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Abstrat. We onstrut, in an essentially expliit way, various omposition op-

erators on H2
and study their ompatness or their membership in the Shatten

lasses. We onstrut: non-ompat omposition operators on H2
whose sym-

bols have the same modulus on the boundary of D as symbols whose omposition

operators are in various Shatten lasses Sp with p > 2; ompat omposition

operators whih are in no Shatten lass but whose symbols have the same mod-

ulus on the boundary of D as symbols whose assoiated omposition operators

are in Sp for every p > 2.

Mathematis Subjet Classi�ation. Primary: 47B33; 47B10 � Seondary:

30C80
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1 Introdution

Compatness of omposition operators on H2
was �rst studied in 1968 by H.

Shwartz in his dotoral dissertation [10℄, and re�ned in 1973 by J. Shapiro and

P. Taylor [13℄, who disovered the role played by the lassial angular derivative,

and re�ned the ompatness problem by asking whih omposition operators

belong to various Shatten lasses Sp. In partiular, they showed in [13℄ that

Cφ ∈ S2, the Hilbert-Shmidt lass, if and only if

∫

∂D
(1− |φ∗|)−1 < +∞, where

φ∗ denotes the radial limit funtion of φ. In this paper, we show that for the

larger lass Sp with p > 2, the situation is ompletely di�erent: we prove in

Theorem 4.2, that for every p > 2, there exist two symbols φ1 and φ2 having

the same modulus on ∂D and suh that Cφ1 is not ompat on H2
, but Cφ2 is

in the Shatten lass Sp.

An amusing feature of the theory of omposition operators is that, whereas

sophistiated neessary and su�ient onditions for the omposition operators

Cφ : H2 → H2
to belong to the Shatten lasses Sp = Sp(H

2) have been known

for more than twenty years ([7℄, [8℄), either in terms of the Nevanlinna ounting
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funtion, or in terms of the pull-bak measure mφ, yet expliit and onrete ex-

amples are laking. For example, D. Sarason posed in 1988 the question whether

there existed a ompat omposition operator Cφ : H2 → H2
whih was in no

Shatten lass, and the (a�rmative) answer only ame in 1991, by T. Carroll

and C. Cowen ([1℄). Their example, based on the Riemann mapping Theorem

was not ompletely expliit. Moreover, their onstrution used a di�ult and

deliate argument, with estimates of the hyperboli metri for ertain domains,

due to Hayman (see however [15℄ and [3℄). We shall see in this paper that

Lueking's riterion [7℄ for pullbak measures leads to very onrete examples

of omposition operators in various Shatten lasses.

In Setion 3, we give a neessary ondition, Proposition 3.4, on the Carleson

funtion ρφ in order for the omposition operator Cφ to be in Sp, as well as a
general onstrution of symbols φ with ontrol on their Carleson funtion.

In Setion 4, we onstrut, for every p > 2, symbols φ1 and φ2 having the

same modulus on ∂D suh that Cφ1 is not ompat on H2
, but Cφ2 is in the

Shatten lass Sp (Theorem 4.2).

In Setion 5, we revisit an example of J. Shapiro and P. Taylor ([13℄, � 4) to

show that for every p0 > 0, there exists a symbol φ suh that the omposition

operator Cφ : H2 → H2
is in the Shatten lass Sp for every p > p0, but not

in Sp0 (Theorem 5.1), and also that for every p0 > 0, there exists a symbol φ
suh that Cφ : H2 → H2

is in the Shatten lass Sp0 , but not in Sp, for p < p0

(Theorem 5.4). Moreover, there exists a symbol φ suh that Cφ : H2 → H2
is

ompat but in no Shatten lass Sp for p <∞ (Theorem 5.6) and there exists

a symbol ψ, whose boundary values ψ∗
have the same modulus as those φ∗ of

φ on ∂D, but for whih Cψ : H2 → H2
is in Sp for every p > 2 (Theorem 5.7).

After our work was ompleted, we beame aware of the papers [15℄ and [3℄;

in [3℄, M. Jones gives another proof of the theorem of Carroll and Cowen (our

Theorem 5.6), and Y. Zhu gives also another proof of this theorem, as well as a

proof of our Theorem 5.1. However, our proofs are di�erent and lead to further

results: see Theorem 4.2.

Aknowledgements. We thanks the referee for a very areful reading of this

paper and many suggestions to improve its writing.

2 Notation

Throughout this paper, the notation f ≈ g will mean that there are two on-

stants 0 < c < C < +∞ suh that cf(t) ≤ g(t) ≤ Cf(t) (for t su�iently near of

a spei�ed value), and the notation f(t) . g(t), when t is in the neighbourhood

of some value t0, will have the same meaning as g = O(f).

We shall denote by D the open unit dis of the omplex plane: D = {z ∈
C ; |z| < 1}, and by T = ∂D its boundary: T = {z ∈ C ; |z| = 1}. We shall

denote by m the normalized Lebesgue measure on T.

For every analyti self-map φ : D → D, the omposition operator Cφ is the

map f 7→ f ◦φ. By Littlewood's subordination priniple (see [2℄, Theorem 1.7),
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every omposition operator maps every Hardy spae Hp
(p > 0) into itself, and

is ontinuous on Hp
.

For every ξ ∈ T and 0 < h < 1, the Carleson window W (ξ, h) is the set

W (ξ, h) = {z ∈ D ; |z| ≥ 1 − h and | arg(zξ̄)| ≤ h}.

For every �nite positive measure µ on D, one sets:

ρµ(h) = sup
ξ∈T

µ[W (ξ, h)].

We shall all this funtion ρµ the Carleson funtion of µ.
When φ : D → D is an analyti self-map of D, and µ = mφ is the measure

de�ned on D, for every Borel set B ⊆ D, by:

mφ(B) = m({ξ ∈ T ; φ∗(ξ) ∈ B}),

where φ∗ is the boundary values funtion of φ, we shall denote ρmφ
by ρφ. In

this ase, we shall say that ρφ is the Carleson funtion of φ.

For α ≥ 1, we shall say that µ is an α-Carleson measure if ρµ(h) . hα. For
α = 1, µ is merely said to be a Carleson measure.

The Carleson Theorem (see [2℄, Theorem 9.3) asserts that, for 1 ≤ p < ∞
(atually, for 0 < p < ∞), the anonial inlusion jµ : Hp → Lp(µ) is bounded
if and only if µ is a Carleson measure. Sine every omposition operator Cφ is

ontinuous on Hp
, it de�nes a ontinuous map jφ : Hp → Lp(µφ); hene every

pull-bak measure µφ is a Carleson measure.

When Cφ : H2 → H2
is ompat, one has, as it is easy to see:

(2.1) |φ∗| < 1 a.e. on ∂D.

Hene, we shall only onsider in this paper symbols φ for whih (2.1) is satis�ed

(whih is the ase, as we said, when Cφ is ompat on H2
).

B. MaCluer ([9℄, Theorem 1.1) has shown (assuming ondition (2.1)) that

Cφ is ompat on Hp
if and only if ρφ(h) = o (h), as h goes to 0.

