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émanant des établissements d’enseignement et de
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On the influence of wavy riblets on the slip

behaviour of viscous fluids

Matthieu Bonnivard∗, Francisco J. Suárez-Grau† & Giordano Tierra‡

June 7, 2015

Abstract

In this work, we use the homogenization theory to investigate the capability of wavy
riblet patterns to influence the behaviour of a viscous flow near a ribbed boundary.
Starting from perfect slip conditions on the wall, we show that periodic oscillations of
wavy riblets in the lateral direction may induce a friction effect in the direction of the
flow, contrary to what happens with straight riblets. Finally, we illustrate this effect
numerically by simulating riblet profiles that are widely used in experimental studies:
the V -shape, U -shape, and blade riblets.

Keywords: viscous fluids, slip condition, rough boundary, straight riblets, wavy riblets,
homogenization.
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1 Introduction
During the last decades, the reduction of the skin friction associated with a viscous

flow in the vicinity of a solid boundary has been the subject to an abundant literature.
From an experimental point of view, an efficient method to reduce the friction consists
in using a certain type of rough boundaries, that are called riblets or straight riblets.
These riblets are characterized by fast oscillations in the spanwise direction, with a low
amplitude, and by their constancy in the streamwise direction; they are essentially one-
dimensional perturbations of the boundary of the solid. The spanwise geometry of the
riblets is generally described by the periodic repetition of a concave pattern, typically,
the shape of a V or a U. The aim of the use of riblets is to prevent vortices to appear in
the neighborhood of the solid wall, and thus to reduce the momentum transfer from the
vortices to the solid boundary.

Recently, new methods have been investigated to enhance the efficiency of the riblets.
One of these methods consists in a combination of riblets with an oscillating wall, that
is achieved by tilting riblet blades sinusoidally. This approach has improved the drag
reduction from 8.6% to 11.1% [30]. However, this result needs to be put in perspective,
since the temporal oscillations of the boundary require a certain input of energy into the
system.

Another possible approach consists in using spatial oscillations of the riblets in the
streamwise direction, thus replacing a temporal, active process by a static, passive one.
This method was studied experimentally in [29], with a net power reduction increased up
to 23%. The corresponding devices are called wavy riblets; they consist in straight riblets
that are deflected sinusoidally in the spanwise direction, as a function of the streamwise
position. Wavy riblets were studied in [25], both numerically and experimentally, in the
case of a turbulent flow; however, the authors were not able to conclude regarding the
efficiency of the device.

In the present paper, we study the effect of wavy riblets on the slip behaviour of a vis-
cous flow, when the amplitude and the periods of the spanwise and streamwise oscillations
are small. Although the main field of application of wavy riblets concerns high Reynolds
number flows, the present work deals with the case of low Reynolds number, in which the
flow can be modeled via the linear Stokes equations. We believe that the presented results
could be instrumental in the mathematical study of certain models for turbulence used in
Large Eddy Simulation, that we aim to address in a future work.

Definition of straight and wavy riblets. The ribbed walls that we consider are geometric
perturbations of a planar boundary, which is identified with the plane R2 × {0}. In the
cartesian system of coordinates (x1, x2, x3), x3 denotes the wall-normal coordinate. We
define x2 as the direction of the flow, or streamwise direction; x1 is thus the lateral, or
spanwise direction.

We assume that the geometry of the riblets is associated with a small parameter ε,
that controls the (spatial) oscillations of the boundary. More precisely, we name wavy
riblets a parametric surface defined by a relation of the form x3 = −Ψε(x1, x2), where Ψε

is a positive function given by

Ψε(x1, x2) := a1
εΨ1

(
x1

p1
ε

+
a2
ε

p1
ε

Ψ2

(
x2

p2
ε

))
, (1.1)

Ψ1, Ψ2 being smooth and periodic functions of period 1. Parameters a1
ε, p

1
ε > 0 (resp.
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a2
ε, p

2
ε > 0) are the amplitude and period of oscillation in the x1-x3 axes (resp., in the

x1-x2 axes). Let us stress that the definition of wavy riblets (1.1) is a generalization of
straight riblets, which correspond to the choice Ψ2 ≡ 0 (see Figure 1).

Figure 1: Views from above of wavy riblets (left) and straight riblets (right)

In order to study the rugosity effect of straight riblets endowed with perfect slip con-
ditions, several theoretical works related to homogenization theory have been carried out.
It was shown in [7] that, starting with perfect slip condition at the ribbed boundary given
by

Ψε(x1, x2) = εΨ
(x1

ε

)
,

in the limit ε → 0, no-slip condition appears in the spanwise direction while perfect slip
still holds in the streamwise direction. This means that straight riblets tend to prevent
the fluid from slipping laterally, whereas the motion in the streamwise direction is allowed
with no constraint. The former work was generalized in [15] for riblets with low amplitude,
i.e.

Ψε(x1, x2) = δεΨ
(x1

ε

)
,

where δε � ε. In that case, the limit velocity field satisfies a perfect slip condition in the
streamwise direction, but its slippage behaviour in the spanwise direction is dependant on
the scaling of δε with respect to the critical scaling ε

3
2 :

- if δε � ε
3
2 , then there is no roughness effect and perfect slip is achieved in the

spanwise direction as well;

- if δε ≈ ε
3
2 , with δε/ε

3
2 → λ, 0 < λ < +∞, then partial slip appears in the spanwise

direction, which is associated with a constant friction coefficient depending on the
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limit λ and on the riblet geometry;

- if δε � ε
3
2 , then the same consequences given in [7] hold: no-slip condition appears

in the spanwise direction while perfect slip holds in the streamwise one.

The common feature of these previous works is that the rugosity effect induced by
straight riblets can only appear in the spanwise direction. Thus, our goal in the present
paper is to analyse if the periodic displacement of wavy riblets in the lateral direction may
produce an effect on the streamwise component of the velocity. For the sake of simplicity,
in this work we will consider the same amplitudes and periods in both the streamwise and
spanwise directions, by setting a1

ε = a2
ε = δε, p

1
ε = p2

ε = ε, where δε � ε as ε tends to 0.
The function Ψε will thus be defined by (see Figure 2)

Ψε(x1, x2) = δεΨ1

(
x1

ε
+
δε
ε

Ψ2

(x2

ε

))
. (1.2)

x	  2	  

x	  1	  

ε	  δ	  

ε	  
ε	  

δ	  ε	  

x	  1	  

x	  3	  

Figure 2: Sketch of sinusoidal displacement. View of wavy riblet surface from above (left)
and wavy riblet cross-section (right)

For such configuration, we prove that the asymptotic effects of wavy riblets also depend
on the scaling of δε with respect to ε; however, two critical regimes need to be considered,
namely δε ≈ ε

3
2 and δε ≈ ε

5
4 , and therefore five different regimes. As it was the case

in [15], the critical regime δε ≈ ε
3
2 is associated with the effect of the riblets in the spanwise

direction. The novelty of the model we consider is that the combination of streamwise and
spanwise oscillations of wavy riblets give rise to a new critical regime δε ≈ ε

5
4 , that rules

the asymptotic effect of the geometry on the streamwise component of the fluid velocity.
Thus, two additional asymptotic regimes need to be considered:

- if δε ≈ ε
5
4 , with δε/ε

5
4 → µ, 0 < µ < +∞, then no-slip holds in the spanwise

direction, while partial slip described by a constant friction coefficient Mµ appears
in the streamwise direction;

- if δε � ε
5
4 , then the periodical displacement of wavy riblets in the spanwise direction

enforces the fluid to satisfy no-slip condition in both directions.

