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Abstract

We analyze a typical 3-D conductivity problem which consists in
seeking the optimal layout of two materials in a given design domain
Ω ⊂ IR3 by minimizing the L2-norm of the electric field under a con-
straint on the amount on each material that we can use. We utilize a
characterization of the three-dimensional divergence-free vector fields
which is especially appropriate for a variational reformulation. By us-
ing gradient Young measures as a main tool, we can give an explicit
form of the ”constrained quasiconvexification” of the cost density. This
result is similar to the one in the 2-D situation. However, the char-
acterization of the divergence-free vector fields introduces a certain
nonlinearity in the problem that needs to be addressed properly.

1 Introduction

In this paper, we will study a typical optimal design problem in conductiv-
ity, which consists in looking for the optimal distribution of two different
conducting materials with isotropic constants α and β (0 < α < β) on a
domain Ω ⊂ IR3, such that it minimizes a certain functional cost which
depends on the underlying electric field of the state equation in the form

I(χ) =
∫

Ω
a(x, χ(x))|∇u(x)− F (x)|2dx (1)

where u is the unique solution of
∗e-mail:Faustino.Maestre@uclm.es
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− div ((αχ+ β(1− χ))∇u) = g in Ω,
u = u0 on ∂Ω,

(2)

and the functions a, F , g and u0 are known. The function χ ∈ L∞(Ω, {0, 1})
is the design variable and it indicates where we place the α-material. The
amount of α-material is given, and therefore we have to enforce the volume
constraint ∫

Ω
χ(x)dx ≤ t0|Ω| (3)

with t0 ∈ (0, 1) fixed.

In short form, the optimal design problem is to

min
χ
I(χ)

under
− div ((αχ+ β(1− χ))∇u) = g in Ω,

u = u0 on ∂Ω,

where the admissible set of χ’s is the set of the characteristic functions over
Ω under the volume constraint

1
|Ω|

∫
Ω
χ(x)dx ≤ t0.

This problem has been extensively studied in the two-dimensional case
([1],[2], [10], [13]), and it has also been examined in the three-dimensional
case ([3]). In this paper, we would like to pursue a more direct analysis of
the three-dimensional situation in order to deal with a more natural gen-
eralization, as compared to the treatment in ([3]), of the two-dimensional
case. In doing so, we will have to overcome a certain non-linear structure
which does not have a parallelism in the 2-D case. This is the result of using
Lemma 1 below, a suitable characterization of three-dimensional divergence-
free vector fields.

It is well understood the lack of classical solutions for this type of prob-
lems. This is the reason why we reformulate the problem through relaxation
techniques. The theory of homogenization is an important tool which intro-
duces new types of composites as structural elements through the concepts
of H-convergence or G-convergence ([1]). The theory of homogenization is
especially useful when we work with non-explicit dependence on the flux
∇u(x).

Our strategy is directed towards the understanding and computation of
the constrained quasiconvexification of a certain integrand which is obtained
as a result of a suitable variational reformulation of the problem ([10], [12],
[13], [14]).
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Notice, to begin with, that

a|∇u− F |2 = a|∇u|2 − 2a∇u · F + a|F |2,

and that the second part −2a∇u · F + a|F |2 is linear in ∇u, therefore it
suffices to study the case F ≡ 0. The optimal design problem we will treat
will be

min
χ∈L∞(Ω,{0,1})

I(χ) =
∫

Ω
a(x, χ(x))|∇u(x)|2dx

subject to,
− div ((αχ+ β(1− χ))∇u) = g in Ω

u = u0 on ∂Ω∫
Ω χ(x)dx ≤ t0|Ω|.

