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Abstract

This article covers three topics. (1) It establishes lingsueen the density of certain subsets
of the set of primes and related subsets of the set of naturabars. (2) It extends previous
results on a conjecture of Bruinier and Kohnen in three wiys CM-case is included; under the
assumption of the same error term as in previous work ondénsifae result in terms of natural
density instead of Dedekind-Dirichlet density; the latigre of density can already be achieved
by an error term like in the prime number theorem. (3) It alsavjles a complete proof of Sato-
Tate equidistribution for CM modular forms with an erromtesimilar to that in the prime number
theorem.
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Keywords: Half-integral weight modular forms, Shimura, IBato-Tate equidistribution, Fou-
rier coefficients of modular forms, density of sets of primes

1 Introduction

A very significant recent result in pure mathematics is thaopof the Sato-Tate conjecture for non-
CM modular eigenforms (even for Hilbert eigenfornis) [2]asserts that for a normalised((l) = 1)
cuspidal eigenforny = >°° | A(n)g" (with ¢ = ¢*™*) of weightk > 2 onT'o(N) (someN) the
normalised coeﬁicient% € [—1,1] are equidistributed with respect to the so-called Sate-Tat
measure, whep runs through the set of primes.

The corresponding result for CM forms has been known for g liime and in fact is quite a
simple corollary of the equidistribution of the values ofdke characters. In Sectignh 3 of this article
we include a proof of a form of this result that additionallpyides an error bound like the one in the
prime number theorem (see Theorlem 3.1.1). It relies on amn bound for the equidistribution of the
values of Hecke characters given|in|[15].
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A special case of Sato-Tate equidistribution for non-CMeafgrms shows that the sets of primes
{p prime : A(p) > 0} and{p prime : A(p) < 0}

both have natural density equal 1¢2. A conjecture of Bruinier and Kohnen ([3] and [9]) asserts
that something similar should hold for certain half-inegreight modular formg = > "> | a(n)q";
namely they conjecture that the sets

{n €N:a(n) >0} and{n € N:a(n) < 0}

have the same natural density, namely, half of the naturadijeof {n € N : a(n) # 0}. The interest
in the distribution of signs is explained by a famous theok#nWaldspurger relating the squares
(a(t))? for squarefree to the critical values of the Hecke L-function of the ShimliftaF; twisted by
an explicit quadratic character (séel[23]); this precisedwes the sign ai(¢) undetermined.

The Bruinier-Kohnen conjecture appears to be quite hare. rithin contribution of the previous
work [7] is the observation that the Shimura IFt allows one to utilise Sato-Tate equidistribution for
the coefficients of the integral weight eigenfoif in order to compute the densities of the sets of
primes

{p prime : a(tp?) > 0} and{p prime : a(tp?) < 0}.

If the Shimura lift F; is non-CM, in [7] it is proved that the densities of these twtssare equal. In
this paper we extend this computation to the CM case, seer@imgd.1.1. It turns out that in the CM
case the densities can either be bbth or they can bd /4 and3/4 (see Example 4.1.2).

In order to study the set of natural numbérse N : a(tn?) > 0} (and similarly for ‘< 0’) we set
up some general theory, that grew out of analysing the raithéoc methods of [7]. We now describe
this. Lety : N — {—1,0, +1} be a multiplicative arithmetic function and define

St = {pprime : x(p) = £1}andAy = {n € N: x(n) = £1}.

Motivated by the Bruinier-Kohnen conjecture (take) to be the sign ofi(tn?) supposing:(t) > 0),
we study the relation between the densitie§ ofand A... We were unable to prove any results without
the assumption of some error term in the convergence of tueadaensity ofS_.. If there is a rather
weak error term, then the sets of prim&s are weakly regulay if the error term is strong (often
implied by variations of the Riemann Hypothesis), then wiinlregular sets (see Definition 2.2.1).
Our main results in this abstract context are ProposifioBs222.3.1, an@ 2.5.2. In this introduction
we do not repeat their precise assertions, but we explairt thieg imply for the Bruinier-Kohnen
conjecture.

In the case that the Shimura lif, has CM, we use the error bound from Theofem 3.1.1 in order
to obtain the weak regularity of the sgt prime : a(tp?) > 0} (and similarly for < 0’ and ‘= 0’)
and to deduce that

{n € N:a(tn?) >0} and{n € N : a(tn?) < 0}



have the samBedekind-Dirichlet densitysee Definitiori 2.1)3), which is equal to half the Dedekind-
Dirichlet density of{n € N : a(tn?) # 0}. Maybe at first sight astonishingly, one obtains this result
even in the situation when the densities of the correspgnsiis of primes are not equal. Under the
assumption of a similar error bound in the case fiatas no CM, one obtains the same result. This
had already been established[ih [7] under the assumptiostobrager error bound. See Remark 3.1.3
for some relation of this error bound and the GeneralisednBi@ Hypothesis. If we assume this
stronger error bound (whethé&f is CM or not), then one can use a result of Delange to deriveltea
previous statement even holds in termsafural density

The study of the densities ¢f. and A.. is done in Sectiohl2. Our aim there is to give a coherent
treatment so that we also recall the relevant definitionscti@®3 is devoted to proving Sato-Tate
equidistribution for CM modular forms (in fact we show sliyhmore) with an error term as in the
prime number theorem. In the final Sectidn 4 the results tdsveire Bruinier-Kohnen conjecture are
derived from the techniques provided in the other sections.
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2 Densities and sets of primes
In this section we are concerned with the sets
Sy ={pprime : x(p) = £1}andAy = {n € N: x(n) = +1}

for a multiplicative arithmetic functiory : N — {—1,0,+1}, as explained in the introduction.
We found it necessary to assume more than just$hahas a natural density in order to conclude
something about the density df,; namely, we obtain our results under the assumption $hais
(weakly) regular (see below). We also show that (weak) @@ylis a consequence of a sufficiently
good error bound for the convergence of the natural den§io



2.1 Notions of density

Definition 2.1.1. LetP C N be the set of all prime numbers. For a set of prinseS P we make the
following definitions:

e Forx € R, denoterg(z) := #{p <z : p € S}. As usual denotep by .

Ps(2) == ZpES o=+ This defines a holomorphic function ¢Re(z) > 1}.

For a multiplicative functiony : N — R we letD, (z) := > X pe the corresponding

n>1 n#

Dirichlet series. If|x| is bounded, it also defines a holomorphic function{®e(z) > 1}. In
particular, D; = ((z) is the Riemann-zeta function.

A functiony : N — R is said to becharacteristic or$ if y is multiplicative and its restriction
to P is the characteristic function of the sét

The following lemma links the Dirichlet serig8,, for somey that is characteristic of to Ps.
This link is the key to relating density statements on suhsEP to subsets oN.

Lemma2.1.2.Lety : N — {-1,0,1} bea muItipIicative function. Then diRe(z) > 1} one has

log Z X(p

peP
whereg(z) is a function that is holomorphic ofRe(z) > 1/2}. In particular, if x is characteristic
on S, the equality becomdsg (D, (z)) = Ps(z) + g(z).

