
PAMS 119 (1993), 1121–1126.

A REMARK ON WEIGHTED INEQUALITIES FOR
GENERAL MAXIMAL OPERATORS

C. Pérez

Abstract

Let 1 < p < ∞, and let w, v be two non–negative functions. We give a
sufficient condition on w, v for which the general maximal operator MB is
bounded from Lp(v) into Lp(w). Our condition is stronger but closely related
to the Ap,B condition for two weights.

1 Introduction

Let Q be the family of all open cubes in Rn with sides parallel to the axes and
let MQ = M denote the Hardy–Littlewood maximal operator. According to
a fundamental theorem of E. Sawyer [?], M is a bounded operator from Lp(v)
into Lp(w), 1 < p < ∞, if and only if (w, v) ∈ Sp, that is there is a positive
constant c such that∫

Q

M(v1−p′χ
Q

)(y)pw(y)dy ≤ c

∫
Q

v(y)1−p′ dy Q ∈ Q. (1)

On the other hand, it is well known that Muckenhoupt’s Ap condition for
two weights,

(
1

|Q|

∫
Q

w(y) dy

)1/p(
1

|Q|

∫
Q

v(y)1−p′ dy

)1/p′

≤ c Q ∈ Q, (2)

is not equivalent to Sp unless v = w ( cf. [?] also [?] p. 433). One problem
with E. Sawyer’s condition is that it is very difficult to test in practice since
it involves the operator M on it. It would be interesting to obtain sufficient
conditions close in form to (??). In [?] we initiated this program and showed
that it is enough to consider conditions such as (??) but replacing the local
Lp
′
average norm involved on the weight v by appropiate stronger norms. An

antecedent of these results can be found in C. Neugebauer’s paper [?].
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This note is devoted to study the corresponding two weight problem∫
Rn

MBf(y)pw(y)dy ≤ c

∫
Rn

|f(y)|pv(y)dy, (3)

where B is a general basis. By a basis B in Rn we mean a collection of
open sets in Rn. The study of general maximal operators MB arise in many
situations in Fourier Analysis where the geometry involved is other than
the one given by the cubes or balls. Of course, in one–parameter Fourier
Analysis the basis Q plays a central role together with the basis D of all
dyadic cubes. A corresponding role in multiparameter Fourier Analysis is
played by the basis R of all rectangles with sides parallel to the axes. An
example of “exotic” but interesting basis is given by the Córdoba–Zygmund
basis < in R3 of all rectangles with sidelengths of the form {s, t, st}.

For a general basis B MB denotes the maximal operator associated to B
defined by

MBf(x) = sup
x∈B

1

|B|

∫
B

|f(y)| dy

if x ∈ ∪B∈B and MBf(x) = 0 otherwise. We say that w is a weight associated
to the basis B if w is a non–negative measurable function in Rn such that
w(B) =

∫
B
w(y) dy <∞ for each B in B. The weight w belongs to the class

Ap,B, 1 < p <∞, if there is a constant c such that(
1

|B|

∫
B

w(y) dy

)(
1

|B|

∫
B

w(y)1−p′ dy

)p−1

≤ c (4)

for all B ∈ B. For p =∞, we set A∞,B = ∪p>1Ap,B.
In [?] we introduced the following class of bases that we shall use later.

DEFINITION 1.1 A basis B is a Muckenhoupt basis if for each 1 < p <∞,
and every w ∈ Ap,B

MB : Lp(w)→ Lp(w).

It is shown in [?] that this definition is equivalent to saying that for each
1 < p <∞

MB,w : Lp(w)→ Lp(w) w ∈ A∞,B. (5)
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Here MB,w denotes the weighted maximal operator defined by

MB,wf(x) = sup
x∈B

1

w(B)

∫
B

|f(y)|w(y)dy.

Most of the important bases are Muckenhoupt bases, and in particular
those mentioned above: Q,D,R and <.

Let now (w, v) be a couple of weights associated to the basis B. Extending
a previous result of E. Sawyer in [?] for the strong maximal operator, B.
Jawerth [?] gave a necessary and sufficient condition for MB to be bounded
from Lp(v) into Lp(w) under no restriction on B. Let F be the family of all
finite unions G = ∪Nj=1Bj of sets in B; Jawerth’s condition is that for some
positive constant c∫

G

MB

(
v1−p′χG

)
(y)pw(y)dy ≤ c

∫
G

v(y)1−p′ dy G ∈ F . (6)

This condition is even harder to verify than Sawyer’s condition Sp. In The-
orem ?? below we shall provide a simpler sufficient condition which is not
necessary.