We want to reformulate this problem in a different form. We takeG ∈ H1(Ω)
such that

div (G) = g in Ω,

so that the state equation can be rewritten as

− div ((αχ+ β(1− χ))∇u+G(x)) = 0 in Ω ⊂ IR3. (4)

The treatment of this equation is the main novelty with respect to the
two-dimensional case in which the divergence-free fields are characterized as
the counterclockwise π/2-rotation of the gradients of scalar functions, while
in the three-dimensional case the situation is more complex, we will use a
characterization by ”Clebsch potentials”. There are different results in which
n-dimensional divergence-free vector fields can been represented in terms of
(n-1) arbitrary functions. For the three dimensional case, if F ∈ IR3 with
div(F ) = 0, then there exist Clebsch potentials v, w such that F = ∇v×∇w.
The proof of this result is beyond the scope of the present paper and we refer
[8], [11]. [18], [15]. In fact, looking at the specialized literature, is seems
that this representation en terms of the Clebsch potentials is not always
valid ([7]). But this is a fine point for experts which we have avoided. We
simply use this representation in the sequel.

Therefore using the Clebsch potentials, we have that (4) can be replaced
by,

(αχ(x) + β(1− χ(x)))∇u(x)−∇v(x)×∇w(x) +G(x) = 0 in Ω.

We can therefore use (u, v, w) as new design variables provided they
satisfy the following pointwise constraint,

α∇u(x)−∇v(x)×∇w(x) +G(x) = 0
a.e. x ∈ Ω.

β∇u(x)−∇v(x)×∇w(x) +G(x) = 0
(5)
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It’s clear that we can identify the design variable χ with the vector (u, v, w),
and conversely a vector (u, v, w) which verify (5) with a design variable χ.
We consider then the new design variable U = (U (1), U (2), U (3)) = (u, v, w),
where U : IR3 → IR3 and ∇U(x) ∈ IR3×3.

Let Λγ,x be the (non-linear) manifold,

Λγ,x = {A ∈M3×3 : γA(1) −A(2) ×A(3) +G(x) = 0}
where A(i) is the i-th row of the matrix A.

Put aα(x) = a(x, 1), aβ(x) = a(x, 0) and

h(x) = βaα(x)− αaβ(x),

and set

W (x,A) =


aα(x)|A(1)|2, if A ∈ Λα,x,

aβ(x)|A(1)|2, if A ∈ Λβ,x \ Λα,x,
+∞, else,

V (x,A) =


1, if A ∈ Λα,x,
0, if A ∈ Λβ,x \ Λα,x,
+∞, else.

It is clear that the original optimal design problem is equivalent to the non-
convex vector variational problem

min
U

Î (U) =
∫

Ω
W (x,∇U(x))dx

subject to
U ∈ H1(Ω)3, U (1) = u0 on ∂Ω∫

Ω V (x,∇U(x))dx ≤ t0|Ω|.

ψ(t, F ) = αβ(tα+ (1− t)β)|F (1)|2+[
((1− t)α+ tβ)(|F (2) × F (3)|2 + |G|2 − 2(F (2) × F (3)) ·G)

]
+

[2αβ + t(1− t)(β − α)2](F (1) ·G− detF )

ϕ(t, F ) =



h(x)
tβ(β − α)2

(β2|F (1)|2 + |F (2) × F (3)|2 + |G|2 − 2β detF+

2(βF (1) − F (2) × F (3)) ·G) +
aβ(x)
β

(detF −G · F (1))

if h(x) ≥ 0, ψ(t, F ) ≤ 0,
−h(x)

(1− t)α(β − α)2
(α2|F (1)|2 + |F (2) × F (3)|2 + |G|2 − 2α detF+

2(αF (1) − F (2) × F (3)) ·G) +
aα(x)
α

(detF −G · F (1)),

if h(x) ≤ 0, ψ(t, F ) ≤ 0,
+∞ else.
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We will show that the variational problem

min
(t,U)

∫
Ω
ϕ(t(x),∇U(x))dx

subject to

U ∈ H1(Ω)3, U (1) = u0 on ∂Ω, ψ(t(x),∇U(x)) ≤ 0,

0 ≤ t(x) ≤ 1,
∫
Ω t(x)dx ≤ t0|Ω|,

is a relaxation of the original optimal design problem, in the sense explained
in the next theorem. This result is the main objective of this work.

Theorem 1 This final variational problem is equivalent to ( a relaxation
for ) the original optimal design problem ( determined by (1), (2), (3) ) in
the sense that

a) the infima of both problems coincide,
b) there are optimal solutions for the relaxed problem,
c) these solutions codify ( in the sense of the Young measure) the optimal

microstructures of the original optimal design problem.

