
on parabolic subgroups of Garside groups. The author also wishes to thank Juan González-Meneses
for countless helpful comments on earlier versions of the paper.

2. The classical Artin-Garside case

This section deals with the classical case. Throughout the section, we thus assume Dn to be
parametrized as the disk with diameter [0, n+ 1] in C and with the points 1, 2, . . . , n removed.

In order to make rigorous the idea expressed in Figure 1, we associate to each isotopy class of simple
closed curves [C] in Dn a unique reduced word W ([C]) which we shall define in Subsection 2.1. The
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word W ([C]) allows to describe carefully the action of positive braids on [C]; this will be achieved
in Subsection 2.2. Subsection 2.3 will be devoted to the proof of Theorem 1.

2.1. From curves to words. We will always assume that the curves under consideration are
nondegenerate, simple and closed, so unless otherwise stated, the word “curve” alone will mean
“nondegenerate simple closed curve”.
Let C be a curve in Dn, and suppose that it has a finite number of crossings with the real line,
which are all transverse. We shall associate to C a word W (C) that we now define.

Our strategy to define the word W (C) already mostly appears in [10], Appendix A. We proceed
as follows. Choose a point ∗ of C which lies on the real line as well as an orientation for C.
Running along C following the chosen orientation, starting and ending at ∗, determines a word in
the alphabet X = {`,a, 0, . . . , n} as follows: each arc through the upper half plane contributes a
letter a to the word, each arc through the lower half plane, a letter `, and each intersection with
the segment ]i, i+ 1[ yields the letter i.

The number corresponding to ∗ can be chosen to be either at the beginning or at the end of the
word. The word obtained in this way will be denoted W (C) and we call it the word associated
to C. Choosing another point ∗ or putting the letter determined by the intersection point ∗ at
the beginning or at the end of W (C) corresponds to a cyclic permutation of the letters in W (C),
whereas choosing the reverse orientation of C yields the reverse of W (C). Hence, words associated
to curves are to be considered up to cyclic permutation of their letters and up to reverse.

Example 4. Let C be the curve depicted in Figure 3. If we fix ∗ in the interval ]1, 2[ and the

Figure 3. The curve C of Example 4.

clockwise orientation, then the word associated to C is

W (C) = 1 a 2 ` 0 a 6 ` 3 a 5 ` 6 a 3 ` 2 a 0 ` .

Notice that two curves related by an isotopy of Dn fixing the real diameter setwise have the same
associated word.

We say that the word associated to C is reduced if it does not contain any subword of the form
i ` i or i a i. We say that a curve C is reduced if its associated word W (C) is reduced.

Notice that reduced curves are exactly those which do not bound any bigon (see [10]) together
with the real line. According to [10], every curve C is isotopic to a reduced one Cred, which is
unique up to isotopy of Dn fixing the real diameter setwise. We thus may finally define, for each
isotopy class of curves [C] in Dn, its associated reduced word as W ([C]) = W (Cred).

2.2. The action of positive braids. Let B+
n be the submonoid of Bn generated by σ1, . . . , σn−1,

called the monoid of positive braids. Instead of the usual Artin generators, it will be convenient
to work with the following bigger generating set of B+

n :

{Σp,k = σp−1 . . . σp−k, 1 6 k < p 6 n}.

According to our previous convention that σi is a counterclockwise half-Dehn twist along the
segment [i, i+ 1], the braid Σp,k corresponds to a move of the puncture numbered p through the
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upper half plane up to the position p − k while the punctures p− 1, p− 2, . . . , p− k are shifted
one position to the right.

Given the isotopy class of a curve C and a positive braid x we are going to describe which trans-
formations have to be performed on the word W = W ([C]) in order to obtain the word W ([C]x).
To this purpose we first focus on the case x = Σp,k.

Since the generators we are considering are mainly moves of punctures through the upper half
plane, we assume that the action of the braids Σp,k mainly modifies the upper arcs occuring
in Cred (from which new lower arcs can arise) while the lower arcs are only modified by translating
their endpoints. This will be described by the following formulae, which are also depicted in
figure 4.

We define, for i < j:

(i a j)Σp,k =


i a j if [p− k, p[ ∩ {i, j} = ∅ (F1)
(i+ 1) a (j + 1) if [p− k, p[ ∩ {i+ 1, j} = {i+ 1, j} (F2)
(i+ 1) a (p− k) ` (p− k − 1) a j if [p− k, p[ ∩ {i, j} = {i} (F3)
i a (p− k − 1) ` (p− k) a (j + 1) if [p− k, p[ ∩ {i+ 1, j} = {j} (F4)

We can define in the same way (j a i)Σp,k . It suffices to take the reverse of the above formulae
(the picture is exactly the same than in Figure 4).

Figure 4. How the action of the braid Σp,k does transform upper arcs? In dashed
lines is represented the trace of the move of the puncture initially numbered p (up
to the position p− k). In continuous lines the arc i a j on the left hand side and
its image (i a j)Σp,k on the right hand side.

Now, let W̃ be the word obtained by replacing each subword i a j in W by the corresponding
subword (i a j)Σp,k . This transforms the lower arcs (i ` j) in W , just by translating their
endpoints.

Notice that W̃ is not necessarily reduced, so that W ([C]Σp,k) and W̃ are possibly not the same.

