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Nevanlinna ounting funtion andCarleson funtion of analyti mapsPasal Lefèvre, Daniel Li,Hervé Que�éle, Luis Rodríguez-PiazzaDeember 17, 2009Abstrat. We show that the maximal Nevanlinna ounting funtion and theCarleson funtion of analyti self-maps of the unit disk are equivalent, up toonstants.Mathematis Subjet Classi�ation. Primary: 30C80 � Seondary: 47B33;47B10Key-words. Analyti self-map of the unit disk � Carleson funtion � Carlesonmeasure � omposition operator � Nevanlinna ounting funtion1 IntrodutionCarleson measures and the Nevanlinna ounting funtion are two lassialonepts in Complex Analysis. Carleson measures emerged in 1958 when L.Carleson ([1℄, [2℄) showed his famous embedding theorem: For any positive�nite measure µ on the losed unit disk D, the identity map from the Hardyspae H2 into L2(µ) is bounded if and only if this measure satis�es the followinggeometri ondition: sup|ξ|=1 µ[W (ξ, h)] = O (h), whereW (ξ, h) is the Carlesonwindow of size h entered at ξ. This supremum is alled the Carleson funtion
ρµ of µ.If ϕ is an analyti self-map of D (suh a funtion is sometimes alled a Shurfuntion), ϕ indues a omposition operator Cϕ : f ∈ H2 7→ f ◦ ϕ ∈ H2, whihmay be seen as the identity from H2 into L2(mϕ), where µ = mϕ is the imageof the Lebesgue measure on the unit irle by ϕ∗, the boundary values funtionof ϕ. We say that ρϕ = ρmϕ

is the Carleson funtion of ϕ.Nevanlinna ounting funtion traes bak earlier, in the thirties of the lastentury, in onnetion with the Jensen formula and the Nevanlinna theory ofdefet ([18℄ or [16℄). It is de�ned, for w ∈ ϕ(D) and w 6= ϕ(0), by Nϕ(w) =
∑

ϕ(z)=w log 1/|z| (see (2.4)).In a slightly di�erent ontext, Littlewood used it impliitly ([11℄, see The-orem 4) when he showed that, for every analyti self-map ϕ of D, we have
Nϕ(z) = O (1 − |z|) as |z| → 1. This turns out to imply ([20℄, [19℄) that the1
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omposition operator f 7→ f ◦ ϕ = Cϕ(f) is ontinuous on H2 (whih preiselymeans, in present language, that mϕ is a Carleson measure).Later, and till now, the regularity of omposition operators Cϕ on H2 (theirompatness, or membership in a Shatten lass) in terms of their �symbol� ϕhas been studied either from the point of view of Carleson measures or from thepoint of view of the Nevanlinna ounting funtion, those two points of view beingompletely separated. For example, the ompatness of Cϕ : H2 → H2 has beenharaterized in terms of the Carleson funtion of the symbol ρϕ(h) = o (h),as h → 0, by B. MCluer ([14℄ � see also [17℄). In another paper, it washaraterized in terms of the Nevanlinna ounting funtion Nϕ of the symbol:
Nϕ(w) = o (1− |w|), as |w| → 1, by J. Shapiro ([20℄). A similar situation existsfor the haraterization of the membership of Cϕ in a presribed Shatten lass([12℄ and [13℄).Though the de�nition the Carleson measure mϕ and that of the Nevanlinnaounting funtion Nϕ are of di�erent nature, there should therefore exist a diretlink between these two quantities.Some results in this diretion had been given: B. R. Choe ([4℄) showed that
lim suph→0(ρϕ(h)/h)1/2 is equivalent, up to onstants, to the distane of Cϕ tothe spae of ompat operators on H2; sine J. Shapiro proved ([20℄) that thisdistane is lim sup|w|→1(Nϕ(w)/ log |w|)1/2, one gets that

lim sup
|w|→1

Nϕ(w)/ log |w| ≈ lim sup
h→0

ρϕ(h)/h .Later, J. S. Choa and H. O. Kim ([3℄) gave a somewhat diret proof of theequivalene of the two above onditions, without using the properties of theomposition operator, but without giving expliitly a diret relation betweenthe two funtions ρϕ and Nϕ.The aim of this paper is to show the surprising fat that the Nevanlinnaounting funtion and the Carleson funtion are atually equivalent, in the fol-lowing sense:Theorem 1.1 There exists a universal onstant C > 1, suh that, for everyanalyti self-map ϕ : D → D, one has:(1.1) (1/C) ρϕ(h/C) ≤ sup
|w|≥1−h

Nϕ(w) ≤ C ρϕ(C h),for 0 < h < 1 small enough.More preisely, for every ξ ∈ ∂D, one has:(1.2) (1/64)mϕ[W (ξ, h/64)] ≤ sup
w∈W (ξ,h)∩D

Nϕ(w) ≤ 196 mϕ[W (ξ, 24 h)] ,for 0 < h < (1 − |ϕ(0)|)/16. 2



Atually the above expliit onstants are not relevant and we did not try tohave �best� onstants. It an be shown that for every α > 1, there is a onstant
Cα > 0 suh that mϕ

(

S(ξ, h)
)

