On some random thin sets of integers

Daniel Li - Hervé Queffélec - Luis Rodríguez-Piazza

Abstract

We show how different random thin sets of integers may have different behaviour. First, using a recent deviation inequality of Boucheron, Lugosi and Massart, we give a simpler proof of one of our results in Some new thin sets of integers in Harmonic Analysis, Journal d'Analyse Mathématique 86 (2002), 105-138, namely that there exist $\frac{4}{3}$-Rider sets which are sets of uniform convergence and $\Lambda(q)$-sets for all $q<\infty$, but which are not Rosenthal sets. In a second part, we show, using an older result of Kashin and Tzafriri that, for $p>\frac{4}{3}$, the p-Rider sets which we had constructed in that paper are almost surely not of uniform convergence.

2000 MSC : primary : 43 A 46 ; secondary : 42 A $55 ; 42$ A 61
Key words: Boucheron-Lugosi-Massart's deviation inequality; $\Lambda(q)$-sets; p Rider sets; Rosenthal sets; selectors; sets of uniform convergence

1 Introduction

It is well-known that the Fourier series $S_{n}(f, x)=\sum_{-n}^{n} \hat{f}(k) \mathrm{e}^{i k x}$ of a 2π periodic continuous function f may be badly behaved: for example, it may diverge on a prescribed set of values of x with measure zero. Similarly, the Fourier series of an integrable function may diverge everywhere. But it is equally wellknown that, as soon as the spectrum $S p(f)$ of f (the set of integers k at which the Fourier coefficients of f do not vanish, i.e. $\hat{f}(k) \neq 0$) is sufficiently "lacunary", in the sense of Hadamard e.g., then the Fourier series of f is absolutely convergent if f is continuous and almost everywhere convergent if f is merely integrable (and in this latter case $f \in L^{p}$ for every $p<\infty$). Those facts have given birth to the theory of thin sets Λ of integers, initiated by Rudin [15]: those sets Λ such that, if $S p(f) \subseteq \Lambda$ (we shall write $f \in \mathscr{B}_{\Lambda}$ when f is in some Banach function space \mathscr{B} contained in $L^{1}(\mathbb{T})$) and $\left.S p(f) \subseteq \Lambda\right)$, then $S_{n}(f)$, or f itself, is better behaved than in the general case. Let us for example recall that the set Λ is said to be:

- a p-Sidon set $(1 \leq p<2)$ if $\hat{f} \in l_{p}$ (and not only $\hat{f} \in l_{2}$) as soon as f is continuous and $S p(f) \subseteq \Lambda$; this amounts to an "a priori inequality" $\|\hat{f}\|_{p} \leq C\|f\|_{\infty}$, for each $f \in \mathscr{C}_{\Lambda}$; the case $p=1$ is the celebrated case of Sidon (= 1 -Sidon) sets; - a p-Rider set $(1 \leq p<2)$ if we have an a priori inequality $\|\hat{f}\|_{p} \leq C \llbracket f \rrbracket$, for every trigonometric polynomial with spectrum in Λ; here $\llbracket f \rrbracket$ is the so-called

Pisier norm of $f=\sum \hat{f}(n) e_{n}$, where $e_{n}(x)=\mathrm{e}^{i n x}$, i.e. $\llbracket f \rrbracket=\mathbb{E}\left\|f_{\omega}\right\|_{\infty}$, where $f_{\omega}=\sum \varepsilon_{n}(\omega) \hat{f}(n) e_{n},\left(\varepsilon_{n}\right)$ being an i.i.d. sequence of centered, ± 1-valued, random variables defined on some probability space (a Rademacher sequence), and where \mathbb{E} denotes the expectation on that space; this apparently exotic notion (weaker than p-Sidonicity) turned out to be very useful when Rider [12] reformulated a result of Drury (proved in the course of the result that the union of two Sidon set sets is a Sidon set) under the form: 1-Rider sets and Sidon sets are the same (in spite of some partial results, it is not yet known whether a p-Rider set is a p-Sidon set: see [5] however, for a partial result);

- a set of uniform convergence (in short a $U C$-set) if the Fourier series of each $f \in \mathscr{C}_{\Lambda}$ converges uniformly, which amounts to the inequality $\left\|S_{n}(f)\right\|_{\infty} \leq$ $C\|f\|_{\infty}, \forall f \in \mathscr{C}_{\Lambda}$; Sidon sets are $U C$, but the converse is false;
- a $\Lambda(q)$-set, $1<q<\infty$, if every $f \in L_{\Lambda}^{1}$ is in fact in L^{q}, which amounts to the inequality $\|f\|_{q} \leq C_{q}\|f\|_{1}, \forall f \in L_{\Lambda}^{1}$. Sidon sets are $\Lambda(q)$ for every $q<\infty$ (and even $C_{q} \leq C \sqrt{q}$); the converse is false, except when we require $C_{q} \leq C \sqrt{q}$ ([11);
- a Rosenthal set if every $f \in L_{\Lambda}^{\infty}$ is almost everywhere equal to a continuous function. Sidon sets are Rosenthal, but the converse in false.

This theory has long suffered from a severe lack of examples: those examples were always, more or less, sums of Hadamard sets, and in that case the banachic properties of the corresponding \mathscr{C}_{Λ}-spaces were very rigid. The use of random sets (in the sense of the selectors method) of integers has significantly changed the situation (see [8], and our paper [9]). Let us recall more in detail the notation and setting of our previous work [9]. The method of selectors consists in the following: let $\left(\varepsilon_{k}\right)_{k \geq 1}$ be a sequence of independent, $(0,1)$-valued random variables, with respective means δ_{k}, defined on a probability space Ω, and to which we attach the random set of integers $\Lambda=\Lambda(\omega), \omega \in \Omega$, defined by $\Lambda(\omega)=\left\{k \geq 1 ; \varepsilon_{k}(\omega)=1\right\}$.