Proof. We use the Euler produd?, (z) = [[cp <1 + 2 st pm)) which is absolutely convergent

on{Re(z) > 1}inthe sense thdt’ >, -, X]gﬁz) converges absolutely in this region.

We first treat the following special case. L&tC P andy : N — {0, 1} be multiplicative such
that for any primep one hasy(p™) = 1 ifand only if p € S andn = 1. Then the Euler factor ab,,
atp is eitherl + I% or 1, depending on whether € S or not. We take the logarithm of the Euler

product

log D, ( Zlog1+ —ZZ%Jrg( with g(z ZZ m+1<1>m.

peS peS peS m>2

It is elementary to prove tha{(z) defines a holomorphic function diRe(z) > 1}.

In order to tackle the general case, $&t := {p € P : x(p) = £1} and define the multiplicative

_ _ 1 ifpeSyandn =1,

functionsy on prime powers by (p") = :
0 otherwise.

Dy (2)-Dx_(2)
DX+ (2)

log(®(z)) = log(Dx(2)) +log(Dy_(2)) —log(Dy, (2)) = log(Dx(2)) + Ps_(2) = Ps, (2) +9(2),
whereg(z) is holomorphic on{Re(z) > 1}. On{Re(z) > 1} the function® is described by an
absolutely converging produdt(z) = [],.p ®,(2), where®,(z) satisfie§1—®,(z)| < z%. It easily
follows that this product converges absolutely{ate(z) > 1}, which implies the assertion. O

Define®(z) := . Then we have ofRe(z) > 1}

4



The density of a set of prime numbers (if it exists) measuesize. There are several notions
of density, e.g. Dirichlet density and natural density, etthin general are distinct. In a similar way,
one can define analogous notions of density for subsets dfere we recall the definitions. By the
symbollim,_,,+ we denote the limit defined by lettingtend tol on the real interva(1, co).

Definition 2.1.3. Let.S C P be a set of primes. The s8tis said to haveDirichlet densityequal to
0(.S) if the limit
1 1 1
i szS p* . szS p* . ZpGS p*
11m - 1 = hm —_— = hm T 1N
z—1t ZpE]P’ 7 z—1+ log (C(Z)) z—1% log (m)

exists and is equal té(.S). Moreover,S is said to havenatural density equal t@(.S) if the limit

im ms(7)
acl—mo ()

exists and is equal td(.S). Let nowA C N be a subset. Itis said to ha@edekind-Dirichlet density
d(A) if the limit

lim = lim

1 1
ZneA n? __ ZnEA n?: 1 . i
1t Y s st ((2) 21+ - 1

exists and is equal t6(A). Similarly, A is said to havenatural densityl(A) if the limit

<x: A
lim #{n<xz:neA}

T—00 T

exists and is equal td(A).

The equalities in the statements all follow from Lemima 2dn# the well-known fact that the
Riemann-zeta function has a simple pole of residws 1. It is well known that if a set of prime
numbersS (resp. a set of natural numbed3 has a natural density, then it also has a Dirichlet density
(resp. a Dedekind-Dirichlet density) and they coincide. uAdtiony : N — {0,1} that is charac-
teristic onS C P links the setS to the set of natural number$ = {n € N : x(n) = 1}. The
following proposition, the proof of which is evident in viesi Lemma2.1.P, makes clear the nature
of the relation between the Dirichlet density.®find the Dedekind-Dirichlet density of.

Proposition 2.1.4. Let S be a set of primes ang : N — {0, 1} be a multiplicative function char-
acteristic onS and letA = {n € N : x(n) = 1}. Then the Dirichlet density of, if it exists,

equals
B log Dy (2)
o5) = Z1£11f1+ log ¢(2)

and the Dedekind-Dirichlet density df, if it exists, equals

. Dy(2) )
o(4) = i 2 — exp (1 (10w Dy ) ~ 0 ().



We now prove a precise relationship between the densitied ahd S. This result will be
strengthened below in Propositibn 2]2.2 under the extranagon of weak regularity, which is in-
troduced in the next section.

Proposition 2.1.5. Let S be a set of primes ang : N — {0,1} be characteristic onS and let
A={neN:x(n)=1}.1f6(A) # 0 (in particular, the limit exists), then(S) = 1.

Proof. As§(A) # 0, it follows from Propositio 2.114 that
lim (log Dy(2) — log ((2))
z—1t

exists. But we have by Lemnia 2.11.2

1
log Dy (2) — log ¢(= Z——Z—+g ==Y —+g(2), (2.1)
peS pGIP’ p§ZSp

whereyg is a function that is holomorphic ofRe(z) > 1}. This implies the convergence df ¢ %
showing thaf? \ S is a set of Dirichlet density, thusS is of Dirichlet densityl. O

2.2 Regular and weakly regular sets of primes

Definition 2.2.1. Let S C P be a set of primes. We caflweakly regulaif there isa € R and a func-
tion g(z) which is holomorphic o§Re(z) > 1} and continuous (in particular, finite) ofRe(z) > 1}
such that

1
PS(Z) = CLlOg (;) + g(Z)
Asin [13] (and [7]) we say thafS is regulaﬂ if the functiong is holomorphic on{Re(z) > 1}.

Clearly, every regular sef is weakly regular. IfS is weakly regular, it directly follows that it
has a Dirichlet density, namely(S) = a. If S is regular (weakly regular) of density then Py is
holomorphic (continuous) ofRe(z) > 1}.

Proposition 2.2.2. Let S be a weakly regular set of primes and: N — {0, 1} be a multiplicative
function characteristic on primes with respectdand letA = {n € N: x(n) = 1}. Then

S(A)£0 & §(5) =

Proof. The direction =’ was proved in Proposition 2.1.5 without the assumption eélwregularity.
Hence, we now assume théitis weakly regular such thatS) = 1. It follows thatP \ S is weakly
regular of density), meaning thad ¢ I% defines a continuous function dike(z) > 1}. From
Equation [2.11) we get thabg D, (z) — log {(z) is continuous o{Re(z) > 1}, in particular the limit
lim,_,,+ exists, whence by Proposition 2.11.4 it follows théatl) exists and is nonzero. O

'Added in proof: The notion of a regular set of primes alreaulyeared in4].



We next show that sets of primes that have a natural densitydditionally satisfy certain error
bounds for the convergence of the limit defining the natusisity are (weakly) regular. Inl[7],
Proposition 2.2, we proved such a statement. We will now wedke assumption on the error term
in a way that still allows to conclude weak regularity insted regularity.

Proposition 2.2.3. Let S be a set of primes having natural densitys5). Let E(z) := rs(@) _ d(s)

m(z)
m'fz (g@r') dx converges, thef is a weakly regular set of primes

be the error function. If the integraf,™
having Dirichlet densityi(S) = d(S5).