≤ Cα ν̃ϕ(ξ, αh) and ν̃ϕ(ξ, h) ≤ Cαmϕ

(

S(ξ, αh)
)for 0 < h < (1 − |ϕ(0)|)/α, where S(ξ, h) is de�ned in (2.3) and ν̃(ξ, h) =

supw∈S(ξ,h)∩D
Nϕ(w) (see (4.7)).2 NotationWe shall denote by D = {z ∈ C ; |z| < 1} the open unit dis of the omplexplane and by T = ∂D = {z ∈ C ; |z| = 1} its boundary; m will be the normalizedLebesgue measure dt/2π on T, and A the normalized Lebesgue measure dxdy/πon D. For every analyti self-map ϕ of D, mϕ will be the pull-bak measure of

m by ϕ∗, where ϕ∗ is the boundary values funtion of ϕ.For every ξ ∈ T and 0 < h < 1, the Carleson window W (ξ, h) entered at ξand of size h is the set(2.1) W (ξ, h) = {z ∈ D ; |z| ≥ 1 − h and | arg(zξ̄)| ≤ h}.For onveniene, we shall set W (ξ, h) = D for h ≥ 1.For every analyti self-map ϕ of D, one de�nes the maximal funtion of mϕ,for 0 < h < 1, by:(2.2) ρϕ(h) = sup
ξ∈T

m
(

{ζ ∈ T ; ϕ∗(ζ) ∈W (ξ, h)}
)

= sup
ξ∈T

mϕ

(

W (ξ, h)
)

.We have ρϕ(h) = 1 for h ≥ 1. We shall all this funtion ρϕ the Carlesonfuntion of ϕ. For onveniene, we shall often also use, instead of the Carlesonwindow W (ξ, h), the set(2.3) S(ξ, h) = {z ∈ D ; |z − ξ| ≤ h} ,whih has an equivalent size.The Nevanlinna ounting funtion Nϕ is de�ned, for w ∈ ϕ(D) \ {ϕ(0)}, by(2.4) Nϕ(w) =
∑

ϕ(z)=w

log
1

|z| ,eah term log 1
|z| being repeated aording to the multipliity of z, and Nϕ(w) =

0 for the other w ∈ D. Its maximal funtion will be denoted by(2.5) νϕ(t) = sup
|w|≥1−t

Nϕ(w).3 Majorizing the Nevanlinna ounting funtionby the Carleson funtionThe goal of this setion is to prove:3



Theorem 3.1 For every analyti self-map ϕ of D, one has, for every a ∈ D:(3.1) Nϕ(a) ≤ 196mϕ

(

W (ξ, 12h)
)

,for 0 < h < (1 − |ϕ(0)|)/4, where ξ = a
|a| and h = 1 − |a|.In partiular, for 0 < h < (1 − |ϕ(0)|)/4:(3.2) νϕ(h) = sup

|a|≥1−h

Nϕ(a) ≤ 196 ρϕ(12h).Let us note that, sine W (ζ, s) ⊆ W (ξ, 2t) whenever 0 < s ≤ t and ζ ∈
W (ξ, t) ∩ ∂D, we get from (3.1) that(3.3) sup

w∈W (ξ,h)∩D

Nϕ(w) ≤ 196mϕ

(

W (ξ, 24h)
)

.We shall �rst prove the following lemma.Lemma 3.2 Let ϕ be an analyti self map of D. For every z ∈ D, one has, if
w = ϕ(z), ξ = w/|w| and h = 1 − |w| ≤ 1/4:(3.4) mϕ

(

W (ξ, 12 h)
)

≥ mϕ

(

S(ξ, 6h)
)

≥ |w|
8

(1 − |z|) .Proof. We may assume, by making a rotation, that w is real and positive:
3/4 ≤ w < 1.Let:(3.5) T (u) =

au+ 1

u+ a
,where

a = w − 2

w
< −1 ,so that T : D → D is analyti, and T (w) = w/2.If Pz is the Poisson kernel at z, one has:

w

2
= T [ϕ(z)] =

∫

T

(T ◦ ϕ)∗Pz dm =

∫

T

Re [(T ◦ ϕ)∗]Pz dm.Hene, if one sets:
E = {Re (T ◦ ϕ∗) ≥ w/4} = {Re [(T ◦ ϕ)∗] ≥ w/4},one has:

w

2
≤

∫

E

Pz dm+
w

4

∫

Ec

Pz dm ≤
∫

E

Pz dm+
w

4

∫

D

Pz dm =

∫

E

Pz dm+
w

4
;therefore:

∫

E

Pz dm ≥ w

4
·4



Sine
‖Pz‖∞ =

1 + |z|
1 − |z| ≤

2

1 − |z|
,we get:(3.6) m(E) ≥ w

8
(1 − |z|) .On the other hand, (3.5) writes(3.7) u = T−1(U) =
aU − 1

a− U
;hene:

|1 − u| = |a+ 1| |1 − U |
|a− U | ≤

2 |a+ 1|
|a− U | ·But a < −1 is negative, so ReU ≥ w/4 implies that

|a− U | ≥ Re (U − a) ≥ w

4
− a =

2

w
− 3

4
w ≥ 5

4
·Moreover, for w ≥ 3/4:

|a+ 1| = (1 − w)
( 2

w
+ 1

)

≤ 11

3
(1 − w) .We get hene |1 − u| ≤ 6 h when (3.7) holds and ReU ≥ w/4.It follows that:(3.8) ϕ∗(E) ⊆ T−1({ReU ≥ w/4}) ⊆ S(1, 6h),giving mϕ