The properties of $\Lambda(\omega)$ of course highly depend on the δ_{k} 's, and roughly speaking the smaller the δ_{k} 's, the better $\mathscr{C}_{\Lambda}, L_{\Lambda}^{1}, \ldots$ In 7, and then, in a much deeper way, in [9], relying on a probabilistic result of J. Bourgain on ergodic means, and on a deterministic result of F. Lust-Piquard (10$]$) on those ergodic means, we had randomly built new examples of sets Λ of integers which were both: locally thin from the point of view of harmonic analysis (their traces on big segments [M_{n}, M_{n+1}] of integers were uniformly Sidon sets); regularly distributed from the point of view of number theory, and therefore globally big from the point of view of Banach space theory, in that the space \mathscr{C}_{Λ} contained an isomorphic copy of the Banach space c_{0} of sequences vanishing at infinity. More precisely, we have constructed subsets $\Lambda \subseteq \mathbb{N}$ which are thin in the following respects: Λ is a $U C$-set, a p-Rider set for various $p \in[1,2[$, a $\Lambda(q)$-set for every $q<\infty$, and large in two respects: the space \mathscr{C}_{Λ} contains an isomorphic copy of c_{0}, and, most often, Λ is dense in the integers equipped with the Bohr topology.

Now, taking δ_{k} bigger and bigger, we had obtained sets Λ which were less and less thin (p-Sidon for every $p>1, q$-Rider, but s-Rider for no $s<q, s$-Rider for every $s>q$, but not q-Rider), and, in any case $\Lambda(q)$ for every $q<\infty$, and such
that \mathscr{C}_{Λ} contains a subspace isomorphic to c_{0}. In particular, in Theorem II.7, page 124, and Theorem II.10, page 130, we take respectively $\delta_{k} \approx \frac{\log k}{k}$ and $\delta_{k} \approx \frac{(\log k)^{\alpha}}{k(\log \log k)^{\alpha+1}}$, where $\alpha=\frac{2(p-1)}{2-p}$ is an increasing function of $p \in[1,2)$, and which becomes ≥ 1 as p becomes $\geq 4 / 3$. The case $\delta_{k}=\frac{1}{k}$ would correspond (randomly) to Sidon sets (i.e. 1-Sidon sets).

After the proofs of Theorem II. 7 and Theorem II.10, we were asking two questions:

1) (p. 129) Our construction is very complicated and needs a second random construction of a set E inside the random set Λ. Is it possible to give a simpler proof?
2) (p. 130) In Theorem II.10, can we keep the property for the random set Λ to be a $U C$-set, with high probability, when $\alpha>1$ (equivalently when $p>\frac{4}{3}$)?

The goal of this work is to answer affirmatively the first question (relying on a recent deviation inequality of Boucheron, Lugosi and Massart [1]) and negatively the second one (relying on an older result of Kashin and Tzafriri [3]). This work is accordingly divided into three parts. In Section 2, we prove a (onesided) concentration inequality for norms of Rademacher sums. In Section 3, we apply the concentration inequality to get a substantially simplified proof of Theorem II. 7 in [9]. Finally, in Section 4, we give a (stochastically) negative answer to question 2 when $p>\frac{4}{3}$: almost surely, Λ will not be a $U C$-set; here, we use the above mentionned result of Kashin and Tzafriri [3] on the non- $U C$ character of big random subsets of integers.

2 A one-sided inequality for norms of Rademacher sums

Let E be a (real or complex) Banach space, v_{1}, \ldots, v_{n} be vectors of E, X_{1}, \ldots, X_{n} be independent, real-valued, centered, random variables, and let $Z=\left\|\sum_{1}^{n} X_{j} v_{j}\right\|$.

If $\left|X_{j}\right| \leq 1$ a.s., it is well-known (see [6]) that:

$$
\begin{equation*}
\mathbb{P}(|Z-\mathbb{E}(Z)|>t) \leq 2 \exp \left(-\frac{t^{2}}{8 \sum_{1}^{n}\left\|v_{j}\right\|^{2}}\right), \quad \forall t>0 \tag{2.1}
\end{equation*}
$$

But often, the "strong" l_{2}-norm of the n-tuple $v=\left(v_{1}, \ldots, v_{n}\right)$, namely $\|v\|_{\text {strong }}=\left(\sum_{j=1}^{n}\left\|v_{j}\right\|^{2}\right)^{1 / 2}$, is too large for (2.1) to be interesting, and it is advisable to work with the "weak" l_{2}-norm of v, defined by:

$$
\begin{equation*}
\sigma=\|v\|_{\text {weak }}=\sup _{\varphi \in B_{E^{*}}}\left(\sum_{1}^{n}\left|\varphi\left(v_{j}\right)\right|^{2}\right)^{1 / 2}=\sup _{\sum\left|a_{j}\right|^{2} \leq 1}\left\|\sum_{1}^{n} a_{j} v_{j}\right\| \tag{2.2}
\end{equation*}
$$