Let us stress that the case δε � ε
5
4 , where perfect slip condition transforms asymp-

totically in no-slip condition, is an example of the strongest rugosity effect: the roughness
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prevents the fluid from slipping on the wall. This effect was identified in the pioneer-
ing paper [13], in the case of a periodic, self-similar boundary with C2-regularity. This
regularity was weakened to ”almost Lipschitz” boundaries in [6]. Other results obtained
in [9], [10] (see also [23], [26]) give a quite complete understanding of the rugosity effect
for arbitrary boundaries.

The paper is organized as follows. In Section 2, we introduce the notation. In Section 3,
we formulate the problem and state our main result, which is proved in Section 4 by means
of an adaptation of the unfolding method (see e.g. [3], [11], [14], [16]), that was proposed
in [15]. Finally, in Section 5, we illustrate numerically the asymptotic effect of wavy riblets
on the streamwise component of the velocity field. To this aim, we simulate the friction
coefficient Mµ induced by the critical regime δε ≈ ε

5
4 , and the corresponding homogenized

system, using different riblet profiles that are widely used in the experimental studies: the
V -shape, the U -shape, and the blade riblets.

2 Notation
We consider a viscous flow in a domain delimited by two horizontal plates. For the

sake of simplicity, we assume that the flow is periodic with respect to the horizontal
coordinates (x1, x2). We denote by T 2 := R2/Z2 (resp. T 1 := R/Z) the two-dimensional
(resp. one-dimensional) torus. We fix two functions Ψ1,Ψ2 ∈W 2,∞(T 1) and define

Ψε(x1, x2) := δεΨ1

(
x1

ε
+
δε
ε

Ψ2

(x2

ε

))
, a.e. (x1, x2) ∈ T 2, (2.1)

where ε > 0 is a small parameter and δε satisfies

lim
ε→0

δε = 0, lim
ε→0

δε
ε

= 0. (2.2)

We consider the spatial domain

Ωε :=
{

(x1, x2, x3) ∈ T 2 × R, −Ψε(x1, x2) < x3 < 1
}
. (2.3)

The two components of the boundary ∂Ωε are denoted by

Γtop := T 2 × {1}, (2.4)

Γε :=
{

(x1, x2, x3) ∈ T 2 × R, x3 = −Ψε(x1, x2)
}
. (2.5)

With these definitions, the upper surface Γtop is assumed to be plane, while the lower one,
Γε, is composed of wavy riblets (see Figure 3). We also define the limit domain Ω and its
plane bottom surface Γ by

Ω := T 2 × (0, 1), Γ := T 2 × {0}.

For k′ ∈ Z2, we denote

Ck
′
ε = εk′ + εT 2 , Qk

′
ε = Ωε ∩ (Ck

′
ε × (−∞, 1)) .

We define κ : T 2 → Z2 by

κ(x′) = k′ ⇔ x′ ∈ Ck′1 .
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Figure 3: Schematic view of domain Ωε

Remark that κ is well defined up to a set of zero measure in T 2 (the set ∪k′∈Z2∂Ck
′

1 ).
Moreover, for every ε > 0, we have

κ

(
x′

ε

)
= k′ ⇔ x′ ∈ Ck′ε .

For a.e. x′ ∈ T 2 we define Cε(x
′) as the square Ck

′
ε such that x′ belongs to Ck

′
ε . For every

ε > 0, we define Iε by
Iε = {k′ ∈ Z2 : Ck

′
ε ∩ T 2 6= ∅} .

We define the set Q̂ := T 2 ×(0,+∞), and for every M > 0, we write Q̂M = T 2 ×(0,M)
and we decompose each element x ∈ Q̂M in x = (x′, x3), with obvious notation. We denote
by V the space of functions v : Q̂→ R such that

v ∈ H1(Q̂M ) ∀M > 0, ∇v ∈ L2(Q̂)3.

V is a Hilbert space endowed with the norm ‖ · ‖V defined by

‖v‖2V = ‖v‖2L2(T 2×{0}) + ‖∇v‖2
L2(Q̂)

.

For a bounded measurable set Θ ⊂ RN , we denote by L2
0(Θ) the space of functions of

L2(Θ) with null integral.
We denote by Oε a generic real sequence which tends to zero with ε and can change

from line to line. We denote by C a generic positive constant which can change from line
to line.

3 Setting of the problem and main result

Let Ωε be the domain defined by (2.3). We consider the Stokes equations −∆uε +∇pε = f in Ωε ,

divuε = 0 in Ωε ,
(3.1)
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where the unknown functions uε and pε are the velocity and the pressure of the fluid,
respectively. Note that we have tacitly assumed that the driving force f is defined on all
domains Ωε, say, f is a restriction of a fixed function belonging to the class L∞(T 2×R)3.
We assume for simplicity that the fluid adheres to the top boundary, that means,

uε = 0 on Γtop . (3.2)

The aim is to study the roughness-induced effects of wavy riblets at the bottom of the
domain. In view of that, we assume impermeability of the lower surface

uε · ν = 0 on Γε , (3.3)

together with the perfect slip condition[
∂uε
∂ν

]
τ

= 0 on Γε , (3.4)

where ν denotes the outside unitary normal vector to Ωε on Γε, and [ ]τ denotes the
tangential component.

It is well known (see e.g. [7], [15]) that problem (3.1) has a unique solution (uε, pε) ∈
H1(Ωε)

3 × L2
0(Ωε), and moreover there exists C > 0, which does not depend on ε, such

that
‖uε‖H1(Ωε)3 + ‖pε‖L2(Ωε) ≤ C . (3.5)

We are now in a position to state the main result of this paper, which describes
the asymptotic behaviour of the solution (uε, pε) of problem (3.1)-(3.4). The problem
satisfied by the limit (u, p) still possesses the same structure (see formula (3.7)), because
the roughness-induced effect appears only on the boundary condition on the limit lower
surface Γ. This effect depends on the asymptotic behaviour of δε, with two critical regimes,
namely δε ≈ ε

3
2 , and δε ≈ ε

5
4 , and therefore five different regimes.

Theorem 3.1. Let (uε, pε) ∈ H1(Ωε)
3×L2

0(Ωε) be the solution to problem (3.1) such that
(3.5) holds. Then, there exists (u, p) ∈ H1(Ω)3 × L2

0(Ω) such that, up to a subsequence,

uε ⇀ u in H1(Ω)3, pε ⇀ p in L2(Ω). (3.6)

The pair (u, p) satisfies the Stokes system −∆u+∇p = f in Ω ,

divu = 0 in Ω ,
(3.7)

together with the boundary condition

u = 0 on Γtop . (3.8)

Moreover, it also satisfies the following boundary condition on Γ depending on the asymp-
totic behaviour of δε:

(i) If δε � ε
3
2 , then

− ∂3u1 = 0 , −∂3u2 = 0 , u3 = 0 , on Γ . (3.9)
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(ii) If δε ≈ ε
3
2 , with δε/ε

3
2 → λ, 0 < λ < +∞, we define (φ̂

λ
, q̂λ) ∈ V3 × L2(Q̂), as the

solution of 

−∆yφ̂
λ

+∇y q̂λ = 0 in R2 × R+ ,

divyφ̂
λ

= 0 in R2 × R+ ,

φ̂λ3(y′, 0) = λ∂1Ψ1(y1) on R2 × {0} ,

−∂3φ̂
λ
1 = 0, −∂3φ̂

λ
2 = 0 on R2 × {0} ,

(3.10)

and Mλ ∈ R by

Mλ =

∫
Q̂
|Dyφ̂

λ
|2dy . (3.11)

Then
− ∂3u1 +Mλ u1 = 0, −∂3u2 = 0, u3 = 0 on Γ . (3.12)

(iii) If ε
3
2 � δε � ε

5
4 , then

u1 = 0 , −∂3u2 = 0 , u3 = 0 , on Γ. (3.13)