(

W (1, 12h)
)

≥ mϕ

(

S(1, 6h)
)

≥ m(E).Combining this with (3.6), that �nishes the proof. �Remark. Theorem 3.1 follows immediately when ϕ is univalent sine then, for
|w| ≥ 3/4 and ϕ(z) = w:

Nϕ(w) = log
1

|z| ≈ (1 − |z|) . mϕ

(

W (1, 12h)
)

.When proving the equivalene between the onditions ρϕ(h) = o (h), as
h→ 0, and Nϕ(w) = o (1 − |w|), as |w| → 1, J. S. Choa and H. O. Kim proved(see [3℄, page 112) the following inequality, for every analyti self-map ϕ : D → Dand every w ∈ D, lose enough to 1:(3.9) Nϕ(w) ≤ (1 − |w|2)2

8|w|2
∫

∂D

1

|1 − w̄ϕ(z)|2 dm(z) .5



This result follows from an Hilbertian method, viz. Littlewood-Paley's iden-tity:(3.10) ‖f ◦ ϕ‖2
2 = |f ◦ ϕ(0)|2 + 2

∫

D

|f ′(w)|2Nϕ(w) dA(w)for every f ∈ H2. With (3.9), one annot go beyond the order 2; for instane,we an dedue from (3.9) (see the proof of Theorem 3.1 below), that, for 0 <
h ≤ 1/2:(3.11) sup

|w|=1−h

Nϕ(w) . h2

∫ 1/h2

0

ρϕ

( 1√
t

)

dt . h2 + h2

∫ 1

h

ρϕ(u)

u3
du.This is of ourse interesting only when the seond term in the last sum is at mostof order h2, so, when the integral is bounded. Nevertheless, this result su�esto show that Shapiro's riterion of ompatness for Cϕ : H2 → H2 is impliedby MCluer's one. Moreover, when the pull-bak measure mϕ is an α-Carlesonmeasure (i.e. ρϕ(h) ≤ C hα for some onstant C > 0), with 1 ≤ α ≤ 2, we get

Nϕ(w) . h2 + h2

∫ 1

h

uα

u3
du . h2 + h2hα−2 . hα.Reall ([8℄, Corollary 3.2) that, when mϕ is an α-Carleson measure, the ompo-sition operator Cϕ is in the Shatten lass Sp on the Hardy spae H2, for every

p > 2/(α− 1), and that mϕ is α-Carleson for every α ≥ 1 when Cϕ : HΨ → HΨis ompat, if Ψ is an Orliz funtion satisfying the growth ondition ∆2 ([9℄,Theorem 5.2).But (3.11) does not su�e for the ompatness of Cϕ : HΨ → HΨ on generalHardy-Orliz spaes (see [7℄ or [6℄).In order to prove Theorem 3.1, we shall replae the Littlewood-Paley identity,by a more general formula, dedued from Stanton's formula (see [5℄, Theorem 2).Theorem 3.3 (Stanton's formula) For every analyti self-map ϕ : D → Dand every subharmoni funtion G : D → R, one has:(3.12) lim
r↑1

∫

∂D

G[ϕ(rξ)] dm(ξ) = G[ϕ(0)] +
1

2

∫

D

∆G(w)Nϕ(w) dA(w),where ∆ is the distributional Laplaian.Proof of Theorem 3.1. If a /∈ ϕ(D), one has Nϕ(a) = 0, and the result istrivial. We shall hene assume that a ∈ ϕ(D).Let Φ: [0,∞) → [0,∞) be an Orliz funtion, that is a non-dereasing onvexfuntion suh that Φ(0) = 0 and Φ(∞) = ∞, and we assume that Φ′ is alsoan Orliz funtion. In other words, Φ′′ is an arbitrary non-negative and non-dereasing funtion and Φ′(x) =
∫ x

0
Φ′′(t) dt and Φ(x) =

∫ x

0
Φ′(t) dt.6



Let now f : D → C be an analyti funtion. We have, outside the zeroes of
f , in writing ∆Φ(|f |) = 4∂∂̄Φ(

√

|f |2):(3.13) ∆Φ(|f |) =

[

Φ′′(|f |) +
Φ′(|f |)
|f |

]

|f ′|2.We shall only use here that:(3.14) ∆Φ(|f |) ≥ Φ′′(|f |) |f ′|2(this is a not too rude estimate, sine, Φ′ being an Orliz funtion, Φ′′ isnon-negative and non-dereasing, and hene Φ′(x) =
∫ x

0
Φ′′(t) dt ≤ xΦ′′(x) and

Φ′(x) =
∫ x

0
Φ′′(t) dt ≥

∫ x

x/2
Φ′′(t) dt ≥ (x/2)Φ′′(x/2)).Set now, for a ∈ D:(3.15) fa(z) =

1 − |a|
1 − āz

, z ∈ D.Sine Φ(|fa|) is subharmoni (Φ being onvex and non-dereasing) and bounded,we an use Stanton's formula as:(3.16) ∫

∂D

Φ(|fa ◦ ϕ|) dm ≥ 1

2

∫

D

Φ′′(|fa|) |f ′
a|2Nϕ dA.Let h = 1 − |a|. For |z − a| < h, one has

|1 − āz| = |(1 − |a|2) + ā(a− z)| ≤ (1 − |a|2) + |a− z| ≤ 2h+ h = 3h;Hene |fa(z)| ≥ h
3h = 1