The following explains how to turn W̃ into the reduced word W ([C]Σp,k):

Lemma 5. Let [C] be an isotopy class of curves and W = W ([C]). Let 1 6 k < p 6 n. Let W̃ be

as above, and let WΣp,k be the word obtained from W̃ by removing all instances of subwords of the
form p ` p a. Then WΣp,k = W ([C]Σp,k).

Proof. We observe that the formulae defining (i a j)Σp,k do not contain any subword of the form

c ` c nor c a c. Thus the possible instance of such a subword in W̃ necessarily arises from the
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transformation of a lower arc. Notice that a lower arc c ` d can only be transformed into an arc
k ` l, with k ∈ {c, c+1} and l ∈ {d, d+1}. Hence the latter arc forms a bigon with the horizontal
axis if and only if c + 1 = d, k = c + 1 and l = d (up to reverse we may suppose that c < d), in

which case W̃ contains the subword d ` d. By the formulae defining (i a j)Σp,k , this happens if
and only if d = p, that is c ` d = (p − 1) ` p. In particular we have shown that no subword of

the form c a c can arise in W̃ .

We now claim that removing the subwords p ` p a is sufficient in order to turn W̃ into a

reduced word; that is, every sequence p ` p a in W̃ is a subsequence of a larger one, of the form
a a p ` p a b, with a ̸= b.
Let h a (p − 1) ` p a l be a subword of W . As C is a simple curve, h, l must be in one of the
following three cases (see Figure 5):

1) h < p− 1 < p < l,
2) l 6 h < p− 1 < p,
3) p− 1 < p < l 6 h.

We shall show that in the three cases, the subword a a p ` p a b of W̃ yielded by the action of
Σp,k satisfies

a ∈ {p− k, . . . , p− 1}

and

b ∈ {0, . . . , p− k − 1} ∪ {p+ 1, . . . , n},

and thus a ̸= b, as claimed.

Figure 5. The possible cases of subwords h a (p − 1) ` p a l appearing in W ,
with the distinct possible moves of the point p.

In the first two cases the arc (h a p) will yield a = h+1 or a = p−k, satisfying a ∈ {p−k, . . . , p−1}.
In the third case we will also obtain a = p− k. On the other hand, in the first and third cases we
have b = l (hence b > p); in the second case, either b = l if p− k > l+1 or b = p− k− 1 otherwise
(and b < p− k).

This achieves the proof of the lemma. �

We thus can associate to each isotopy class of curves [C] and each braid Σp,k the word W ([C])Σp,k

defined thanks to the above construction. We are now able to define, for each isotopy class of
curves [C], the image of its associated reduced word W = W ([C]) under the action of some positive
braid x. Indeed, if x is expressed as a product x =

∏r
m=1 Σpm,km , then by Lemma 5, the inductive

formula

W x = (W
∏r−1

m=1 Σpm,km )Σpr,kr

defines a word on X which is the reduced word associated to [C]x (hence it does not depend on
the chosen decomposition of x in terms of braids Σp,k). This can be written W ([C]x) = W ([C])x.
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2.3. Proof of Theorem 1. By abuse of notation, instead of speaking about isotopy classes of
simple closed curves, we will simply speak about curves, meaning that we are considering the
reduced representatives. Consequently, the letter C will denote the reduced representative of the
isotopy class of the curve C and its associated reduced word will be denoted W (C).

We introduce a class of curves which is larger than the class of round curves:

Definition 6. A curve C will be called almost-round if the word W (C) (up to cyclic permutation
of its letters and reversing) can be written as W (C) = w1w2, where the arcs in w1 are oriented
from left to right whereas those in w2 are oriented from right to left. (See Figure 6).

Figure 6. The curve in Part (a) is almost-round since its associated reduced
word can be written as

W = w1w2 = (1 a 4 ` 6 a 9 ` 10 a 11)(` 8 a 6 ` 4 a 3 `).
The curve in Part (b) is not almost-round.

The reduced words associated to almost-round curves satisfy the following necessary condition:

Lemma 7. Let C be an almost-round, not round curve. Then W (C) (up to cyclic permutation
and reversing) must contain a subword of the form i a j ` l for some 0 6 i < j < l 6 n.

Proof. The curve C has a unique local minimum (and a unique local maximum) in the horizontal
direction. Let ∗ be this local minimum. Choose the clockwise orientation for C, and notice that
the arcs oriented from left to right starting at ∗ form a subword i1 a i2 . . . a ik (ending with an
upper arc, as C is simple). If k >2, then i1 a i2 ` i3 satisfies the required hypothesis. If k = 2,
choose the counterclockwise orientation. As C is not round, W (C) must start with a subword
i′1 ` i′2 . . . ` i′k with k > 4 and i′2 a i′3 ` i′4 does the job. �

Before proving Theorem 1, we introduce some more notation. We will say that some 0 < j < n is a
bending point for (or bends) a curve C if the reduced word W (C) admits (up to cyclic permutation
of its letters and up to reverse) a subword of the form i a j ` l, for some 0 6 i < j < l 6 n.
Lemma 7 thus asserts that an almost-round, not round curve admits at least one bending point.
Given a simple braid s, and a bending point j for some curve C, j will be said to be compatible
with s if the strands j and j + 1 of s do not cross in s.

The following is the key for Theorem 1:

Lemma 8. Let s1, s2 be two simple braids such that s1 · s2 is in left normal form, and let C be a
curve. Let j be a bending point for C, compatible with s1. Then there exist some bending point j′

for Cs1 , which is compatible with s2.