(iv) If δε ≈ ε
5
4 , with δε/ε

5
4 → µ, 0 < µ < +∞, we define (φ̂

µ
, q̂µ) ∈ V3 × L2(Q̂), as the

solution of 

−∆yφ̂
µ

+∇y q̂µ = 0 in R2 × R+,

divyφ̂
µ

= 0 in R2 × R+,

φ̂µ3 (y′, 0) = µ2 ∂1Ψ1(y1)∂2Ψ2(y2) on R2 × {0},

−∂3φ̂
µ
1 = 0 , −∂3φ̂

µ
2 = 0 , on R2 × {0},

(3.14)

and Mµ ∈ R by

Mµ =

∫
Q̂
|Dyφ̂

µ
|2 dy. (3.15)

Then
u1 = 0 , −∂3u2 +Mµ u2 = 0 , u3 = 0 , on Γ . (3.16)

(v) If δε � ε
5
4 , then

u1 = 0 , u2 = 0 , u3 = 0 , on Γ . (3.17)

Remark 3.2. Observe that in the first three cases, i.e. when δε � ε
5
4 , roughness effects

alter only the spanwise component of the velocity, u1, while total slip is satisfied by the
streamwise component, u2. However, if δε ' ε

5
4 , the wavy riblets have an influence on

both components of the velocity; in the spanwise direction, the no-slip condition u1 = 0 is
enforced, and

- If δε ≈ ε
5
4 , partial slip appears in the streamwise direction, associated with a constant

friction coefficient Mµ;

- If δε � ε
5
4 , the no-slip condition u2 = 0 is imposed asymptotically. In this case, the

limit velocity field is completely adherent to the wall Γ.
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Remark 3.3. Theorem 3.1 gives an approximation of (uε, pε) in the weak topology of
H1(Ω)3 × L2(Ω). Following the proof of Theorem 3.3 in [15], we are able to obtain an
approximation in the strong topologies ( i.e., a corrector result). More precisely, in the non
critical regimes, we can show that∫

Ωε

|uε − u|2dx→ 0 ,

∫
Ωε

|Duε −Du|2dx→ 0 ,

∫
Ωε

|pε − p|2dx→ 0 . (3.18)

In the critical case δε ≈ ε
3
2 , defining uλε and pλε by

uλε = u(x)−
√
ε u1(x′, 0)φ̂

λ
(x
ε

)
, pλε = p(x)− 1√

ε
u1(x′, 0)q̂ λ

(x
ε

)
,

then (3.18) still holds by replacing u and p by uλε and pλε , respectively.

Finally, in the critical case δε ≈ ε
5
4 , defining uµε and pµε by

uµε = u(x)−
√
ε u2(x′, 0)φ̂

µ
(x
ε

)
, pµε = p(x)− 1√

ε
u2(x′, 0)q̂ µ

(x
ε

)
,

then (3.18) still holds by replacing u and p by uµε and pµε , respectively.

The following proposition ensures the existence and uniqueness of the solutions to
systems (3.10) and (3.14), and states some exponential decay properties in the y3-direction
that will be useful to perform numerical simulations.

Proposition 3.4. There exists a unique solution (φ̂
λ
, q̂λ) ∈ V3×L2(Q̂) to system (3.10).

Moreover, (φ̂
λ
, q̂λ) ∈ C∞(Q̂)3 × C∞(Q̂), and there exists a constant τ > 0 such that, for

every α ≥ 0 and t > 0, there exists a constant Cα,t such that, for every y ∈ T 2× (0,+∞),

y3 ≥ t⇒

∣∣∣∣∣φ̂λ1,2(y)−
∫
T 2×{0}

φ̂λ1,2(y′, 0) dy′

∣∣∣∣∣+ |φ̂λ3(y)| ≤ C0,t λ ‖∂1Ψ1‖L2(T 1) e−τy3 ,

(3.19)

y3 ≥ t, α ≥ 1⇒ |Dαφ̂
λ
(y)|+ |Dα−1q̂λ(y)| ≤ Cα,t λ ‖∂1Ψ1‖L2(T 1) e−τy3 .

(3.20)

The same properties hold for (φ̂
µ
, q̂µ), the former inequalities being replaced by

y3 ≥ t⇒

∣∣∣∣∣φ̂µ1,2(y)−
∫
T 2×{0}

φ̂µ1,2(y′, 0) dy′

∣∣∣∣∣+ |φ̂µ3 (y)|

≤ C0,t µ
2 ‖∂1Ψ1‖L2(T 1) ‖∂2Ψ2‖L2(T 1) e−τy3 , (3.21)

y3 ≥ t, α ≥ 1⇒ |Dαφ̂
µ
(y)|+ |Dα−1q̂µ(y)| ≤ Cα,t µ2 ‖∂1Ψ1‖L2(T 1) ‖∂2Ψ2‖L2(T 1) e−τy3 .

(3.22)
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4 Proofs of the results

The goal of this section is to prove Theorem 3.1. The key point of this result is to
describe the asymptotic behaviour of (uε, pε) near the ribbed boundary Γε. In order to
take into account the effect of the roughness, we will apply an adaptation of the unfold-
ing method (see e.g. [3], [11], [14], [16]) described in [15] for rough boundaries with low
amplitude. Note that the unfolding method is a very efficient tool to study periodic ho-
mogenization problems where the size of the periodic cell tends to zero. The idea is to
introduce suitable changes of variables which transform every periodic cell into a simpler
reference set by using a supplementary variable (microscopic variable). Remark that the
unfolding method is strongly related to the two-scale convergence method ( [1], [28]).

Given (uε, pε) ∈ H1(Ωε)
3 × L2

0(Ωε), with uε = 0 on Γtop, we define (ûε, p̂ε) by

ûε(x
′, y) = uε

(
εκ

(
x′

ε

)
+ εy′, εy3

)
, (4.1)

p̂ε(x
′, y) = pε

(
εκ

(
x′

ε

)
+ εy′, εy3

)
, (4.2)

for a.e. (x′, y′) ∈ T 2 × Ŷε, with

Ŷε :=

{
y ∈ T 2 × R : −Ψε(y

′) < y3 <
1

ε

}
,

with

Ψε(y
′) :=

δε
ε

Ψ1

(
y1 +

δε
ε

Ψ2 (y2)

)
. (4.3)

Remark 4.1. For k′ ∈ Z2 the restriction of (ûε, p̂ε) to Ck
′
ε × Ŷε does not depend on x′,

while as function of y it is obtained from (uε, pε) by using the change of variables

y′ =
x′ − εk′

ε
, y3 =

x3

ε
, (4.4)

which transforms Qk
′
ε into Ŷε.

Lemmas 4.2 and 4.4 below describe the asymptotic behaviour of (ûε, p̂ε) in T 2 × Q̂M ,
for every M > 0, given by (4.1), (4.2), when (uε, pε) ∈ H1(Ωε)

3 × L2
0(Ωε) satisfies (3.5).

We remark that the proofs of Lemmas 4.2 and 4.4 are closely related to the ones described
in [15]. The main difference is the presence of oscillations of the boundary along the
streamwise direction, that give rise to a novel effect associated with the critical regime
δε ≈ ε

5
4 .

Lemma 4.2. Let pε be in L2
0(Ωε) with bounded norm. Then, up to a subsequence, there

exists p̂ ∈ L2(T 2 × Q̂) such that the sequence p̂ε defined by (4.2) satisfies

√
εp̂ε ⇀ p̂ in L2(T 2 × Q̂M ) ∀M > 0 . (4.5)

10



Proof. For every M > 0, the definition of p̂ε and property (3.5) yield the estimate∫
T 2×Q̂M

|p̂ε|2 dx′ dy ≤
∑
k′∈Iε

ε2

∫
Q̂M

|pε(ε(k′ + y′), εy3)|2 dy

≤ 1

ε

∑
k′∈Iε

∫
Qk′

ε

|pε(x)|2 dx ≤ 1

ε

∫
Ωε

|pε|2 dx ≤
C

ε
.