3 for |z − a| < h. It follows, sine Φ′′ is non-dereasing:(3.17) ∫

∂D

Φ(|fa ◦ ϕ|) dm ≥ 1

2
Φ′′

(1

3

)

∫

D(a,h)

|f ′
a|2Nϕ dA.Now, if ϕa(z) = a−z

1−āz , one has |f ′
a(z)| = |a|

1+|a| |ϕ′
a(z)| ≥ 3

7 |ϕ′
a(z)| (we may, anddo, assume that 1 − |a| = h ≤ 1/4); hene:

∫

∂D

Φ(|fa ◦ ϕ|) dm ≥ 1

2
Φ′′

(1

3

) 9

49

∫

D(a,h)

|ϕ′
a|2Nϕ dA

=
9

98
Φ′′

(1

3

)

∫

ϕa(D(a,h))

Nϕa◦ϕ dA(beause Nϕa◦ϕ

(

ϕa(w)
)

= Nϕ(w) and ϕ−1
a = ϕa).But ϕa(D(a, h)

)

⊇ D(0, 1/3): indeed, if |w| < 1/3, then w = ϕa(z), with
|a− z| =

∣

∣

∣

∣

(1 − |a|2)w
1 − āw

∣

∣

∣

∣

≤ (1 − |a|2) |w|
1 − |w| < 2h

1/3

1 − 1/3
= h.7



We are going now to use the sub-averaging property of the Nevanlinna fun-tion ([19℄, page 190, [20℄, � 4.6, or [21℄, Proposition 10.2.4): for every analytiself-map ψ : D → D, one has
Nψ(w0) ≤

1

A(∆)

∫

∆

Nψ(w) dA(w) ,for every disk ∆ of enter w0 whih does not ontain ψ(0).This will be possible thanks to the following:Lemma 3.4 For 1 − |a| < (1 − |ϕ(0)|)/4, one has |(ϕa ◦ ϕ)(0)| > 1/3.Proof. One has |1− ā ϕ(0)| ≤ (1− |a|2)+ |ā| |a−ϕ(0)| ≤ (1− |a|2)+ |a−ϕ(0)|;hene:
|ϕa

(

ϕ(0)
)

| ≥ |a− ϕ(0)|
(1 − |a|2) + |a− ϕ(0)| ≥ 1 − 1 − |a|2

(1 − |a|2) + |a− ϕ(0)|

≥ 1 − 1 − |a|2
|a− ϕ(0)| ≥ 1 − 2

1 − |a|
|a− ϕ(0)| ·But when 1 − |a| < (1 − |ϕ(0)|)/4, one has:

|a− ϕ(0)| ≥ |a| − |ϕ(0)| = (1 − |ϕ(0)|) − (1 − |a|) > 3(1 − |a|) ,and the result follows. �Hene:
∫

D(0,1/3)

Nϕa◦ϕ dA ≥ 1

9
Nϕa◦ϕ(0) =

1

9
Nϕ(a),and(3.18) ∫

∂D

Φ(|fa ◦ ϕ|) dm ≥ 1

98
Φ′′

(1

3

)

Nϕ(a).We now have to estimate from above ∫

∂D
Φ(|fa ◦ ϕ|) dm. For that, we shalluse the following easy lemma.Lemma 3.5 For every ξ ∈ ∂D and every h ∈ (0, 1/2], one has:(3.19) |1 − āz|2 ≥ 1

4
(h2 + |z − ξ|2) , ∀z ∈ D,where a = (1 − h)ξ.Proof. The result is rotation-invariant; so we may assume that ξ = 1 (andhene a > 0). Write z = 1 − reiθ. Sine |z| ≤ 1 if and only if r ≤ 2 cos θ, onehas cos θ ≥ 0 and hene |θ| ≤ π/2. Then:

|1 − āz|2 = |1 − a(1 − reiθ)|2 = |1 − a+ areiθ|2

= (1 − a)2 + a2r2 + 2ar(1 − a) cos θ

≥ (1 − a)2 + a2r2 ≥ 1

4
(h2 + r2) =

1

4
(h2 + |z − 1|2). �8



Then:
∫

∂D

Φ(|fa ◦ ϕ|) dm =

∫

D

Φ

(

1 − |a|
|1 − āz|

)

dmϕ(z)

≤
∫

D

Φ

(

2h

(h2 + |z − ξ|2)1/2
)

dmϕ(z), by (3.19)
=

∫ +∞

0

mϕ

(

Φ
( 2h

(h2 + |z − ξ|2)1/2
)

≥ t
)

dt

=

∫ +∞

0

mϕ

(

(h2 + |z − ξ|2)1/2 ≤ 2h/Φ−1(t)
)

dt

=

∫ Φ(2)

0

mϕ

(

(h2 + |z − ξ|2)1/2 ≤ 2h/Φ−1(t)
)

dt ,sine h ≤ (h2 + |z − ξ|2)1/2 ≤ 2h/Φ−1(t) implies t ≤ Φ(2). We get:
∫

∂D

Φ(|fa ◦ ϕ|) dm ≤
∫ Φ(2)