Proof. The proof follows the proof of 7], Proposition 2.2, very s@y and the reader is referred there
for some of the calculations. We pytz) := E(x)n(x) and f(z) = m(+)1 dx. ThenPs(z) =
d(S)P(z) + zf(z). Hence, it suffices to show thgtis continuous or{Re( ) > 1} We usern(z) <

71%(;)74 for x > 55 (by Theorem 29 of [17]) in order to obtain the estimate
z|E(z)|
9(e)| = |B@)n(@)] < oo

We now use this to estimap@(z) for Re(z) > 1:

> Jg(x) T_B@l gy [T1E@I
| / xm 5| < /56 TRe() 1100 < /56 wlog(z) — )" SQ/E,G vlog(z) "

The assumption ensures that the last integral is convergeIDMOWe > 0. There is hence som¥

such that [ g(fﬁm] < ¢/4 for anyz with Re(z) > 1. Moreover, fx(z f2 z+1 is continuous
in a neighbourhood of any such In particular, for anyz; with Re(zl) > 1 close enough ta we
have|fn(z1) — fn(2)] < €/2. Thisimplies|f(z1) — f(2)| < ¢, as required. O

The following corollary for an explicit error function withe applied in the situation of CM mod-
ular forms in Sectiofil3 (see also Proposifion 2.2.7 below).

Corollary 2.2.4. Let S be a set of primes having natural densitys). Let E(z) := ’;S(—Ef)) —d(S) be

the error function. If there aree > 0, C' > 0 and B > 0 such that|E(x)| < (C) forall x > B,
thenS is a weakly regular set of primes having Dirichlet density) = d(5).

Proof. Note that the derivative o#alol —is L. Thus the former is a primitive function for
HO)  log(x)!+
the upper bound of the error term. As it clearly tend8 for x — oo, it follows that the assumptions

of Propositiori 2.2]3 are satisfied. O

The Chebotarev Density Theorem, which plays an essentalimdSectior B, provides us with
examples of (weakly) regular sets of primes (see Propo&id. 7 below), which are used in Sectidn 4.

Definition 2.2.5. Let K/Q be a finite Galois extension with Galois grodp We will say that a
set S of finite rational primes is &hebotarev set fofX/Q if for all p € S, p is unramified in
K/Q and moreover there exists a subgeét C @, invariant under conjugation, such thet =
{p rational prime:Frob,, € C}, whereFrob, denotes a lift toG' of the Frobenius element of the
residual extension ok’ /Q at a primep|p.



We quote the effective version of the Chebotarev Densityofdra from [20].

Theorem 2.2.6(Chebotarev Density Theoremllet K/Q be a finite Galois extension, and Ig§the a
Chebotarev set, which correspondsitoc Gal(K/Q). Then the following hold:

(a) For all sufficiently larger, ms(x) = %w(m) + O(z exp(—cy/log(z))) for some constant > 0.

(b) If we assume the Riemann Hypothesis for the Dedekindurettion of K, then for all sufficiently
large x, ms(x) = %W(m) + O(x'/? log()).

Proposition 2.2.7. Let K/Q be a finite Galois extension arffla Chebotarev set. Theiis weakly
regular. If the Riemann Hypothesis for the Dedekind zetatfan of K holds, thenS' is regula

Proof. Let C' C Gal(K/Q) be the set corresponding t Then by parti{a) of Theorem 2.2.6, and
taking into account th Og(i)w < m(z) for x > 55 (see Theorem 29 of [17]), it follows that, for all
sufficiently largez,

G| o T < o+ 2) expl o/ foe )

for some positive constants andc,. It is clear that this quantity is less than or equalﬁegiﬁ
for sufficiently largex, wherea andcs are any positive constants. Thus by Corollary 2.2.4 we can
conclude thatS is weakly regular.

If we assume that the Dedekind zeta functiorko$atisfies the Riemann Hypothesis, then gart (b)
of Theoreni 2.2J6 yields
ms(x) || _  a'/*log(x)

N Dl N G ot = A S A g 1 21 —1/2

for all big enough values of, wherec; is some positive constant. Proposition 2.2[0f [7] impliestth
S'is regular. O

2.3 An application: weak regularity yields Dedekind-Dirichlet density

In this section we derive an equidistribution result, whigh allow us to establish our results towards
the Bruinier-Kohnen conjecture in Sectign 4.

Proposition 2.3.1. LetP = P_y U P~y U P be a partition of the set of all primes into three weakly
regular sets such thd®_ is of Dirichlet density0 and the Dirichlet density dP is not zero. Let
¥ : N — {0,1,—1} be a multiplicative arithmetic function such that, for ey@rimep, ¥ (p) = 0
(resp.¢(p) = 1,9(p) = —1) ifand only ifp € P_q (resp.p € P~g, p € P~y).

Then{n : ¢(n) > 0} and{n : ¥(n) < 0} have a Dedekind-Dirichlet density, which for both is
1/2 of the Dedekind-Dirichlet density §f. : ¢)(n) # 0}.

2Added in proof: The assumption of the Riemann Hypothesisisiacessary, se [19], Proposition 1.5.



Proof. Letus record first that the sét : ¢)(n) # 0} indeed has a positive Dedekind-Dirichlet density
by Propositiod 2.2]2, that is, the limit

lim (z—1) ) %—”)' =d (2.2)

— 1+
i neN

exists with0 < d < 1. Lemmd2.1.PR yields

0g(Du(2) = A 4 g) = 3 - T gl

peP peEP>o pEP <o

where g(z) is a function that is holomorphic ofiRe(z) > 1/2}. Using the definition of weak
regularity for the set®-( andP(, we obtain

log(Dy(2)) = alog(——) +h(2),

or, equivalently,

Dy(z) = =5z ep(A(:).

wherea is 6(P~g) — §(P<o), which is strictly less that by assumption, anll(z) is a function that is
continuous o{Re(z) > 1}. Taking the exponential yields

D)= Y mm X =) 23)

neN,yP(n)=1 neNY(n)=—1

whereg(z) = exp(h(z)) is also continuous ofiRe(z) > 1}. Adding Equationd (2]2) anfl(2.3) yields

lim (z-1)(2 > %) =d,

z—1t
neN,yP(n)=1

which is the claimed formula. O

2.4 Towards natural density

In this section we show that regularity of densitfor a setS C P suffices to conclude that the set of
natural numbers corresponding to a function that is chariatic onS has a positivenatural density,
and not only a Dedekind-Dirichlet density, whose existewas shown in Propositidn 2.2.2. In fact,
one sees that a slightly weaker assumption than regulantiksy however, we are unable to prove
that weak regularity is enough.

Proposition 2.4.1.LetS C P be a set of primes of densityand lety : N — {0, 1} be a multiplicative
function characteristic ory. We assume that satisfies the following condition (which is implied by
regularity but not weak regularity):



The function
1

o) = Y o ~log( =),

pES
which is holomorphic o{Re(z) > 1}, is once differentiable at = 1 in the sense that
o(z) = % can be continued to a continuous function{dte(z) > 1}.

Then there ar® < a € R and a continuous functioh on {Re(z) > 1} such that

Tt h(z).