In order to prove this lemma, we recall that simple braids are those positive braids in which any
pair of strands crosses at most once (see [7]). We also recall the following well-known fact (see [11]):
any simple braid s can be decomposed in a unique manner as a product

s =
n∏

p=2

Σp,kp ,

where 0 6 kp < p and Σp,0 = 1. This allows us to see s as a sequence of moves of the strands
numbered from 2 to n (in this order), each of them getting kp positions to the left (the number kp
depending on s). Notice that the pth strand of s does not cross (in s) any of the strands being to
the left of the position p− kp.
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Proof of Lemma 8. As s1 · s2 is in left normal form, it is sufficient to show that there exist some
bending point j′ for Cs1 such that the strands numbered j′ and j′+1 at the end of s1 do not cross
in s1 ([7]).

Let

s1 = (

j−1∏
p=2

Σp,kp) · Σj,kj · Σj+1,kj+1 · (
n∏

p=j+2

Σp,kp)

be the decomposition of s1 in terms of the braids Σp,k. Acting on C by s1 following the above
factorization, we will be able to find at each step a bending point ι for the resulting curve such
that the strands at respective positions ι and ι + 1 at the end of this step have not yet crossed
in s1.

The first factor
∏j−1

p=2 Σp,kp involves moves of punctures which are to the left of j. Hence, due to

Formulae (F1) and (F3) and Lemma 5, j is still a bending point for the resulting curve. Moreover
strands ending at j and j + 1 have not crossed in this first factor.

The factor Σj,kj moves the jth puncture to the left; once again due to Formulae (F1) and (F3)
and Lemma 5, the resulting reduced word admits a subword i′ a j ` (with i′ < j); j is still
a bending point for the corresponding curve. Notice that the former jth puncture lies (now at
position j − kj) under the arc i′ a j and that strands ending at positions j and j + 1 have not
crossed.

Then, the factor Σj+1,kj+1 moves the j+1st puncture to the left. As j was a bending point for C,
compatible with s1, the strands which started at positions j and j + 1 do not cross in s1, hence
this movement of the j + 1st puncture cannot exceed the position j − kj : it ends at the diameter
of the upper arc i′ a j and by Formula (F4) and Lemma 5, the position ιj+1 := j− kj+1 is now a
bending point for the resulting curve (see Figure 7). Moreover by construction the strands ending
at ιj+1 and ιj+1 + 1 have not crossed in s1.

Figure 7. The action of the braid Σj+1,kj+1 ; as the strands represented as bold
crosses cannot cross, the point j + 1 is “blocked” in its move to the left by the
position j − kj .

Finally, observe that for j + 2 6 q 6 n, the movement of the qth puncture yields some bending
point ιq for the resulting curve: this is ιq = ιq−1 + 1 if this movement ends to the left of ιq−1 and
ιq = ιq−1 otherwise. Thus j′ := ιn is a bending point of Cs1 and strands numbered j′ and j′ + 1
at the end of s1 do not cross in s1 by construction. This shows that the bending point j′ of Cs1

is compatible with s2. 2

We can now achieve the proof of Theorem 1. Recall that we consider a braid x = ∆px1 . . . xr in
left normal form which sends a round curve C to another round curve C′ = Cx. Since the braid ∆
corresponds to a rotation of Dn, the curve C∆t

is round for all integers t and we may suppose,
up to multiplication by ∆−p, that the left normal form of x is just x1 . . . xr. In order to prove
Theorem 1, it is sufficient to prove that the curve Cx1 is round, since once this fact is proven, we
are given a braid x2 . . . xr in left normal form whose action transforms the round curve Cx1 into
the round curve C′, and the result follows by induction on the number of factors in the left normal
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form of x. We shall give a proof by contradiction, assuming that the curve Cx1 is not round.
However it is almost round, as x1 is a simple braid, see [18].

According to Lemma 7, there must exist a bending point j1 for Cx1 . Notice that punctures which
lie above the curve Cx1 come from strands which started to the right of C at the beginning of x1

as well as punctures which lie below Cx1 come from strands which started to the left of C. By
Lemma 7, the puncture j1 lies either below the curve Cx1 or is enclosed by it whereas the puncture
j1 + 1 lies either above, or is enclosed by Cx1 . Moreover, at most one of them is enclosed by Cx1 .
This implies that the strands in positions j1 and j1 + 1 at the end of x1 do not cross in x1. In
other words, j1 is a bending point for Cx1 compatible with x2 (as x1 · x2 is in left normal form).

Now, by induction on m = 1, . . . , r−1 and by Lemma 8, there exist j2, . . . , jr−1 such that jm bends
the curve Cx1...xm and is compatible with xm+1, for all m = 1, . . . , r − 1. The proof of Lemma 8
also ensures that Cx1...xr has a bending point jr.

In particular we have shown that the curve Cx1...xr = Cx is not round, provided that Cx1 is not
round. This is a contradiction; therefore Cx1 is round and Theorem 1 is shown.

3. The dual case, proof of Theorem 3

In this section we shall be interested in the dual (or BKL) Garside structure of the braid group [3].
We thus adopt the parametrization D∗

n of the n-times punctured disk defined in the Introduction.
We shall associate to each isotopy class of simple closed curves [C] in D∗

n, a unique reduced word
W ([C]) to be defined in Subsection 3.1. Reduced words will be a tool for describing the action of
dual positive braids on simple closed curves in D∗

n in Subsection 3.2. Finally, Theorem 3 will be
proved in Subsection 3.3.