0

mϕ

(

|z − ξ| ≤ 2h/Φ−1(t)
)

dt .We obtain from (3.18), by setting u = 2h/Φ−1(t):
Nϕ(a) ≤ 98

Φ′′(1/3)

∫ ∞

h

mϕ

(

S(ξ, u)
) 2h

u2
Φ′

(

2h

u

)

du ·Sine Φ′(x) ≤ xΦ′′(x), we get:(3.20) Nϕ(a) ≤ 98

Φ′′(1/3)

∫ ∞

h

mϕ

(

S(ξ, u)
) 4h2

u3
Φ′′

(

2h

u

)

du.We are going now to hoose suitably the Orliz funtion Φ. It su�es tode�ne Φ′′, for a ∈ D given (with ξ = a/|a| and h = 1−|a| ≤ 1/4). By Lemma 3.2,sine a ∈ ϕ(D), there is a onstant c0 > 0, suh that mϕ

(

S(ξ, c0h)
)

> 0; we anhene set (note that mϕ

(

S(ξ, u)
)

≤ 1):(3.21) Φ′′(v) =























1 if 0 ≤ v ≤ h ,
1

mϕ

(

S(ξ, 2h/v)
) if h ≤ v ≤ 2/c0 ,

1

mϕ

(

S(ξ, c0h)
) if v ≥ 2/c0 .It is a non-negative non-dereasing funtion, so the assumptions made on Φ atthe beginning are satis�ed. One has, sine mϕ

(

S(ξ, u)
)

Φ′′(2h/u) ≤ 1:
∫ ∞

h

mϕ

(

S(ξ, u)
) 4h2

u3
Φ′′

(

2h

u

)

du ≤
∫ ∞

h

4h2

u3
du = 2.Sine c0 ≤ 6, one has h ≤ 1/3 ≤ 2/c0 and hene Φ′′(1/3) = 1/mϕ

(

S(ξ, 6h)
);therefore (3.20) gives, for h ≤ (1 − |ϕ(0)|)/4:(3.22) Nϕ(a) ≤ 196mϕ

(

S(ξ, 6h)
)

,�nishing the proof sine S(ξ, 6h) ⊆W (ξ, 12h). �9



4 Domination of the Carleson funtion by theNevanlinna funtionWe annot expet to estimate individually from above the mϕ-measure ofCarleson windows entered at ξ = w/|w| by Nϕ(w), as in Theorem 3.1. In fat,onsider a onformal mapping ϕ from D onto D \ [0, 1[. One has Nϕ(t) = 0 forevery t ∈ [0, 1[, though mϕ

(

W (1, h)
)

> 0 for every h > 0 (beause W (1, h) ⊃
W (eih/2, h/2) and mϕ

(

W (eih/2, h/2)
)

> 0 by Lemma 3.2).Let us give another example. Let ϕ(z) = (1 + z)/2. Then:a) One has ϕ(eiθ) = (cos θ/2) eiθ/2 (with |θ| ≤ π). Hene ϕ(eiθ) ∈W (eiθ0 , h)if and only if cos(θ/2) ≥ 1−h and |(θ/2)−θ0| ≤ h, i.e. 2(θ0−h) ≤ θ ≤ 2(θ0+h).Now, 1−cos(θ/2) ≤ θ2/8, so the modulus ondition is satis�ed when θ2 ≤ 8h;in partiular when |θ| ≤ 2
√
h.For θ0 =

√
h, mϕ

(

W (eiθ0 , h)
) is bigger than the length of the interval

[−2
√
h, 2

√
h] ∩ [2(

√
h− h), 2(

√
h+ h)] = [2

√
h− 2h, 2

√
h] ,that is 2h. Therefore mϕ

(

W (eiθ0 , h)
)

≥ 2h.b) Let now w = ϕ(z). Write w = 1
2 + r eiζ with 0 ≤ r < 1/2. Then, writing

r = 1
2 − s, one has |z| = |2w − 1| = 2r and

Nϕ(w) = log
1

|z| = log
1

2r
= log

1

1 − 2s
≈ s.Now, |w|2 = 1

4 + r2 + r cos ζ and
h ≈ 1 − |w|2 =

1

2
(1 − cos ζ) + s(1 + cos ζ) − s2 ≈ ζ2

4
+ 2s.Writing ζ = s1/2α, one gets:

(i) for �small� ζ (i.e. 0 < α ≤ 1): h ≈ s, and so Nϕ(w) ≈ h;
(ii) for �large� (i.e. α ≥ 1): h ≈ s1/α, and so Nϕ(w) ≈ hα.On the other hand, w = eiζ/2[(1 − s) cos(ζ/2) − is sin(ζ/2)]; hene, when sgoes to 0, one has

θw := argw =
ζ

2
+ arctan

[

s sin(ζ/2)

(1 − s) cos(ζ/2)

]

∼ ζ

2
≈ ζ .For α ≥ 1, one has h ≈ s1/α = ζ2, i.e. ζ ≈ √

h. Then, hoosing α > 1 suh that
ζ = θ0, one has mϕ

(

W (w/|w|, h)
)

≈ h, though Nϕ(w) ≈ hα ≪ h.One annot hene dominate mϕ

(

W (w/|w|, h)
) by Nϕ(w).We an remark that, nevertheless, in either ase, one has ρϕ(h) ≈ h and