Dy(z) =

Proof. LemmdZ.1.P yields
log Dy (2) = Ps + g1(2),

whereg; (z) is holomorphic on{Re(z) > 1}. Combining this with the assumption yields

log Dy (2) = log 1 + k(2), (2.4)
Z —_—
wherek(z) is continuous o{Re(z) > 1} and satisfies that the difference quotiérit) := k(’i:’f(l)

also defines a continuous function Re(z) > 1}. An elementary calculation yields

(o) - — n—1 2\
el6(2) = splk() (- Do) 3 E= V)

n=1

Note that the series on the right hand side defines a connfumgetion on{Re(z) > 1}. Putting
a = exp(k(1)) and combining the previous calculation with Equation](2idishes the proof. [

We now use the following version of the famous Wiener-lkah#weorem taken froni [8] in order
to conclude the existence of natural density instead ofy'oRkedekind-Dirichlet density in some
cases.

Theorem 2.4.2(Wiener-lkehara) Let (a,,),, be a sequence of real numbers satisfying:

1. a, >0forall n € N.

2. > ,>1 = converges foRe z > 1.

3. There exista € C, g(z) continuous o{Re z > 1} such that

In _ @ n +g(z) forall z € {Rez > 1}.

n* z —
n>1

4. There exist§’ > 0 such that, foralln € N, >~} _, a, < Cn.

Then
. 22—1 ak
lim &==—— =g¢
n—o00 n

The hard assumption in our case is 3; it is a strong form of RiedeDirichlet density. The con-
clusion of Proposition 2.411 is that this strong form holdsler the assumptions of that proposition.
Thus we obtain from the Wiener-lkehara Theofem 2.4.2:

Corollary 2.4.3. Assume the set-up of Proposition 214.1. Het= {n € N : x(n) # 0}. ThenA has
a natural density, which is equal to> 0.
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2.5 An application: regularity yields natural density

In this section, we utilise the following theorem of Delang@rder to strengthen Propositibn 213.1 to
natural density under the assumption of regularity.

Theorem 2.5.1([5]). Let f : N — C be a multiplicative arithmetic function, satisfying:

1. |f(n)] < 1foralln e N.
Zpgx,p primef(p)

2. There existg € C, a # 1 such thaflim,_,., =) = q.
Then
n
T—00 €T

Proposition 2.5.2. LetP = P_y U P5o U Py be a partition of the set of all primes into three sets
with natural density, such that_ is regular of density) and the natural density df ¢ is not zero.
Lety : N — {0,1,—1} be a multiplicative arithmetic function such that, for ex@rimep, )(p) = 0
(resp.v(p) =1, ¢¥(p) = —1) ifand only ifp € P—g (resp.p € P~q, p € P-y).

Then{n : ¢»(n) > 0} and{n : ¢/(n) < 0} have a natural density, which for both ig2 of the
natural density ofn : ¢(n) # 0}.

Proof. We want to apply Delange’s Theorém 215.1 wjth= +. The first condition is trivially satis-
fied. Concerning the second condition, note that

Y fp)=#{p<z:pePst—#{p<w:pePy},

p<zx,p prime
thus
lim 2p<apprimef () i (#lPSzipePoo} #p<a:ipePoo}
T—00 7T($) T—00 7T(:U) 7T($)

exists because bofh.., andP.y have natural density by hypothesis, and since the naturaditgte
of P.q is not zero, the limit does not equal Therefore the second condition is also satisfied. As a
conclusion, we obtain that

lim

T—00 x

In other words,
L RSz idin) >0} —#{n<a ) <0}

T—r00 X
Note that|¢| is characteristic of? \ P—, thus by Corollary 2.4]3 the s¢t : ¢)(n) # 0} has a natural
density, call ita. Therefore

lim #{nﬁx:qﬁ(n)>0}+#{n§x:¢(n)<0}:a

0. (2.5)

(2.6)
T—r00 €
Adding and substracting (2.5) arid (2.6) we obtain that biatitd
lim #{n < x:1(n) >0} and Tim #{n < x:1¢(n) <0}
T—r00 xX T—00 X
exist, and by[(2)5) they coincide. O
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3 Sato-Tate Conjecture with error terms

In this section we collect some known results about theiligion of Fourier coefficients of modular
eigenforms and for the CM case we provide a proof of an errantsimilar to the one in the prime
number theorem.

3.1 Statements

A sequencgz,),en C [—1,1] is said to beu-equidistributed(see [10], Chapter 3, Def. 1.1) for a
nonnegative regular normed Borel measuren [—1, 1] if for all continuous functiong : [—1,1] —
R

ngnoo—Zf ) / fdu.

Letk,N € N, and letf € Si(I'o(IN)) be a normalised cuspidal modular eigenform. [fét) =

> o2 ang™ be the Fourier expansion gfat infinity. Sincef has trivial characterg,, € R for all

n € N and by the Ramanujan-Petersson boupds < 2p(*~1)/2. It is then natural to study the
distribution ofW in the interval[—1, 1] asp runs through the prime numbers. It turns out
that these values are equidistributed, but the distribuioquite different according to whether the
modular eigenform has complex multiplication or not. T¥eo-Tate measurelenotedugr, and the
Sato-Tate measure in the CM casenoteducy, are the probability measures defined[ef, 1] by
the following expressions: for every Borel-measurabledet

1 1 1
:LI’ST / V1 — $24¢ and,uCM ) = 550(/1) + _/ 7(175,
A

27 1—t2

whered, denotes the Dirac measure at zero.

The Sato-Tate conjecture, now a theorem (df. [2]), asskdtisitt / has no CM, the real numbers
W are equidistributed ifi-1, 1] with respect to the measurgr asp runs through the primes.
Instead of equidistribution in the sense of its definitiom, are rather interested in the set of primes

defined by the condition

I :{pGP:ﬁel},
wherel C [—1,1] is a subinterval (open, closed or half-open)[efi, 1]. The Sato-Tate conjecture
implies thatS; has a natural density equalggr (7). If f has CM it follows from the equidistribution
of the values of Hecke characters titgt has a natural density equal t@n (7). Theorem 1.2 in
Chapter 3 ofi[10] can be used to show that also in this CaSEHlbeSIN—l)/Q areucy-equidistributed
in the sense of the definition; but note that framy-equidistribution alone one may not conclude
anything on the natural density 8f if the boundary ofl has positive mass.

In Sectior 4 we need some knowledge of the speed of the canazgf the quotient

#{peP:p<zandpe S}
()

(3.7)
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to its limit. In the CM case the following theorem providegban error term, which follows from the
work of Hecke on equidistribution of the values of Hecke elaters. Since we did not find a reference
with the precise statement as above (the result of equimisibn of the values of Hecke characters
with an error term only seems to have been published in 19985}, we include a proof in this
section with and without assuming the Generalised Riemarpotiesis.

Theorem 3.1.1.Letk, N € N, and letf € Si(I'¢(IN)) be a normalised cuspidal modular eigenform
with Fourier expansiory (z) = >~ , an,q". Assume thaf has CM.