3.1. From curves in D∗
n to reduced words. As in the previous section, all the curves we are

considering are nondegenerate, simple and closed. We shall speak about “curves” when we really
mean “nondegenerate simple closed curves”.

Notation : the circle of radius 1
2 in D∗

n centered at the origin will be denoted by Γ. Given
i, j ∈ {1, . . . , n}, the move of the puncture i clockwise along Γ up to the position j describes an
arc of Γ which we will denote by (i, j). The arc (i, i) is just the puncture i.

Let C be a curve in D∗
n, and suppose that it has a finite number of crossings with the circle Γ,

which are all transverse. We shall associate to C a word W (C) that we now define.

Choose a point ∗ of C which lies on the circle Γ and choose an orientation for C. Running along C
following the chosen orientation, starting and ending at ∗, determines a word in the alphabet
Y = {`,x,y,	,�, 1, . . . , n} as follows.
Each arc through the inner component of D∗

n − Γ contributes a letter ` to the word. Each
intersection of C with the arc (i, i + 1) of Γ contributes a letter i. Finally arcs of C through the
outer component of D∗

n − Γ contribute a letter y, (x respectively) if they are oriented clockwise
(counterclockwise, respectively); except those as in Figure 8 (a) (thus having their endpoints in
the same arc (i, i+1) of Γ) which contribute a letter � or 	, in a a natural way according to their
orientation.

The number corresponding to the intersection point ∗ can be chosen to be either at the beginning
or at the end of the word. The word obtained in this way will be denoted by W (C) and we call
it the word associated to C. Choosing another point ∗ or putting the letter determined by ∗ at
the beginning or at the end of W (C) corresponds to a cyclic permutation of the letters in W (C),
whereas choosing the reverse orientation of C yields the reverse of W (C), exchanging with each
other the letters y and x (� and 	, respectively). Hence, words associated to curves are to be
considered up to cyclic permutation of their letters and up to reverse, exchanging the orientation
of outer arcs.
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Figure 8. (a) An arc i � i. (b) The curve of Example 9

Example 9. Let C be the curve depicted in Figure 8 (b); here we have n = 16. The point ∗ and
the orientation are also indicated in the figure. This curve yields the word

W (C) = 4 x 3 ` 13 x 12 ` 10 � 10 ` .

Notice that two curves related by an isotopy of D∗
n fixing the circle Γ setwise have the same

associated word.

We say that the word associated to C is reduced if it does not contain any subword of the form
i ` i, i y i or i x i. We say that a curve C is reduced if its associated word W (C) is reduced.
Notice that reduced curves are exactly those which do not bound any bigon (see [10]) together
with the circle Γ. According to [10], every curve C is isotopic to a reduced one Cred, which is
unique up to isotopy of D∗

n fixing the circle Γ setwise. We finally define, for each isotopy class of
curves [C] in D∗

n, its associated reduced word as W ([C]) = W (Cred).

3.2. The action of dual positive braids. Let B+∗
n be the submonoid of Bn generated by the

braids ai,j , 1 6 i, j 6 n, i ̸= j, called the monoid of dual positive braids. We shall use a bigger
generating set, namely

P =

ai1,i2ai2,i3 . . . air−2,ir−1air−1,ir ,

∣∣∣∣∣∣
2 6 r 6 n,

i1, . . . , ir all distinct and placed in this order,
following the circle Γ clockwise from i1 to ir

 .

The elements of P are naturally called polygons according to their geometric representation in D∗
n;

and they correspond to a counterclockwise rotation of a neighborhood of the convex polygon in D∗
n

whose vertices are i1, i2, . . . , ir, following the cyclic permutation [ir, ir−1, . . . , i2, i1].

The following are well-known (see [3]):

• Let P1, P2 ∈ P, seen as polygons in B∗
n. If their respective convex hulls are disjoint, then

P1P2 = P2P1. In this situation, we will say that P1 and P2 are disjoint.
• Let i1, . . . , ir be r (2 6 r 6 n) punctures placed in this order following Γ clockwise from
i1 up to ir. Then all the braid words obtained as the concatenation of r − 1 consecutive
letters taken from the sequence (ai1,i2 , ai2,i3 , . . . , air−2,ir−1 , air−1,ir , air,i1) in this order, up
to cyclic permutation, are representatives of the same braid P , which is an element of P.
Moreover, for each pair 1 6 d < e 6 r, the letter aid,ie is a prefix of P .

Let us now consider the isotopy class of a curve C and its associated reduced word W = W ([C]).
Given a dual positive braid x, we are going to describe which transformations have to be performed
on the word W in order to obtain the word W ([C]x). To this purpose we first focus on the case
x = P ∈ P.

We assume that the action of P will mainly modify the inner arcs whereas the outer arcs are only
modified by shifting their endpoints along the circle Γ.
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We first observe that any inner arc i ` j separates the punctures into two disjoint subsets: one
containing the punctures i+ 1 and j, and the other containing the punctures j + 1 and i. We say
that P is disjoint from the arc i ` j if all the vertices of P lie in only one of these sets. If it is so,
we set (i ` j)P = i ` j.