Note that, in this paper, we shall not work, most often, with exat inequali-

ties, but with inequalities up to onstants. It follows that we shall not atually

work with true Carleson windowsW (ξ, h) (or Lueking sets, de�ned below), but

with distorted Carleson windows:

W̃ (ξ, h) = {z ∈ D ; |z| ≥ 1 − ah and | arg(zξ̄)| ≤ bh},

where a, b > 0 are given onstants. Sine, for a given symbol φ, one has:

mφ

(

W (ξ, c h)
)

≤ mφ

(

W̃ (ξ, h)
)

≤ mφ

(

W (ξ, C h)
)

for some onstants c = c(a, b) and C = C(a, b) whih only depend on a and b,
that will not matter for our purpose.
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3 Preliminaries

3.1 Lueking sets and Carleson windows

We shall begin by realling the haraterization, due to D. Lueking ([7℄), of

the omposition operators on H2
whih belong to the Shatten lasses. Let, for

every integer n ≥ 1 and 0 ≤ j ≤ 2n − 1:

Rn,j =
{

z ∈ D ; 1 − 2−n ≤ |z| < 1 − 2−n−1
and

2jπ

2n
≤ arg z <

2(j + 1)π

2n

}

be the Lueking sets.

The result is:

Theorem 3.1 (Lueking [7℄) For every p > 0, the omposition operator Cφ,
assuming ondition (2.1), is in the Shatten lass Sp if and only if:

(3.1)

∑

n≥0

2np/2
( 2n−1

∑

j=0

[

mφ(Rn,j)
]p/2

)

< +∞.

Majorizing mφ(Rn,j) by mφ

(

W (e2−n(2j+1)iπ , 2−n)
)

≤ ρφ(2
−n), one gets:

Corollary 3.2 Let φ : D → D be an analyti self-map, with ondition (2.1),

and assume that mφ is an α-Carleson measure, with α > 1. Then Cφ ∈ Sp for

every p > 2
α−1 ·

Proof. Sine ρφ(h) . hα, one gets:

∑

n≥0

2np/2
( 2n−1

∑

j=0

[

mφ(Rn,j)
]p/2

)

.
∑

n≥0

2np/2.2n.(2−nα)p/2 =
∑

n≥0

2n[1−(α−1)p/2],

whih is < +∞ sine 1 − (α− 1)p2 < 0. �

In order to get this orollary, we majorized rudely mφ(Rn,j) by ρφ(2
−n).

Atually, we shall see, through the results of this paper, that we lose too muh

with this majorization. Nevertheless, if we replae the Lueking sets by the

dyadi Carleson windows :

Wn,j =
{

z ∈ D ; 1 − 2−n ≤ |z| < 1 ,
2jπ

2n
≤ arg(z) <

2(j + 1)π

2n

}

,

(j = 0, 1, . . . , 2n − 1, n = 1, 2, . . .), we have the same behaviour:

Proposition 3.3 Let µ be a �nite positive measure on the open unit disk D and

let α > 0. Then the following assertions are equivalent:

(a)

∞
∑

n=1

2n−1
∑

j=0

2nα
(

µ(Rn,j)
)α
< +∞;

(b)

∞
∑

n=1

2n−1
∑

j=0

2nα
(

µ(Wn,j)
)α
< +∞.
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Proof. It is lear that (b) implies (a) sine Rn,j ⊂ Wn,j for all n and j (we

already used this in the proof of Corollary 3.2).

For the proof of the onverse impliation, we shall need the following sets,

for positive integers l, n with l ≥ n, and j ∈ {0, 1, . . . , 2n − 1}:

Hl,n,j =
{

k ∈ {0, 1, . . . , 2l − 1} ;
j

2n
≤ k

2l
<
j + 1

2n

}

.

It is lear that we have, for every n and j:

Wn,j =
⋃

l≥n

⋃

k∈Hl,n,j

Rl,k,

and

µ(Wn,j) =
∑

l≥n

∑

k∈Hl,n,j

µ(Rl,k) .

We shall �rst treat the ase α ≤ 1, where we an use, for x1, x2, . . . , xN ≥ 0:

(x1 + x2 + · · · + xN )α ≤ xα1 + xα2 + · · · + xαN .

We have:

∞
∑

n=1

2n−1
∑

j=0

2nα
(

µ(Wn,j)
)α

=

∞
∑

n=1

2n−1
∑

j=0

2nα
(

∑

l≥n

∑

k∈Hl,n,j

µ(Rl,k)

)α

≤
∞
∑

n=1

2n−1
∑

j=0

2nα
∑

l≥n

∑

k∈Hl,n,j

(

µ(Rl,k)
)α

=

∞
∑

l=1

2l−1
∑

k=0

(

µ(Rl,k)
)α ∑

(n,j) :n≤l ; k∈Hl,n,j

2nα

Observe that, for every n ≤ l, there is only one j suh that k ∈ Hl,n,j . Sine

we have

l
∑

n=1

2nα ≤ Cα2lα,

we get:

∞
∑

n=1

2n−1
∑

j=0

2nα
(

µ(Wn,j)
)α ≤ Cα

∞
∑

l=1

2l−1
∑

k=0

2lα
(

µ(Rl,k)
)α
,

and (a) implies (b) in the ase α ≤ 1.

If α > 1, we an use Hölder's inequality. Let β be the onjugate exponent

of α. Choose a suh that 1 < a < 2 < aβ . Then:

µ(Wn,j) =
∑

l≥n : k∈Hl,n,j

µ(Rl,k)

≤
(

∑

l≥n : k∈Hl,n,j

a−lβ
)1/β(

∑

l≥n : k∈Hl,n,j

alα
(

µ(Rl,k)
)α

)1/α
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Using that |Hl,n,j | = 2l−n, we get:

[

∑

l≥n : k∈Hl,n,j

a−lβ
]1/β

=

[

∑

l≥n

2l−na−lβ
]1/β

=

(

2−n
(2a−β)n

1 − 2a−β

)1/β

= Cβa
−n.

Therefore we have:

∞
∑

n=1

2n−1
∑

j=0

2nα
(

µ(Wn,j)
)α ≤

∞
∑

n=1

2n−1
∑

j=0

2nαCαβ a
−nα

∑

l≥n : k∈Hl,n,j

alα
(

µ(Rl,k)
)α

= Cαβ

∞
∑

l=1

2l−1
∑

k=0

(

µ(Rl,k)
)α
alα

∑

(n,j) :n≤l ,k∈Hl,n,j

(2/a)nα

.

∞
∑

l=1

2l−1
∑

k=0

(

µ(Rl,k)
)α
alα(2/a)lα

=

∞
∑

l=1

2l−1
∑

k=0

2lα
(

µ(Rl,k)
)α
.

We have hene proved that (a) implies (b) for α > 1 and therefore Proposition 3.3
follows. �

As a orollary we prove a neessary ondition that ρφ must satisfy when Cφ
is in the Shatten lass Sp.

Proposition 3.4 Let φ : D → D be an analyti self-map. If the omposition

operator Cφ : H2 → H2
is in the Shatten lass Sp for some p > 0, then, as h

goes to 0:

(3.2) ρφ(h) = o

(

h
(

log
1

h

)−2/p
)

.

Proof. Thanks to Lueking's haraterization and the equivalene in Proposi-

tion 3.3, we have, for the pullbak mesure mφ:

(3.3)

∞
∑

n=1

2n−1
∑

j=0

2np/2
(

mφ(Wn,j)
)p/2

< +∞.

