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ASYMPTOTICS OF KEIPER-LI COEFFICIENTS

Juan Arias de Reyna

Abstract: We show that the Riemann Hypothesis is equivalent to the assertion (ym) ∈ `2 where
ym is defined by

λm =
1

2
(log m + γ − log(2π)− 1) + ym,

and mλm represents the numbers in Xian-Jin Li’s criterion. This confirms and further sharpens
a conjecture of J. B. Keiper.

We also present some other hypotheses equivalent to the Riemann Hypothesis.
Keywords: Riemann Hypothesis, Keiper-Li coefficients, zeta function.

1. Introduction

Keiper [7] introduced several power series1:

2ξ(s) =
∞∑

j=0

αj(s− 1)j ,
ξ′(1/s)
ξ(1/s)

=
∞∑

k=0

τk(1− s)k, (1)

log
(
2ξ(1/s)

)
=

∞∑

k=0

λk(1− s)k,
ξ′(s)
ξ(s)

=
∞∑

k=0

σk+1(1− s)k, (2)

where
ξ(s) =

s(s− 1)
2

π−s/2Γ
(s

2

)
ζ(s). (3)

He demonstrated that if the Riemann Hypothesis is true then λn > 0 for
all n > 0. Later Xian-Jin Li [8] proved that indeed the Riemann Hypothesis is
equivalent to λn > 0 for all n > 0. Keiper also claims, by assuming the Riemann
Hypothesis together with an additional hypothesis about the vertical distribution
of the zeros, that

λm ≈ log m

2
− log(2π) + 1− γ

2
.

Supported by grant MTM2006-05622.
2010 Mathematics Subject Classification: primary: 11M26; secondary: 11M06

1Keiper [7] defined the numbers λm as in (2). Later Li considered mλm and called them λm.
We will follow the notation of Keiper which is more convenient for our purposes.
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We will show here that in fact the Riemann Hypothesis is equivalent to the asser-
tion that the sequence (ym), implicitly defined by

λm =
log m

2
− log(2π) + 1− γ

2
+ ym

is in `2.
Our result also reinforces the result of Voros [13], which stated that nyn = o(n)

is equivalent to the Riemann Hypothesis.
We define the numbers An by means of the power series expansion

log
{
(s− 1)ζ(s)

}
=

∞∑
n=0

An

(
1− 1

s

)n

, <s > 1. (4)

These numbers are closely related to yn above. We will also prove that the Riemann
Hypothesis is equivalent to the assertion (An) ∈ `2.

2. Some results of Keiper

Keiper [7] established many relations between coefficients of expansions (1). For
example [7, equation (27)],

λk =
k∑

j=1

(−1)j−1

j

(
k − 1
j − 1

)
σj for k > 1. (5)

Keiper also gave formulas for some of these coefficients in terms of the non-trivial
zeros of ζ(s):

λm =
1
m

∑
%

[
1−

( %

%− 1

)m]
and σk =

∑
%

1
(1− %)k

=
∑

%

1
%k

(6)

where % runs through the non-trivial zeros of ζ(s), and where the terms of the
sums that correspond to % and % must be paired. It is known [4, p. 67] that

σ1 =
∑

%

1
%

= 1 +
γ − log π

2
− log 2. (7)

Keiper related the Riemann Hypothesis with the behaviour of some of these
coefficients. In particular he proved that the Riemann Hypothesis implies that all
λk > 0. Later Xian-Jin Li [8] proved that conversely λk > 0 implies the Riemann
Hypothesis.

Here we quote Keiper [7, p. 769]: In fact, if we assume the Riemann hypothesis,
and further that the zeros are very evenly distributed, we can show that

λm ≈ log m

2
− log(2π) + 1− γ

2
. (8)
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This comes from the fact [4, p. 132] that the number of zeros ρ in the critical strip
with 0 < Imρ < T is

N(T ) ∼ T

2π
log

T

2π
− T

2π
(9)

and (6). Note that this asymptotic conjecture is much stronger than the Riemann
hypothesis. Even the coefficient of the log m (not to mention the constant term)
could be altered by a slight preference of the zeros to cluster at, or avoid, the points
1/2 + 2i tan((2k + 1)π/(2m)).

We will show that, in fact, (8) is a consequence of the Riemann Hypothesis.
To this end, we need no additional hypothesis. We will try to explain what the
reason for Keiper’s opinion may be.