νϕ(h) ≈ h.We shall prove: 10



Theorem 4.1 For every analyti self-map ϕ : D → D, one has, for every ξ ∈
∂D:(4.1) mϕ

(

W (ξ, h)
)

≤ 64 sup
w∈W (ξ,64h)∩D

Nϕ(w) ,for 0 < h < (1 − |ϕ(0)|)/16.Proof. We shall set:(4.2) νϕ(ξ, h) = sup
w∈W (ξ,h)∩D

Nϕ(w) .Note that
νϕ(h) = sup

|ξ|=1

νϕ(ξ, h) ,where νϕ is de�ned in (2.5)If for some h0 > 0, one has νϕ(ξ, h0) = 0, then ϕ(D) ⊆ D \ W (ξ, h0),and hene mϕ

(

W (ξ, h)
)

= 0 for 0 < h < h0. Therefore we shall assume that
νϕ(ξ, h) > 0. We may, and do, also assume that h ≤ 1/4. By replaing ϕ by eiθϕ,it su�es to estimate mϕ

(

S(1, h)
) (reall that S(1, t) = {z ∈ D ; |1 − z| ≤ t}).We shall use the same funtions fa as in the proof of Theorem 3.1, but, foronveniene, with a di�erent notation. We set, for 0 < r < 1:(4.3) u(z) =

1 − r

1 − rz
·Let us take an Orliz funtion Φ as in the beginning of the proof of Theo-rem 3.1, whih will be preised later. We shall take this funtion in suh a waythat Φ

(

|u(ϕ(0))|
)

= 0.Sine Φ′(x) ≤ xΦ′′(x), (3.13) beomes:(4.4) ∆Φ(|u|) ≤ 2Φ′′(|u|) |u′|2,and Stanton's formula writes, sine Φ
(

|u(ϕ(0))|
)

= 0:(4.5) ∫

∂D

Φ(|u ◦ ϕ|) dm ≤
∫

D

Φ′′
(

|u(w)|
)

|u′(w)|2 Nϕ(w) dA(w).In all the sequel, we shall �x h, 0 < h ≤ 1/4, and take r = 1 − h.For |z| ≤ 1 and |1−z| ≤ h, one has |1−rz| = |(1−z)+hz| ≤ |1−z|+h ≤ 2h,so:
|u(z)| ≥ (1 − r)

2h
=

1

2
·Hene:

mϕ

(

S(1, h)
)

≤ 1

Φ(1/2)

∫

S(1,h)

Φ
(

|u(z)|
)

dmϕ(z)

≤ 1

Φ(1/2)

∫

D

Φ
(

|u(z)|
)

dmϕ(z)

=
1

Φ(1/2)

∫

T

Φ
(

|(u ◦ ϕ)(z)|
)

dm(z) ,11



and so, by (4.5):(4.6) mϕ

(

S(1, h)
)

≤ 1

Φ(1/2)

∫

D

Φ′′
(

|u(z)|
)

|u′(z)|2Nϕ(z) dA(z).We are going to estimate this integral by separating two ases: |1 − z| ≤ hand |1 − z| > h.For onveniene, we shall set:(4.7) ν̃(t) = sup
w∈S(1,t)∩D

Nϕ(w) .1) Remark �rst that
u′(z) =

rh

(1 − rz)2
,and so:

|u′(z)| ≤ h

(1 − r)2
=

1

h
·Sine |u(z)| ≤ 1, we get hene:

∫

|1−z|≤h

Φ′′
(

|u(z)|
)

|u′(z)|2Nϕ(z) dA(z) ≤
∫

S(1,h)

Φ′′(1)
1

h2
ν̃(h) dA(z) ,giving, sine A(

S(1, h)
)

≤ h2:(4.8) ∫

|1−z|≤h

Φ′′
(

|u(z)|
)

|u′(z)|2Nϕ(z) dA(z) ≤ Φ′′(1) ν̃(h) .2) For 0 < h ≤ 1/4, one has:
|u(z)| ≤ 2h

|1 − z| and |u′(z)| ≤ 2h

|1 − z|2 ;indeed, we have (this is obvious, by drawing a piture):
|1 − rz| = r

∣

∣

∣

1

r
− z

∣

∣

∣
≥ r |1 − z| ,and hene |1 − rz| ≥ 3

4 |1 − z|, sine r = 1 − h ≥ 3/4. We obtain:
∫

|1−z|>h

Φ′′
(

|u(z)|
)

|u′(z)|2Nϕ(z) dA(z)

≤ 4

∫

|1−z|>h

Φ′′

(

2h

|1 − z|

)

h2

|1 − z|4Nϕ(z) dA(z).Then, using polar oordinates entered at 1 (note that we only have tointegrate over an ar of length less than π), and the obvious inequality Nϕ(z) ≤12



ν̃(|1 − z|), we get:
∫

|1−z|>h

Φ′′
(

|u(z)|
)

|u′(z)|2Nϕ(z) dA(z)(4.9)
≤ 4

∫ 2

h

Φ′′

(

2h

t

)

h2

t3
ν̃(t) dt .We now hoose the Orliz funtion as follows (with a = ϕ(0)):(4.10) Φ′′(v) =