Otherwise we say that P is transverse to the arc i ` j. In that case, let pi,j be the rightmost vertex
of P lying in (j + 1, i); similarly let qi,j be the rightmost vertex of P lying in (i+ 1, j). By abuse
of notation, we will write i ∈ P to mean that i is a vertex of P . Observe that pi,j = i ⇔ i ∈ P
and qi,j = j ⇔ j ∈ P . A priori, looking at the pictures, we would define:

(i ` j)P = i ` pi,j x (pi,j − 1) ` (qi,j − 1) y qi,j ` j (F ′)

Formula (F ′) is depicted in Figure 9.

Figure 9. In this example P (in dotted lines) can be expressed as the product
α1 . . . α4; α1α2 acts trivially on the arc i ` j, α3 yields the arc in the middle part,
and the action of α4 on the latter yields the arc in the right-hand side, which is
(i ` j)P , the image under the action of P of the arc i ` j.

But notice that application of Formula (F ′) produces bigons with the circle Γ if either i ∈ P or
j ∈ P . That is why we set:

(i ` j)P =


i ` pi,j x (pi,j − 1) ` (qi,j − 1) y qi,j ` j if i /∈ P and j /∈ P (F ′0)
i ` pi,j x (pi,j − 1) ` (j − 1) if i /∈ P and j ∈ P (F ′1)
(i− 1) ` (qi,j − 1) y qi,j ` j if i ∈ P and j /∈ P (F ′2)
(i− 1) ` (j − 1) if i ∈ P and j ∈ P (F ′3)

Later, we shall need the following:

Remark 10. The image of an inner arc i ` j under the action of a polygon P lies (up to
deformation) in a neighborhood of the union of i ` j with P .

Let us replace each subword (i ` j) in W by the corresponding subword (i ` j)P as defined above.
This transforms the outer arcs in W by shifting their endpoints along the circle Γ. Moreover,
letters y (x, respectively) need to be transformed into � (	, respectively) if they correspond
in W to an arc (c+1) y c, where c+1 is shifted up to the position c (or if they correspond to an arc
(c− 1) x c, where c is shifted up to the position c− 1, respectively). See Figure 10 (a). Similarly,
letters � (	, respectively) need to be transformed into y (x, respectively) if the endpoints of the

arc do not coincide any more after the suitable translation. Let us denote by W̃ the word on Y

obtained in this way. Notice that W̃ is not necessarily reduced, so that W ([C]P ) needs not to be

the same as W̃ . The following is the analogue of Lemma 5 in the dual setting:

Lemma 11. Let [C] be an isotopy class of curves, and W = W ([C]). Let P ∈ P be a polygon.

Let W̃ be as above, and let WP be the word obtained from W̃ by removing all instances of subwords
of the form (p− 1) y (p− 1) ` (or (p− 1) x (p− 1) `) where p is a vertex of P whereas p− 1
is not. Then we have WP = W ([C]P ).
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Proof. We observe that formulae defining (i ` j)P do not contain any subword of the form c ` c

nor c a c (by a we mean either y or x). Thus the possible instance of such a subword in W̃
necessarily arises from the transformation of an outer arc of W . According to the formulae above,
the translations of punctures involved in such a transformation turn the extremities c and d of an
outer arc into k ∈ {c, c− 1} and l ∈ {d, d− 1} respectively.

First notice that transformations of outer arcs of the form c � c or c 	 c cannot yield subwords of
the form c a c. Now, an arc c a d of W (thus with c ̸= d) will produce a bigon with the circle Γ
only if the above k and l are the same and |c− d| = 1. There are two possibilities (up to reverse),
shown in Figure 10.

Figure 10. Transformation of an outer arc c ` d of W , with |c− d| = 1, into an

outer arc of W̃ having the same extremities (in dashed line is depicted an edge
of P ). (a) The transformation c x (c + 1)  c 	 c was already mentioned: no
bigon is formed. (b) The only way (up to reverse) to get a bigon: c y (c+ 1) 
c y c.

Finally, by the formulae defining (i ` j)P , a necessary condition for a transformation as in
Figure 10 (b) to happen is that c + 1 is a vertex of P whereas c is not. We have shown in

particular that no subword of the form c ` c can arise in W̃ , and that the only subwords of the
form c a c which possibly arise are (p− 1) a (p− 1), where p is a vertex of P whereas p− 1 is not.

We now claim that removing all the instances of these subwords is sufficient in order to turn W̃

into a reduced word; that is, every sequence (p − 1) a (p − 1) in W̃ is a subsequence of a larger
one of the form

a ` (p− 1) a (p− 1) ` b,

with a ̸= b. Let r ` (p − 1) y p ` v be a subword of W to be transformed into the above one
under the action of P (hence P is transverse to the arc p ` v). See Figure 11.

Figure 11. The arc r ` (p− 1) y p ` v and an edge of P in dashed line.

We have (since p− 1 is not a vertex of P )

(r ` (p− 1))P =

{
r ` (p− 1) if P disjoint from r ` (p− 1),

. . . (qr,p−1 − 1) y qr,p−1 ` (p− 1) otherwise,

and

(p ` v)P =

{
(p− 1) ` (qp,v − 1) if v ∈ P ,

(p− 1) ` (qp,v − 1) y qp,v ` v if v /∈ P .