Observe that, for h = 2−n eah window W (ξ, h) is ontained in the union of at

most three of the Wn,j 's; hene:

(

ρφ(2
−n)

)p/2 ≤
(

3 max
0≤j≤2n−1

mφ(Wn,j)
)p/2

≤ 3p/2
2n−1
∑

j=0

(

mφ(Wn,j)
)p/2

,

and (3.3) yields:

∞
∑

n=1

(

ρφ(2
−n)

)p/2
2np/2 < +∞ .
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Hene, setting:

(3.4) γn =
∑

n/2≤k≤n

(

ρφ(2
−k)

)p/2
2kp/2 ,

we have:

(3.5) lim
n→∞

γn = 0 .

Now, by using [5℄, Theorem 4.19, we get a onstant C > 0 suh that, for

k ≤ n:
Cρφ(2

−k) ≥ 2n−kρφ(2
−n) ,

and so:

(3.6) Cp/2γn ≥ (n/2)
(ρφ(2

−n)

2−n

)p/2

.

To �nish the proof, it remains to onsider, for every h ∈ (0, 1/2), the integer
n suh that 2−n−1 < h ≤ 2−n; then (3.5) and (3.6) give:

lim
h→0+

(ρφ(h)

h

)p/2

log(1/h) = 0,

as announed. �

Remark. We an also dedue Corollary 3.2 from the following result.

Proposition 3.5 If µ is a β-Carleson probability measure on D, with β > 2,
then the Poisson integral P : L2(T) → L2(µ) is in the Shatten lass Sp for any

p > 2/(β − 1).

Proof. We may assume that p ≤ 2 sine Sp1 ⊆ Sp2 when p1 ≤ p2. To have

P ∈ Sp, it su�es then to have

∑

n∈Z
‖P(en)‖pL2(µ) < +∞, where en(e

it) = eint

(see [4℄, Proposition 1.b.16, page 40, for example).

But (Pen)(z) = zn for n ≥ 0 and (Pen)(z) = z̄|n| for n ≤ −1. Hene:

∑

n∈Z

‖P(en)‖pL2(µ) ≤ 2

∞
∑

n=0

(

∫

D

|z|2n dµ
)p/2

.

But

∫

D

|z|2n dµ =

∫ 1

0

2nt2n−1µ(|z| ≥ t) dt

= 2n

∫ 1

0

(1 − x)2n−1µ(|z| ≥ 1 − x) dx

. n

∫ 1

0

(1 − x)2n−1 1

x
xβ dx

sine {|z| ≥ 1 − x} an be split in O(1/x) windows W (a, x)

= n

∫ 1

0

(1 − x)2n−1xβ−1 dx . n.n−β .

7



Hene

∑

n∈Z

‖P(en)‖pL2(µ) .
∑

n≥1

1

n(β−1)p/2
,

whih is �nite sine (β − 1)p/2 > 1. �

3.2 A general ontrution

In this subsetion, we are going to desribe a general way to onstrut sym-

bols with some presribed onditions. A partiular ase of this onstrution has

been used in [5℄, Theorem 4.1. We also shall use it in [6℄.

Let

f(t) =

∞
∑

k=0

ak cos(kt)

be an even, non-negative, 2π-periodi ontinuous funtion, vanishing at the

origin: f(0) = 0, and suh that:

(3.7) f is stritly inreasing on [0, π].

The Hilbert transform (or onjugate funtion) Hf of f is:

Hf(t) =

∞
∑

k=1

ak sin(kt).

We shall assume moreover that, as t tends to zero:

(3.8)

(

Hf
)′

(t) = o (1/t2).

Let now F : D → Π+ = {Re z > 0} be the analyti funtion whose boundary

values are

(3.9) F ∗(eit) = f(t) + iHf(t).

One has:

F (z) =

∞
∑

k=0

akz
k, |z| < 1.

We de�ne:

(3.10) Φ(z) = exp
(

− F (z)
)

, z ∈ D.

Sine f is non-negative, one has

ReF (z) =
1

2π

∫ π

−π

f(t)Pz(t) dt > 0,

so that |Φ(z)| < 1 for every z ∈ D: Φ is an analyti self-map of D, and |Φ∗| =
exp(−f) < 1 a.e. . Note that the assumption f(0) = 0 means that Φ∗(1) = 1;
we then have ‖Φ‖∞ = 1, whih is neessary for the non-ompatness of CΦ.

An example is Φ(z) = exp
(

− (1 − z)/2
)

, for whih f(t) = sin2(t/2).
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Lemma 3.6 Assume that f and Hf are C1
funtions. Then, the Carleson

funtion ρΦ of Φ is not o (h) when h goes to 0, and so the omposition operator

CΦ : H2 → H2
is not ompat.

Note that the hypothesis of the lemma holds, for example, when:

(3.11)

∞
∑

k=0

k |ak| < +∞.

Proof. The non-ompatness of CΦ follows immediately from the �angular

derivative� ondition ([11℄, Theorem 3.5: see (4.5) in the remark at the end of

the next setion). But we shall give a proof using the Carleson funtion, in

order to illustrate the methods to be used later on.

It will be enough to minorize µΦ[W (1, h)]. Sine f and Hf are C1
, we have

|f(t)| ≤ C|t| and |Hf(t)| ≤ C|t| for some positive onstant C. Now, if |t| ≤ h/C,
we see that

|Φ∗(eit)| = e−f(t) ≥ e−C|t| ≥ e−h ≥ 1 − h,

and | arg Φ∗(eit)| = |Hf(t)| ≤ C|t| ≤ h; hene Φ∗(eit) ∈ W (1, h). This means

that

mΦ[W (1, h)] ≥ m({eit ; |t| ≤ h/C}) ≥ 1

πC
h,

and the lemma follows. �

We shall now perturb Φ by onsidering

(3.12) M(z) = exp
(

− 1 + z

1 − z

)

, |z| < 1,

and

(3.13) φ(z) = M(z)Φ(z), |z| < 1.

One has:

φ∗(eit) = e−f(t) e−i(Hf(t)+cot t
2 ).

We will now, aording to the various hoies of f , study the behaviour of

φ with respet to the Carleson windows.

We set:

(3.14) γ(t) = Hf(t) + cot
t

2
=

2

t
+ r(t),

where the derivative of the odd funtion r satis�es r′(t) = o (1/t2) .
Now, we have:

Lemma 3.7 When h > 0 goes to 0, one has:

(3.15) hf−1(h) . ρφ(h) . hf−1(2h).

9



Proof. Let a = eiθ ∈ T, |θ| ≤ π. We may assume that 0 < h ≤ h0 ≤ 1/2, for
some h0 small enough.

We have to analyze the set of t's suh that φ∗(e−it) = e−f(t)eiγ(t) ∈ W (a, h),
whih imposes two onstraints. Without loss of generality, we may analyze only

the set of positive t's, i.e. 0 < t ≤ π.

Modulus onstraint. We must have |φ∗(e−it)| ≥ 1− h, i.e. e−f(t) ≥ 1− h, or
f(t) ≤ log 1

1−h , whih is ≤ 2h sine h ≤ 1/2. Hene we must have:

(3.16) 0 < t ≤ f−1(2h).