0 if 0 ≤ v ≤ h/(1 − |a|) ,
1

ν̃(2h/v)
if h/(1 − |a|) < v < 2 ,

1

ν̃(h)
if v ≥ 2 .This funtion is non-negative and non-dereasing. Moreover, one has Φ(x) = 0for 0 ≤ x ≤ h/(1 − |a|). Hene, sine |u(a)| ≤ h

1−|a| , one has Φ
(

|u(a)|
)

= 0.Then
∫ 2

h

Φ′′

(

2h

t

)

h2

t3
ν̃(t) dt =

∫ 2(1−|a|)

h

Φ′′

(

2h

t

)

h2

t3
ν̃(t) dt(4.11)

≤
∫ ∞

h

h2

t3
dt =

1

2
·Now,

Φ
(1

2

)

=

∫ 1/2

0

Φ′(t) dt ≥
∫ 1/2

1/4

Φ′(t) dt ≥
∫ 1/2

1/4

t

2
Φ′′

( t

2

)

dt

≥ Φ′′
(1

8

)

∫ 1/2

1/4

t

2
dt =

3

64
Φ′′

(1

8

)

.When h < (1 − |a|)/8, one has 1/8 > h/(1 − |a|); hene Φ′′(1/8) = 1/ν̃(16h),and Φ′′(1) = 1/ν̃(2h). We get hene, from (4.6), (4.8), (4.9) and (4.11):(4.12) mϕ

(

S(1, h)
)

≤ 64

3
ν̃(16h)

[

ν̃(h)

ν̃(2h)
+ 2

]

≤ 64 ν̃(16h) .Sine W (1, t) ⊆ S(1, 2t), we get mϕ

(

W (1, h)
)

≤ 64 supw∈S(1,32h)Nϕ(w)for 0 < h < (1 − |ϕ(0)|)/16, and that ends the proof of Theorem 4.1, sine
S(1, 32h) ⊆W (1, 64h). �Remark. A slight modi�ation of the proof gives the following improvement,if one allows a (muh) bigger onstant.13



Theorem 4.2 There are universal onstants C, c > 1 suh that
mϕ

(

S(ξ, h)
)

≤ C
1

A
(

S(ξ, ch)
)

∫

S(ξ,ch)

Nϕ(z) dA(z)for every analyti self-map ϕ : D → D, every ξ ∈ ∂D, and 0 < h < (1−|ϕ(0)|)/8.Proof. We are going to follow the proof of Theorem 4.1. We shall assume that
ξ = 1 and we set:(4.13) I(t) =

∫

S(1,t)

Nϕ(z) dA(z) .Then:1) When |1 − z| < h, , we have, instead of (4.8):
∫

|1−z|<h

Φ′′
(

|u(z)|
)

|u′(z)|2Nϕ(z) dA(z) ≤
∫

S(1,h)

Φ′′(1)
1

h2
Nϕ(z) dA(z)(4.14)

= Φ′′(1)
1

h2
I(h) .2) For |z − 1| ≥ h, we write:

∫

|1−z|≥h

Φ′′
(

|u(z)|
)

|u′(z)|2Nϕ(z) dA(z)

=

∞
∑

k=1

∫

kh≤|1−z|<(k+1)h

Φ′′
(

|u(z)|
)

|u′(z)|2Nϕ(z) dA(z)

≤ 4

∞
∑

k=1

Φ′′
(2h

kh

) h2

k4h4
I
(

(k + 1)h
)

= 4
∞
∑

k=1

Φ′′
(2

k

) 1

k4h2
I
(

(k + 1)h
)

.We take, with a = ϕ(0):(4.15) Φ′′(v) =







0 if 0 ≤ v ≤ h/(1 − |a|) ,
1

I
(

( 2
v + 1)h)

) if v > h/(1 − |a|) .Then(4.16) ∫

|1−z|≥h

Φ′′
(

|u(z)|
)

|u′(z)|2Nϕ(z) dA(z) ≤ 4

h2

∞
∑

k=1

1

k4
=

4

h2

π4

90
≤ 5

h2
·Sine h < (1−|a|)/8, one has 1/8 > h/(1−|a|); hene Φ′′(1/8) = 1

I(17h) and14



Φ′′(1) = 1
I(3h) . Therefore:

mϕ

(

S(1, h)
)

≤ 64

3
I(17h)

[

1

h2

I(h)

I(3h)
+

5

h2

]

≤ 64

3
I(17h)

6

h2
= 128

I(17h)

h2

≤ 128 × 172 I(17h)

A
(

S(1, 17h)
) ,ending the proof of Theorem 4.2. �5 Some onsequenesIn [7℄ (see also [6℄, Théorème 4.2), we proved (Theorem 4.19) that the Car-leson funtion of an analyti self-map ϕ has the following property of homogene-ity, improving that mϕ is a Carleson measure: mϕ

(

S(ξ, ε h)
)

≤ K εmϕ

(

S(ξ, h)
)for 0 < h < 1 − |ϕ(0)|, 0 < ε < 1 and ξ ∈ ∂D, where K is a universal onstant.It follows from Theorem 1.1, (atually Theorem 3.1 and Theorem 4.1) that:Theorem 5.1 There exist a universal onstant K > 0 suh that, for everyanalyti self-map ϕ of D, one has, for 0 < ε < 1:(5.1) νϕ(ε t) ≤ K ενϕ(t) ,for t small enough.More preisely, for t small enough, one has, for every ξ ∈ ∂D:(5.2) νϕ(ξ, ε t) ≤ K ενϕ(ξ, t) ,where νϕ(ξ, s) = supw∈W (ξ,s)∩D