where $B_{E^{*}}$ denotes the closed unit ball of the dual space E^{*}.
If $\left(X_{j}\right)_{j}$ is a standard gaussian sequence $\left(\mathbb{E} X_{j}=0, \mathbb{E} X_{j}^{2}=1\right)$, this is what Maurey and Pisier suceeded in doing, using either the Itô formula or the
rotational invariance of the X_{j} 's; they proved the following (see [8], Chapitre 8, Théorème I.4):

$$
\begin{equation*}
\mathbb{P}(|Z-\mathbb{E} Z|>t) \leq 2 \exp \left(-\frac{t^{2}}{C \sigma^{2}}\right), \quad \forall t>0 \tag{2.3}
\end{equation*}
$$

where σ is as in (2.2), and C is a numerical constant, e.g. $C=\pi^{2} / 2$.
To the best of our knowledge, no inequality as simple and direct as (2.3) is available for non-gaussian (e.g. for Rademacher variables) variables, although several more complicated deviation inequalities are known: see e.g. [2], [6].

For the applications to Harmonic analysis which we have in view, where we use the so-called "selectors method", we precisely need an analogue of (2.3), in the non-gaussian, uniformly bounded (and centered) case; we shall prove that at least a one-sided version of (2.3) holds in this case, by showing the following result, which is interesting for itself.

Theorem 2.1 With the previous notations, assume that $\left|X_{j}\right| \leq 1$ a.s. . Then, we have the one-sided estimate:

$$
\begin{equation*}
\mathbb{P}(Z-\mathbb{E} Z>t) \leq \exp \left(-\frac{t^{2}}{C \sigma^{2}}\right), \quad \forall t>0 \tag{2.4}
\end{equation*}
$$

where $C>0$ is a numerical constant ($C=32$, for example).
The proof of (2.4) will make use of a recent deviation inequality due to Boucheron, Lugosi and Massart [1]. Before stating this inequality, we need some notation.

Let X_{1}, \ldots, X_{n} be independent, real-valued random variables (here, we temporarily forget the assumptions of the previous Theorem), and let ($X_{1}^{\prime}, \ldots, X_{n}^{\prime}$) be an independent copy of $\left(X_{1}, \ldots, X_{n}\right)$.

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a given measurable function, we set $Z=f\left(X_{1}, \ldots, X_{n}\right)$ and $Z_{i}^{\prime}=f\left(X_{1}, \ldots, X_{i-1}, X_{i}^{\prime}, X_{i+1}, \ldots, X_{n}\right), 1 \leq i \leq n$. With those notations, the Boucheron-Lugosi-Massart Theorem goes as follows:

Theorem 2.2 Assume that there is some constant $a, b \geq 0$, not both zero, such that:

$$
\begin{equation*}
\sum_{i=1}^{n}\left(Z-Z_{i}^{\prime}\right)^{2} \mathbb{I}_{\left(Z>Z_{i}^{\prime}\right)} \leq a Z+b \quad \text { a.s. } \tag{2.5}
\end{equation*}
$$

Then, we have the following one-sided deviation inequality:

$$
\begin{equation*}
\mathbb{P}(Z>\mathbb{E} Z+t) \leq \exp \left(-\frac{t^{2}}{4 a \mathbb{E} Z+4 b+2 a t)}\right), \quad \forall t>0 \tag{2.6}
\end{equation*}
$$

Proof of Theorem 2.1, We shall in fact use a very special case of Theorem 2.2 the case when $a=0$; but, as the three fore-named authors remark, this special case is already very useful, and far from trivial to prove! To prove (2.4), we are going to check that, for $f\left(X_{1}, \ldots, X_{n}\right)=\left\|\sum_{1}^{n} X_{j} v_{j}\right\|=Z$, the assumption
(2.5) holds for $a=0$ and $b=4 \sigma^{2}$. In fact, fix $\omega \in \Omega$ and denote by $I=I_{\omega}$ the set of indices i such that $Z(\omega)>Z_{i}^{\prime}(\omega)$. For simplicity of notation, we assume that the Banach space E is real. Let $\varphi=\varphi_{\omega} \in E^{*}$ such that $\|\varphi\|=1$ and $Z=\varphi\left(\sum_{j=1}^{n} X_{j} v_{j}\right)=\sum_{j=1}^{n} X_{j} \varphi\left(v_{j}\right)$.

For $i \in I$, we have $Z_{i}^{\prime}(\omega)=Z_{i}^{\prime} \geq \varphi\left(\sum_{j \neq i} X_{j} v_{j}+X_{i}^{\prime} v_{i}\right)$, so that $0 \leq$ $Z-Z_{i}^{\prime} \leq \sum_{j=1}^{n} X_{j} \varphi\left(v_{j}\right)-\sum_{j \neq i} X_{j} \varphi\left(v_{j}\right)-X_{i}^{\prime} \varphi\left(v_{i}\right)=\left(X_{i}-X_{i}^{\prime}\right) \varphi\left(v_{i}\right)$, implying $\left(Z-Z_{i}^{\prime}\right)^{2} \leq 4\left|\varphi\left(v_{i}\right)\right|^{2}$. By summing those inequalities, we get:

$$
\begin{aligned}
\sum_{i=1}^{n}\left(Z-Z_{i}^{\prime}\right)^{2} \mathbb{I}_{\left(Z>Z_{i}^{\prime}\right)} & =\sum_{i \in I}\left(Z-Z_{i}^{\prime}\right)^{2} \leq 4 \sum_{i \in I}\left|\varphi\left(v_{i}\right)\right|^{2} \leq 4 \sum_{i=1}^{n}\left|\varphi\left(v_{i}\right)\right|^{2} \leq 4 \sigma^{2} \\
& =0 . Z+4 \sigma^{2}
\end{aligned}
$$

Let us observe the crucial role of the "conditioning" $Z>Z_{i}^{\prime}$ when we want to check that (2.5) holds. Now, (2.4) is an immediate consequence of (2.6).