Argument onstraint. We must have |γ(t) − θ| ≤ h mod 2π, i.e., sine we

have assumed that t > 0:

(3.17) γ(t) ∈
⋃

n≥0

[θ − h+ 2nπ, θ + h+ 2nπ] =
⋃

n≥0

Jn(h).

Sine γ(t) → +∞ as t
>→ 0, and sine we already have t ≤ f−1(2h) by (3.16), we

know that γ(t) > 2π for h small enough; hene we have γ(t) ∈ Jn(h) only for

n ≥ Nh, where the integer Nh goes to in�nity when h goes to 0; in partiular,

we may assume that, for h small enough, we have γ(t) ∈ Jn(h) for n ≥ 1 only.

Let In(h) = γ−1
(

Jn(h)
)

. Sine γ(t) = 2
t + r(t), and r′(t) = o (1/t2), γ(t) is

dereasing for 0 < t ≤ h0, for h0 small enough. Hene, for h small enough:

In(h) =
[

γ−1(θ + h+ 2nπ), γ−1(θ − h+ 2nπ)].

Sine γ(t) = 2
t + o (1/t) and |γ′(t)| = 2

t2 + o (1/t2), one has:

(3.18)

c1
n

≤ min In(h) ≤ max In(h) ≤ c2
n
,

where c1 and c2 are two universal positive onstants. By the mean-value theo-

rem, we get that:

2πm
(

In(h)
)

= γ−1(θ − h+ 2nπ) − γ−1(θ + h+ 2nπ)

= 2h|(γ−1)′(ξn)| =
2h

|γ′(tn)|
,

for some ξn ∈ Jn(h) and tn ∈ In(h). But, (3.18) ensures that
c1
n ≤ tn ≤ c2

n and,

sine |γ′(t)| = 2
t2 + o(1/t2), we get that:

(3.19) m
(

In(h)
)

≈ h

n2
·

Now:

1) Assume that φ∗(e−it) ∈ W (a, h). By (3.17), (3.18) and (3.16), we must

have t ∈ In(h) with c1
n ≤ t ≤ f−1(2h). Hene, if n0 is the integer part of

c1
f−1(2h) ,

10



we must have n ≥ n0. Now, (3.19) shows that:

m
(

{t ∈]0, π] ; φ∗(e−it) ∈W (a, h)}
)

≤
∑

n≥n0

m
(

In(h)
)

.
∑

n≥n0

h

n2
.

h

n0
. hf−1(2h).

2) We want to minorize, as it su�es, m
(

{t ∈]0, π] ; φ∗(eit) ∈ W (1, h)}
)

.

Let n1 be the integer part of

c2
f−1(h) + 1; we have:

(3.20) t ∈
⋃

n≥n1

In(h) =⇒ φ∗(eit) ∈W (1, h)

beause t ∈ In(h) for n ≥ n1 implies t ≤ c2
n1

≤ f−1(h), so that |φ∗(eit)| =

e−f(t) ≥ e−h ≥ 1 − h, and the modulus onstraint for φ∗(eit) is automatially

satis�ed. Sine the argument onstraint is satis�ed by onstrution, as t belongs
to some In(h), this proves (3.20).

As a onsequene, we have, using (3.19):

ρφ(h) ≥ mφ

(

W (1, h)
)

≥
∑

n≥n1

m
(

In(h)
)

&
∑

n≥n1

h

n2
&

h

n1
& hf−1(h),

and this ends the proof of Lemma 3.7. �

4 Composition operators with symbol of same

modulus

J. Shapiro and P. Taylor ([13℄, Theorem 3.1) haraterized Hilbert-Shmidt

omposition operators Cφ on H2
(i.e. Cφ ∈ S2), and this haraterization

depends only on the modulus of φ∗ on ∂D. It follows that if φ1 and φ2 are

two symbols suh that |φ∗1| = |φ∗2|, and Cφ2 is Hilbert-Shmidt, then Cφ1 is also

Hilbert-Shmidt, and in partiular, ompat.

It appears that this is a limiting ase, as we shall see in Theorem 4.2.

Atually, in view of Corollary 3.2, we may formulate this problem in the

following way. Assume that the omposition operator Cφ1 is not ompat on

H2
, and that |φ∗1| = |φ∗2|; for whih values of α, an mφ2 be an α-Carleson

measure?

Note that if mφ2 is an α-Carleson measure, we neessarily must have α ≤ 2.
Indeed, if α > 2, Corollary 3.2 implies that Cφ2 ∈ S2, and hene Cφ1 ∈ S2 as

well.

When α < 2, the situation is very di�erent, and one has:

Theorem 4.1 For every α with 1 < α < 2, there exist two symbols φ1 and φ2

having the same modulus on ∂D and suh that ρφ1(h) ≈ h, but ρφ2(h) ≈ hα.

11



It follows from Corollary 3.2 that:

Theorem 4.2 For every p > 2, there exist two symbols φ1 and φ2 having the

same modulus on ∂D and suh that Cφ1 is not ompat on H2
, but Cφ2 is in

the Shatten lass Sp.

Proof of Theorem 4.1. In [5℄, Theorem 4.1, we proved a partiular ase of this

result, orresponding to α = 3/2. We took there φ1(z) = 1+z
2 . This funtion

behaves as exp
(

− [sin2(t/2)] + iH[sin2(t/2)]
)

, and to prove Theorem 4.1, we

shall just hange the power 2 of sin(t/2).

We shall use the following lemma, whose proof will be postponed.

Lemma 4.3 For 0 < β < 2, let f(t) = | sin t
2 |β. Then:

f(t) = c0 +

∞
∑

k=1

ck cos kt ,

with:

(4.1) ck < 0 for all k ≥ 1;

and

(4.2) ck = O
( 1

kβ+1

)

·

In partiular, for β > 1, the series

∑

k≥1 kck is onvergent, and

∑

k≥1 kck < 0.

Taking β = 1
α−1 , whih is > 1, and f(t) = | sin(t/2)|β as in Lemma 4.3,

observe that f satis�es the assumptions (3.11) and (3.7) of the general on-

strution of the Subsetion 3.2 (note that for β ≥ 2, f is a C2
funtion, and

hene, we have (3.11) diretly, without using Lemma 4.3). With the notation

of that subsetion (see (3.9), (3.10), and (3.12)), set:

φ1 = Φ and φ2 = MΦ.

One has:

|φ∗1| = |φ∗2| a.e.

Lemma 3.6 and MaCluer's theorem show that Cφ1 is not ompat on H2
.

On the other hand, sine f−1(h) ≈ h1/β
, Lemma 3.7 shows that ρφ2(h) ≈ hα,

with α = 1 + 1
β ∈]1, 2[.

That ends the proof of Theorem 4.1. �

Proof of Lemma 4.3. Before beginning the proof, it should be remarked that

for β = 2 (i.e. α = 3/2, whih is the ase proessed in [5℄, Theorem 4.1), we

have a trivial situation: sin2 t
2 = 1

2 − 1
2 cos t.
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Proof of (4.1). For 0 < p < 1, we have the well-known binomial expansion,

for −1 ≤ x ≤ 1:

(1 − x)p = 1 −
∞
∑

k=1

αkx
k,

with:

αk =
p(1 − p) · · · (k − 1 − p)

k!
> 0.

