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1 Introdution.

Reall that a Banah spae X is said to have Peªzy«ski's property (V ) if

one has a good weak-ompatness riterion in the dual spae X∗
of X , namely:

every subset A of X∗
is relatively weakly ompat whenever it has the following

property (easily seen neessary):

lim
n→+∞

sup
x∗∈A

|x∗(xn)| = 0

for every weakly unonditionaly Cauhy sequene (xn)n in X (i.e. suh that

∑

n≥1 |x∗(xn)| < ∞ for any x∗ ∈ X∗
). Equivalently, X has Peªzy«ski's prop-

erty (V ) if and only if for every Banah spae Z and every non-weakly ompat

operator T : X → Z, there exists a subspae X0, isomorphi to c0, suh that

T is an isomorphism between X0 and T (X0). Beside the re�exive spaes (and

in partiular the Lp
spaes for 1 < p < ∞), the spaes C(S) of ontinuous

funtions on ompat spaes S have property (V ); in partiular L∞
has (V ).

Another general lass of Banah spaes having property (V ) is that of Banah
spaes whih are M -ideal in their bidual, i.e. those for whih the anonial

deomposition of their third dual is an ℓ1 deomposition:

X∗∗∗ = X∗ ⊕1 X⊥

(see [8, 9℄). Note that every subspae of a Banah spae M -ideal of its bidual

is itself M -ideal of its bidual; hene every suh subspae has property (V ).
On the ontrary, a non-re�exive Banah spae that does not ontain c0

annot have property (V ). In partiular, L1
does not have this property. Thus,

the Lp
spaes have (V ) for 1 < p ≤ ∞, whereas L1

does not have it. For the
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Orliz spaes, whih are, in a natural sense, intermediate between L1
and L∞

,

D. Leung [12℄ proved, when the dual spae is weakly sequentially omplete, not

only that these Orliz spaes have property (V ), but that they atually have

the loal property (V ), i.e. all their ultrapowers have property (V ).
D. Leung's proof uses non trivial properties of Banah latties. In this paper,

we shall give an elementary proof of the (weaker) result that the Orliz spae

LΨ
has property (V ), when the omplementary funtion of Ψ sati�es the ∆2

ondition.

Aknowledgement. This work was made during the stay in Lens, in May�

June 2005, of the fourth-named author, as Professeur invité of the Université

d'Artois.

We are very grateful to the referee for having simpli�ed the proof of The-

orem 2, making it shorter and very more elegant and oneptual, by giving us

the statement and the proof of Proposition 5.

2 The Morse-Transue spae

In this paper, we shall onsider Orliz spaes de�ned on a probability spae

(Ω, P), that we shall assume non purely atomi.

By an Orliz funtion, we shall understand that Ψ: [0,∞] → [0,∞] is a

non-dereasing onvex funtion suh that Ψ(0) = 0 and Ψ(∞) = ∞. To avoid

pathologies, we shall assume that we work with an Orliz funtion Ψ having

the following additional properties: Ψ is ontinuous at 0, stritly onvex (hene

stritly inreasing), and suh that

Ψ(x)

x
−→
x→∞

∞.

This is essentially to exlude the ase of Ψ(x) = ax. The Orliz spae LΨ(Ω)
is the spae of all (equivalene lasses of) measurable funtions f : Ω → C for

whih there is a onstant C > 0 suh that

∫

Ω

Ψ
( |f(t)|

C

)

dP(t) < +∞

and then ‖f‖Ψ (the Luxemburg norm) is the in�nimum of all possible onstants

C suh that this integral is ≤ 1.
To every Orliz funtion is assoiated the omplementary Orliz funtion

Φ = Ψ∗ : [0,∞] → [0,∞] de�ned by:

Φ(x) = sup
y≥0

(

xy − Ψ(y)
)

.

The extra assumptions on Ψ ensure that Φ is itself stritly onvex.

Throughout this paper, we shall assume that the omplementary Orliz fun-

tion satis�es the ∆2 ondition (Φ ∈ ∆2), i.e., for some onstant K > 0, and
some x0 > 0, we have:

Φ(2x) ≤ K Φ(x), ∀x ≥ x0.
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This is usually expressed by saying that Ψ satis�es the ∇2 ondition (Ψ ∈ ∇2).