3 Construction of 4/3-Rider sets

We first recall some notations of [9]. Ψ_{2} denotes the Orlicz function $\Psi_{2}(x)=$ $\mathrm{e}^{x^{2}}-1$, and $\left\|\|_{\Psi_{2}}\right.$ is the corresponding Luxemburg norm. If A is a finite subset of the integers, Ψ_{A} denotes the quantity $\left\|\sum_{n \in A} e_{n}\right\|_{\Psi_{2}}$, where $e_{n}(t)=\mathrm{e}^{i n t}$, $t \in \mathbb{R} / 2 \pi \mathbb{Z}=\mathbb{T}$, and \mathbb{T} is equipped with its Haar measure m. Λ will always be a subset of the positive integers \mathbb{N}. Recall that Λ is uniformly distributed if the ergodic means $A_{N}(t)=\frac{1}{\left|\Lambda_{N}\right|} \sum_{n \in \Lambda_{N}} e_{n}(t)$ tend to zero as $N \rightarrow \infty$, for each $t \in \mathbb{T}, t \neq 0$. Here, $\Lambda_{N}=\Lambda \cap[1, N]$. If Λ is uniformly distributed, \mathscr{C}_{Λ} contains c_{0}, and if \mathscr{C}_{Λ} contains c_{0}, Λ cannot be a Rosenthal set (see [9]). According to results of J. Bourgain (see [9]) and F. Lust-Piquard ([10]), respectively, a random set Λ corresponding to selectors of mean δ_{k} with $k \delta_{k} \rightarrow \infty$ is almost surely uniformly distributed and if a subset E of a uniformly distributed set Λ has positive upper density in Λ, i.e. if $\lim \sup _{N} \frac{|E \cap[1, N]|}{\mid \Lambda \cap[1, N]}>0$, then \mathscr{C}_{E} contains c_{0}, and E is non-Rosenthal.

In [9], we had given a fairly complicated proof of the following theorem (labelled as Theorem II.7):

Theorem 3.1 There exists a subset Λ of the integers, which is uniformly distributed, and contains a subset E of positive integers with the following properties:

1) E is a $\frac{4}{3}$-Rider set, but is not q-Rider for $q<4 / 3$, a $U C$-set, and a $\Lambda(q)$-set for all $q<\infty$;
2) E is of positive upper density inside Λ; in particular, \mathscr{C}_{E} contains c_{0} and E is not a Rosenthal set.

We shall show here that the use of Theorem 2.1 allows a substantially simplified proof, which avoids a double random selection. We first need the following simple lemma.

Lemma 3.2 Let A be a finite subset of the integers, of cardinality $n \geq 2$; let $v=\left(e_{j}\right)_{j \in A}$, considered as an n-tuple of elements of the Banach space $E=$ $L^{\Psi_{2}}=L^{\Psi_{2}}(\mathbb{T}, m)$, and let σ be its weak l_{2}-norm. Then:

$$
\begin{equation*}
\sigma \leq C_{0} \sqrt{\frac{n}{\log n}} \tag{3.1}
\end{equation*}
$$

where C_{0} is a numerical constant.
Proof. Let $a=\left(a_{j}\right)_{j \in A}$ be such that $\sum_{j \in A}\left|a_{j}\right|^{2}=1$. Let $f=f_{a}=\sum_{j \in A} a_{j} e_{j}$, and $M=\|f\|_{\infty}$. By Hölder's inequality, we have $\frac{\|f\|_{p}}{\sqrt{p}} \leq \frac{M}{\sqrt{p} M^{2 / p}}$ for $2<p<\infty$. Since $M \leq \sqrt{n}$, we get $\frac{\|f\|_{p}}{\sqrt{p}} \leq \frac{\sqrt{n}}{\sqrt{p} n^{1 / p}} \leq C \sqrt{\frac{n}{\log n}}$. By Stirling's formula, $\|f\|_{\Psi_{2}} \approx \sup _{p>2} \frac{\|f\|_{p}}{\sqrt{p}}$, so the lemma is proved, since $\sigma=\sup _{a}\left\|f_{a}\right\|_{\Psi_{2}}$

We now turn to the shortened proof of Theorem 3.1.
Let $I_{n}=\left[2^{n}, 2^{n+1}\left[, n \geq 2 ; \delta_{k}=c \frac{n}{2^{n}}\right.\right.$ if $k \in I_{n}(c>0)$.
Let $\left(\varepsilon_{k}\right)_{k}$ be a sequence of "selectors", i.e. independent, $(0,1)$-valued, random variables of expectation $\mathbb{E} \varepsilon_{k}=\delta_{k}$, and let $\Lambda=\Lambda(\omega)$ be the random set of positive integers defined by $\Lambda=\left\{k \geq 1 ; \varepsilon_{k}=1\right\}$. We set also $\Lambda_{n}=\Lambda \cap I_{n}$ and $\sigma_{n}=\mathbb{E}\left|\Lambda_{n}\right|=\sum_{k \in I_{n}} \delta_{k}=c n$.

We shall now need the following lemma (the notation Ψ_{A} is defined at the beginning of the section).