3. The behaviour of λm

In the following argument we assume the Riemann Hypothesis. For each non-
trivial zero % = 1/2 + iγ with γ > 0 we define the angle

θ = arctan
1
2γ

.

It is easy to see that
%

%− 1
= e−2iθ

hence

λm =
1
m

∑
%

[
1−

( %

%− 1

)m]
=

2
m

∑
γ>0

<(1− e−2imθ) =
4
m

∑
γ>0

sin2(mθ).

Therefore, (8) may also be written as

4
m

∑
γ>0

sin2(mθ) ≈ log m

2
− log(2π) + 1− γ

2
. (10)

This may well be the reason for Keiper’s opinion. The above sum is related to
the distribution of the numbers mθ with respect to the integral multiples of π.
Therefore, (10) appears to impose a condition on the vertical distribution of the
zeros. The following theorem proves that this is not true.

Theorem 3.1. Let (γj) be a non-decreasing sequence of positive real numbers,
distributed such that

N(t) = #{j ∈ N : γj 6 t} =
t

2π
log

t

2π
− t

2π
+ S(t)

where S(t) = O(log t). Defining θj = arctan 1
2γj

, we then have

4
m

∞∑

j=1

sin2(mθj) =
log m

2
− log(2π) + 1− γ

2
+ ym

where (ym) ∈ `2.
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Proof. We write the sum as

J(m) :=
4
m

∞∑

j=1

sin2(mθj) =
4
m

∫ +∞

0

sin2 m
(
arctan

1
2t

)
dN(t).

Since dN(t) = (2π)−1 log(t/2π) dt + dS(t), we obtain

J(m) =
2

πm

∫ +∞

0

sin2 m
(
arctan

1
2t

)
log

t

2π
dt

+
4
m

∫ +∞

0

sin2 m
(
arctan

1
2t

)
dS(t) := J1(m) + J2(m).

In the first integral J1(m), we put y = arctan 1/2t

J1(m) :=
2

πm

∫ +∞

0

sin2 m
(
arctan

1
2t

)
log

t

2π
dt

= − 2
πm

∫ π/2

0

sin2(my) log(4π tan y)
dy

2 sin2 y

= − 1
πm

∫ π/2

0

sin2(my)
y2

y2

sin2 y

{
log y + log

4π tan y

y

}
dy

= − 1
πm

∫ π/2

0

sin2(my)
y2

log(4πy) dy − 1
πm

∫ π/2

0

sin2(my)
y2

g(y) dy

where

g(y) :=
(

y2

sin2 y
− 1

)
log(4πy) +

y2

sin2 y
log

tan y

y
.

Since g(y)/y2 is a continuous function on (0, π/2), and g(y)/y2 is O(log y) for
y → 0+, and O(log(π/2− y)) for y → π/2−, we have that g(y)/y2 is an integrable
function and

1
πm

∫ π/2

0

sin2(my)
y2

g(y) dy = O(1/m).

We thus have

J1(m) = − 1
πm

∫ π/2

0

sin2(my)
y2

log(4πy) dy + O(1/m)

=
1
π

log
m

4π

∫ πm/2

0

sin2 x

x2
dx− 1

π

∫ πm/2

0

sin2 x

x2
log x dx + O(1/m)

=
1
π

log
m

4π

∫ +∞

0

sin2 x

x2
dx− 1

π

∫ ∞

0

sin2 x

x2
log x dx + O(log m/m).

Since it is known (see [5, p. 446: 3.821 9, and p. 599: 4.423 3]) that
∫ +∞

0

sin2 x

x2
dx =

π

2
and

∫ ∞

0

sin2 x

x2
log x dx =

π(1− γ − log 2)
2
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it follows that

J1(m) =
log m

2
− log(2π) + 1− γ

2
+ O(log m/m).

Now we consider the second integral

J2(m) :=
4
m

∫ +∞

0

sin2 m
(
arctan

1
2t

)
dS(t).

We apply summation by parts. Observe that, by definition, for 0 < t < γ1, we have
S(t) = −(t/2π) log(t/2π) + (t/2π), S(0) = 0, and by hypothesis S(t) = O(log t)
for t → +∞, therefore

J2(m) = 8
∫ +∞

0

S(t) sin m
(
arctan

1
2t

)
cosm

(
arctan

1
2t

) 2 dt

1 + 4t2

= 8
∫ +∞

0

sin 2m
(
arctan

1
2t

) S(t) dt

1 + 4t2

= 4
∫ π/2

0

sin(2my)S
( 1

2 tan y

)
dy.