Taking x = cos t and p = β/2, we get:

(4.3) 2β/2
∣

∣

∣
sin

t

2

∣

∣

∣

β

= 1 −
∞
∑

k=1

αk(cos t)k.

Now, we know that:

(cos t)k =

k
∑

j=0

bj,k cos(k − 2j)t ,

with bj,k > 0. Substituting this in (4.3), grouping terms, and dividing by 2β/2,
we get (4.1).

Proof of (4.2). We shall separate the ases β = 1, 0 < β < 1, and 1 < β < 2.
For β = 1, one has, in an expliit way:

∣

∣

∣
sin

t

2

∣

∣

∣
=

2

π
− 4

π

∞
∑

k=1

cos kt

4k2 − 1
= c0 +

∞
∑

k=1

ck cos kt .

Assume 0 < β < 1. Sine sin t/2
t/2 > 0 on [0, π], we an write:

(sin t/2

t/2

)β

= 1 + t2u(t) ,

where u is a C∞
funtion on [0, π]. Then:

ck =
2

2βπ

∫ π

0

tβ cos kt dt+
2

2βπ

∫ π

0

tβ+2u(t) cos kt dt.

The seond integral is O(k−2), as easily seen by making two integrations by

parts. The �rst one writes:

∫ π

0

tβ cos kt dt = −β
k

∫ π

0

tβ−1 sin kt dt

= −β
k

∫ kπ

0

(x

k

)β−1

sinx
dx

k

∼ − β

kβ+1

∫ +∞

0

xβ−1 sinxdx.

13



This last integral is onvergent and positive. Hene, sine β + 1 < 2:

ck ∼ −δk−(β+1),

where δ is a positive onstant.

Before ontinuing, let us observe that we have similarly, due to the vanishing

of the integrated terms:

(4.4)

∫ π

0

(

sin
t

2

)σ

sin(2k + 1)
t

2
dt = O(k−(σ+1)) +O(k−2) = O(k−(σ+1)),

for 0 < σ < 1.

Assume now 1 < β < 2. We have:

π

2
ck =

∫ π

0

f(t) cos kt dt = −1

k

∫ π

0

f ′(t) sin kt dt

= − β

2k

∫ π

0

(

sin(t/2)
)β−1

cos(t/2) sin(kt) dt

= − β

4k

[
∫ π

0

(

sin
t

2

)β−1

sin(2k + 1)
t

2
dt

+

∫ π

0

(

sin
t

2

)β−1

sin(2k − 1)
t

2
dt

]

=
1

k
O(k−β) = O(k−(β+1)),

in view of 4.4, applied with σ = β − 1 ∈]0, 1[.
This ends the proof of Lemma 4.3. �

Remark. The following question arises naturally: does Cφ ∈ Sp for some

p < ∞ imply that µφ is α-Carleson for some α > 1? We shall see in the next

setion (Remark 2 after the proof of Proposition 5.3) that the answer is negative.

Another question, related to our work, has been raised by K. Kellay: given a

ompat omposition operator Cφ : H2 → H2
, and another symbol ψ : D → D,

is the omposition operator Cφψ : H2 → H2
still ompat? This is the ase if

φψ is univalent. In fat, the ompatness of Cφ implies ([11℄, Theorem 3.5) that:

(4.5) lim
|z|→1

1 − |φ(z)|
1 − |z| = +∞;

hene, sine |φ(z)ψ(z)| ≤ |φ(z)| for every z ∈ D, we have:

lim
|z|→1

1 − |φ(z)ψ(z)|
1 − |z| = +∞,

whih implies the ompatness of Cφψ, thanks to the univalene of φψ ([11℄,

Theorem 3.2).
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In [5℄, Proposition 4.2, we proved a related result: let φ1, φ2 : D → D be

univalent analyti self-maps suh that |φ∗1| ≤ |φ∗2| on ∂D; if Cφ2 : H2 → H2
is

ompat, and φ2 vanishes at some point a ∈ D, then Cφ1 : H2 → H2
is also

ompat. Note that the vanishing ondition for φ2 in that result is automati

(sine φ2 must have a �xed point a ∈ D beause the omposition operator Cφ2

is ompat, see [11℄, page 84, � 5.5, Corollary), but the univalene ondition for

φ1 and φ2 annot be dropped. In fat, take φ1(z) = exp
(

− (1 − z)/2
)

and

φ2(z) = zM(z) exp
(

− (1 − z)/2
)

(where M(z) is de�ned by (3.12)). One has

|φ∗1| = |φ∗2| on ∂D, and φ1 is univalent (if φ1(z) = φ1(w), k = 0 is the only

integer suh that

z
2 − w

2 = 2kπi, sine |z| + |w| ≤ 2). But φ1 is the funtion Φ

de�ned by (3.10), with f(t) = sin2(t/2). Sine f and Hf are C1
, Lemma 3.6

says that Cφ1 is not ompat. On the other hand, one has f−1(h) ≈ h1/2
, so

Lemma 3.7 gives the ompatness of Cφ2 (and even, Cφ2 ∈ Sp for every p > 4,
by Corollary 3.2).

It should be pointed out that, however, φ1 annot be written φ1 = φ2ψ for

some analyti self-map ψ : D → D.

5 Composition operators in Shatten lasses

In [13℄, Theorem 4.2, J. Shapiro and P. Taylor onstruted a family of om-

position operators Cφθ
: H2 → H2

, indexed by a parameter θ > 0 suh that

Cφθ
is always ompat, but Cφθ

is Hilbert-Shmidt if and only if θ > 2. In this

setion, we shall slightly modify the symbol φθ, and shall study the membership

of Cφθ
in the Shatten lasses Sp. In [6℄, we study on whih Hardy-Orliz spaes

HΨ
these omposition operators Cφθ

are ompat.

Theorem 5.1 For every p0 > 0, there exists an analyti self-map φ : D → D

suh that the omposition operator Cφ : H2 → H2
is in the Shatten lass Sp

for every p > p0, but not in Sp0 .

Proof. We shall use the same funtion as J. Shapiro and P. Taylor in [13℄, � 4,

with slight modi�ations. This modi�ed funtion will be easier to analyze.

Let θ > 0.
For Re z > 0, log z will be the prinipal determination of the logarithm. Let,

for ε > 0:

(5.1) Vε = {z ∈ C ; Re z > 0 and |z| < ε}.

and onsider, for ε > 0 small enough:

(5.2) fθ(z) = z(− log z)θ, z ∈ Vε.

Lemma 5.2 For ε > 0 small enough, one has Re fθ(re
iα) > 0 for 0 < r < ε

and |α| < π/2. Moreover, one has Re f∗
θ (z) > 0 for all z ∈ ∂Vε \ {0}.

Proof. Atually, fθ an be de�ned on Vε \ {0}, and we shall do that.
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Let, for |α| ≤ π/2 and 0 < r ≤ ε:

Zα =
(

− log(reiα)
)θ

=
(

log
1

r
− iα

)θ

.

One has fθ(re
iα) = reiα|Zα|ei argZα

, so that:

Re fθ(re
iα) = r |Zα| cos(α+ argZα).