(&) Then there exists a constant > 0 (depending only orf) such that, for all subintervals (open,
closed, or half-openJ C [-1,1],
. Qa
#{p prime: p < z, m € I} = pem(I)7w(x) + O(x exp(—c1y/log x)),
where the implied constant depends onlyfon

(b) Assume the Generalised Riemann Hypothesis for all poefehe Hecke character underlying
(see Section 3.2). Then for all subintervals (open, closetalf-open)! C [—1,1] and alle > 0

: a .
#{p prime: p < z, m € It = pem(D7(x) + O(z'/2+9).

Very recently, the following theorem covering the case afi+«@M modular forms of squarefree
level was proved.

Theorem 3.1.2(Rouse, Thorner)Letk, N € N with squarefreeN, and letf € S;(I'o(N)) be a
normalised cuspidal modular eigenform with Fourier expansf(z) = > 7, a,q". Assume that
f does not have CM. Assume that all the symmetric power Lifunscof f are automorphic and
satisfy the Generalised Riemann Hypothesis. Then for aihgervals (open, closed, or half-open)
IC[-1,1],

. a
#pprime: p < a, 5gty € I} = psr(l)r(x) + O(z/4).

Proof. This is an easy consequence of Theorem 1.3 of [18]. O

Remark 3.1.3. For non-CM modular formg we have not found in the literature any unconditional
result for the error term in the convergence of the quoti@ail) to the natural density of;.

When f is attached to an elliptic curvé?/Q, if we assume analytic continuation, functional
equation, and the Generalised Riemann Hypothesis fof thenction attached to the:-th symmetric
power of E for everym € N, then V. Kumar Murty (cf[[12]) states the error bound

#{p prime: p < z, ﬁ eI} =psr(D)n(z) + O(m%+8), (3.8)

Akiyama and Tanigawa proved a converse of this statememelathey prove that, if formula
(3.8) holds for an elliptic curvel’/Q without CM, then the Generalised Riemann Hypothesis holds
for the L-function L(s, E) (cf. Theorem 2 of [1]).

Jeremy Rouse informed us that he expects that a statemelair somTheoreni 3.1)2 should hold
in non-squarefree level.
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Corollary 3.1.4. (a) In the set-up of Theorem 3.1.1 part (a) the §eprime : 2p<,f+)/2 € I}is
weakly regular.

(b) In the set-up of Theorem 3.11.1 pdrt (b) or of Theorem BHie2set{p prime : 2})(,%)/2 el}is
regular.

Proof. This follows respectively from Corollafy 2.2.4 arid [7], Position 2.2. O

Remark 3.1.5. If f is a Hecke eigenform with real Fourier coefficients, a natural question to
study is the distribution of the signs of thg asn runs through the set of natural numbers. Foof
half-integral weight, this study is the content of the BiesirfkKohnen conjecture (see Sectldn 4). Here
we include the easier case ffe Si(T'g(V)) of integral weight. We can combine the results of the
previous sections with those in this section in order to addrthis question. Define the st (resp.
P.o, P—g, Po) as the set of primes such thgf > 0 (resp.a, < 0, a, = 0, a, # 0).

(a) Assume thaf has CM. By Corollary 3.1]4, the sBt  is weakly regular of natural density equal
to 1/2, and the set®., andP( are both weakly regular of density'4. Consider the character
X : N — {0,1} defined as¢(n) = 1 if and only ifa,, # 0. We can apply Propositidn 2.2.2 and
conclude thafn € N : a,, # 0} cannot have a positive Dedekind-Dirichlet density.

(b) Assume now that satisfies the assumptions of Theofem 3.1.2. Then by Cor@@ldr4 the sets
P_y, P~o, and P are regular of natural density equal @ 1/2, 1/2, respectively. Thus by
Proposition2.5.P{n € N : a,, > 0} and{n € N : a,, < 0} have the same natural density, which
equalsl/2 of the natural density ofn € N : a,, # 0}.

We devote the rest of this section to explaining in detail hlogvequidistribution of the values of
the Hecke characters implies Theorlem 3.1.1.

3.2 Hecke characters

We first set up some general notation that will below be sfiseth to imaginary quadratic fields.
Let K be a number field of degreg and letOx the ring of integers ofX. As usual, we denote
g = r1 + 2r9, wherery is the number of real embeddings &f, and2r; is the number of complex
embeddings. We will write the embeddingsas...,7, : K — C, where the first; are the real
embeddings, and, is the complex conjugate of ., forallv € {ry,...,r;+r2}. Forany fractional
ideala of K, we denote by, (a) the exponent of in the factorisation of into prime ideals. Lef be
the group of fractional ideals df’, and let us fix an integral ideal (not necessarily a maximal ideal)
of the ring of integers of«.

Definition 3.2.1. Leta,b € K*. We say that = bmod ™ m if, for all p|m, vy(a — b) > vy(m).

Definition 3.2.2. LetI(m) := {a € I : (a,m) = 1}. Acharacter§ : I(m) — {z € C: |z| = 1} is
called aHecke charactenodm if there exists a set of pairs of real numbéfs,, v, ), v =1,...,r1+
o}, satisfying:

14



e u, € Z; moreoveru, € {0,1} if v <rq.
o YL u, =0

e Forall a & K such thata = 1mod*m, &((a)) = [1;5* (244 )” I, (a) |7

v=l\lmv(a)l

The values of the Hecke characters are equidistributedeoarth circle: the probability that they
lie on an arc is proportional to the length of the arc. Thig faas already known to Hecke (cf.[6]).
The explicit version we state below are Theorem 1 and Priponst of [15]. We use the standard
notationr i (z) = #{p prime ideal of K : Normg (p) < x}.

Theorem 3.2.3.Let K be a number fieldn an integral ideal ofK and§ : I(m) — {z € C : |z| = 1}
a Hecke character of infinite order.

(a) There exists a constant > 0 (depending only or’) such that, for alla, 5 € [—m, 7] with
B<a

#{p prime ideal of Ok : (p,m) = 1, N (p) < x,arg({(p)) € [5,a)}

- %(a — B)mk (z) + O(z exp(—c11/log x)),

where the implicit constant depends only &n

(b) Assume in addition that the L-functions of all powerg sétisfy the Generalised Riemann Hypo-
thesis. Then for alt > 0 and all, 8 € [—m, 7] with 5 < a,

#{p prime ideal ofO : (p,m) = 1, Ni(p) < z,arg(£{(p)) € [B,a)}

= o la = Pmcla) + O@H2*),

We may replace the intervgb, o) by [5, o], (5, ] or (8, «) in the statement of Theorem 3.2.3.

Remark 3.2.4. It is straightforward to translate Theorem 3.2.3 into théldwing statement on the
distribution of the projections df(p) to the real axis: for all subintervalg C [—1, 1] (open, closed,
or half-open) one has

#{p prime ideal ofOx : (p,m) = 1, Nx(p) < z,Re(£(p)) € I}
1 1
N <;/l mdt> T (2) + O(x exp(—c1y/log z)).

Under the assumption of paffl(b) the error termgz'/2+).