(4.6)

Thus, there exists p̂ : T 2 × Q̂→ R such that (4.5) holds. By semicontinuity, (4.6) implies∫
T 2×Q̂M

|p̂|2dx′ dy ≤ lim inf
ε→0

∫
Ωε

|pε|2 dx, ∀M > 0 .

We will need the following result whose proof is elementary and so, we omit it.

Lemma 4.3. Let vε ∈ L2(T 2) be a sequence which converges weakly to a function v in
L2(T 2). We define v̄ε ∈ L2(T 2) by

v̄ε(x
′) =

1

ε2

∫
Cε(x′)

vε(z
′) dz′, a.e. x′ ∈ R2 .

Then we have:

(i) For every τ ′ ∈ R2, the sequence
v̄ε(x

′ + ετ ′)− v̄ε(x′)√
ε

converges to zero in the sense

of distributions in T 2.

(ii) If the convergence of vε is strong, then v̄ε converges strongly to v in L2(T 2).

Lemma 4.4. We consider a sequence uε ∈ H1(Ωε)
3 with bounded norm satisfying uε ·ν =

0 on Γε, uε = 0 on Γtop, and such that (it always holds for a subsequence) there exists
u ∈ H1(Ω)3 with uε converging weakly to u in H1(Ω)3. Then, the third component u3 of
u vanishes on Γ. Moreover, we have

(i) If δε ≈ ε
3
2 , with δε/ε

3
2 → λ, 0 < λ < +∞, then there exists û ∈ L2(T 2 ;V3) with

û3(x′, y′, 0) = −λ∂y1Ψ1(y1)u1(x′, 0), a.e. (x′, y′) ∈ T 2 × T 2 , (4.7)

such that for every M > 0, the sequence ûε defined by (4.1) satisfies

1√
ε
Dyûε ⇀ Dyû in L2(T 2 × Q̂M )3×3 . (4.8)

Besides, if divuε = 0 in Ωε, then

divyû = 0 in T 2 × Q̂ . (4.9)

(ii) If ε
3
2 � δε � ε

5
4 , then

u1(x′, 0)∂y1Ψ1(y1) = 0 a.e. (x′, y′) ∈ T 2 × T 2 . (4.10)
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(iii) If δε ≈ ε
5
4 , with δε/ε

5
4 → µ, 0 < µ < +∞, then u1 satisfies (4.10), and there exists

û ∈ L2(T 2 ;V3) with

û3(x′, y′, 0) = −µ2∂y1Ψ1(y1)∂y2Ψ2(y2)u2(x′, 0), a.e. (x′, y′) ∈ T 2 × T 2 , (4.11)

such that the sequence ûε satisfies (4.8), and moreover (4.9) also holds if divuε = 0
in Ωε.

(iv) If δε � ε
5
4 , then u1 satisfies (4.10), and u2 satisfies

u2(x′, 0)∂1Ψ1(y1)∂2Ψ2(y2) = 0 a.e. (x′, y′) ∈ T 2 × T 2 . (4.12)

Proof. We divide the proof in five steps.

Step 1 Let us first prove that u3 vanishes on Γ.

Since uε · ν = 0 on Γε, for every ϕ ∈ C1
c (T 2 × (−1, 1)) we have∫

Ωε

uε∇ϕdx = −
∫

Ωε

divuε ϕdx . (4.13)

Using ∣∣∣∣∣
∫

Ωε\Ω
uε∇ϕdx

∣∣∣∣∣ ≤
(∫

Ωε

|uε|2 dx
) 1

p

(∫
Ωε\Ω

|∇ϕ|2 dx

) 1
2

→ 0 ,

∣∣∣∣∣
∫

Ωε\Ω
divuεϕdx

∣∣∣∣∣ ≤
(∫

Ωε

|divuε|2 dx
) 1

2

(∫
Ωε\Ω

|ϕ|2 dx

) 1
2

→ 0 ,

and the weak convergence of uε to u in H1(Ω)3, we can pass to the limit in (4.13)
to deduce ∫

Ω
u∇ϕdx = −

∫
Ω

divuϕdx ,

and then ∫
Γ
u3 ϕdx

′ = 0, ∀ϕ ∈ C1
c (T 2 × (−1, 1)) ,

which proves u3 = 0 on Γ.

Step 2 Let us obtain some estimates for the sequence ûε given by (4.1).

For M > 0, the definition (4.1) of ûε proves for every ε > 0 small enough∫
T 2×Q̂M

|Dyûε(x
′, y)|2dx′dy ≤ ε4

∑
k′∈Iε

∫
Q̂M

|Duε(ε(k′ + y′), εy3)|2dy

≤
∑
k′∈Iε

ε

∫
Qk′

ε

|Duε|2dx ≤ ε
∫

Ωε

|Duε|2dx ≤ C ε .

(4.14)
On the other hand, defining

ūε(x
′) =

1

ε2

∫
Cε(x′)

uε(τ
′, 0) dτ =

∫
T 2

ûε(x
′, y′, 0) dy′ , (4.15)
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and using the inequality∫
Q̂M

|ûε(x′, y)− ūε(x′)|2 dy ≤ CM
∫
Q̂M

|Dyûε|2 dy, a.e. x′ ∈ R2, (4.16)

where CM does not depend on ε and taking into account (4.14), we deduce that

Û ε =
ûε(x

′, y)− ūε√
ε

is bounded in L2(T 2 ;H1(Q̂M )3) ∀M > 0 . (4.17)

Thus, there exists û : T 2 × Q̂→ R3, such that, up to a subsequence,

Û ε ⇀ û in L2(T 2;H1(Q̂M )3) ∀M > 0 , (4.18)

and then
1√
ε
Dyûε ⇀ Dyû in L2(T 2 ×QM )3×3 ∀M > 0 . (4.19)

Passing to the limit by semicontinuity in inequalities (4.14) and (4.16) (this latest
one after integration in T 2), we get∫

T 2×Q̂M

|Dyû|2dx′dy ≤ C ,
∫
T 2×Q̂M

|û|2dx′dy ≤ CM ,

and by the arbitrariness of M , once we prove the T 2 -periodicity of û in y′ (Step 3),
then

û ∈ L2(T 2;V3) . (4.20)

Moreover, if we also assume that divuε = 0 in Ωε, then by definition (4.1) of ûε, we
have divyûε = 0 in T 2 × Q̂M , which together with (4.19) proves

divyû = 0 in T 2 × Q̂ . (4.21)

Step 3 Let us prove that û is T 2-periodic in y′.

We observe that by definition (4.1) of ûε, for every M > 0, we have

ûε(x1 + ε, x2, 0, y2, y3) = ûε(x
′, 1, y2, y3) a.e. (x′, y2, y3) ∈ T 2 × T 1 × (0,M) .

Therefore the sequence Û ε satisfies

Û ε(x1 + ε, x2, 0, y2, y3)− Û ε(x
′, 1, y2, y3) =

−ūε(x1 + ε, x2) + ūε(x
′)√

ε
. (4.22)

By (4.15) and the fact that uε|Γ is bounded in L2(Γ)3, we can apply Lemma 4.3-
(i) to deduce that the right-hand side of this equality tends to zero in the sense of
distributions in T 2. Therefore, passing to the limit in (4.22) by (4.18), and taking
into account the arbitrariness of M we get

û(x′, 0, y2, y3)− û(x′, 1, y2, y3) = 0 a.e. (x′, y2, y3) ∈ T 2 × T 1 × R .

Analogously, we can prove

û(x′, y1, 0, y3)− û(x′, y1, 1, y3) = 0 a.e. (x′, y1, y3) ∈ T 2 × T 1 × R .