Thus it remains to be proved that the values a ∈ {r, qr,p−1} and b = qp,v − 1 are distinct. Notice
that by definition, qp,v lies in (p+ 1, v) so that b = qp,v − 1 lies in (p, v − 1). On the other hand,
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as Cred is simple and W is its associated reduced word, r ∈ (v, p− 2) (see Figure 11). Finally by
definition, qr,p−1 lies in (r+1, p− 1) ⊂ (v+1, p− 1). Hence in any case, a ∈ (v, p− 1); this shows
that a ̸= b and achieves the proof of Lemma 11. �

We thus can associate to each isotopy class of curves [C] and each braid P ∈ P the word W ([C])P
defined thanks to the above construction. We are now able to define, for each isotopy class of
curves [C], the image of its associated reduced word W = W ([C]) under the action of some dual
positive braid x. Indeed, if x is expressed as a product x =

∏r
m=1 Pm (where each factor lies

in P), then by Lemma 11, the inductive formula

W x = (W
∏r−1

m=1 Pm)Pr

defines a word on Y which is the reduced word associated to [C]x (hence it does not depend on
the chosen decomposition of x in terms of braids in P). This can be written W ([C]x) = W ([C])x.

3.3. Proof of Theorem 3. By abuse of notation, we will speak about curves instead of isotopy
classes of curves, meaning that we are always considering the reduced representatives. Conse-
quently the letter C will denote the reduced representative of the isotopy class of the curve C and
its associated reduced word will be denoted by W (C).
We shall now prove the analogue of Theorem 1 in the dual setting. As mentioned in the intro-
duction, the statement of Theorem 1, with round curves defined as circles surrounding a set of
consecutive punctures is false in this setting, as shows the following example:

Example 12. Let n = 4. Consider the braid x = a1,2.a1,4 which is in left normal form as written.
Figure 12 shows that roundness is not preserved after each factor of the left normal form if we
define it as the property of being homotopic to a geometric circle surrounding a set of consecutive
punctures.

Figure 12. The curve in the middle part fails to be homotopic to a circle sur-
rounding a set of consecutive punctures, although it is the image, under the first
factor of the left normal form of x, of a “round” curve which is sent by x to a
“round” curve.

We then need to define a suitable class of curves, which will play the role played by round curves
in the classical setting. It is the following:

Definition 13. A curve C will be called standard if W (C) only admits letters in {1, . . . , n,x,`}
(or in {1, . . . , n,y,`}, up to reverse).

Notice that this is equivalent to Definition 2, in the Introduction. It turns out that Theorem 1
holds in the dual setting, if we replace round curves by standard curves. This is the statement of
Theorem 3, which we will now prove.

First, we recall from [3] the following facts:

Claim 14. Every dual simple braid can be written in a unique manner (up to permutation of the
factors) as a product of pairwise disjoint elements of P (hence a commutative product).

Therefore, by Remark 10, studying the action of dual simple braids on the arc i ` j of the curve C
through the decomposition s = P1 . . . Pg can be done quite easily, since all inner arcs obtained by
application of Formulae (F ′) for some Pl are invariant under the action of Pk, k ̸= l. See Figure 13.
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Lemma 15. [3]

1) If s is a dual simple braid and s = P1 . . . Pt is its decomposition into pairwise disjoint
factors in P, then sai,j is simple if and only if Puai,j is simple for every u = 1, . . . , t.

2) If P ∈ P, then Pai,j is simple if and only if no word representative of P can be written
with a letter ak,l such that k ∈ (j + 1, i) and l ∈ (i+ 1, j).

Then, we introduce, as in the previous section, some further notation. Given a curve C in D∗
n, and

an unordered pair i, j of punctures, we say that i, j is a bending pair for C if the reduced word
W (C) contains a sequence of the form y i ` j x or y i ` j 	 (up to reverse). Also, given a
dual simple element s, a bending pair i, j for a curve C will be said to be compatible with s if ai,j
is not a prefix of s.

We are now able to state and prove the key-lemma, aiming to Theorem 3; it is the analogue of
Lemma 8 in the dual setting:

Lemma 16. Let s1, s2 be two dual simple braids such that s1 ·s2 is in dual left normal form. Let C
be a curve and assume that C admits some bending pair i, j, which is compatible with s1. Then
there exist a bending pair i′, j′ for Cs1 which is compatible with s2.

Proof. Consider the decomposition s1 = P1 . . . Pg of s1 into pairwise disjoint elements of P. Notice
that, as s1 · s2 is in left normal form, ai′,j′ is not a prefix of s2 whenever s1ai′,j′ is simple, thus it
is sufficient to find a bending pair i′, j′ for Cs1 such that s1ai′,j′ is simple.

By hypothesis, ai,j is not a prefix of s. Thus, none of the polygons P1, . . . , Pg has both i and j as
vertices. First, the action of any polygon among P1, . . . , Pg which is disjoint from the arc i ` j
in W (C) results in a curve for which i, j is still a bending pair (see Lemma 11). Moreover, by
Lemma 15, if P is such a polygon, then Pai,j is simple.

Figure 13. The braid s1, as a product of pairwise disjoint polygons, is depicted
in dashed lines. We can see, from left to right, the action of this braid on the arc
i ` j.