Assume now thafkl = Q(v/d) is an imaginary quadratic field. In this cage= 2, r; = 0 and
ro = 1. Thus in this particular case, given an integral ideadf K as above, a Hecke character is a
characteg : I(m) — {z € C : |z| = 1} such that, for alb € K* such thaiz = 1 mod™m, it holds
thaté((a)) = (\ZEZ%\)U for someu € Z, which we may assume positive by changing the choice of
the embedding by its conjugate, if necessary. The next result (cf. Theode®2 of [11]) attaches

CM modular forms to such characters:
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Theorem 3.2.5.Let K, m, £, u as above. Assume= 0. Then the expression
f(z) =) &(a) N g(a)*/?gNrrel® (3.9)
a

defines a modular fornfi € S, 11 (V, x), wherea runs through all integral ideals oK™ with (a, m) =
1, N = |d|Norm g (m) and wherey is the Dirichlet character defined as

x(m) = <i> £((m))sgn(m)* for all m € Z. (3.10)

m

Conversely, any modular form with CM arises in this way froome Hecke character of an
imaginary quadratic field (cf._[16], Thm. 4.5).

3.3 Equidistribution of Fourier coefficients of CM modular f orms

Assume now that we have a normalised eigenfgine S;(I'o(N)) such thatf has CM by the
imaginary quadratic field<. Let¢ be the Hecke character that gives riseftas in Theoreri 3.215.
Then the Fourier expansion gflooks like Equation[(3]19). In particular, for all primeg N, we have

SN ) + ) Nic(p2)F () = prpa with b1 £ p;
’ 0 if (p) isinertinK.

Sincef has trivial nebentypus, Equatidn (3.10) implies th@p)) = 1 whenevemp splits in K. Thus
if (p) = p1p2, thené(p,) and{(p2) are complex conjugates. Therefore

ap

212 Re(&(p1)) (3.11)

We introduce the notation
T /Qsplit(T) 1= #{p rational prime: p < x and(p) splits in K/Q}

and similarlym i /@ inert () @NAT g /@ ram (T)-

Lemma 3.3.1. We have that
#{p prime ideal ofOf : Normy o < x andp/(p N Z) is not split} = O(y/x)

andﬂ.K(x) = 27-['K/Q,split(x) + O(\/E)

Proof. The number of elements in the set of the first claim is cleariyast#{p prime : p < /z} =
O(y/x). The second claim follows from the equality

WK(:U) = 27TK/Q,split(x) + 7-‘-K/Q,inert(\/g) + 7-‘-K/Q,ram(x)

and the fact that only finitely many primes ramify Q. O
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Proof of Theorerh 3.1l 1We only prove partfa), since the arguments in part (b) aiesinaanalogous.
Let I C [-1,1] be a subinterval. We want to count how many primestisfy that2p<,ff”1)/2 el. We
count the split and the inert primes separately and stalt tivé inert ones:

. . . ) ap
#{p primeinertinK : p <z,p{N, 721)(1671)/2 el}
#{pprimeinertinK :p <z,pt N} if0¢€l;
0 if0¢&1I.

This implies

#{pprimeinertinK :p <z,pt N, ﬁ el} = %50(1)77(35) + O(z exp(—cy/log ),
(3.12)
where we have used thgt{p prime inertink : p < z,p { N} = in(z) + O(z exp(—cy/Iogz))
for some constant > 0, which follows from partifa) of Theorem 2.2.6. The split pesnare counted
using Remark3.214 and Lemiina 3]3.1 as follows:

#{p prime splitinK : p < SE,pJfNam €I}

:%#{p prime of O : NormK/Q(p) <z,p/(pNZ)issplit,Re({(p)) € I}

:%#{p prime of Ok : Normg q(p) < =, Re(£(p)) € I} + O(Vx)
:% <% /1 ﬁdt) 7x () + Oz exp(—cy/log 7))

= <% /1 ﬁdt) Tk /Q,split(T) + O(z exp(—cy/log 7))

=2 (2 f ) o Oteesatc o

(3.13)

for some constant > 0. The theorem follows by adding Equatiofs (3.12) dnd (3.13). O

4 Application to the Bruinier-Kohnen Conjecture

4.1 Equidistribution of signs of half-integral weight modular forms - the prime case

In this section, we state an analog of the Bruinier-Kohngm siquidistribution conjecture for the
family {a(tp?)} wheret is a squarefree number such thét) # 0 andp runs through the primes for
a half-integral weight modular form whose Shimura lift iglvdut CM or with CM. The proof will be
carried out in Section 4.2. Furthermore we will give somepprties of these coefficient sets. Note
that the following theorem is an improvement of Theoremsatd 4.2 of[[7].

We start by summarising some known facts about half-integegaght modular forms and the
Shimura lift. Letk > 2. According to Shimural [21] and Niwa [14], if is a Hecke eigenform of
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weight k& 4 1/2 with Fourier expansiorf = > 7° | a(n)q" € Si41/2(N, x) then there is a corres-
ponding modular forn¥; € Sor(N/2, x?) for fixedt > 1 squarefree such thatt) # 0, named the
Shimura lift of f with respect ta, such that thd’,.-Hecke eigenvalue ofi agrees with th&,-Hecke
eigenvalue or¥;. Fork = 1 suppose thaf is contained in the orthogonal complement with respect
to the Petersson scalar product of the subsgage »(/NV, x) generated by unary theta functions as
in [3]. The Fourier expansion af; is given byF;(z) = 3, -, At(n)q" where

tn?

Ae(n) =Y xan(d)d* a(=5), (4.14)
din

wherex; y denotes the charactey n(d) := x(d) (%:N%) Moreover, the Fourier coefficients
are multiplicative in the sense

a(tm?)a(tn?) = a(t)a(tm?n?) (4.15)

for (n,m) = 1. If F; has CM, then lef: denoteucy, otherwise pupr = pugr. We assume through-
out thaty is trivial or quadratic and thaf has real coefficients. This implies tha} also has real
coefficients.

The following is our main theorem about the distributionighs of the coefficients(tp?), whenp
runs through the primes. In the statement we understand bgutlity of two Dirichlet characters the
equality of the underlying primitive characters (i.e. wkvalthem to differ at finitely many primes).

Theorem 4.1.1. Assume the set-up above and define the set of primes
Pso:= {p € P: a(tp?) > 0}
and similarlyP_, andP—, (depending ory andt).

(a) If F; has no complex multiplication then the sBts, andP., have natural density /2 and the
setP_, has natural density.

(b) (i) If F; has complex multiplication ang; x = 1 then the seP_, has natural density equal to
zero, and the sef8., andP., have natural densities, respectivaly4 and3/4 if a(t) > 0
and, respectively/4 and1/4 if a(t) < 0.

(i) If F; has complex multiplication ang, y = ¢, whered is the quadratic Dirichlet character
corresponding to the imaginary quadratic field by whitthas CM, then the sét_, has
natural density equal to zero, and the sBts) andP-(, have natural densities, respectively
3/4and1/4if a(t) > 0 and, respectively /4 and3/4 if a(t) < 0.