Lemma 3.3 Almost surely, for n large enough:

$$
\begin{gather*}
\frac{c}{2} n \leq\left|\Lambda_{n}\right| \leq 2 c n \tag{3.2}\\
\Psi_{\Lambda_{n}} \leq C^{\prime \prime}\left|\Lambda_{n}\right|^{1 / 2} \tag{3.3}
\end{gather*}
$$

Proof: (3.2) is the easier part of Lemma II. 9 in (9]. To prove (3.3), we recall an inequality due to G. Pisier [11]: if $\left(X_{k}\right)$ is a sequence of independent, centered and square-integrable, random variables of respective variances $V\left(X_{k}\right)$, we have:

$$
\begin{equation*}
\mathbb{E}\left\|\sum_{k} X_{k} e_{k}\right\|_{\Psi_{2}} \leq C_{1}\left(\sum_{k} V\left(X_{k}\right)\right)^{1 / 2} \tag{3.4}
\end{equation*}
$$

Applying (3.4) to the centered variables $X_{k}=\varepsilon_{k}-\delta_{k}$, we get, assuming $c \leq 1$:

$$
\mathbb{E}\left\|\sum_{k \in I_{n}}\left(\varepsilon_{k}-\delta_{k}\right) e_{k}\right\|_{\Psi_{2}} \leq C_{1}\left(\sum_{k \in I_{n}} \delta_{k}\left(1-\delta_{k}\right)\right)^{1 / 2} \leq C_{1}\left(\sum_{k \in I_{n}} \delta_{k}\right)^{1 / 2} \leq C_{1} \sqrt{n}
$$

Now, set $Z_{n}=\left\|\sum_{k \in I_{n}}\left(\varepsilon_{k}-\delta_{k}\right) e_{k}\right\|_{\Psi_{2}}$. Let λ be a fixed real number >1, and C_{0} be as in Lemma 3.2. Applying Theorem 2.1 with $C=32$, and $t_{n}=\lambda \sqrt{32 C_{0}^{2} n}$, we get, using Lemma 3.2.

$$
\mathbb{P}\left(Z_{n}-\mathbb{E} Z_{n}>t_{n}\right) \leq \exp \left(-\frac{t_{n}^{2}}{32 \sigma^{2}}\right) \leq \exp \left(-\frac{32 \lambda^{2} C_{0}^{2} n \log n}{32 C_{0}^{2} n}\right)=n^{-\lambda^{2}}
$$

By the Borel-Cantelli Lemma, we have almost surely, for n large enough:

$$
Z_{n} \leq \mathbb{E} Z_{n}+t_{n} \leq\left(C_{1}+4 C_{0} \lambda\right) \sqrt{n}=C_{2} \sqrt{n}
$$

For such ω 's and n 's, it follows that:

$$
\begin{aligned}
\Psi_{\Lambda_{n}}=\left\|\sum_{k \in I_{n}} \varepsilon_{k} e_{k}\right\|_{\Psi_{2}} & \leq Z_{n}+\left\|\sum_{k \in I_{n}} \delta_{k} e_{k}\right\|_{\Psi_{2}} \leq Z_{n}+\frac{n}{2^{n}}\left\|\sum_{k \in I_{n}} e_{k}\right\|_{\Psi_{2}} \\
& \leq C_{2} \sqrt{n}+\frac{n}{2^{n}} C_{0} \frac{2^{n}}{\sqrt{\log 2^{n}}}=: C_{3} \sqrt{n}
\end{aligned}
$$

because, with the notations of Lemma 3.2, we have:

$$
\left\|\sum_{k \in I_{n}} e_{k}\right\|_{\Psi_{2}} \leq \sqrt{\left|I_{n}\right|} \sigma \leq 2^{n / 2} C_{0} \frac{2^{\frac{n}{2}}}{\sqrt{\log 2^{n}}}
$$

This ends the proof of Lemma 3.3, because we know that $n \leq \frac{2}{c}\left|\Lambda_{n}\right|$ for large n, almost surely, and therefore $\Psi_{\Lambda_{n}} \leq C_{3} \sqrt{\frac{2}{c}}\left|\Lambda_{n}\right|^{1 / 2}=: c^{\prime \prime}\left|\Lambda_{n}\right|^{1 / 2}$, a.s. .

We now prove Theorem 3.1 as follows: let us fix a point $\omega \in \Omega$ in such a way that $\Lambda=\Lambda(\omega)$ is uniformly distributed and that Λ_{n} verifies (3.2) and (3.3) for $n \geq n_{0}$; this is possible from [9] and from Lemma 3.3. We then use a result of the third-named author ($[13]$), asserting that there is a numerical constant $\delta>0$ such that each finite subset A of \mathbb{Z}^{*} contains a quasi-independent subset B such that $|B| \geq \delta\left(\frac{|A|}{\Psi_{A}}\right)^{2}$ (recall that a subset Q of \mathbb{Z} is said to be quasi-independent if, whenever $n_{1}, \ldots, n_{k} \in Q$, the equality $\sum_{j=1}^{k} \theta_{j} n_{j}=0$ with $\theta_{j}=0,-1,+1$ holds only when $\theta_{j}=0$ for all j). This allows us to select inside each Λ_{n} a quasi-independent subset E_{n} such that:

$$
\begin{equation*}
\left|E_{n}\right| \geq \delta\left(\frac{\left|\Lambda_{n}\right|}{\Psi_{\Lambda_{n}}}\right)^{2} \geq \frac{\delta}{c^{\prime \prime 2}}\left|\Lambda_{n}\right|=: \delta^{\prime}\left|\Lambda_{n}\right| \tag{3.5}
\end{equation*}
$$