On the other hand,

argZα = −θ arctan
α

log 1/r
·

Sine arctanx ≥ x/2 for 0 ≤ x ≤ 1, we get, for 0 < r ≤ ε ≤ e−π/2:

|α+ argZα| ≤ |α|
(

1 − θ

α
arctan

α

log 1/r

)

≤ π

2

(

1 − θ

2 log 1/r

)

= Υr.

Therefore, for 0 < r ≤ ε and |α| ≤ π/2:

Re fθ(re
iα) ≥ (cosΥr) r

(

log
1

r

)θ

> 0,

as announed in Lemma 5.2. �

Let now gθ be the onformal mapping from D onto Vε, whih maps T = ∂D

onto ∂Vε, and with gθ(1) = 0 and g′θ(1) = −ε/4. Expliitly, gθ is the omposition

of the following maps: a) σ : z 7→ −z from D onto itself; b) γ : z 7→ z+i
1+iz =

z+z̄+i(1−|z|2)
|1+iz|2 from D onto P = {Im z > 0}; ) s : z 7→ √

z from P onto Q =

{Re z > 0 , Im z > 0}; d) γ−1 : z 7→ z−i
1−iz from Q onto V = {|z| < 1 ,Re z > 0},

and e) hε : z 7→ εz from V onto Vε.

Let:

(5.3) φθ = exp(−fθ ◦ gθ).

By Lemma 5.2, the analyti funtion φθ maps D into D. Moreover, one has

|φ∗θ| < 1 on ∂D \ {1}.
Now Theorem 5.1 will follow from the following proposition.

Proposition 5.3 With the above notation, Cφθ
: H2 → H2

is ompat for every

θ > 0 and, moreover, is in the Shatten lass Sp if and only if p > 4
θ ·

Hene, given p0 > 0, if we hoose θ0 = 4
p0
, we get that Cφθ0

is in Sp if and

only if p > p0. �

Proof of Proposition 5.3 The ompatness was proved in [13℄, Theorem 4.2;

indeed, setting hθ = fθ◦gθ, J. Shapiro and P. Taylor used the symbol φθ = 1−hθ
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and proved that limt→0 |φ′θ(eit)| = +∞: see equation (4.4) in [13℄ (note that, in

order to dedue the ompatness from this equality, J. Shapiro and P. Taylor

had to prove a theorem: Theorem 2.4 in [13℄, whose proof needs to use Gabriel's

Theorem). Sine our symbol is φθ = exp(−hθ), and exp
(

hθ(e
it)

)

→ 1 as t→ 0,
it follows that the derivatives have the same behaviour when t → 0. However,
we are going to reover this result by another method. For onveniene, we shall

write the boundary values f∗
θ , g

∗
θ , . . . of the di�erent analyti funtions fθ, gθ, . . .

in the same way as the analyti funtions, without the exponent

∗
.

Note that, by Lemma 5.2, |φθ | is far from 1 when gθ(z) belongs to the

half-irle {εeiα ; |α| ≤ π/2}. Hene, we only have to study the ase where

gθ(e
it) = it, −ε ≤ t ≤ ε. Moreover, sine fθ(it) = it

(

log 1
|t| − i sgn (t)π2

)θ
, one

has

|fθ(it)| ≈ |t|
(

log
1

|t|
)θ

,

so that |φθ
(

g−1
θ (it)

)

| is far from 1 when t is away from 0. Therefore, it su�es

to study what happens when t is in a neighbourhood of 0.
Note also that gθ is bi-Lipshitz in a neighbourhood of 1 (so gθ(e

it) ≈ it
when |t| ≤ π/2), so we may forget it, and only onsider the measure of the t's
for whih fθ(it) belongs to the suitable sets. Moreover, for onveniene, we only

write the proof for t > 0.

Sine

fθ(it) = it
(

log
1

t

)θ
[

(

1 − iπ/2

log 1/t

)θ
]

= it
(

log
1

t

)θ
[

1 − iπθ/2

log 1/t
+ o

( 1

log 1/t

)

]

,(5.4)

one has:

Re fθ(it) ≈ t
(

log
1

t

)θ−1

(5.5)

Im fθ(it) ≈ t
(

log
1

t

)θ

.(5.6)

Now, we have exp
(

− fθ(it)
)

∈W (e−iα, h) (0 ≤ α < 2π) if and only if

Re fθ(it) . h(5.7)

|Im fθ(it) − α| . h.(5.8)

But, when e−iα 6≃ 1, this annot happen for h small enough (sine t goes to
0 as h goes to 0). Essentially, we only have to onsider the ase e−iα = 1,
for whih one has: when t > 0 goes to 0, |Re fθ(it)| . |Im fθ(it)|, and hene

exp
(

− fθ(it)
)

∈ W (1, h) if and only if t(log 1/t)θ . h, i.e. t . h/(log 1/h)θ.
Atually, we annot assume α = 0, and we have to be more preise, and must

do the following reasoning. When (5.7) is satis�ed, one has t(log 1/t)θ−1 . h;
then t . h/(log 1/h)θ−1

and hene:

t
(

log
1

t

)θ

.
h

(log 1/h)θ−1

(

log
1

h

)θ

= h log
1

h
·
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It follows that the ondition (5.8) implies that:

(5.9) 0 ≤ α . h log
1

h
·

Therefore ondition (5.8) implies that t(log 1/t)θ . h log 1/h, whih gives:

t .
h log 1/h

(log 1/h)θ
=

h

(log 1/h)θ−1
,

i.e. t(log 1/t)θ−1 . h: ondition (5.7) is satis�ed (up to a onstant fator for

h).
Sine, by (5.9), ondition (5.8) is satis�ed when α−h . t(log 1/t)θ . (α+h)

and implies that −(α+ h) . t(log 1/t)θ . (α + h), it follows that the set of t's
suh that (5.7) and (5.8) are satis�ed has, sine log(α + h) ≈ log h, a measure

≈ h/(log 1/h)θ.

We then have proved that:

(5.10) ρφθ
(h) ≈ h

(log 1/h)θ
·

Sine ρφθ
(h) = o (h), MaCluer's riterion gives the ompatness of Cφθ

.

Now, we shall examine when Cφθ
is in the Shatten lass Sp, and for that we

shall use Lueking's theorem (Theorem 3.1). We have to analyze the behaviour

of φθ with respet to the Lueking sets Rn,j ; atually, for onveniene, we shall
work with R′

n,j = Rn,2n−1−j .

We have to onsider the modulus and the argument onstraints.

Modulus onstraint. The ondition

h
2 ≤ Re fθ(it) < h writes:

(5.11)

h

2
. t

(

log
1

t

)θ−1

. h,

and reads as:

(5.12)

h/2

(log 1/h)θ−1
. t .

h

(log 1/h)θ−1
,

or, when h = hn = 2−n:

(5.13)

2−(n+1)

(n+ 1)θ−1
. t .