(i) If F; has complex multiplication ang; y ¢ {1,0} then the sefP—, has natural density
equal to zero, and the sels.( and P have the same natural density which is equal to
1/2.
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(c) If F; has no complex multiplication then we additionally assuha there areC' > 0 anda > 0
such that for all subinterval&:, b] C [—1, 1] one has

C
log(z)>

— i([a, b])

l#{p < z prime| a(t)é;% € [a, 0]} _

m(x)

Then the setB- o, P-o, andP—, are weakly regular sets of primes.

(d) Assume here that there afé > 0 anda > 0 such that for all subintervalé:, b] C [—1, 1] one

has A
#{p < x prime| a(ﬂ?é% € [a,b]}

m(x)

(note that this condition is satisfied , /a(¢) fulfills the assumptions of Theorém 3]1.2, see also
Remark 3.113). Then the séitsy, Py, andP_, are regular sets of primes.

%

«

= p(la, b])| <

8

Example 4.1.2. Consider the elliptic curve defined by the equation

y2 =23 — .
This elliptic curve has conductd2 and has CM byZ[i]. LetF' = >~ | A(n)g" € S2(32) be the
associated cuspidal eigenform. We have that, fopall —1 (mod 4), A(p) = 0, that is, " has CM
by Q(i). In [22], Tunnell has shown that there exist modular forfpse S;/5(128) (trivial character)
and f € S3/2(128, x2), Wherey, = (2), such that their Shimura lifts with= 1 coincide withF".

o For fi, we havey 125(p) = (#), which coincides with the character by whighhas CM.

Thus,P- has natural densitg/4 andP( has natural density /4.

e For fy, we havey 123(p) = (‘72) which is different from the trivial character and the char-
acter by whichF" has CM. In this case the densitiesiof, andP . coincide and they are equal
to1/2.

Remark 4.1.3. (a) For fixed squarefree such thata(t) # 0 we use the notation:

a(tp?) A¢(p)

Alp) = ————— v
(p) a(t)zpk—l/Q a(t)zpk—l/Q

andB(p) =
Note that Equatiorf4.14)implies
A(p) = B(p) — M%\/g)- (4.16)

The main point in our approach is that we view the sequet@gg as a ‘perturbed’ version of the
sequence3(p).
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(b) We remark that ‘small’ perturbations preserve the pmp@f a sequence to be equidistributed.
More precisely, lef: be a nonnegative regular normed Borel measurd-eh, 1] and (z,,)neny <
[—1, 1] be ap-equidistributed sequence. L@t,).cn € [—1, 1] be a sequence such that

lim |z, —y,| = 0.
n—oo

Then alsa(y,, )nen IS p-equidistributed.

This follows from a straight forward calculation using thefahition of u-equidistribution and the
compactness df-1, 1].

(c) Returning to our set-up of modular forms, we first remdn&t tthe setS of primesp such that

Salt)p “,1 )1/2 ¢ [—1, 1] has natural density (this is an easy consequence of Thedrem #.2.1 below).

Part (H) above together with Equatidd.16) thus implies that the eIemen(%

(t) >p61p>\s

are p-equidistributed.

We stress that equidistribution a(‘;)(]’ii_)l 75 IS not enough to imply equidistribution of signs if
the measure has points of positive mass (likg;). See for instance Example 4]1.2. This is the
reason why we are not only interested in equidistributionhi@ sense of the definition, but, are
studying the limitdim o, Z12=N2E1) for all intervals 1, even those having a boundary of

positive measure.

4.2 Densities of perturbed sequences

In this section we provide a treatment of an abstract settingeled on the relation between coef-
ficients of half-integral and integral weight modular foromeder the Shimura lift (see, in particular,
RemarK 4.1.3), and we will use it to prove Theolem 4.1.1.

Theorem 4.2.1.Let xy be a Dirichlet character of order dividing. LetB : P — R be a map and
defineA : P — R by the formulaA(p) := B(p) — Z(—j’% forsome) # y € R. LetD = {z1,...,2,} C
[—1,1]. Forany! C [—1, 1] define

Sr:={peP:B(p)el}andT]:={peP: A(p) € I,B(p) ¢ D}.

Letf : (—1 1) — R>( be an integrable function and, ..., w, > 0. Define a measure op-1, 1]
by (1 f[ t)dt + > widy, (I), whered,, is the Dirac measure at the point, for any Borel
measurable subsdt C [—1,1]. Assume that([—1,1]) = 1 and that for all intervals] C [—1, 1]

(open, closed or half-open) the s&t has natural density: (7).

(@) Then for any interval C [—1,1] (open, closed or half-open), the sEf has natural density

[ f(t)dt
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(b) Assume that there are € N>; and M > 0 such that for alle > 0 small enough the integrals
\fl  f@dt]and] [ 1€ £(t)dt| are bounded above hy/¢!/™. Assume moreover that there is
a functionE(x) tending to0 asz — oo such that for all intervald C [—1,1]

7[-51(1') . <
) )| < B,
Then for any interval C [—1, 1] (open, closed or half-open), thereGs> 0 such that for all big
enoughx
Ty (z) 1
o~ o] <0 (PO + Sy ).

Proof. For any intervall C [—1, 1] define
Si(x):=={p € P: B(p) € I,B(p) £ D} = Spp.

By assumption the sef; has natural densny”I t)dt. Leta be the start point and the end point
of I. Lete > 0 be small enough. For gl > W one has{ X(”)‘ < e. One observes the inequalities

R I O b VLU
(@) S @ S () Sl

@) From Equationi{4.17) we obtain the inequalities

Sfa«ke,bfe]

F(t)dt < liminf —=2 " and lim sup —=%— <
a+e T—00 7T($) —00 7T($) max{—1,a—e}

b—e T (:C) T (:C) min{1,b+e€}
/ F(t)dt.

Letting e tend to0 we obtain

=
0
o
T
B
=
AN

™ (z) b 7TT[Ia ] (l‘)
GO / F(#)dt < liminf —=9 "

T—00 w(m)
implying the result.

() Equation[(4.1]7) yields

[T rwa [ @ s - D) e o [ s

m(x) m(x)
a min{1,b+e€} W(l/(yE)Q)
< / F(t)d + /b (Ot + (0 -+ 1)B(a) + T

max{—1,a—e¢}

which is valid for all (small enough) > 0 and all (big enough).. Using the assumptions we obtain

L r(1/(ye))

< 2MeM/™ + ()
T
We may (and do) assume th@tz) > m for large enoughr. Lete := E(x)™. One finds

+ (n+1)E(x).

m(1/(ye)?) _ m(1/(°E(x)*™)) log(z)
r(2) "(2) 7 B@Pm Tog(1/(PB@Pm) @ = O P
for x big enough and suitablé > 0. Thus we obtain the claimed inequality. O
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Remark 4.2.2. For the applications below we remark that forC [—1, 1] we have

{peP:A(p) eI} =T;u| {p e P: B(p) =, A(p) € I}
=1

:Tl’uizl_!({pe]P’:B(p):xi}ﬂ{peP:mi—;((—j]_zE[}).