For the particular case in which we take aα(x) = aβ(x) = 1 and G = 0,
the above formulae simplify to

h(x) = β − α,

ψ(t, F ) = αβ(tα+ (1− t)β)|F (1)|2 + ((1− t)α+ tβ)|F (2) × F (3)|2

−(2αβ + t(1− t)(β − α)2) detF

ϕ(t, F ) =


1

tβ(β − α)
(β2|F (1)|2 + |F (2) × F (3)|2 − 2β detF ) +

1
β

detF

if ψ(t, F ) ≤ 0,
+∞ else.

The main new contribution here is to understand how the non-linear
character of the manifolds Λγ,x above does not in fact interfere with the
analogous computations for the 2-D situation. This is so because this non-
linearity is intimately connected to the weak continuity of minors.

The work is organized as follows. We begin by studying a relaxation of
the original problem which is given by the constrained quasionvexification.
Next, we compute explicitly this relaxation by firstly computing a lower
bound (polyconvexification), and then seeking a laminate that recovers this
polyconvexification thus showing that the bound is optimal. Finally we prove
a basic result for the variational reformulation, Lemma 1.
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2 Relaxation

We have recast our optimal design problem as a typical variational problem.
We see that it is a non-convex vector problem that we are going to analyze
by seeking its relaxation. We use Young measures as a main tool in the
computation of the suitable density for the relaxed problem. We are going
to follow the same plan that in the two-dimensional case ([2],[10], [13]).

Put

m = inf
{∫

Ω
W (x,∇U(x))dx : U ∈ H1(Ω)3, U (1) − u0 ∈ H1

0 (Ω),∫
Ω
V (x,∇U(x))dx = t0|Ω|

}
.

We know ([2]) that

m ≥ m̄ = inf
{∫

Ω
CQW (x,∇U(x), t(x))dx : U ∈ H1(Ω)3,

U (1) − u0 ∈ H1
0 (Ω), 0 ≤ t(x) ≤ 1,

∫
Ω
t(x)dx = t0|Ω|

}
where CQW (x, F, t) is defined by,

CQW (x, F, t) = inf
{∫

M3×3

W (x,A)dν(A) : ν ∈ A(F, t)
}

with

A(F, t) =
{
ν : ν is a homogeneous H1-Young measure,

F =
∫

M3×3

Adν(A),
∫

M3×3

V (x,A)dν(A) = t
}
. (6)

Notice that the previous inequality will be an equality when W is a
Carathodory function with appropriate growth constrains ([14]). However,
in our situtation it is still possible to prove this equality despite the fact that
W is not a Carathodory function. Let us consider the following minimization
problem

m̃ = inf
{∫

Ω

∫
M3×3

W (x,A)dνx(A)dx : ν ∈ B(u0, t0)
}

where

B(u0, t0) =
{
ν : H1-Young meas., supp(νx) ⊂ Λα ∪ Λβ,∃U ∈ H1(Ω)3,

U (1) − u0 ∈ H1
0 (Ω),

∫
Ω

∫
M3×3 V (x,A)dνx(A)dx = t0|Ω|,

∇U(x) =
∫
M3×3 Adνx(A)

}
.

We have the following result.
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Theorem 2 The equalities

m = m̄ = m̃

hold. Moreover, for each measure ν ∈ B(u0, t0) such that supp(νx) ⊂ Λα∪Λβ

a.e. x ∈ Ω, there exists a sequence {∇Uk} such that,

i) Uk ∈ (H1(Ω))3, U (1)
k − u0 ∈ H1

0 (Ω), {|∇Uk|2} is equi-integrable,

ii) ∇Uk(x) ∈ Λα ∪ Λβ , a.e. x ∈ Ω ∀k,
∫
Ω V (x,∇Uk(x))dx = t0, ∀k

iii) limk→∞
∫
ΩW (x,∇Uk(x))dx =

∫
Ω

∫
M3×3 W (x,A)dνx(A)dx

Proof. It is enough to generalize to the three-dimensional case the
proof used in ([2]) for the two-dimensional case. This is a straightforward
generalization.