The function S(1/(2 tan y)) ∈ L2(0, π/2) since
∫ π/2

0

S
( 1

2 tan y

)2

dy =
∫ ∞

0

S(x)2
2 dx

1 + 4x2
< +∞

and it follows that the sequence (J2(m))m is in `2, which completes the proof. ¥

Since, by assuming the Riemann Hypothesis, the ordinates of the zeros γn sat-
isfy the hypothesis of Theorem 3.1 (see Titchmarsh [12, Theorem 9.4]) we obtain:

Corollary 3.1. By assuming the Riemann Hypothesis we have

λm =
log m

2
− log(2π) + 1− γ

2
+ ym

where (ym) ∈ `2.

4. An equivalent form of the Riemann Hypothesis

As is the norm, we denote s as a variable in the half plane <(s) > 1/2. We will
also use another variable, z, connected to s by a fractional linear transformation

z =
s− 1

s
, s =

1
1− z

, s− 1 =
z

1− z
. (11)

This transformation maps the half plane <(s) > 1/2 onto the unit disc |z| < 1. The
point s = 1 transforms into z = 0. Hence, any holomorphic function on the half
plane can be represented by a power series in z with a radius of convergence > 1.
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Theorem 4.1. The coefficients Am and λm, with m > 1, satisfy the following
relation

Am = λm +
γ + log(4π)

2
− 1

m
− 1

m

m∑

j=2

(−1)j

(
m

j

)(
1− 1

2j

)
ζ(j).

(When m = 1, the sum must be taken as equal to 0.)

Proof. In Keiper [7, (46)] we find

log{(s− 1)ζ(s)} = γ(s− 1)−
∞∑

j=2

1
j

[
σj +

∞∑

k=2

(2k − 1)−j
]
(1− s)j .

We define the numbers Mj by

log{(s− 1)ζ(s)} =
∞∑

j=1

Mj(s− 1)j .

Since s− 1 = z(1− z)−1 we have

log{(s− 1)ζ(s)} =
∞∑

j=1

Mj

( z

1− z

)j

=
∑

16j, 06k

Mj

(
j + k − 1

k

)
zj+k

therefore

log{(s− 1)ζ(s)} =
∞∑

m=1

zm

(
m∑

j=1

Mj

(
m− 1
j − 1

))
:=

∞∑
m=1

Amzm.

Hence

Am = γ +
m∑

j=2

(
m− 1
j − 1

)
(−1)j+1

j

[
σj +

∞∑

k=2

(2k − 1)−j
]
.

Now, by (5), we obtain

Am = γ + λm − σ1 +
m∑

j=2

(
m− 1
j − 1

)
(−1)j+1

j

∞∑

k=2

(2k − 1)−j (12)

where the sum may be expressed in terms of the zeta function

m∑

j=2

(
m− 1
j − 1

)
(−1)j+1

j

∞∑

k=2

(2k − 1)−j = − 1
m

m∑

j=2

(−1)j

(
m

j

){(
1− 1

2j

)
ζ(j)− 1

}

=
m− 1

m
− 1

m

m∑

j=2

(−1)j

(
m

j

)(
1− 1

2j

)
ζ(j).



Asymptotics of Keiper-Li coefficients 13

Substituting this into (12), we obtain

Am = γ + λm − σ1 +
m− 1

m
− 1

m

m∑

j=2

(−1)j

(
m

j

)(
1− 1

2j

)
ζ(j).

Finally, our Theorem is obtained when the value of σ1 given in (7) is substituted
into this. ¥

The behaviour of the sum appearing here is clarified in the following Lemma:

Lemma 4.1. The numbers

Im :=
∫ +∞

0

Lm(t)
(

e−t

t2
+

e−t

t
− cosh t

(sinh t)2

)
dt (13)

where the Lm(t) =
∑m

j=0(−1)j
(
m
j

)
tj

j! denote the usual Laguerre polynomials, are
given explicitly by

Im = m

(
log 2 + γ +

m−1∑

j=2

1
j

)
− 2

m∑

j=2

(−1)j

(
m

j

)(
1− 1

2j

)
ζ(j), m > 1. (14)

Moreover, the sequence (Im) is rapidly decreasing, that is, for all k > 0, we have
limm→∞mkIm = 0.