Note that we have

(peP x(p) c finite set ifx; &1,
P Xy —— = o
yv/p P\ finite set  ifx; € I,

wherel denotes the closure anldthe interior ofI. If I = [z;,b] with b > x;, then moreover

x(p) Y .
cePix;,——=2ecll={peclP: = — =1\ finite se
{r Y }=A{p x(p) |y|}\ t
and analogously fof = [a, z;] with a < z;,
x(p) Yy .
cePig,—=—~2¢cl}= clP: = =1\ finite set
{p v/ }={p x(p) |y|}\

The same formulas hold if the intervals are open or half-ogerparticular, for any intervall, the

set{pe P:z; — ;‘(—f}, € I} has a density, which is one of 3, 1.

Proof of Theoreri 4.7} 1We use the notation introduced in Remark4.413 (a).
@) SeellV], Theorem 4.1.

(@) Assume thatF; has complex multiplication. Pub = {0}, f = +—-~=, I = (0,1] and
J =[-1,0). Take

Si(z) :={peP:B(p) €I}, T;:={peP:Alp) €l Bp) #0}
and similarly
Sy(z):={peP:B(p)eJ}, T;:={peP:Alp) € J,B(p)#0}.

The setsS; andS; have natural densities, respectivelys (1) anducas(J) by Theoreni 3.111,
so that we can apply Theordm 4J2.1. For simplicity we assufme> 0. The arguments in
the other case(t) < 0 are exactly the same. We haye € P : A(p) > 0} = P-y. By
RemarK4.Z.2, we conclude that

P>0:T;u({peP:B(p)zo}m{peP:%\]/vz_j(mezg (4.18)
P<0:Tju<{p€[P’:B(p):O}ﬂ{p€IP:—>;’7\]/VI_§p)6J}> (4.19)
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In order to computel(PP-), we compute the sum af(77) and the density of the mtersec-
tion, and similarly ford(P-y). We haved(T}) = u(I) = 1 andd(T)) = u(J) = 1 by
Theoreni4.2]1.

() Assume thak, n = 1 (recall that by an equality of Dirichlet characters we ustimd that
the underlying primitive characters agree). In this cageesthe intersection in Equation
(4.18) is finite and therefore has denditywe conclude that the s&t., has densityl /4.
Similarly, the intersection in Equation (4]19) has densitg, thereforeP, has dens-
ity 3/4. Itis clear that the sét_, has natural density equal to zero.

(@) We will do the same computation as above. Note thatimthse we have

{peP:B(p)=0t={peP:i(p) =-1}

up to finitely many primes. These sets have natural dengity Suppose thay; y = 6.
Then the density of the intersection in Equatibn (#.18) /8 by RemarK4.2]2. So we
conclude thaP-( has natural density/4. Similarly, from Equation[(4.19) we obtain that
Py has natural density/4.

(biii) Suppose thak, v # 1,d. By Chebotarev’s theorem, the intersections in Equatidriss)
and [4.19) have natural density4. So we conclude that the séts, andP( have the
same natural density, which is equallt@®.

@ By assumption in the non-CM case and by Theotem 3.1.1énQi case, we have for all
intervalsI C [—1,1]

ms,(z) | < C
w(x) = log(z)®

For the CM-case we neeﬁ1 ft)dt = f1 ¢ 3m Wdt < /¢, as a simple calculation shows.

The corresponding check in the non-CM case is trivial siheedensity function of the measure

is continuous orn—1, 1. Thus, in both cases Theorém4]Z.11 (b) yields

S —/f(t)dt <
I

() ~ log(z)«

for someC > 0, wheref is the density function in the CM or non-CM case. CorollarZ.2.
shows thaf; is weakly regular.

SinceP—_y = Tj for I = [0,0] = {0}, P>o = T[’0 ) andPso = T(’0 ) In the non-CM case, it
follows that the set®_,, P~ andP-( are weakly regular set of primes. By a similar argument,
it is easily seen that the the séts, andPP( are weakly regular sets of primes.

Let us consider the CM case. Th&n, is a weakly regular set of primes, sin@% 0] is. We
have to show that the intersections in Equations {4.18)[&dd@]) are weakly regular sets, since
finite disjoint unions of weakly regular sets are weakly tagu
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So, assume that; y = 1. In this case the intersection in Equation (4.18) is finité trerefore
weakly regular of density). Since the sefp € P : B(p) = 0} is weakly regular of density
1/2 by Proposition 2.2]7 andlp € P : ﬂ‘gvi\%(p) € [-1,0)} is P (except for a finite set), we
conclude that the intersection in Equatién (4.19) is weag@ular of densityl /2.

For the case; ny = 0, the intersection in Equation (4]18){s € P : B(p) = 0} up to finitely
many primes, hence weakly regular of dendi{2 by Propositior 2.2]7. The intersection in
Equation[(4.1PB) is finite and hence also weakly regular.

In the last casg; v # 1,0, the intersections in Equatioris (4118) and (#.19) are vwyeagular
of density1/4 by Propositior 2.217.

(d) Similar arguments as in pat (c) prove the assertionsgusroposition 2.2 of([[7] instead of
Corollary[2.2.4 and replacing weak regularity by reguatitroughout.

O

4.3 Equidistribution of signs of half-integral weight modular forms - the general case

We now apply the results from Sectibh 2 and Theorem .1.1 taimlan equidistribution statement
for the signs ofs(tn?) for n € N, as well as many subsets &f

In order to give a uniform description of the results, jett N — {0,1} be a multiplicative
arithmetic function such thag(p) = 1 for all primesp € P. Then defineN, = {n € N: x(n) = 1}.
For example, fok € N U {oo} one can takgy such that

" 1 ifn<k,
xk(p") = ,
0 otherwise.

ThenN;, := N,, is the set of k + 1)-free integers it € NandN,, = N.

Corollary 4.3.1. Lety as above. Assume the setting of part (c) of The@reml|4.1.h fhkesets
{n € N|n €N, anda(tn®) > 0} and{n € N | n € N, anda(tn?) < 0}

have equal positive Dedekind-Dirichlet densities, thabish are precisely half of the density of the
set
{n € N|n €N, anda(tn?) # 0}.

Proof. Note that without loss of generality we can assum > 0. Define the arithmetic function
¥ :N— {-1,0,1} as follows:

1 if a(tn?) > 0,



Equation [(4.1b) implies that is a multiplicative function. Note thdt. = {p € P : ¥(p) = 1},
Poo={peP:y(p) =—1}, andP_y = {p € P: ¢)(p) = 0}. Theoreni4.1]1 shows that these sets
are weakly regular and allows us to conclude due to Proposi3.]. O

Corollary 4.3.2. Lety as above. Assume the setting of palt (d) of Thedreml4.1.h fheesets
{n € N|n €N, anda(tn®) > 0} and{n € N | n € N, anda(tn?) < 0}
have equal positive natural densities, that is, both arecigaly half of the density of the set
{n € N|n €N, anda(tn?) # 0}.

Proof. The proof proceeds precisely as that of Corollary 4.3.1epkthat in the end we appeal to
Propositior 2.512. O
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