These equalities prove that û is periodic with respect to T 2 .
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Step 4 Using the compact embedding of H1(Ω) into L2(Γ) and Lemma 4.3-(ii), we have
that ūε converges strongly to u(x′, 0) in L2(T 2)3. Thus, by (4.17), we deduce

ûε(x
′, y)→ u(x′, 0) in L2(T 2 ;H1(Q̂M )3) ∀M > 0 . (4.23)

Step 5 Using the change of variables (4.4), which defines ûε, in the equality uε · ν = 0 on
Γε, we get

∂y1Ψε(y
′)ûε,1

(
x′, y′,−Ψε(y

′)
)

+ ∂y2Ψε(y
′)ûε,2

(
x′, y′,−Ψε(y

′)
)

+ûε,3
(
x′, y′,−Ψε(y

′)
)

= 0 ,
(4.24)

a.e. in T 2 × T 2 , where, taking into account the definition of Ψε(y
′) given by (4.3)

∂y1Ψε(y
′) =

δε
ε
∂y1Ψ1

(
y1 +

δε
ε

Ψ2(y2)

)
,

∂y2Ψε(y
′) =

δ2
ε

ε2
∂y1Ψ1

(
y1 +

δε
ε

Ψ2(y2)

)
∂y2Ψ2(y2) .

Thanks to (4.24) and (4.14), we have then

∣∣∂y1Ψε(y
′)ûε,1(x′, y′, 0) + ∂y2Ψε(y

′)ûε,2(x′, y′, 0) + ûε,3(x′, y′, 0)
∣∣

≤
∫ 0

−Ψε(y′)

∣∣∂y1Ψε(y
′)∂3ûε,1(x′, y′, t) + ∂y2Ψε(y

′)∂3ûε,2(x′, y′, t) + ∂3ûε,3(x′, y′, t)
∣∣ dt

≤ C
(
δε
ε

) 1
2

(∫ 0

−Ψε(y′)
|∂y3ûε(x′, y′, t)|2 dt

) 1
2

a.e. (x′, y′) ∈ T 2 × T 2 .

Taking the power 2, integrating in T 2 × T 2 and using (4.14) we then deduce

∫
T 2×T 2

∣∣∂y1Ψε(y
′)ûε,1(x′, y′, 0) + ∂y2Ψε(y

′)ûε,2(x′, y′, 0) + ûε,3(x′, y′, 0)
∣∣2 dx′dy′ ≤ Cδε ,

which implies

∫
T 2×T 2

∣∣∣∣∣∂y1Ψε(y
′)ûε,1(x′, y′, 0) + ∂y2Ψε(y

′)ûε,2(x′, y′, 0) + ûε,3(x′, y′, 0)

−
∫
T 2

(
∂y1Ψε(z

′)ûε,1(x′, z′, 0) + ∂y2Ψε(z
′)ûε,2(x′, z′, 0) + ûε,3(x′, z′, 0)

)
dz′

∣∣∣∣∣
2

dx′dy′ ≤ Cδε .

Dividing by ε, and taking into account that both ∂y1Ψε, ∂y2Ψε have mean value zero
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in T 2 , we get∫
T 2×T 2

∣∣∣∣∣ δεε 3
2

∂y1Ψ1

(
y1 +

δε
ε

Ψ2(y2)

)
ûε,1(x′, y′, 0)

−δε
ε

∫
T 2

∂y1Ψ1

(
y1 +

δε
ε

Ψ2(y2)

)(
ûε,1(x′, z′, 0)− ūε,1(x′)√

ε

)
dz′

+
δ2
ε

ε
5
2

∂y1Ψ1

(
y1 +

δε
ε

Ψ2(y2)

)
∂y2Ψ2(y2) ûε,2(x′, y′, 0)

−δ
2
ε

ε2

∫
T 2

∂y1Ψ1

(
y1 +

δε
ε

Ψ2(y2)

)
∂y2Ψ2(y2)

(
ûε,2(x′, z′, 0)− ūε,2(x′)√

ε

)
dz′

+
ûε,3(x′, y′, 0)− ūε,3(x′)√

ε

∣∣∣∣∣
2

dx′dy′ ≤ C δε
ε
→ 0 .

(4.25)

Depending on the values of λ and µ, limits of δε/ε
3
2 and δε/ε

5
4 respectively, we

deduce:

- When δε ≈ ε
3
2 , then (4.25) shows that

δε

ε
3
2

∂y1Ψ1

(
y1 +

δε
ε

Ψ2(y2)

)
ûε,1(x′, y′, 0) is bounded in L2(T 2 × T 2) . (4.26)

We can pass to the limit by using (4.23) which implies that

∂y1Ψ1

(
y1 +

δε
ε

Ψ2(y2)

)
ûε,1(x′, y′, 0)→ ∂y1Ψ1(y1)u1(x′, 0) in L2(T 2 × T 2) .

This gives

û3(x′, y′, 0) = −λ∂y1Ψ1(y1)u1(x′, 0) a.e. (x′, y′) ∈ T 2 × T 2 .

- When δε � ε
3
2 , then from (4.26) and (4.23) we deduce

∂y1Ψ1

(
y1 +

δε
ε

Ψ2(y2)

)
ûε,1(x′, y′, 0)→ 0 in L2(T 2 × T 2) ,

which gives

u1(x′, 0)∂y1Ψ1(y1) = 0 a.e. (x′, y′) ∈ T 2 × T 2 .

- When δε ≈ ε
5
4 , then (4.25) shows that

δ2
ε

ε
5
2

∂y1Ψ1

(
y1 +

δε
ε

Ψ2(y2)

)
∂y2Ψ2(y2) ûε,2(x′, y′, 0) is bounded in L2(T 2 × T 2) .

(4.27)
We can pass to the limit by using (4.23) which implies that

∂y1Ψ1

(
y1 +

δε
ε

Ψ2(y2)

)
∂y2Ψ2(y2) ûε,2(x′, y′, 0)→ ∂y1Ψ1(y1)∂y2Ψ2(y2)u2(x′, 0) in L2(T 2×T 2) .

This gives

û3(x′, y′, 0) = −µ2∂y1Ψ1(y1)∂y2Ψ2(y2)u2(x′, 0) a.e. (x′, y′) ∈ T 2 × T 2 .
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- When δε � ε
5
4 , then from (4.27) and (4.23) we deduce

∂y1Ψ1

(
y1 +

δε
ε

Ψ2(y2)

)
∂y2Ψ2(y2) ûε,2(x′, y′, 0)→ 0 in L2(T 2 × T 2) ,

which gives

u2(x′, 0)∂1Ψ1(y1)∂2Ψ2(y2) = 0 a.e. (x′, y′) ∈ T 2 × T 2 .

Finally, using these properties, we easily deduce the statements of Lemma 4.4.

Proof of Theorem 3.1. Thanks to (3.5), there exists a subsequence of ε, still denoted by
ε, and (u, p) ∈ H1(Ω)3 × L2(Ω) such that (3.6) holds.

On the other hand, we observe that (uε, pε) satisfies the variational equation
∫

Ωε

Duε : Dvε −
∫

Ωε

pε div vε dx =

∫
Ωε

f · vε dx ,

∀vε ∈ H1(Ωε)
3 , vε · ν = 0 on Γε , vε = 0 on Γtop .

(4.28)

The proof of Theorem 3.1 is similar to the one given in [15], and it will be carried out
using suitable test functions vε depending on the values of δε. In particular, the cases
(i) − (iii) have already been addressed in [15]. Here, we will develop in more detail the

new critical case (iv), that is when δε ≈ ε
5
4 , with δε/ε

5
4 → µ, 0 < µ < +∞. Finally, case

(v) will be described briefly.

Step 1 Case δε ≈ ε
5
4 , with δε/ε

5
4 → µ, 0 < µ < +∞.