Proof. Define

Sm :=
1
m

m∑

j=2

(−1)j

(
m

j

)(
1− 1

2j

)
ζ(j).

It is well known (see [10, p. 103 (50)]) that

(
1− 1

2s

)
ζ(s) =

1
2Γ(s)

∫ +∞

0

ts−1

sinh t
dt, <(s) > 1

and hence2

(
1− 1

2s

)
ζ(s) =

1
2Γ(s)

∫ +∞

0

ts−1
( 1

sinh t
− e−t

t

)
dt +

1
2(s− 1)

. (16)

2From equation (16) and by taking limits when s → 1, it is easily deduced that

∫ +∞

0

(
1

sinh t
− e−t

t

)
dt = γ + log 2 (15)

which will be required in a later step.
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Therefore

Sm =
1
m

m∑

j=2

(−1)j

(
m

j

)
1

2(j − 1)

+
1

2m

∫ +∞

0

m∑

j=2

(−1)j

(
m

j

)
tj−1

(j − 1)!

(
1

sinh t
− e−t

t

)
dt

=
1
m

m∑

j=2

(−1)j

(
m

j

)
1

2(j − 1)
+

1
2m

∫ +∞

0

(L′m(t) + m)
(

1
sinh t

− e−t

t

)
dt

=
γ + log 2

2
+

1
m

m∑

j=2

(−1)j

(
m

j

)
1

2(j − 1)
+

1
2m

∫ +∞

0

L′m(t)
(

1
sinh t

− e−t

t

)
dt.

Integrating this by parts we find that

Sm =
γ + log 2

2
+

1
m

m∑

j=2

(−1)j

(
m

j

)
1

2(j − 1)

− Lm(0)
2m

− 1
2m

∫ +∞

0

Lm(t)
(

e−t

t2
+

e−t

t
− cosh t

(sinh t)2

)
dt.

Now, since Lm(0) = 1 and3

1
m

m∑

j=2

(−1)j

(
m

j

)
1

2(j − 1)
=

1
2

m∑

j=2

1
j

we obtain

Sm =
γ + log 2

2
− 1

2m
+

1
2

m∑

j=2

1
j
− 1

2m

∫ +∞

0

Lm(t)
(

e−t

t2
+

e−t

t
− cosh t

(sinh t)2

)
dt

=
γ + log 2

2
− 1

2m
+

1
2

m∑

j=2

1
j
− Im

2m
.

This completes the proof of (14).
Given an infinitely differentiable function f : [0,+∞) → C which tends to 0

rapidly at infinity, together with its derivatives of all orders, it is known that the
integrals an :=

∫∞
0

f(t)Ln(t)e−t/2 dt form a rapidly decreasing sequence
[3, Theorem 2.5]. Hence, in order to prove that limm→∞mkIm = 0, we only need
to show that the function f(t) = et/2

(
e−t

t2 + e−t

t − cosh t
(sinh t)2

)
has these properties.

This is easy to verify: The singularity on t = 0 is removable. The function f(t) is
analytic on a strip of constant width along the real axis. Since limt→∞ tnf(t) = 0
along this strip for all n, these bounds can be extended, by Cauchy’s Theorem, to
the derivatives. ¥

3This can be shown rather easily and is essentially formula 51 of Section 4.2.2: Summations
of the form

∑
ak

(bk
ck

)
of the Tables [9, vol I, p. 612].
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Theorem 4.2. There exists (xm) ∈ `2 such that for every natural number m

Am = λm − log m

2
+

log(2π) + 1− γ

2
+ xm.

Proof. By substituting the result of Lemma 4.1 in the equation of Theorem 4.1,
we obtain

Am = λm − log m

2
+

1− γ + log(2π)
2

+
1
2

{
γ + log m−

m∑

j=1

1
j

}
− 1

2m
+

Im

2m
. (17)

To verify that (xm), defined by

xm =
1
2

{
γ + log m−

m∑

j=1

1
j

}
− 1

2m
+

Im

2m
,

is in `2, we only need to check whether Im is bounded. This is true since (Im) is
a rapidly decreasing sequence. However, this can also be easily derived from the
fact that |e−x/2Ln(x)| 6 1 (see Szegö [11, p. 164, eq. (7.21.3)]). ¥

Theorem 4.3. The Riemann Hypothesis is equivalent to the assertion that the
sequence (An) is in `2.