A combinatorial argument (see [9], p. 128-129) shows that, if $E=\cup_{n>n_{0}} E_{n}$, then each finite $A \subset E$ contains a quasi-independent subset $B \subseteq A$ such that $|B| \geq \delta|A|^{1 / 2}$. By [13], E is a $\frac{4}{3}$-Rider set. The set E has all the required properties. Indeed, it follows from Lemma 3.2, a) that $|E \cap[1, N]| \geq \delta(\log N)^{2}$. If now E is p-Rider, we must have $|E \cap[1, N]| \leq C(\log N)^{\frac{p}{2-p}}$; therefore $2 \leq \frac{p}{2-p}$, so $p \geq 4 / 3$. The fact that E is both $U C$ and $\Lambda(q)$ is due to the local character of these notions, and to the fact that the sets $E \cap\left[2^{n}, 2^{n+1}\left[=E_{n}\right.\right.$ are by construction quasi-independent (as detailed in [9]). On the other hand, since each E_{n} is approximately proportional to Λ_{n}, E is of positive upper density in Λ. Now Λ is uniformly distributed (by Bourgain's criterion: see [9], p. 115). Therefore, by the result of F. Lust-Piquard ([10], and see Theorem I.9, p. 114 in [9]), \mathscr{C}_{E} contains c_{0}, which prevents E from being a Rosenthal set.

$4 p$-Rider sets, with $p>4 / 3$, which are not $U C$ sets

Let $p \in] \frac{4}{3}, 2\left[\right.$, so that $\alpha=\frac{2(p-1)}{2-p}>1$. As we mentioned in the Introduction, the random set $\Lambda=\Lambda(\omega)$ of integers in Theorem II. 10 of 9$]$ corresponds to selectors ε_{k} with mean $\delta_{k}=c \frac{(\log k)^{\alpha}}{k(\log \log k)^{\alpha+1}}$. We shall prove the following:

Theorem 4.1 The random set Λ corresponding to selectors of mean $\delta_{k}=$ $c \frac{(\log k)^{\alpha}}{k(\log \log k)^{\alpha+1}}$ has almost surely the following properties:
a) Λ is p-Rider, but q-Rider for no $q<p$;
b) Λ is $\Lambda(q)$ for all $q<\infty$;
c) Λ is uniformly distributed; in particular, it is dense in the Bohr group and \mathscr{C}_{Λ} contains c_{0};
d) Λ is not a UC-set.

Remark. This supports the conjecture that p-Rider sets with $p>4 / 3$ are not of the same nature as p-Rider sets for $p<4 / 3$ (see also [4], Theorem 3.1. and [5]).

The novelty here is d), which answers in the negative a question of 9 and we shall mainly concentrate on it, although we shall add some details for a), b), c), since the proof of Theorem II. 10 in [9] is too sketchy and contains two small misprints (namely ($*$) and ($* *$), p. 130).

Recall that the $U C$-constant $U(E)$ of a set E of positive integers is the smallest constant M such that $\left\|S_{N} f\right\|_{\infty} \leq M\|f\|_{\infty}$ for every $f \in \mathscr{C}_{E}$ and every non-negative integer N, where $S_{N} f=\sum_{-N}^{N} \hat{f}(k) e_{k}$. We shall use the following result of Kashin and Tzafriri [3]:

Theorem 4.2 Let $N \geq 1$ be an integer and $\varepsilon_{1}^{\prime}, \ldots, \varepsilon_{N}^{\prime}$ be selectors of equal mean δ. Set $\sigma(\omega)=\left\{k \leq N ; \varepsilon_{k}^{\prime}(\omega)=1\right\}$. Then:

$$
\begin{equation*}
\mathbb{P}\left(U(\sigma(\omega)) \leq \gamma \log \left(2+\frac{\delta N}{\log N}\right)\right) \leq \frac{5}{N^{3}}, \tag{4.1}
\end{equation*}
$$

where γ is a positive numerical constant.
We now turn to the proof of Theorem 4.1. As in [9, we set, for a fixed $\beta>\alpha$:

$$
\begin{equation*}
M_{n}=n^{\beta n} ; \quad \Lambda_{n}=\Lambda \cap[1, n] ; \quad \Lambda_{n}^{*}=\Lambda \cap\left[M_{n}, M_{n+1}[.\right. \tag{4.2}
\end{equation*}
$$

We need the following technical lemma, whose proof is postponed (and is needed only for a), b), c).

Lemma 4.3 We have almost surely for large n

$$
\begin{equation*}
\left|\Lambda_{M_{n}}\right| \approx n^{\alpha+1} ; \quad\left|\Lambda_{n}^{*}\right| \approx n^{\alpha} . \tag{4.3}
\end{equation*}
$$

Observe that, for $k \in \Lambda_{n}^{*}$, one has:

$$
\delta_{k}=c \frac{(\log k)^{\alpha}}{k(\log \log k)^{\alpha+1}} \gg \frac{(n \log n)^{\alpha}}{M_{n+1}(\log n)^{\alpha+1}}=\frac{n^{\alpha}}{M_{n+1} \log n}=: \frac{q_{n}}{N_{n}}
$$

where $N_{n}=M_{n+1}-M_{n}$ is the number of elements of the support of Λ_{n}^{*} (note that $N_{n} \sim M_{n+1}$), and where q_{n} is such that

$$
\begin{equation*}
q_{n} \approx \frac{n^{\alpha}}{\log n} \tag{4.4}
\end{equation*}
$$

We can adjust the constants so as to have $\delta_{k} \geq q_{n} / N_{n}$ for $k \in \Lambda_{n}^{*}$. Now, we introduce selectors $\left(\varepsilon_{k}^{\prime \prime}\right)$ independent of the ε_{j} 's, of respective means $\delta_{k}^{\prime \prime}=$ $q_{n} /\left(N_{n} \delta_{k}\right)$. Then the selectors $\varepsilon_{k}^{\prime}=\varepsilon_{k} \varepsilon_{k}^{\prime \prime}$ have means $\delta_{k}^{\prime}=q_{n} / N_{n}$ for $k \in \Lambda_{n}^{*}$, and we have $\delta_{k} \geq \delta_{k}^{\prime}$ for each $k \geq 1$.