We consider v ∈ C1
c (T 2× (−1, 1))3 and v̂ ∈ C1

c (T 2;C(Q̂)3), with Dyv̂(x′, y) = 0 a.e.
in {y3 > M}, for some M > 0, such that

v(x) = v(x′, 0) if x3 ≤ 0 ,

v3(x′, 0) = 0 ,

v1(x′, 0)∂y1Ψ1(y1) = 0 a.e. (x′, y′) ∈ T 2 × T 2 , v̂(x′, y) = v̂(x′, y′, 0) if y3 ≤ 0 ,

v̂3(x′, y′, 0) = −µ2∂y1Ψ1(y1)∂2Ψ2(y2)v2(x′, 0) .

(4.29)

Besides, we take ζ ∈ C∞(R) such that

ζ(x3) =


1 if x3 <

1

3
,

0 if x3 >
2

3
,

(4.30)

and Rε > 0 such that

Rε → +∞, Rε

[(
δ2
ε

ε
5
2

− µ2

)2

+
δ2
ε

ε2

]
→ 0 . (4.31)
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Then, we define vε ∈ H1(Ωε)
3 by

vε,1(x) = v1(x) +
√
ε v̂1

(
x′,

x

ε

)
ζ(x3)

vε,2(x) = v2(x) +
√
ε v̂2

(
x′,

x

ε

)
ζ(x3)

vε,3(x) = v3(x) +
√
ε

[
v̂3

(
x′,

x

ε

)
ζ(x3)+

+µ2 ζ

(
x3

εRε

)
∂1Ψ1

(x1

ε

)
∂2Ψ2

(x2

ε

)
v2(x′, 0)

− δ
2
ε

ε
5
2

ζ

(
x3

εRε

)
∂1Ψ1

(
x1

ε
+
δε
ε

Ψ2

(x2

ε

))
∂2Ψ2

(x2

ε

)
v2(x′, 0)

−δ
2
ε

ε2
ζ

(
x3

εRε

)
∂1Ψ1

(
x1

ε
+
δε
ε

Ψ2

(x2

ε

))
∂2Ψ2

(x2

ε

)
v̂2

(
x′,

x′

ε
, 0

)]

−δε
ε
ζ

(
x3

ε2Rε

)
∂1Ψ1

(
x1

ε
+
δε
ε

Ψ2

(x2

ε

))
v1(x′, 0)

− δε√
ε
ζ

(
x3

εRε

)
∂1Ψ1

(
x1

ε
+
δε
ε

Ψ2

(x2

ε

))
v̂1

(
x′,

x′

ε
, 0

)
.

(4.32)

Taking into account properties given in (4.29), the sequence vε satisfies

vε = 0 on Γtop, vε · ν = 0 on Γε .

Thus, we can take such vε as test function in (4.28). The problem is to pass to the
limit in every term that appears in (4.28). To simplify the computations, we will
first estimate the derivatives of vε.

Taking into account that Dyv̂ = 0 a.e. in {y3 > M} and that ζ = 1 a.e. on {x3 <
1
3},

we have

Dvε(x) = Dv(x) +
1√
ε
Dyv̂

(
x′,

x

ε

)
+ hε(x) , (4.33)

where, using that v, v̂ and ζ are bounded with bounded derivatives, the function
hε ∈ C0(Ωε)

3×3 satisfies

|hε| ≤ C
√
ε+ C

[(
1√
εRε

+
1√
ε

)(∣∣∣∣ δ2
ε

ε
5
2

− µ2

∣∣∣∣+
δ2
ε

ε2

)

+
δ2
ε

ε
5
2

δε

ε
3
2

+
δ2
ε

ε2
+
δ2
ε

ε2

δε

ε
3
2

+
δε

ε
3
2

]
χ{x3<εRε}

+C

[
δε
ε

1

ε2Rε
+
δε
ε

1

ε
+
δε
ε

δε
ε2

+
δε
ε

]
χ{x3<ε2Rε}

+C

[
δε

ε
3
2

+
δ2
ε

ε
5
2

+
δε

ε
1
2

+
δε

ε
1
2

1

εRε

]
χ{x3<εRε} ,

a.e. in Ωε. Using that Rε tends to infinity and that δε/ε
5
4 is bounded, we get
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|hε| ≤ C
√
ε+ C

[
1√
ε

(∣∣∣∣ δ2
ε

ε
5
2

− µ2

∣∣∣∣+
δ2
ε

ε2

)
+
δε

ε
3
2

+
δ2
ε

ε2
+
δ2
ε

ε2

δε

ε
3
2

]
χ{x3<εRε}

+C

[
δε
ε

1

ε
+
δε
ε

δε
ε2

+
δε
ε

]
χ{x3<ε2Rε}

+C

[
δε

ε
3
2

+
δ2
ε

ε
5
2

+
δε

ε
1
2

]
χ{x3<εRε} .

Therefore, by (4.31) we have

∫
Ωε

|hε|2dx ≤ Oε + CRε

[(
δ2
ε

ε
5
2

− µ2

)2

+
δ2
ε

ε2
+
δ4
ε

ε3
+
δ6
ε

ε6
+
δ4
ε

ε4
+ δ2

ε

]

≤ Oε + CRε

[(
δ2
ε

ε
5
2

− µ2

)2

+
δ2
ε

ε2

]
= Oε .

(4.34)

Taking vε as a test function in (4.28) and using that ‖uε‖H1(Ωε)3 , ‖pε‖L2(Ωε) are
bounded, ‖vε − v‖C0(Ω̄ε)3 tends to zero, (4.33) and (4.34), we get∫

Ωε

(Duε : Dv − pε div v)dx

+
1√
ε

∫
Ωε

(
Duε : Dyv̂

(
x′,

x

ε

)
− pεdivyv̂

(
x′,

x

ε

))
dx+Oε =

∫
Ωε

f · v dx .

(4.35)
In last equality, we have used the estimate∫

Ωε\Ω

∣∣∣∣Dv +
1√
ε
Dyv̂

(
x′,

x

ε

)∣∣∣∣2 dx ≤ C

ε
|Ωε \ Ω| ≤ C δε

ε
≤ C
√
ε .

Therefore, (4.35) can be rewritten as∫
Ω

(Duε : Dv − pεdiv v)dx

+
1√
ε

∫
Ω

(
Duε : Dyv̂

(
x′,

x

ε

)
− pεdivyv̂

(
x′,

x

ε

))
dx+Oε = 0 .

Taking into account (3.6), we deduce∫
Ω

(Du : Dv − p div v)dx

+
1√
ε

∫
Ω

(
Duε : Dyv̂

(
x′,

x

ε

)
− pε divyv̂

(
x′,

x

ε

))
dx+Oε =

∫
Ω
f · v dx ,

(4.36)
with v and v̂ satisfying (4.29). In order to estimate the second term in (4.36), we
introduce the sequences ûε, p̂ε respectively defined by (4.1) and (4.2). By (3.5)
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and Lemmas 4.2 and 4.4, we can assume that there exist p̂ ∈ L2(T 2 × Q̂) and
û ∈ L2(T 2;V3) which satisfy (4.5), (4.8), (4.9) and (4.11). This yields:

1√
ε

∫
Ω

(
Duε : Dyv̂

(
x′,

x

ε

)
− pε divyv̂

(
x′,

x

ε

))
dx

=
∑
k′∈Iε

∫
Qk′

ε

(
1√
ε
Duε (x) : Dyv̂

(
x′,

x

ε

)
− 1√

ε
pε (x) divyv̂

(
x′,

x

ε

))
dx

=
∑
k′∈Iε

ε3

∫
Qk′

ε

(
1√
ε
Duε

(
ε(k′ + y′), εy3

)
: Dyv̂

(
x′, y

)
− 1√

ε
pε
(
ε(k′ + y′), εy3

)
divyv̂

(
x′, y

))
dy

=
∑
k′∈Iε

ε2

∫
Qk′

ε

(
ε√
ε
Duε

(
ε(k′ + y′), εy3

)
: Dyv̂

(
x′, y

)
−
√
εpε
(
ε(k′ + y′), εy3

)
divyv̂

(
x′, y

))
dy

=
∑
k′∈Iε

ε2

∫
Qk′

ε

(
1√
ε
Dyûε(x

′, y) : Dyv̂
(
x′, y

)
−
√
εp̂ε(x

′, y)divyv̂
(
x′, y

))
dy

=

∫
T 2

∫
Q̂M

(
1√
ε
Dyûε(x

′, y) : Dyv̂(x′, y)−
√
εp̂ε(x

′, y)divyv̂(x′, y)

)
dx′dy

=

∫
T 2×Q̂M

(Dyû : Dyv̂ − p̂ divyv̂) dx′dy +Oε .