2−n

nθ−1
·

More preisely, one must have t ∈ In = [an, bn], with an ≈ 2−(n+1)

(n+1)θ−1
, bn ≈ 2−n

nθ−1
,

and |In| ≈ 2−n

nθ−1 ·
Argument onstraint. We are looking for the set Jn of the indies j =

0, 1, . . . , 2n − 1 for whih we have exp
(

− fθ(it)
)

∈ R′
n,j . We have must have

both the modulus onstraint t ∈ In and:

(5.14) jhn . t
(

log
1

t

)θ

. (j + 1)hn,
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whih implies, for j ≥ 1, sine one has (5.11):

j . log
1

t
. 2(j + 1),

and hene, by (5.12) and (5.13):

n

2
log 2 . j . n log 2,

i.e. j ≈ n. The onstant oe�ients are not relevant here, and hene this

estimation means that j an only take O(n) values.
On the other hand, when the modulus onstraint (5.11) is satis�ed, one has

log(1/t) ≈ log(1/hn), and the argument onstraint (5.14) is equivalent, with

h = hn, to:
jh

(log 1/h)θ
. t .

(j + 1)h

(log 1/h)θ
·

The length of the orresponding interval is ≈ h/
(

log(1/h)
)θ
, whih is equal,

when h = hn = 2−n, to 2−n/nθ.
It follows hene that mφθ

(R′
n,j) ≈ 2−n/nθ for exatly O(n) values of j, and

otherwise mφθ
(R′

n,j) = 0; therefore:

∞
∑

n=0

2np/2
2n−1
∑

j=0

[

mφθ
(R′

n,j)
]p/2 ≈

∞
∑

n=1

2np/2n
(2−n

nθ

)p/2

=
∞
∑

n=1

1

nθ
p
2−1

,

whih is �nite if and only if

θp
2 − 1 > 1, i.e. p > 4/θ. �

Remark 1. Proposition 5.3 shows that, for these symbols φθ, the neessary

ondition (3.2) of Proposition 3.4 is not sharp; in fat, we have proved in (5.10)

that ρφθ
(h) ≈ h/(log 1/h)θ; hene (3.2) gives θ > 2/p when Cφθ

∈ Sp, even
though we must have θ > 4/p.

Remark 2. These omposition operators answer negatively the question asked

at the end of Setion 4, sine, by (5.10), the measure mφθ
is α-Carleson for no

α > 1, though Cφθ
is in Sp for every p > 4/θ.

Remark 3. Our proof of Theorem 4.1 fails when α = 2 (i.e. β = 1). However,
we are going to see that in this ase, the omposition operator Cφ1 of this

Theorem 4.1 is in Sp for every p > 4.
Indeed, for β = 1, one has, in an expliit way:

∣

∣

∣
sin

t

2

∣

∣

∣
=

2

π
− 4

π

∞
∑

k=1

cos kt

4k2 − 1
= c0 +

∞
∑

k=1

ck cos kt ,

with ck = O(k−2). Then:
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Hf(t) =
∞
∑

k=1

sin kt

4k2 − 1
=

1

4
u(t) + v(t),

where:

u(t) =

∞
∑

k=1

sin kt

k2
,

and v is C2
, sine v̂(k) = O(k−4). We have:

u′(t) =
∞
∑

k=1

cos kt

k
= − log

(

2 sin
t

2

)

, 0 < t < π,

(note that u /∈ Lip 1, but u is in the Zygmund lass). It follows, when t > 0
goes to zero, that:

Hf(t) ≈ −t log
(

2 sin
t

2

)

≈ t log
1

t
·

Sine the modulus of ontinuity of Hf at 0 is ≈ t log(1/t) (see also [16℄, Chapter
III, Theorem (13.30) for a general result), it follows that the argument ondition

on φ1 is |t| . h
log(1/h) and that ρφ1(h) = O

(

h
log(1/h)

)

. Then Cφ1 is ompat. It is

atually in Sp for every p > 4. In fat, when t > 0 goes to zero, sin(t/2) ∼ t/2,
and hene, with the notation of the Subsetion 3.2, one has |Φ∗(t)| ∼ t, whereas
arg

(

Φ∗(t)
)

≈ t/ log(1/t). We have then the same onditions as in the proof of

Proposition 5.3, when θ = 1. Hene Cφ1 ∈ Sp for every p > 4. �

Remark 4. We shall haraterize in [6℄ the Orliz funtions Ψ for whih these

omposition operators Cφθ
are ompat.

In Theorem 5.1, we get, for any p0 > 0, a omposition operator whih is in

Sp if and only if p > p0. We an modify slightly this operator so as to belong

in Sp if and only if p ≥ p0.

Theorem 5.4 For every p0 > 0, there exists an analyti self-map φ : D → D

suh that the omposition operator Cφ : H2 → H2
is in the Shatten lass Sp0 ,

but not in Sp, for p < p0.

Proof. We shall use the same method as in Theorem 5.1, but by replaing the

funtion fθ by this modi�ed funtion:

(5.15) f̃θ(z) = z(− log z)θ
[

log(− log z)
]q
,

where q > θ/2 (q = θ, for example).

Call φ̃θ the orresponding self-map of D.

We shall not give all the details sine they are mostly the same as in the

proof of Theorem 5.1.

We have �rst to hek that:
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Lemma 5.5 For ε > 0 small enough, one has Re f̃θ(z) > 0 for every z ∈ Vε.
Moreover |φ̃∗θ| < 1 a.e. on ∂D.

Proof. Write z = reiα with 0 < r < ε and |α| ≤ π/2. One has:

f̃θ(z) = reiα
(

log
1

r
− iα

)θ
(

log
(

log
1

r
− iα

)

)q

.

But:

(

log
1

r
− iα

)θ

=
(

log
1

r

)θ
(

1 − iαθ

log 1/r
+ o

( 1

(log 1/r)

)

)

;

and, on the other hand:

log
(

log
1

r
− iα

)

= log

√

(

log
1

r

)2

+ α2 + i arg
(

log
1

r
− iα

)

(5.16)

=
(

log log
1

r

)

(

1 + o (1/ log(1/r))
)

− i arctan
α

log 1/r

=
(

log log
1

r

)

(

1 + o (1/ log(1/r))
)

− i
α

log 1/r

(

1 + o (1)
)

,

and

[

log
(

log
1

r
− iα

)

]q

(5.17)

=
(

log log
1

r

)q
[

[

1 + o
( 1

log 1/r

)]

− i
1

log 1/r log log 1/r

(

αq + o (1)
)

]

=
(

log log
1

r

)q
[

1 + o
( 1

log 1/r

)

]

.

Hene, for ε > 0 small enough:

Re f̃θ(z) = r(log 1/r)θ(log log 1/r)q
[

cosα+
θα sinα

log 1/r
+ o

( 1

log 1/r

)

]

≥ r(log 1/r)θ(log log 1/r)q
[

cosα+
θ(α sinα− 1/4)

log 1/r

]

.

That gives the result sine, on the one hand, |θ(α sinα−1/4)/ log 1/r| is ≤
√

2/4
for ε > 0 small enough and cosα ≥

√
2/2 when |α| ≤ π/4, and, on the other

hand, when |α| ≥ π/4, one has

cosα+ θ(α sinα− 1/4) ≥ θ
(

π
√

2/8 − 1/4) > 0.

That ends the proof of the lemma. �

Now, by (5.16), for t > 0 going to zero:

log
(

log
1

t
− i

π

2

)

=

[

log log
1

t
+O

( 1

(log t)2

)

]

+ i O
( 1

log 1/t

)

·
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Therefore:

Re

[

log
(

log
1

t
− i

π

2

)

]q

≈
(

log log
1

t

)q

Im

[

log
(

log
1

t
− i

π

2

)

]q

≈ (log log 1/t)q−1

log 1/t
,

and, using (5.4) (or (5.17), with α = π/2), we get:

Re f̃θ(it) ≈ t
(

log
1

t

)θ (log log 1/t)q

log 1/t
= t

(

log
1

t

)θ−1(

log log
1

t

)q

Im f̃θ(it) ≈ t
(

log
1

t

)θ(

log log
1

t

)q

.