3 Constrained quasiconvexification

We would like to compute explicitly the constrained quasionvexification de-
fined as

CQW (x, F, t) = inf
{∫

M3×3

W (x,A)dν(A) : ν ∈ A(F, t)
}

where A(F, t) is given in (6). This constrained quasiconvexification can be
expressed as

inf
ν

{∫
M3×3

W (x,A)dν(A) : F =
∫

M3×3

Adν(A),
∫

M3×3

V (x,A)dν(A) = t
}
(7)

with ν a homogeneous H1-Young measure with supp(ν) ⊂ Λα ∪ Λβ.
For (F, t) (and x) fixed, we are going to calculate the value in (7), i.e.

CQW (x, F, t). The main difficulty here is that we don’t know explicitly the
set of the admissible measures, which we note as A. The plan to follow will
be similar to the two-dimensional case. The first step is to calculate the
minimum over a greater class of probability measures A∗ ⊃ A where A∗ is
the set of all polyconvex measures. In this way we obtain a lower bound
( the (constrained) polyconvexification). Once this bound is computed, we
search a measure over a narrower class of measures ( the laminates) which
will tell us that the bound is attained, so that we will have in fact computed
the exact value CQW (x, F, t).

The polyconvexification CPW (x, F, t) can be computed through the fol-
lowing optimization problem

min
ν

∫
M3×3

W (x,A)dν(A)
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subject to

ν = tνα + (1− t)νβ, commutes with all (some) minors

supp(νγ) ⊂ Λγ , γ = α, β,

F = t

∫
Λα

Adνα(A) + (1− t)
∫

Λβ

Adνβ(A).

It is clear that the integral constraints have been incorporated in the
decomposition of the measure ν. Let us first examine the constraints. We
introduce the following variables

Sγ =
∫

R3

|λ|2dν(1)
γ (λ), with γ = α, β, (8)

where ν(1)
γ is the probability measure resulting from the projection of νγ

onto the first row. On the other hand, we put

Fγ =
∫

Λγ

Adνγ(A) for γ = α, β.

From the fact that the measure ν = tνα + (1− t)νβ commutes with the
determinant, it is clear that

A ∈ Λγ ⇒
{
γA(1) −A(2) ×A(3) +G = 0
detA = A(1) · (A(2) ×A(3))

}
⇒ detA = γ|A(1)|2 + F (1) ·G,

(9)
thanks to the commutations with the minors. In particular, applied to the
determinant, it leads to

detF = t

∫
Λα

detAdνα(A) + (1− t)
∫

Λβ

detAdνβ(A).

Keeping in mind (8) and (9), we have that

detF = tαSα + (1− t)βSβ + F (1) ·G.

The components of F (2) × F (3) are the second order minors which have
been computed using the second and third row of the matrix F , and again
the commutation with ν yields

F (2) × F (3) =
∫

R3×3

A(2) ×A(3)dν(A) =

tα

∫
A(1)dνα + (1− t)β

∫
A(1)dνβ +G = tαF (1)

α + (1− t)βF (1)
β +G.

Moreover

F = tFα + (1− t)Fβ ⇒ F (1) = tF (1)
α + (1− t)F (1)

β .
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Using the last equalities, we can deduce
F

(1)
α = 1

t(β−α)(βF
(1) − F (2) × F (3) +G)

F
(1)
β = −1

(1−t)(β−α)(αF
(1) − F (2) × F (3) +G).

(10)

On the other hand, by the Jensen’s inequality

Sγ ≥
∣∣∣ ∫

R3

λdν(1)
γ (λ)

∣∣∣2 = |F (1)
γ |2, with γ = α, β,

and bearing in mind (10), we can write

t2(β − α)2Sα ≥ β2|F (1)|2 + |F (2) × F (3)|2 + |G|2−
2β detF + 2(βF (1) − F (2) × F (3)) ·G,

(1− t)2(β − α)2Sβ ≥ α2|F (1)|2 + |F (2) × F (3)|2 + |G|2−
2α detF + 2(αF (1) − F (2) × F (3)) ·G.

The cost functional can be rewriten in terms of the Sγ variables as follows

taαSα + (1− t)aβSβ.