We shall use the following class of weights.

DEFINITION 1.2 We say that a weight w associated to the basis B satis-
fies condition (A) if there are constants 0 < λ < 1, 0 < c = c(λ) < ∞ such
that for all measurable set E

(A) w ({x ∈ Rn : MB(χE)(x) > λ}) ≤ cw(E).

Before stating our main theorem we shall make some remarks concerning
condition (A).

This class of weights was considered by Jawerth in [?], although the un-
weighted version goes back to the work of A. Córdoba in [?]. One reason
which makes condition (A) interesting is the fact that it is weaker than the
A∞,B condition whenever the basis B is a Muckenhoupt basis. To see this let
w ∈ A∞,B; then w ∈ Ar,B, for some 1 < r < ∞, and by standard properties
of the Ap,B weights

|E|
|B|
≤ c

(
w(E)

w(B)

)1/r

,
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for each measurable subset E ⊂ B ∈ B. It follows then that MB(χE)(x) ≤
c (MB,w(χE)(x))1/r, and therefore, if B is a Muckenhoupt basis, (??) yields
for all λ > 0

w ({x ∈ Rn : MB(χE)(x) > λ}) ≤ w({x ∈ Rn : MB,w(χE)(x) >
λr

cr
}) ≤

≤ cr

λr

∫
Rn

χE(x)r w(x)dx = c(λ)w(E),

which is condition (A).
In fact B. Jawerth and A. Torchinsky have shown in [?] that the A∞,R

condition is strictly stonger than condition (A). As an example they show
(cf. p. 270 in [?]) that if the weight w in Rn, n > 1, is A∞ in each variable
except in one where is merely doubling, then w satisfies condition (A) while
w does not belong to A∞,R as is well known.

A first result on the two weight problem was remarked by the author in
[?]. We pointed out that the following generalized Fefferman–Stein’s type
inequality ∫

Rn

MBf(y)pw(y)dy ≤ c

∫
Rn

|f(y)|pMB w(y)dy, (7)

holds assuming that B is a Muckenhoupt basis, and that the weight w satisfies
condition (A). We recall that the classical Fefferman–Stein inequality for the
Hardy–Littlewood maximal operator M has no restriction on w.

At this point we mention that a particular instance of this result was
previously obtained by K. C. Lin in [?]. His result is for the strong maximal
operator MR in dimension n = 2, and with the weight w satisfying the A∞,R
condition.

The main result of this paper is the following.

THEOREM 1.3 Let 1 < p <∞, and let B a general basis satistying MB :
Ls(Rn) → Ls(Rn) for all 1 < s < ∞. Suppose that (w, v) is a couple of
weights such that w satisfies (A), and that for some 1 < r < ∞ there is a
contant c such that

1

|B|

∫
B

w(y) dy

(
1

|B|

∫
B

v(y)(1−p′)r dy

)(p−1)/r

≤ c, (8)

for all B ∈ B. Then

MB : Lp(v)→ Lp(w). (9)
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It is easy to check that (w,MBw) satisfies (??) and then we have the
following corollary.

COROLLARY 1.4 Let 1 < p < ∞, and let B a general basis satistying
MB : Ls(Rn)→ Ls(Rn) for all 1 < s <∞. Suppose that w is a weight which
satisfies condition (A). Then∫

Rn

MBf(y)pw(y)dy ≤ c

∫
Rn

f(y)pMBw(y)dy.

In particular if B is a Muckenhoupt basis we always have that MB :
Ls(Rn)→ Ls(Rn), 1 < s <∞ yielding (??) as a is corollary.

COROLLARY 1.5 Let 1 < p < ∞, and let B a Muckenhoupt basis. Sup-
pose that w is a weight which satisfies condition (A). Then∫

Rn

MBf(y)pw(y)dy ≤ c

∫
Rn

f(y)pMBw(y)dy.

2 Proof of the Theorem

First we claim that (??) implies that

MB : Lp(v)→ Lp,∞(w), (10)

where Lp,∞(w) is the weighted Lorentz space defined by all the functions f
such that supλ>0 (λpw({x ∈ Rn : MBf(x) > λ})) <∞.