Then, the action of the polygons among P1, . . . , Pg which are transverse to the arc i ` j can be
studied as follows (see Figure 13). The involved polygons can be ordered by running along the
arc i ` j starting at (i, i+ 1): Q1, . . . , Qh. For t = 1, . . . , h, if pt is the rightmost vertex of Qt in
(j + 1, i) and qt is the rightmost vertex of Qt in (i+ 1, j), then by Formulae (F ′) and Lemma 11,
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the pair

i′, j′ =


q1, p2 if h > 1

i, p1 if h = 1 and i is not a vertex of Q1

q1, j if h = 1 and j is not a vertex of Q1

is a bending pair for the curve Cs1 . Moreover, by Lemma 15, in any case the braid s1ai′,j′ is
simple. It follows that i′, j′ is a bending pair for the curve Cs1 compatible with s2. �

We now achieve the proof of Theorem 3. Recall that we consider a braid x = δpx1 . . . xr in dual
left normal form which sends some standard curve C to another standard curve C′ = Cx. Since the
braid δ corresponds to a rotation of D∗

n, and thus sends standard curves to standard curves, up to
multiplication by a power of δ we may assume that x is a dual positive braid, whose left normal
form is x1 . . . xr. By a direct induction on the number of factors in the left normal form of x, it is
sufficient to show that Cx1 is standard. We shall give a proof by contradiction, assuming that Cx1

is nonstandard. We will see (by induction on m = 1, . . . , r) that none of the curves Cx1...xm for
1 6 m 6 r can be standard, contradicting the fact that Cx is standard.

Let x1 = P1 . . . , Pg be the decomposition of x1 into pairwise disjoints elements of P. On the
other hand suppose that W (C) is written only with letters in {`,x, 1, . . . , n} (that is choose the
counterclockwise orientation for C).

As Cx1 is nonstandard, so must be CPt for at least one of the Pt’s (according to Remark 10). We
may assume that CP1 is nonstandard. Therefore, there exist an arc i ` j in W (C) such that P1

is transverse to i ` j and j is not a vertex of P1 (hence W (CP1) has at least one letter y, see
Formulae (F ′0) and (F ′2)).

Consider all the polygons among P1, . . . , Pg which are transverse to the arc i ` j. By Remark 10,
only these polygons witness the action of x1 on i ` j. Running along the arc i ` j starting at
(i, i+1) allows us to order them in a natural way (see the proof of Lemma 16): Q1, . . . , Qh. Let q1
be the rightmost vertex of Q1 in (i + 1, j) (so that q1 ̸= j) and if h > 1 let p2 be the rightmost
vertex of Q2 in (j + 1, i).

Then we set i1 = q1 and j1 = p2 if h > 1, j1 = j otherwise. Formulae (F ′) and Lemma 11 now
imply that W (Cx1) contains the subword y i1 ` j1 x (or y i1 ` j1 	). By construction, the
braid x1ai1,j1 is simple according to Lemma 15.

In other words we saw that i1, j1 is a bending pair for Cx1 , and since x1 ·x2 is in left normal form,
this bending pair is compatible with x2. It follows by induction on m and Lemma 16 that one can
find, for each m = 1, . . . , r − 1, a bending pair im, jm for the curve Cx1...xm which is compatible
with xm+1. The existence of a bending pair ir, jr for the curve Cx1...xr also follows from the proof
of Lemma 16.

We proved in particular that the curve Cx1...xr = Cx is not standard. This is a contradiction which
achieves the proof of Theorem 3.

4. Deciding the dynamical type of braids

The above results give rise to an algorithm for deciding the Nielsen-Thurston type of a given braid,
in the spirit of [19], [18], using the dual structure. Thurston’s classification Theorem [21] asserts
that the elements of Mapping Class Groups of surfaces (and therefore, in particular, braids) split
into three mutually exclusive types, according to their dynamical properties: periodic, reducible
non-periodic and pseudo-Anosov. The reader is referred to [21], [9] for details and precise defi-
nitions. We restrict ourselves to recalling that reducible braids are those preserving a family of
pairwise disjoint isotopy classes of nondegenerate simple closed curves in the n-times punctured
disk. Periodic braids being easy to detect [2], the main problem to be solved is to decide whether a
non-periodic braid is pseudo-Anosov or reducible. In what follows, we will assume that the braids
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under consideration are not periodic and the curves, simple, closed and nondegenerate, will be
considered up to isotopy so that the term curve will be applied to the isotopy class of a curve.

From Theorem 3, it follows that if a braid preserves a family of standard curves, then its cyclic
sliding [13] also preserves a family of standard curves (see Proposition 4.2. and Corollary 4.3.
in [17]). Therefore:

Proposition 17. Let x be a reducible braid. Then there exist some y in SCBKL(x) (the set of
sliding circuits of x [13], with respect to the dual structure) which preserves a family of (pairwise
disjoint) standard curves.

The main result of this section asserts that this last condition, i.e. preserving a (non-empty) family
of pairwise disjoint standard curves, is checkable in polynomial time. In fact, we shall prove:

Theorem 18. There is an algorithm which decides whether a given n-strand braid x in dual left
normal form x = δpx1 . . . xℓ admits a standard invariant curve. Moreover this algorithm takes
time O(ℓ · n4).

Proof. Given a subset I0 of {1, . . . , n} (of cardinality 2 6 #(I0) 6 n−1) and a braid x in dual left
normal form x = δpx1 . . . xℓ, the main task of the algorithm is to construct a bigger set S(I0, x)
of punctures, which must be enclosed by the image under x of any standard curve C surrounding
punctures in I0, provided Cx is standard. This is achieved by the following, which is the key-result:

Lemma 19. Suppose we are given a dual simple braid s, decomposed into pairwise disjoint poly-
gons s = P1 . . . Pg, together with a proper subset I of {1, . . . , n} of cardinality at least 2, whose
elements are enumerated p1, . . . , pk in this order (up to cyclic permutation) running along the
circle Γ clockwise (we will put pk+1 = p1). For each i = 1, . . . , k, consider all the polygons among
P1, . . . , Pg having at least one vertex, but not all, in (pi + 1, pi+1 − 1) and which does not have pi
as a vertex, and take for each of them its leftmost vertex in the arc (pi + 1, pi+1 − 1). Let I ′ be
the union of I with all punctures collected in the above way. If C is a standard curve surrounding
the punctures in I (and possibly other punctures) such that Cs is standard, then C surrounds the
punctures in I ′. Moreover, if I ′ = I, the standard curve whose set of inner punctures is exactly I
is sent to a standard curve by s.