Hence, we can rewrite the original optimization problem as a mathemat-
ical programming problem

minimize
(Sα,Sβ)

taαSα + (1− t)aβSβ

subject to
detF = tαSα + (1− t)βSβ

β2|F (1)|2 + |F (2) × F (3)|2 + |G|2 − 2β detF+

2(βF (1) − F (2) × F (3)) ·G− t2(β − α)2Sα ≤ 0,

α2|F (1)|2 + |F (2) × F (3)|2 + |G|2 − 2α detF+

2(αF (1) − F (2) × F (3)) ·G− (1− t)2(β − α)2Sβ ≤ 0,

where the parameters α, β, aα, aβ are part of the data set of the original
problem, and the variables t, F (and x) are fixed.

The first issue about this mathematical programming problem is to com-
pute the admissible set for the variables (Sα, Sβ). This is determined by the
intersection of two semi-planes and one line; therefore the admissible set will
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Figure 1: Mathematical programming problem

be the segment of the line within the two semi-planes. This is easy to see
geometrically in Figure 1.

The admissible set will be non-empty when the point of intersection
where the two inequality constraints become equalities (P0 in Figure 1) is
under the line represented by the equality constraint. This amounts to

αβ(tα+ (1− t)β)|F (1)|2 +
((1− t)α+ tβ)(|F (2) × F (3)|2 + |G|2 − 2(F (2) × F (3)) ·G)

+(2αβ + t(1− t)(β − α)2)(F (1) ·G− detF ) ≤ 0. (11)

The second issue is to decide the point(s) where the minimum value
is attained. It is clear that the optimal point depends of the coefficients
aα, aβ . We have previously determined that the admissible set (when it
is non-empty) is a segment, and the functional cost is a linear functional.
Therefore the minimum value will be attained at one of the extreme points
of the segment, or become constant over all of the segment, depending on
the particular values of the parameters aα, aβ. Let

h(x) = βaα(x)− αaβ(x)

It is easy to compute that the minimum value, which depends on the sign
of the function h(x), therefore assuming that (11) holds,
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CPW (x, t, F ) =
h(x)

tβ(β − α)2
(β2|F (1)|2 + |F (2) × F (3)|2 + |G|2

−2β detF + 2(βF (1) − F (2) × F (3)) ·G) +
aβ(x)
β

(detF −G · F (1))

if h(x) ≥ 0,

CPW (x, t, F ) =
−h(x)

(1− t)α(β − α)2
(α2|F (1)|2 + |F (2) × F (3)|2 + |G|2

−2α detF + 2(αF (1) − F (2) × F (3)) ·G) +
aα(x)
α

(detF −G · F (1)),

if h(x) ≤ 0.

This lower bound will become an exact value for CQW (x, t, F ) if these
extreme points can be attained as the second moments of some measures
να, νβ (according to (8)) and that the convex combination tνα + (1 − t)νβ

is a laminate.
We explicitly find such measures in the case h(x) ≥ 0, where the extreme

point is attained when

β2|F (1)|2 + |F (2) × F (3)|2 + |G|2

−2β detF + 2(βF (1) − F (2) × F (3)) ·G− t2(β − α)2Sα = 0.

In this case we have

Sα =
∫

R3

|A(1)|2dνα(A) = |F (1)
α |2,

and bearing in mind that the functional
∫
Λα
|A(1)|2dνα(A) is strictly convex,

we can deduce that να = δGα for Gα ∈ Λα and G(1)
α = F

(1)
α .

Let the functions g, h : IR3×3 → IR be defined as

g(F ) = α2β2|F (1)|4 + |F (2) × F (3)|4 + (α2 + 6αβ + β2)(detF −G · F (1))2

−2αβ|F (1)|2|F (2) × F (3) −G · F (1)|2 − 2αβ(α+ β)|F (1)|2(detF −G · F (1))
−2(α+ β)|F (2) × F (3) −G · F (1)|2(detF −G · F (1)),

h(F ) = (α+ β)(detF −G · F (1))− αβ|F (1)|2 − |F (2) × F (3) −G|2.