Substituting in (4.36) we set∫
Ω

(Du : Dv − pdiv v)dx+

∫
T 2×Q̂M

(Dyû : Dyv̂ − p̂divyv̂) dx′dy =

∫
Ω
f · v dx,

(4.37)
for every v ∈ C1

c (T 2 × (−1, 1))3, v̂ ∈ C1
c (T 2;C1(Q̂)3), with Dyv̂(x′, y) = 0 a.e. in

{y3 > M}, for some M > 0, and such that (4.29) is satisfied. By density, this
equality holds true for every v ∈ H1(Ωε)

3, and every v̂ ∈ L2(T 2;V3) such that

v = 0 on Γtop ,

v3(x′, 0) = 0, v̂3(x′, y′, 0) = −µ2∂y1Ψ1(y1)∂y2Ψ2(y2)v2(x′, 0) ,

v1(x′, 0)∂y1Ψ1(y1) = 0, a.e. (x′, y′) ∈ T 2 × T 2 .

Let us now obtain an equation for u eliminating û and p̂ in (4.37). For this purpose,
we take v = 0 in (4.37). This proves that (û, p̂) is a solution of

−∆yû+∇y p̂ = 0 in R2 × R+ ,

divyû = 0 in R2 × R+ ,

(û, p̂) ∈ V3 × L2(Q̂) ,

û3(x′, y′, 0) = −µ2 ∂y1Ψ1(y1)∂y2Ψ2(y2)u2(x′, 0) on R2 × {0} ,

−∂y3 û1 = 0,−∂y3 û2 = 0 on R2 × {0} ,

(4.38)

a.e. in T 2. Defining (φ̂
µ
, q̂µ ) by (3.14), we deduce by linearity and uniqueness

Dyû(x′, y) = −u2(x′, 0)Dyφ̂
µ
(y) a.e. in R2 × (0,+∞) , (4.39)
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p̂(x′, y) = u2(x′, 0)q̂µ(y) a. e. in R2 × (0,+∞) . (4.40)

Now, consider v ∈ H1(Ω)3, with v = 0 on Γtop, v3 = 0 on Γ. We take v and

v̂(x′, y) = −v2(x′, 0)φ̂
µ
(y) as test functions in (4.37); taking into account (4.39), we

get ∫
Ω

(Du : Dv − p div v)dx+

∫
Γ
Mµ u2 v2 dx

′ =

∫
Ω
f · v dx . (4.41)

By the arbitrariness of v, this proves that (u, p) is a solution of problem (3.7)-(3.8)-
(3.16).

Step 2 The case δε � ε
5
4 .

As in Step 1, we consider v ∈ C1
c (T 2 × (−1, 1))3, with v(x′, x3) = v(x′, 0) if x3 ≤ 0,

v3 = 0 on Γ. Then, for ζ ∈ C∞(R), which satisfies (4.30), and Rε satisfying (4.31),
we define vε ∈ H1(T 2 × (−1, 1))3 by



vε,1(x) = v1(x)

vε,2(x) = v2(x)

vε,3 = v3(x)− δε
ε
ζ

(
x3

ε2Rε

)
∂1Ψ1

(
x1

ε
+
δε
ε

Ψ2

(x2

ε

))
v1(x)

−δ
2
ε

ε2
ζ

(
x3

ε2Rε

)
∂1Ψ1

(
x1

ε
+
δε
ε

Ψ2

(x2

ε

))
∂2Ψ2

(x2

ε

)
v2(x) .

The sequence vε satisfies vε ·ν = 0 on Γ and vε = 0 on Γtop. We can take vε as test
function in (4.28). Proceeding as in Step 1, we can prove that

Dvε = Dv + hε ,

with hε satisfying ∫
Ωε

|hε|2dx ≤ Oε .

Then, passing to the limit in ε and reasoning by density we get

∫
Ω
Du : Dv dx−

∫
Ω
p div v dx = 0 ∀v ∈ H1(Ω)3 ,

v3 = 0 on Γ , v = 0 on Γtop ,

v1(x′, 0)∂1Ψ1(y1) = 0, v2(x′, 0)∂1Ψ1(y1)∂2Ψ2(y2) = 0 a.e. (x′, y′) ∈ T 2 × T 2 .

This is equivalent to problem (3.7)-(3.8)-(3.17).

Proof of Proposition 3.4. It results from Lemma 4 in [2], applied to (φ̂
λ
−V λ, p̂λ), where

V λ is a constant vector defined by

V λ
i =

∫
T 2

φ̂
λ

i (y′, 0) dy′, i = 1, 2, V λ
3 = 0 .
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This translation ensures that the vector field φ̂
λ
− V λ satisfies the following property:∫

T 2

(φ̂
λ
(y′, 0)− V λ) dy′ = 0 .

Notice that, by periodicity, the boundary condition satisfied by φ̂λ3 on y3 = 0 yields∫
T 2 φ̂

λ
3(y′, 0) dy′ = 0 .

5 Numerical results
In this section, we simulate numerically the asymptotic effect of wavy riblets on a

viscous fluid, in the streamwise direction. To this aim, we consider a flow driven by a
constant external force f = (0, 1, 0) and modeled by Stokes equations (3.1) associated
with boundary conditions (3.2), (3.3), (3.4), and periodic in the lateral coordinates. In
order to capture the influence of fast oscillations of the ribbed boundary, we simulate
the homogenized system described by Theorem 3.1. Since we focus on the streamwise
component of the fluid velocity, we consider the second critical case, namely, δε ∼ µ ε5/4

with 0 < µ < +∞. In that case, the homogenized velocity field u is the solution to
Stokes equations (3.7) in the unit cube Ω, completed with boundary conditions (3.8),
(3.16). Boundary condition (3.16), satisfied by the streamwise component of the velocity,
introduces an extra friction term Mµ defined by (3.15). As a result, the numerical approx-
imation of u is determined by the resolution of the auxiliary problem (3.14), that allows
for the computation of this friction coefficient.

This section is organized as follows. In Subsection 5.1, we present and justify the
numerical approximation of the solution to the auxiliary problem (3.14). In Subsection
5.2, we define the geometry of the wavy riblets that we consider in the simulations. Finally,
Subsection 5.3 is devoted to the statement and discussion of the results.