Hene the modulus onstraint gives, with h = hn = 2−n:

(5.18) t ≈ h
(

log 1/h
)θ−1(

log log 1/h
)q−1

,

and the argument onstraint:

jh . t
(

log
1

t

)θ(

log log
1

t

)q

. (j + 1)h.

One gets:

j ≈ log
1

t
≈ log

1

h
≈ n,

and:

mφ̃θ
(R′

n,j) ≈
h

(

log 1/h)θ
(

log log 1/h
)q ≈ 2−n

nθ(log n)q
·

It follows that Lueking's riterion beomes:

∞
∑

n=1

2np/2n
2−np/2

nθp/2(logn)qp/2
=

∞
∑

n=1

1

nθp/2−1(logn)qp/2
·

This series onverges if and only if p > 4/θ or else p = 4/θ, sine then

qp/2 = q(4/θ)/2 = q/(θ/2) > 1. Hene Cφ̃θ
∈ Sp if and only if p ≥ 4/θ, and

that proves Theorem 5.4. �

In [1℄, T. Carroll and C. Cowen showed that there exist ompat omposition

operators on H2
whih are in no Shatten lass Sp for p <∞ (see also [15℄ and

[3℄). We shall give an expliit example of suh an operator.

Theorem 5.6 There exist ompat omposition operators Cφ : H2 → H2
whih

are in no Shatten lass Sp with p <∞.
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Proof. The proof follows the lines of those of Theorem 5.1 and Theorem 5.4,

but with, instead of fθ or f̃θ:

(5.19) f(z) = z log(− log z).

For ε > 0 small enough, we have Re f(z) > 0, so that the orresponding funtion
φ sends D into itself; moreover, one has |φ∗| < 1 a.e. on ∂D. Indeed, if z =
reiα ∈ Vε, then − log z = R eiβ , with

R =
√

(log 1/r)2 + α2 = log(1/r) + o (log 1/r)

β = − arctan
α

log 1/r
= − α

log 1/r
+ o

(

1/ log(1/r)
)

.

Then log(− log z) = logR+ iβ = (logR)
(

1 + iβ
logR

)

and

Re f(z) = r(logR)
(

cosα− β sinα

logR

)

.

But

cosα− β sinα

logR
= cosα+

α sinα

(log 1/r)(log log 1/r)
+ o

(

1/(log 1/r)(log log 1/r)
)

and we see, as in the proof of Lemma 5.5 that this quantity is, for ε > 0 small

enough, greater than a positive onstant, uniformly for |α| ≤ π/2.

Now, one has, as above, for t going to zero:

Re f(it) ≈ |t|
log 1/|t|

Im f(it) ≈ t log log
1

|t| ·

It follows that Cφ is ompat sine ρφ(h) ≈ h/ log log 1/h: indeed, we have to

ontrol the two onditions:

0 <
|t|

log 1/|t| . h(5.20)

α− h . t log log
1

|t| . α+ h ,(5.21)

for 0 ≤ α < 2π. When α 6≃ 0, ondition (5.21) annot happen for h small

enough, beause of ondition (5.20); more preisely, (5.20) and (5.21) imply

that

(5.22) 0 ≤ α . h+ h log
1

h
log log

1

h
. h log

1

h
log log

1

h
,

and then (5.21) implies:

−h . t log log
1

|t| . h log
1

h
log log

1

h
;
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a fortiori :

|t| log log
1

|t| . h log
1

h
log log

1

h
,

and then:

|t| . h log
1

h
·

Therefore ondition (5.21) implies ondition (5.20). Sine, (5.22) implies that

log(α+ h) ≈ log h,

we get that the measure of the t's satisfying (5.21) is ≈ h log log 1/h: (5.21) is im-

plied by −h ≤ t log log 1/|t| ≤ α+h and implies that −(α+h) ≤ t log log 1/|t| ≤
(α+ h).

Hene, we have got that ρφ(h) ≈ h/ log log 1/h, showing that Cφ is ompat.

By Proposition 3.4, Cφ is in no Shatten lass Sp, p > 0.
In order to make more transparent the behaviour of the measure mφ, we

shall give a diret proof, using Lueking's riterion.

For testing Lueking's riterion, we must have, assuming t > 0:

t ≈ h log
1

h

and:

jh . t log log
1

t
. (j + 1)h,

so j ≈ log 1/h log log 1/h ≈ n logn, and:

mφ(R
′
n,j) ≈

h

log log 1/h
≈ 2−n

logn
·

Therefore Lueking's ondition beomes:

∞
∑

n=1

2np/2
[

n logn

(

2−np/2

(logn)p/2

)]

=

∞
∑

n=1

n

(log n)p/2−1
= +∞.

It follows that Cφ /∈ Sp. �

As a orollary, we get:

Theorem 5.7 There exist two symbols φ and ψ of same modulus |φ∗| = |ψ∗|
on T suh that Cφ is ompat on H2

, but in no Shatten lass Sp for p < ∞,

whereas Cψ is in Sp for every p > 2.

Proof. Set

ψ = φM,

where φ is the funtion used in Theorem 5.6, andM is the singular inner funtion

given by (3.12). Sine Re f(it) ≈ t/ log(1/t), Lemma 3.7 gives, if one sets

f̃(t) = t/ log(1/t):
ρψ(h) ≈ hf̃−1(h) ≈ h2 log(1/h).
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It follows that mψ is an α-Carleson measure for any α < 2. Hene, given

any p > 2, and hoosing an α < 2 suh that p > 2/(α − 1), it follows from

Corollary 3.2 that Cψ ∈ Sp. �

A funny question about Shatten lasses is: for whih Orliz funtions Ψ is

the above omposition operator Cφ in the Orliz-Shatten lass SΨ?

6 Questions

We shall end this paper with some omments and questions.

1. G. Pisier reently suggested that one should study more arefully the

approximation numbers of omposition operators. Sine an operator T on a

Hilbert spae is in the Shatten lass Sp if and only if

∑∞
n=1 a

p
n < +∞, where

an is the nth approximation number of T , our present work may be seen as a,

very partial, ontribution to that study.

Note that Lueking's proof of its trae-lass theorem does not make expliit

mention of singular numbers, but relies instead on an interpolation argument.

2. It is lear, by our results, that the membership in Sp for the omposition

operator Cφ annot be haraterized in terms of the growth of the Carleson

funtion ρφ. But we have given a su�ient ondition in Corollary 3.2, and a

neessary one in Proposition 3.4. Are these two onditions sharp? Can they be

improved?

3. Do there exist two symbols φ1 and φ2 having the same modulus on ∂D

suh that Cφ1 is not ompat on H2
, but Cφ2 is in Sp for every p > 2?

4. (K. Kellay) If Cφ : H2 → H2
is ompat (or even in Sp, with p > 2) and

ψ : D → D is analyti, is Cφψ : H2 → H2
ompat?
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