Lemma 1 Let F 6∈ Λα ∪ Λβ and such that g(F ) ≥ 0 and h(F ) ≥ 0. Then,
there exist a ∈ IR3, (r, s) ∈ IR2 and λ ∈ IR+ such that,

F +

 a
ra
sa

 ∈ Λα, F − λ

 a
ra
sa

 ∈ Λβ . (12)
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Proof. Conditions (12) can be written as{
αa− sF (2) × a− ra× F (3) = −(αF (1) − F (2) × F (3) +G),
βa− sF (2) × a− ra× F (3) = 1

λ(βF (1) − F (2) × F (3) +G),
(13)

where we have

a =
1

(β − α)
[(αF (1) − F (2) × F (3) +G) +

1
λ

(βF (1) − F (2) × F (3) +G)].

Thus the above system has solutions if and only if

a · (αF (1) − F (2) × F (3) +G+ αa) = 0. (14)

The necessity is elementary while for the sufficiency simply notice that any
vector (αF (1) − F (2) × F (3) +G+ αa) orthogonal to a, can be decomposed
as a linear combination of the basis {F (2) × a, a× F (3)}.

It is elementary to check that (14) is equivalent to SF (1/λ) = 0 with

SF (x) = x2β|αF (1) − F (2) × F (3) +G|2

+x(α+ β)(αF (1) − F (2) × F (3) +G) · (βF (1) − F (2) × F (3) +G)
+α|βF (1) − F (2) × F (3) +G|2.

SF is a second degree polynomial that will have real roots if its discriminant
is non negative, i.e., g(F ) ≥ 0. On the other hand, it is easy to check
that SF (0) > 0 and therefore there will exist positive solutions if SF is
decreasing in 0, i.e., h(F ) ≥ 0. It is easy to check that these conditions are
the hypotheses of the lemma.

There exist then two solutions, namely

1
λi

=
1

2(βα2|F (1)|2 + β|F (2) × F (3) −G|2 − α(detF −G · F (1)))(
(β + α)((α+ β)(detF −G · F (1)))− αβ|F (1)|2 + |F (2) × F (3) −G|2)

+(−1)i(β − α)
√
g(F )

)
and the corresponding (ri, si) and ai with i = 1, 2.

�

Let us put PF (t) to designate

(β − α)2(detF −G · F (1))t2 +
(
β|αF (1) − F (2) × F (3) +G|2

−α|βF (1) − F (2) × F (3) +G|2 − (β − α)2(detF −G · F (1)))
)
t

+α|βF (1) − F (2) × F (3) +G|2.
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After some additional algebraic manipulations, one can show that condition
(11) is equivalent to PF (t) ≤ 0. Moreover, it is elementary to check that
PF (t) = SF ( t

1−t), and therefore the conditions which guarantee that t ∈
(0, 1) are g(F ) ≥ 0 and h(F ) ≥ 0. Let us put ti, i = 1, 2 the two roots of
PF ,

ti =
1
2

+
1

2(β − α)(detF )−G · F (1)

[
αβ|F (1)|2 − |F (2) × F (3) −G|2

+(−1)i√g(F )
]
i = 1, 2.

It is clear that these remarks imply that the set where CPW is finite
can be described as the pairs (t, F ) such that

g(F ) ≥ 0, h(F ) ≥ 0, t ∈ [t1, t2]. (15)

To summarize, we have that for a pair (t, F ) verifying (15), by Lemma 1, we
can guarantee that there exist exactly two first-order laminates supported
in Λα ∪ Λβ and barycenter F ; from here we can obtain a second-order lam-
inate which attains the optimal value of CPW . We can see the geometrical
situation in Figure 2.

Figure 2: Spatial situation

We are now going to work in the plane determined by F and the two
rank-ones directions. We seek a matrix Mα such that,

Mα ∈ Λα

M (1)
α =

1
t(β − α)

(βF (1) − F (2) × F (3)). (16)
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A matrix M belongs to that plane if

M = F + σA1 + µA2 (17)

where

Ai =

 ai

riai

siai

 i = 1, 2,

are the rank-one directions determined in Lemma 1 and (σ, µ) ∈ R2 are
arbitrary.