5.1 Numerical approximation of auxiliary system (3.14)

In order to simulate system (3.14), we fix a truncature parameter H > 0 and we

approximate the functions (φ̂
µ
, q̂µ) on T 2 × (0, H), as follows. We define (φ̂

µ

H , q̂
µ
H) ∈

H1(R2 × (0, H),R3)× L2(R2 × (0, H)), as the solution of

−∆yφ̂
µ

H +∇y q̂µH = 0 in R2 × (0, H) ,

divyφ̂
µ

H = 0 in R2 × (0, H) ,

φ̂µH,3(y′, 0) = µ2 ∂1Ψ1(y1)∂2Ψ2(y2) on R2 × {0} ,

−∂3φ̂
µ
H,1 = 0, −∂3φ̂

µ
H,2 = 0 on R2 × {0} ,

∂3φ̂
µ
H,1(y′, H) = 0 ,

∂3φ̂
µ
H,2(y′, H) = 0 ,

∂3φ̂
µ
H,3 − q̂

µ
H = 0 on R2 × {H} ,

(5.1)

and the corresponding approximate value of the coefficient Mµ,H by

Mµ,H =

∫
T 2×(0,H)

∣∣∣Dyφ̂
µ

H

∣∣∣2 dy . (5.2)
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Justification of the approximation. The validity of the approximate system (5.1) is
strongly related to the exponential decay properties (3.22). Assume, for instance, that
H > 1. We denote by FH ∈ C∞(T 2)3 the function defined by

FH(y′) := ∂3φ̂
λ
(y′, H)− q̂λ(y′, H)e3 ∀ (y1, y2) ∈ T 2 .

Applying property (3.22) with α = 1, t = 1, we obtain the existence of a constant C > 0
such that

‖FH‖L2(T 2)3 ≤ C µ2 ‖∂1Ψ1‖L2(T 1)‖∂2Ψ2‖L2(T 1) e−τH .

In order to compare the exact solution (φ̂
µ
, q̂µ) with the approximation (φ̂

µ

H , q̂
µ
H), we

notice that (φ̂
µ
, q̂µ) is a solution to system (5.1) in T 2 × (0, H), but with a slightly

modified boundary condition on y3 = H, namely,

∂3φ̂
µ
− q̂µe3 = FH on y3 = H .

As a result, the difference (φ̂
µ
−φ̂

µ

H , q̂
µ−q̂µH) is a solution to a Stokes system in T 2×(0, H),

with the following boundary conditions:

−∂3(φ̂µ1 − φ̂
µ
H,1) = 0, −∂3(φ̂µ2 − φ̂

µ
H,2) = 0 on y3 = 0 ,

φ̂µ3 − φ̂
µ
H,3 = 0 on y3 = 0 ,

∂3(φ̂
µ
− φ̂

µ

H)− (q̂µ − q̂µH) e3 = FH on y3 = H .

It follows that there exists a constant C > 0 such that

‖D(φ̂
µ
− φ̂

µ

H)‖L2(T 2×(0,H)) ≤ C µ2 ‖∂1Ψ1‖L2(T 1) ‖∂2Ψ2‖L2(T 1) e−τH . (5.3)

Numerical method. In order to compute the solution to system (5.1), we use a finite
element discretization of the problem, using FreeFem++ software [21]. We consider the
Taylor-Hood approximation for the velocity-pressure pair, i.e., P2 elements for the velocity
field and P1 elements for the pressure. It is well known that this choice is compatible
with the Babuška-Brezzi condition [20], [5]. The three-dimensional mesh of the fluid
domain T 2× (0, H) is obtained by a constrained Delaunay tetrahedralization. Finally, the
incompressibility condition is approximated by the standard penalty formulation∫

Ω

(
divφ̂

µ
+ η q̂µ

)
r̂ = 0 ∀ r̂ ∈ Qh ,

where Qh is the discrete approximation space for the pressure, and η = 10−6 is the penalty
parameter [20], [22].

5.2 Definition of the geometry of the wavy riblets

The geometry of the wavy riblets is determined by the choice of the profile functions
Ψ1,Ψ2. To perform comparisons, and in view of estimate (5.3), we normalize functions
Ψ1,Ψ2 by setting

‖∂1Ψ1‖L2(T 1) = 1 , ‖∂2Ψ2‖L2(T 1) = 1 .

Choice of Ψ2. We consider a sinusoidal function

Ψ2(y2) = K2 sin(2πy2) ,

where K2 is the normalization constant.

22



Choice of Ψ1. The functions Ψ1 that we consider are obtained by regularizing riblet
profiles that are widely used in the experimental studies [18]:

(i) the V -shape riblets, or sawtooth riblets;

(ii) the U -shape riblets, or scallop riblets;

(iii) the blade riblets.

For each of these profiles, we have applied a parabolic regularization in the vicinity of
each singular point, obtaining functions Ψ1 of class C2 (see Figure 4). Finally, Figure 5
provides an outline of the associated profiles Ψε, restricted to the line R× {0}.

Figure 4: Functions Ψ1 associated with V -shaped, U -shaped and blade riblets (from left
to right)

Figure 5: Functions Ψε associated with V -shaped, U -shaped and blade riblets (from left
to right)

5.3 Results and discussion

For each type of geometry of riblets described in Subsection 5.2, we compute an ap-
proximate value of the friction coefficient Mµ, for different values of µ. To this aim, we
start by solving system (5.1) in a domain of height H = 3, for a fixed value µ = 1. The
corresponding results are given in Table 1.

Then, for any value of µ, we set Mµ,H = µ4 M1,H , which is the numercial counterpart of
the relation Mµ = µ4M1, satisfied by the exact friction coefficient as a direct consequence
of (3.15).

Then, for each value of Mµ,H , we solve by a finite element method (see Subsection 5.1
for details) the homogenized Stokes system
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V -shape U -shape Blade

Mµ,H 311.516 1270.89 1865.94

Table 1: Approximate values of the friction coefficient Mµ,H , with µ = 1, and H = 3, for
the U -shape, V -shape and blade riblets.



−∆u+∇p = f in Ω ,

divu = 0 in Ω ,

u = 0 on Γtop ,

u1 = 0 , −∂3u2 +Mµ,H u2 = 0 , u3 = 0 on Γ ,

(5.4)

where Ω = T 2× (0, 1), Γ = T 2×{0}, Γtop = T 2×{1}, in the particular case f = (0, 1, 0).
We define the average streamwise velocity u2 by

u2 =

∫
Ω
u2 =

∫
Ω
f · u.

The results are plotted in Figure 6.

We observe that for each riblet profile, there exists a transition between the perfect
slip regime, associated with the limit µ→ 0, and the no-slip regime µ→ +∞. During this
transition, the values of the average streamwise velocities that we observe for the V -shape,
the U -shape and the blade riblets, are ordered in a way that is consistent with the values
of the approximate friction coefficients given in Table 1. The V -shape riblet, associated
with the smallest friction coefficient, corresponds to the highest velocity of the flow; on
the opposite, the U -shape and the blade riblets, whose friction coefficients at µ = 1 are 4
to 6 times larger, have a stronger slowing effect on the flow.

This significant difference between the V -shape riblet on the one hand, and the U -
shape and blade riblets on the other hand, can be put in perspective with the well-known
experimental results on straight riblets, that demonstrate the efficiency of thin protrusions
in the reduction of the drag for turbulent flows (see [25] and the references therein). In
our study, such fast and well-localized variations of the boundary give rise to a high L1

norm of the derivative ∂1Ψ1; combined with sinusoidal oscillations of the boundary along
the streamwise direction, they generate high friction coefficients Mµ. Such high values
of the friction coefficients could play a decisive role in the stabilization of the flow in the
vicinity of the wall, in the case of flows at larger Reynolds numbers. This question will be
addressed in a future work, by applying our homogenization results to certain turbulent
models used in Large Eddy Simulation.
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of the “Junta de Andalućıa”, and by the program “Research in Paris 2014” of Mairie de
Paris . The research of Giordano Tierra has been partially supported by ERC-CZ project
LL1202 (Ministry of Education, Youth and Sports of the Czech Republic).

24



0.2 0.4 0.6 0.8

0.1

0.15

0.2

0.25

0.3

µ

A
ve

ra
ge

st
re

am
w

is
e

v
el

o
ci

ty

V-shape
U-shape

blade

Figure 6: Average streamwise velocity u2 plotted against µ, for a flow governed by Stokes
equations (5.4).
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