Let $\Lambda^{\prime}=\left\{k ; \varepsilon_{k}^{\prime}=1\right\}$ and $\Lambda_{n}^{\prime *}=\Lambda^{\prime} \cap\left[M_{n}, M_{n+1}[\right.$. It follows from (4.1) and the fact that $U(E+a)=U(E)$ for any set E of positive integers and any non-negative integer a that:

$$
\mathbb{P}\left(U\left(\Lambda_{n}^{\prime *}\right) \leq \gamma \log \left(2+\frac{q_{n}}{\log N_{n}}\right)\right) \leq 5 N_{n}^{-3}
$$

By the Borel-Cantelli Lemma, we have almost surely $U\left(\Lambda_{n}^{\prime *}\right)>\gamma \log \left(2+\frac{q_{n}}{\log N_{n}}\right)$ for n large enough. But we see from (4.3) and (4.2) that:

$$
\frac{q_{n}}{\log N_{n}} \approx \frac{n^{\alpha}}{(\log n)(n \log n)}=\frac{n^{\alpha-1}}{(\log n)^{2}}
$$

and this tends to infinity since $\alpha>1$. This shows that Λ^{\prime} is almost surely non$U C$. And due to the construction of the ε_{k}^{\prime} 's, we have: $\Lambda \supseteq \Lambda^{\prime}$ almost surely. This of course implies that Λ is not a $U C$-set either (almost surely), ending the proof of d) in Theorem 4.1.

We now indicate a proof of the lemma. Almost surely, $\left|\Lambda_{M_{n}}\right|$ behaves for large n as:

$$
\begin{aligned}
\mathbb{E}\left(\left|\Lambda_{M_{n}}\right|\right) & =\sum_{1}^{M_{n}} \frac{(\log k)^{\alpha}}{k(\log \log k)^{\alpha+1}} \approx \int_{e^{2}}^{M_{n}} \frac{(\log t)^{\alpha}}{t(\log \log t)^{\alpha+1}} d t \\
& =\int_{2}^{\log M_{n}} \frac{x^{\alpha} d x}{(\log x)^{\alpha+1}} \approx \frac{1}{(\log n)^{\alpha+1}} \int_{2}^{\log M_{n}} x^{\alpha} d x \approx \frac{\left(\log M_{n}\right)^{\alpha+1}}{(\log n)^{\alpha+1}} \approx n^{\alpha+1}
\end{aligned}
$$

Similarly, $\left|\Lambda_{n}^{*}\right|$ behaves almost surely as:

$$
\begin{aligned}
\int_{M_{n}}^{M_{n+1}} \frac{(\log t)^{\alpha}}{t(\log \log t)^{\alpha+1}} d t & =\int_{\log M_{n}}^{\log M_{n+1}} \frac{x^{\alpha}}{(\log x)^{\alpha+1}} d x \approx \frac{1}{(\log n)^{\alpha+1}} x^{\alpha} d x \\
& \approx \frac{1}{(\log n)^{\alpha+1}}\left(\log M_{n+1}-\log M_{n}\right)\left(\log M_{n}\right)^{\alpha} \\
& \approx \frac{1}{(\log n)^{\alpha+1}} \log n(n \log n)^{\alpha} \approx n^{\alpha}
\end{aligned}
$$

To finish the proof, we shall use a lemma of [9] (recall that a relation of length n in $A \subseteq \mathbb{Z}^{*}$ is a $(-1,0,+1)$-valued sequence $\left(\theta_{k}\right)_{k \in A}$ such that $\sum_{k \in A} \theta_{k} k=0$ and $\left.\sum_{k \in A}\left|\theta_{k}\right|=n\right)$:

Lemma 4.4 Let $n \geq 2$ and M be integers. Set

$$
\Omega_{n}(M)=\{\omega \mid \Lambda(\omega) \cap[M, \infty[\text { contains at least a relation of length } n\} .
$$

Then:

$$
\mathbb{P}\left[\Omega_{n}(M)\right] \leq \frac{C^{n}}{n^{n}} \sum_{j>M} \delta_{j}^{2} \sigma_{j}^{n-2}
$$

where $\sigma_{j}=\delta_{1}+\ldots+\delta_{j}$, and C is a numerical constant.
In our case, with $M=M_{n}$, this lemma gives :

$$
\begin{aligned}
\mathbb{P}\left[\Omega_{n}(M)\right] & \ll \frac{C^{n}}{n^{n}} \sum_{j>M} \frac{(\log j)^{2 \alpha}}{j^{2}(\log \log j)^{2 \alpha+2}}\left[\frac{(\log j)^{\alpha+1}}{(\log \log j)^{\alpha+1}}\right]^{n-2} \\
& \ll \frac{C^{n}}{n^{n}} \int_{M}^{\infty} \frac{(\log t)^{(\alpha+1) n+2 \alpha}}{(\log \log t)^{(\alpha+1) n+2 \alpha+2}} \frac{d t}{t^{2}}
\end{aligned}
$$