Proof. If we assume (An) ∈ `2, then the power series (4) has radius of conver-
gence 1. It follows that the function log

{
(s− 1)ζ(s)

}
is analytic on <(s) > 1

2 , and
hence the Riemann Hypothesis is true.

Now, if we assume the Riemann Hypothesis, then by combining Theorem 4.2
with Corollary 3.1, we obtain An = xn +yn with (xn) and (yn) in `2. Hence, (An)
must also be in `2. ¥

5. The connection of the Keiper-Li coefficients with primes

Proposition 5.1. Let f : (1, +∞) → C be a measurable complex function such
that f(x)x−2(log x)n ∈ L1(1, +∞) for every rational integer n > 0. Suppose that

F (s) = s

∫ +∞

1

f(x)x−s−1 dx, <(s) > 1,

extends to an analytic function on a neighbourhood of s = 1. Then, on a neigh-
bourhood of z = 0 we have the Taylor expansion

F

(
1

1− z

)
=

∞∑
n=0

zn

∫ +∞

0

f(et)Ln(t)e−t dt.
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Proof. From the hypothesis for <(s) > 1, we have

F (n)(s) = (−1)n−1n

∫ +∞

1

f(x)(log x)n−1x−s dx

x

+ (−1)ns

∫ +∞

1

f(x)(log x)nx−s dx

x
.

Since f(x)x−2(log x)n ∈ L1(1, +∞) and the function extends analytically to s = 1,
the dominated convergence theorem gives us

F (n)(1) = (−1)n−1n

∫ +∞

1

f(x)
x2

(log x)n−1 dx + (−1)n

∫ +∞

1

f(x)
x2

(log x)n dx.

Since F is analytic on s = 1, on a neighbourhood of s = 1 we have

F (s) =
∞∑

n=0

F (n)(1)
n!

(s− 1)n.

Let z be connected to s by the equations (11), therefore

F
( 1

1− z

)
=

∞∑
n=0

F (n)(1)
n!

( z

1− z

)n

=
∞∑

n=0

F (n)(1)
n!

∞∑

k=0

(−n

k

)
zn(−z)k

=
∞∑

m=0

zm
m∑

n=0

(−1)m−n F (n)(1)
n!

( −n

m− n

)
.

(The double series is absolutely convergent for |z| < ε, and the reordering is
justified.)

Thus the required coefficient is equal to

m∑
n=0

(−1)m−n F (n)(1)
n!

( −n

m− n

)
=

∫ +∞

1

f(x)
x2

( m∑
n=1

(−1)m−1

( −n

m− n

)
(log x)n−1

(n− 1)!

+
m∑

n=0

(−1)m

( −n

m− n

)
(log x)n

n!

)
dx

=
∫ +∞

1

f(x)
x2

( m∑
n=0

(−1)n

(
m

n

)
(log x)n

n!

)
dx

=
∫ +∞

1

f(x)
x2

Lm(log x) dx.

¥
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From elementary Number Theory we recall the following usual notations (see
[6, (15), (16)] and [12, pp. 3, 370])

Π(x) =
∑

pm6x

1
m

= π(x) +
1
2
π(x

1
2 ) +

1
3
π(x

1
3 ) + · · · , (18)

ψ(x) =
∑

pm6x

log p =
∑

n6x

Λ(n), and M(x) =
∑

n6x

µ(n) (19)

where µ(n) is the Möbius function and Λ(n) von Mangoldt’s function.

Theorem 5.1. For all n > 0 we have

An =
∫ +∞

0

{
Π(et)− Li(et)

}
Ln(t)e−t dt. (20)

Proof. We apply Proposition 5.1 to the well-known equality (see [1])

log
{
(s− 1)ζ(s)

}
= s

∫ +∞

0

{
Π(x)− Li(x)

}
x−s−1 dx (21)

The estimate of the remainder in the Prime Number Theorem |Π(x) − Li(x)| 6
Cxe−c

√
log x implies that f(x) = |Π(x) − Li(x)| satisfies the hypothesis of Propo-

sition 5.1. ¥

The above relation enables one to compute, to a high precision, the values of
the integrals in (20), since the An can be computed. High precision values of the
integrals

Bn =
∫ +∞

0

{
ψ(et)− et

}
Ln(t)e−t dt, Cn =

∫ +∞

0

M(et)Ln(t)e−t dt.

can be computed in the same way for low values of n.
Exact values of some of the integrals can also be obtained, for example, it is

not difficult to show that

A0 = 0 =
∫ +∞

0

{
Π(et)− Li(et)

}
e−t dt, (22)

A1 = γ =
∫ +∞

0

{
Π(et)− Li(et)

}
(1− t)e−t dt, (23)

where γ is Euler’s constant. Subsequent integrals can be computed in terms of the
Stieltjes gamma constants.