To prove (??) we just need to prove that there is a constant c such that

w(K) ≤ c

tp

∫
Rn

f(y)p v(y)dy,

for each t > 0, f ≥ 0, and for any compact subset K of {x ∈ Rn : MB(f)(x) >
t}. By the compactness of K and the definition of MBf we can find a finite
collection B1, . . . , BN such that

K ⊂ ∪Nj=1Bj and t <
1

|Bj|

∫
Bj

f(y) dy, (11)

for each j = 1, . . . , N . We follow now a well known selecting procedure
argument (cf. [?] p. 463 for instance). Let B̃1 = B1 and, once B̃1, . . . , B̃k−1
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have been selected, we choose B̃k to be the first set in the given sequence (if
any) such that ∣∣∣B̃k ∩ (∪k−1

j=1B̃j)
∣∣∣ < λ

∣∣∣B̃k

∣∣∣.
Now, we claim that

∪Nj=1Bj ⊂ {x ∈ Rn : MB(χ∪Mj=1B̃j
)(x) ≥ λ}. (12)

Let x ∈ ∪Nj=1Bj; if x belongs to some B̃k it is of course obvious that it is
contained on the set to the right since λ < 1. If on the other hand x ∈ Bj

for some Bj which has been discarded in the selection process, we must have∣∣∣Bj ∩ (∪Mj=1B̃j)
∣∣∣ ≥ λ|Bj|, and therefore MB(χ∪Mj=1B̃j

)(x) ≥ λ. Now, since w

satisfies condition (A), (??) yields

w(∪Nj=1Bj) ≤ cw(∪Mj=1B̃j).

This together with (??), (??) and Hölder’s inequality yields the following
estimate

w(K) ≤ cw(∪Mj=1B̃j) ≤ c
∑
j

 1

t
∣∣∣B̃j

∣∣∣
∫
B̃j

f(y) dy

p

w(B̃j) =

c
1

tp

∑
j

 1∣∣∣B̃j

∣∣∣
∫
B̃j

f(y)v(y)1/pv(y)−1/p dy

p

w(B̃j) ≤

c
1

tp

∑
j

 1∣∣∣B̃j

∣∣∣
∫
B̃j

f(y)(p′r)′v(y)(p′r)′/p dy


p

(p′r)′
 1∣∣∣B̃j

∣∣∣
∫
B̃j

v(y)−p
′r/p dy


p

p′r
w(B̃j)∣∣∣B̃j

∣∣∣
∣∣∣B̃j

∣∣∣ ≤
cK

1

tp

∑
j

 1∣∣∣B̃j

∣∣∣
∫
B̃j

f(y)(p′r)′v(y)(p′r)′/p dy


p

(p′r)′ ∣∣∣B̃j

∣∣∣ ≤ .

Denote Ej = B̃j\∪j−1
i=1 B̃i, so that {Ej} is a disjoint family with Ej ⊂ B̃j and∣∣∣B̃j

∣∣∣ < 1
1−λ |Ej|. Then

w(K) ≤ c
1

tp

∑
j

 1∣∣∣B̃j

∣∣∣
∫
B̃j

f(y)(p′r)′v(y)(p′r)′/p dy


p

(p′r)′

|Ej| ≤
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c

tp

∑
j

∫
Ej

MB(f (p′r)′v(p′r)′/p)(y)
p

(p′r)′ dy ≤ c

tp

∫
Rn

MB(f (p′r)′v(p′r)′/p)(y)
p

(p′r)′ dy ≤

c

tp

∫
Rn

f(y)p v(y)dy,

since by hypothesis MB : Ls(Rn)→ Ls(Rn), 1 < s <∞.
To conclude the proof of the theorem we observe first that we always have

that
MB : L∞(v)→ L∞(w). (13)

Now, denoting condition (??) by Ap,r we see that (w, v) satisfies Ap̄,r̄ for
some 1 < p̄ < p, 1 < r̄ <∞; in fact p−1

r
+ 1 < p̄ < p, 1 < r̄ < p̄−1

p−1
r will do it:

1

|B|

∫
B

w(y) dy

(
1

|B|

∫
B

(v(y)−1)( r̄
p̄−1

) dy

)1/ r̄
p̄−1

≤

1

|B|

∫
B

w(y) dy

(
1

|B|

∫
B

(v(y)−1)( r
p−1

) dy

)1/ r
p−1

≤ K.

By the above argument Ap̄,r̄ and MB : Ls(Rn)→ Ls(Rn), 1 < s <∞, yield

MB : Lp̄(v)→ Lp̄,∞(w).

This together with (??) implies MB : Lp(v)→ Lp(w) by the Marcinkiewicz’s
interpolation theorem. This concludes the proof of the theorem. 2
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