Figure 14. An example that illustrates Lemma 19: here the simple braid s is
decomposed as s = P1 . . . P4, and I is made of 4 points p1, p2, p3, p4. Then running
along each arc (pi, pi+1) allows the construction of I ′, which consists of adding
punctures depicted as crosses to I.

Proof. First observe that the image of a standard curve under s is standard if and only if the image
of this curve under each of the Pi’s is standard (Remark 10). Now, for a polygon Q and a standard
curve C oriented counterclockwise, according to Formulae (F ′), the following are equivalent:
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• CQ is standard.
• for each inner arc a ` b of C which is transverse to Q, the puncture b is a vertex of Q.

Let C be a standard curve (oriented counterclockwise) surrounding the punctures in I, such that Cs

is standard. The punctures in I ′−I (that is the punctures added to I by the process of Lemma 19)
cannot lie in the outer component of D∗

n − C. Indeed, the belonging of such a puncture to the
outer component of D∗

n − C would yield some inner arc a ` b of C, transverse to a polygon in s
not having b as a vertex; this would be in contradiction with the above remarks. See Figure 14.

Now let CI be the standard curve surrounding exactly the punctures in I (oriented counterclock-
wise) and suppose that the process of Lemma 19 yields I ′ = I. Then, whenever a polygon in s
and an inner arc a ` b of CI are transverse, the puncture b is a vertex of the involved polygon
(otherwise some puncture in (b+ 1, a) would be added to I by the process of Lemma 19). By the
remark above, it follows that Cs

I is standard, as claimed. �

The set I ′ of the above lemma depends only on I and s, and we will denote by S(I, s) the set
ρ(s)(I ′) (where ρ is the natural morphism Bn −→ Sn).

Lemma 19 says that if C is a standard curve surrounding the punctures in I and Cs is standard,
then Cs must surround the punctures in S(I, s). Using Theorem 3 and an induction on the number
of non-δ factors in the left normal form of x allows to construct the set S(I0, x).

First, we set S(I0, δ
px1) = S(ρ(δp)(I0), x1). Then we define, for i = 1, . . . , ℓ− 1,

S(I0, δ
px1 . . . xi+1) = S(S(I0, δ

px1 . . . xi), xi+1).

Notice that the set S(I0, x) can be computed in time O(ℓ · n). Notice also that, in virtue of
Lemma 19, the equality S(I, x) = I implies that the curve whose set of inner punctures is exactly I
is x-invariant.

The last step in the proof of Theorem 18 is the following:

Proposition 20. Let a, b be any pair of punctures in {1, . . . , n}. There is an algorithm which de-
cides whether a given n-braid x of length ℓ admits a standard invariant reduction curve surrounding
the punctures a and b. Moreover this algorithm runs in time O(ℓ · n2).

Proof. The algorithm does the following:

• set I0 = {a, b},
• for m = 1, . . . , n− 2, compute the set Im = S(Im−1, x) ∪ Im−1.

Remark that Ii−1 ⊂ Ii for all i. If In−2 = {1, . . . , n}, then the algorithm answers negatively;
otherwise, the standard curve which surrounds exactly the punctures in In−2 is x-invariant. Indeed,
in the latter case, there must exist some k, 1 6 k < n− 2, such that #(Ik) = #(Ik+1), and
therefore Ik = Ik+1 = In−2. This means that S(Ik, x) = Ik and therefore the standard curve
whose set of inner punctures is exactly In−2 (and thus contains a and b) is x-invariant. The
complexity of the algorithm is O(ℓ ·n2), according to the above estimation about the computation
of S(I0, x). �

Iterating the above algorithm for each pair of points in {1, . . . , n} yields the algorithm in the

statement of Theorem 18, since the number of pairs of points in {1, . . . , n} is n·(n−1)
2 , so that the

complexity of the whole algorithm is O(l · n4) as claimed. �

We observe that this algorithm is the analogue of Theorem 2.9. in [18]. The result in [18] deals
with the classical structure, but needs an additional hypothesis about the triviality of the “inner”
braid; we believe that obtaining the same conclusion without this hypothesis could be an indication
that the dual structure is more adapted for the kind of problems we are dealing with.

The algorithm deciding the Nielsen-Thurston type of a given braid x is as follows:
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1. Test whether x is periodic [2], and if it is so, return “periodic”, and stop.
2. Compute the set of sliding circuits (for the dual structure) of x [14].
3. For each element y of SCBKL(x), for each k = 1, . . . , n

2 , apply the algorithm of Theorem 18

to the braid yk (a curve belonging to a family fixed by y must indeed be fixed by some
power yk, with k = 1, . . . , n

2 ).
4. Stop whenever a positive answer is found, and return “reducible”; otherwise return “pseudo-

Anosov”.

The complexity of this algorithm is not bounded above by a polynomial in n and ℓ since the size
of the set of sliding circuits is known to be exponential in general [13], [20].
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