Corollary 5.1. The Riemann Hypothesis is equivalent to the function Π(x)−Li(x)
x

being in L2(1, +∞).

Proof. From Theorem 4.3, the Riemann Hypothesis is equivalent to
∑∞

n=0 A2
n <

+∞. According to (20), this is equivalent to the function {Π(et)−Li(et))e−t/2 be-
ing in L2(0, +∞). A change of variables shows that this is equivalent to Π(x)−Li(x)

x
being an element of L2(1,+∞). ¥
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The above Corollary is independent proof of the main result in [1].
A relation may now be obtained between the coefficients of Keiper-Li and the

primes.

Theorem 5.2.

λm =
log m

2
− 1− γ + log(2π)

2
+

∫ +∞

0

{
Π(et)− Li(et)

}
Lm(t)e−t dt

− 1
2

{
γ + log m−

m∑

j=1

1
j

}
+

1
2m

− Im

2m
.

(24)

6. Some final remarks

If the Riemann Hypothesis were false, then the power series (4) would have a
radius of convergence strictly less than one and it would follow that An = Ω(rn)
with r > 1. However, as stated by Keiper [7, p. 769]: the failure of the Riemann
hypothesis (if such is the case) would be rather difficult to observe in the growth of
the numerical values of the coefficients τk, since k would be extremely large before
a (large) ρ which is off the critical line would yield |ρ/(ρ− 1)|k large. This line of
reasoning also applies to our power series.

A plot of Am is nevertheless interesting (see Figures 1–4). Understandably it
is very similar to a plot of

m
{

λm −
( log m

2
− log(2π) + 1− γ

2

)}

as given by Keiper.
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0.005
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0

0.015

0.02

20001000500 1500

Figure 1: Values of the coefficients Am

The coefficients λn were defined by Keiper (2). They can be expressed in terms
of the zeros of ζ(s) (see (5) and (6)). They are also directly related to the prime
numbers as we have proved in (24). As we have seen, all the terms in the right
hand side of (24) are well understood except for the integrals depending on the
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primes. These integrals are equal to the coefficients An in the expansion (4). Our
(24) is also connected with a formula given by Bombieri and Lagarias

nλ(n) = −
n∑

j=1

(
n

j

)
1

(j − 1)!
lim
ε→0

{ ∑

m61/ε

Λ(m)(log m)j−1

m
− 1

j
(log(1/ε)j

}

+ 1− (log 4π + γ)
n

2
−

n∑

j=2

(−1)j−1

(
n

j

)
(1− 2−j)ζ(j).

(25)

All these relations are unconditionally true, but the behaviour of the λn (or An)
are related to the Riemann Hypothesis.

First we have Li’s criterion: the RH is equivalent to the positivity of the λn.
As shown by Bombieri and Lagarias [2] this is related to the first formula in (6).
They get a general criterion for a multiset of complex numbers to lie in the half
plane <(s) 6 1

2 . In this way Li’s criterion may be extended to more general L
functions.

Not only the positivity of the λn are equivalent to RH, the asymptotic be-
haviour of these numbers is also related to it. This is easily seen from the definition
(5) of the λn. The power series

∑
λk(1− s)k has radius of convergence 6 1 and it

is equal to 1 if and only if the RH is true. It is clear that the radius of convergence
only depends on the asymptotic behaviour of the λn.

If the RH is false there is some r > 1 such that for an infinite number of n we
will have |λn| > rn. On the other hand, as Voros [13] has pointed out and we have
shown the λn grow only as log n if the RH is true.

In fact the behaviour of λn depends on that of An. In [1] we defined a real
number J (difficult to compute) such that the RH is true if and only if

∞∑
n=0

A2
n =

∫ ∞

0

{Π(et)− Li(et)}2e−t dt = J. (26)

Hence, we even know the value that
∑∞

n=0 A2
n would take in case the RH were

true. If the RH would be false this sum would be infinite.
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Figure 2: Values of the coefficients Am
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Figure 3: Values of the coefficients Am
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Figure 4: Values of the coefficients Am
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