Nϕ(w).Note that the two above quoted theorems give Theorem 5.1 a priori only for
0 < ε < 1/K; but if 1/K ≤ ε < 1, one has νϕ(ξ, ε t) ≤ νϕ(ξ, t) ≤ K ενϕ(ξ, t).We shall end this paper with a onsequenes of Theorem 1.1 for ompositionoperators. Reall that if Ψ is an Orliz funtion, the Hardy-Orliz spae isthe spae of funtions f ∈ H1 whose boundary values are in the Orliz spae
LΨ(∂D,m). We proved in [7℄, Theorem 4.18 (see also [6℄, Théorème 4.2) that, if
Ψ(x)
x −→

x→∞
∞, the omposition operator Cϕ : HΨ → HΨ is ompat if and onlyif, for every A > 0, one has ρϕ(h) = o

[

1/Ψ
(

AΨ−1(1/h)
)] when h goes to 0; inother words, if and only if

lim
h→0

Ψ−1(1/h)

Ψ−1
(

1/ρϕ(h)
) = 0 .This remains true when HΨ = H1. Hene Theorem 1.1 gives:15



Theorem 5.2 Let ϕ : D → D be an analyti self-map and Ψ be an Orliz fun-tion. Then the omposition operator Cϕ : HΨ → HΨ is ompat if and only if(5.3) sup
|w|≥1−h

Nϕ(w) = o

(

1

Ψ
(

AΨ−1(1/h)
)

)

, as h→ 0 , ∀A > 0.It should be noted, due to the arbitrary A > 0, that (5.3) may be replaedby(5.4) sup
|w|≥1−h

Nϕ(w) ≤ 1

Ψ
(

AΨ−1(1/h)
) , ∀A > 0,for h ≤ hA, and this ondition also writes, setting νϕ(h) = sup|w|≥1−hNϕ(w)(see (2.5)):(5.5) lim

h→0

Ψ−1(1/h)

Ψ−1
(

1/νϕ(h)
) = 0 .It is known that if Cϕ : H2 → H2 is ompat, then lim|z|→1

1−|ϕ(z)|
1−|z| = ∞,and that this ondition is su�ient when ϕ is univalent, or �nitely-valent, butnot su�ient in general (see [15℄ and [19℄, � 3.2). It follows from Theorem 5.2that an analogous result holds for Hardy-Orliz spaes:Theorem 5.3 Let ϕ : D → D be an analyti self-map, and Ψ be an Orlizfuntion. Assume that the omposition operator Cϕ : HΨ → HΨ is ompat.Then:(5.6) lim

|z|→1

Ψ−1

(

1

1 − |z|

)

Ψ−1

(

1

1 − |ϕ(z)|

) = ∞ .Conversely, if ϕ is �nitely-valent, then (5.6) su�es for Cϕ : HΨ → HΨ to beompat.Reall that the assumption �ϕ is �nitely-valent� means that there is aninteger p ≥ 1 suh that eah w ∈ ϕ(D) is the image by ϕ of at most p elementsof D.Proof. To get the neessity, we ould use Theorem 5.2 and the fat that
1 − |z| ≤ log 1

|z| ≤ Nϕ
(

ϕ(z)
); but we shall give a more elementary proof. Let

HMΨ be the losure of H∞ in HΨ. Sine Cϕ(H∞) ⊆ H∞, Cϕ maps HMΨ intoitself and Cϕ : HΨ → HΨ being ompat, its restrition Cϕ : HMΨ → HMΨis ompat too. We know that the evaluation δa : f ∈ HMΨ 7→ f(a) ∈ C hasnorm ≈ Ψ−1
(

1
1−|a|

) ([7℄, Lemma 3.11); hene δa/‖δa‖ −→
|a|→1

0 weak-star (beause16



|δa(f)| = |f(a)| ≤ ‖f‖∞ for f ∈ H∞). If Cϕ is ompat, its adjoint C∗
ϕ also; weget hene ‖C∗

ϕ(δa/‖δa‖)‖ −→
|a|→1

0. But C∗
ϕδa = δϕ(a). Therefore

Ψ−1

(

1

1 − |ϕ(a)|

)

Ψ−1

(

1

1 − |a|

) −→
|a|→1

0 .Conversely, assume that (5.6) holds. For every A > 0, one has, for |z|lose enough to 1: Ψ−1
(

1
1−|z|

)

≥ AΨ−1
(

1
1−|ϕ(z)|

); in other words, one has:
1/Ψ

(

AΨ−1(1/1 − |ϕ(z)|)
)

≥ 1 − |z|. But, when ϕ is p-valent, and if w = ϕ(z)with |z| > 0 minimal, one has Nϕ(w) ≤ p log 1
|z| ≈ 1 − |z|. Sine |z| → 1 when

|w| = |ϕ(z)| → 1 (otherwise, we should have a sequene (zn) onverging to some
z0 ∈ D and ϕ(zn) would onverge to ϕ(z0) ∈ D), we get sup|w|≥1−hNϕ(w) .

1/Ψ
(

AΨ−1(1/1 − |w|)
)

≤ 1/Ψ
(

AΨ−1(1/1 − h)
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