and an integration by parts (see [9], p. 117-118) now gives:

$$
\begin{aligned}
\mathbb{P}\left[\Omega_{n}(M)\right] & \ll \frac{C^{n}}{n^{n}} \frac{1}{M} \frac{(\log M)^{(\alpha+1) n+2 \alpha}}{(\log \log M)^{(\alpha+1) n+2 \alpha+2}} \\
& \ll \frac{C^{n}}{n^{n}} \frac{1}{n^{\beta n}} \frac{(n \log n)^{(\alpha+1) n+2 \alpha}}{(\log n)^{(\alpha+1) n+2 \alpha+2}} \ll \frac{n^{2 \alpha} C^{n}}{n^{(\beta-\alpha) n}(\log n)^{2}}
\end{aligned}
$$

then the assumption $\beta>\alpha$ (which reveals its importance here!) shows that $\sum_{n} \mathbb{P}\left[\Omega_{n}\left(M_{n}\right)\right]<\infty$, so that, almost surely $\Lambda(\omega) \cap\left[M_{n}, \infty[\right.$ contains no relation of length n, for $n \geq n_{0}$. Having this property at our disposal, we prove (exactly as in [9], p. 119-120) that Λ is p-Rider. It is not q-Rider for $q<p$, because then $\left|\Lambda_{M_{n}}\right| \ll\left(\log M_{n}\right)^{\frac{q}{2-q}} \ll(n \log n)^{\frac{q}{2-q}}$, whereas (4.3) of Lemma 4.3 shows that $\left|\Lambda_{M_{n}}\right| \gg n^{\alpha+1}$, with $\alpha+1=\frac{p}{2-p}>\frac{q}{2-q}$. This proves $\left.a\right)$. Conditions b), c) are clearly explained in [9].

References

[1] S. Boucheron, G. Lugosi, P. Massart, Concentration inequalities using the entropy method, Annals of Probability 31 (3) (2003), 1583-1614.
[2] G.B. Johnson, G. Schechtman, Remarks on Talagrand's deviation inequality for Rademacher functions, Texas Functional Analysis Seminar 1988-1989. The University of Texas (1989).
[3] B.S. Kashin, L.A. Tzafriri, Random sets of uniform convergence, Mat. Zametki (Math. Notes) 54 (1) (1993), 17-33 [677-687] ; Letter to the Editor, Math. Notes 58 (4) (1995), 1124-1125.
[4] P. Lefèvre, D. Li, H. Queffélec, L. Rodríguez-Piazza, Lacunary sets and function spaces with finite cotype, J. Funct. Anal. 188 (2002), 272-291.
[5] P. Lefèvre, L. Rodríguez-Piazza, p-Rider sets are q-Sidon sets, Proc. Amer. Math. Soc. 131 (2002), 1829-1838.
[6] M. Ledoux, M. Talagrand, Probability in Banach spaces, Ergeb. der Math. 23, Springer (1991).
[7] D. Li, A remark about $\Lambda(p)$-sets and Rosenthal sets, Proc. Amer. Math. Soc. 126 (1998), 3329-3333.
[8] D. Li, H. Queffélec, Introduction à l'étude des espaces de Banach, Analyse et probabilités. Cours Spécialisés 12, Société Mathématique de France (2004).
[9] D. Li, H. Queffélec, L. Rodríguez-Piazza, Some new thin sets of integers in Harmonic Analysis, Journal d'Analyse Mathématique 86 (2002), 105-138.
[10] F. Lust-Piquard, Bohr local properties of $C_{\Lambda}(\mathbb{T})$, Colloq. Math. 58 (1989), 29-38.
[11] G. Pisier, Sur l'espace de Banach des séries de Fourier aléatoires presque sûrement continues, Séminaire sur la géométrie des espaces de Banach 19771978, Ecole Polytechnique Paris (1978), exposés 17-18.
[12] D. Rider, Randomly continuous functions and Sidon sets, Duke Math. J. 42 (1975), 759-764.
[13] L. Rodríguez-Piazza, Caractérisation des ensembles p-Sidon p.s., C.R.A.S. Paris Sér. I Math. 305 (1987), 237-240.
[14] H.P. Rosenthal, On Trigonometric Series Associated with Weak* closed Subspaces of Continuous Functions, J. Math. and Mech. 17 (1967), 485490.
[15] W. Rudin, Trigonometric series with gaps, J. Math. and Mech. 9 (1960), 203-228.

Daniel Li:Université d'Artois, Laboratoire de Mathématiques de Lens EA 2462-FR 2956, Faculté des Sciences Jean Perrin, 23, rue J. Souvraz SP 18, F-62307 Lens Cedex, France -
daniel.li@euler.univ-artois.fr
Hervé Queffélec: Laboratoire Paul Painlevé UMR CNRS 8524, U.F.R. de Mathématiques Pures et Appliquées, Bât. M2, Université des Sciences et Technologies de Lille 1, F-59665 Villeneuve d'Ascq Cedex, France - Herve.Queffelec@math.univ-lille1.fr
Luis Rodríguez-Piazza: Universidad de Sevilla, Facultad de Matematicas, Departamento de Análisis Matemático, Apartado de Correos 1160, 41080 Sevilla, Spain - piazza@us.es