When we impose to a matrix in the plane (17) that its first row be given
by (16), we find a unique pair (σ∗, µ∗) given by

σ∗ =
λ1(t+ λ2t− λ2)
t(λ1 − λ2)

,

µ∗ =
−λ2(t+ λ1t− λ1)

t(λ1 − λ2)
.

Note that µ∗ = 1−σ∗. Then the issue is to check ifMα = F+σ∗A1+µ∗A2

belongs to Λα.
We take a matrix M in the plane (17) and force that M to belong to

Λα. Having in mind (13),

siF
(2) × ai + riai × F (3) = αF (1) − F (2) × F (3) +G+ αai with i = 1, 2,

M = F + σA1 + µA2

M ∈ Λα

}
⇔

α(F (1) + σa1 + µa2) +G =

(F (2) + σr1a1 + µr2a2)× (F (3) + σs1a1 + µs2a2) =

F (2) × F (3) + σ(s1F (2) × a1 + r1a1 × F (3)) + µ(s2F (2) × a2 + r2a2 × F (3)) =
{using (13)}
F (2) × F (3) + (σ + µ)(αF (1) − F (2) × F (3) +G) + α(σa1 + µa2) ⇔
(1− σ − µ)(αF (1) − F (2) × F (3) +G) = 0.

Then a matrix M = F + σA1 + µA2 belongs to Λα, if and only if µ =
1 − σ. From this we can deduce that the intersection between Λα and the
plane determined by the rank-one directions is a linear manifold, and most
important, Mα = F + σ∗A1 + µ∗A2 belongs to Λα, since µ∗ = 1 − σ∗.
Therefore, the characterization of this intersection can be written in the
form
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M = F + σA1 + (1− σ)A2 = σFα,1 + (1− σ)Fα,2,

where Fα,i = F + Ai, i = 1, 2, are the intersection between the rank-one
directions and the Λα manifold (the black points in Figure 2).

In a similar way, we can show that the intersection between the rank-one
directions and the Λβ manifold is again another linear manifold determined
by

M = F + σA1 + (1− σ)A2 = σFβ,1 + (1− σ)Fβ,2

where Fβ,i = F + λiAi, i = 1, 2, are the intersection between the rank-one
directions and the Λβ manifold (the green points in Figure 2).

Then we have να = δMα such that supp(να) ⊂ Λα. If we seek νβ as a
convex combination of two Dirac masses with support in the Λβ manifold, we
may produce a second-order laminate supported in Λα ∪ Λβ . The situation
in the plane can be drawn as in Figure 3 where laminates are shown with
green and yellow colors.

Figure 3: Plane of rank-one directions

Let F̄β,i = Mα + li(Fβ,i − Fα,i). It is easy to check that

F̄β,i = l∗iFβ,1 + (1− l∗i )Fβ,2

with
l∗i =

λi − t(λ2 + 1)
t(λ1 − λ2)

.
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To sum up, if we consider the matrices,

Fα,i = F +Ai, Fβ,i = F − λiAi with Ai =

 ai

riai

siai

 , i = 1, 2,

Mα = σ∗Fα,1 + (1− σ∗)Fα,2 with σ∗ = λ1(t+λ2t−λ2)
t(λ1−λ2) ,

F̄β,i = l∗iFβ,1 + (1− l∗i )Fβ,2 with l∗i = λi−t(λ2+1)
t(λ1−λ2) ,

and the scalars
ρi,j = t−λi(1−t)

λj−λi
τi,j = t−λj(1−t)

t(λi+1)−λj
,

we can define the second-order laminate with support on Λα∪Λβ , barycenter
F , and mass in Λα equal to t, by putting

νi,j = τi,jδFβ,i
+ (1− τi,j)(ρi,jδF̄β,j

+ (1− ρi,j)δMα)

with i, j ∈ {1, 2}, i 6= j where,

det(Fβ,j −Mα) = 0

and
det(Fβ,i − (ρi,jF̄β,j + (1− ρi,j)Mα)) = 0.

A similar result holds for the other point where the optimal value is attained.
This finishes the computation of CQW (x, t, F ) and the proof of Theorem

1.
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