This is equivalent to say that for some β > 1 and x0 > 0, one has Ψ(x) ≤
Ψ(βx)/(2β) for x ≥ x0, and that implies that

Ψ(x)
x −→

x→∞
∞. In partiular, this

exludes the ase LΨ = L1
.

When Φ satis�es the ∆2 ondition, LΨ
is the dual spae of LΦ

.

We shall denote by MΨ
the losure of L∞

in LΨ
. Equivalently (see [15℄,

page 75), MΨ
is the spae of (lasses of) funtions suh that:

∫

Ω

Ψ
( |f(t)|

C

)

dP(t) < +∞, ∀C > 0.

This spae is the Morse-Transue spae assoiated to Ψ, and (MΨ)∗ = LΦ
,

isometrially if LΦ
is provided with the Orliz norm, and isomorphially if it is

equipped with the Luxemburg norm (see [15℄, Chapter IV, Theorem 1.7, page

110).

We have MΨ = LΨ
if and only if Ψ satis�es the ∆2 ondition, and LΨ

is re�exive if and only if both Ψ and Φ satisfy the ∆2 ondition. When the

omplementary funtion Φ = Ψ∗
of Ψ satis�es it (but Ψ does not satisfy this

∆2 ondition, to exlude the re�exive ase), we have (see [15℄, Chapter IV,

Proposition 2.8, page 122, and Theorem 2.11, page 123):

(∗) (LΨ)∗ = (MΨ)∗ ⊕1 (MΨ)⊥,

or, equivalently, (LΨ)∗ = LΦ ⊕1 (MΨ)⊥, isometrially, with the Orliz norm on

LΦ
.

For all the matter about Orliz funtions and Orliz spaes, we refer to [15℄,

or to [11℄.

It follows from the preeding equation (∗) that MΨ
is an M -ideal in its

bidual. Hene MΨ
and all its subspaes have Peªzy«ski's property (V ) ([8, 9℄;

see also [10℄, Chapter III, Theorem 3.4, and the end of this paper). This result

was shown by D. Werner ([19℄; see also [10℄, Chapter III, Example 1.4 (d),

page 105), by a di�erent way, using the ball intersetion property (in these

referenes, it is assumed moreover that Ψ does not satis�es the ∆2 ondition,

but if it satis�es it, the spae LΨ
is re�exive, and so the result is obvious).

The proof given in [8, 9℄ of the fat that Banah spaes whih are M -ideal in

their bidual have property (V ) uses loal re�exivity and the notion of pseudo-

ball. We are going to give below a slightly di�erent proof, whih does not use

this last notion, and seems to us more transparent. Let us note that, however,

a stronger property, namely Peªzy«ski's property (u), was shown sine then to

be satis�ed by the spaes M -ideal of their bidual (see [7℄ and, in a more general

setting, [6℄; that follows also from [17℄).

Theorem 1 (Godefroy-Saab, [8, 9℄)℄ Every Banah spae whih is M -ideal in

its bidual have property (V ).
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Proof. Assume that X∗∗∗ = X∗ ⊕1 X⊥
and let T : X → Y be a non weakly

ompat map. By Gantmaher's Theorem, T ∗∗ : X∗∗ → Y ∗∗
is not weakly

ompat either. This means that T (4)(X(4)) 6⊆ Y ∗∗
. Sine X(4) = X∗∗⊕ (X∗)⊥

(anonial deomposition of the third dual of X∗
), there exists some u ∈ (X∗)⊥,

with ‖u‖ = 1 suh that T (4)(u) 6= 0. Now the M -ideal property of X gives

X(4) = (X∗)⊥ ⊕∞ X⊥⊥
. It follows that

‖x + au‖ = max{‖x‖, |a|}, ∀x ∈ X, ∀a ∈ C.

By loal re�exivity, we an onstrut a sequene (xn)n≥1 in X equivalent to

the anonial basis of c0 and suh that ‖Txn‖ ≥ δ > 0 for every n ≥ 1.
For that, let 0 < δ < ‖T (4)u‖, εn > 0 be suh that (1 − εn)‖T (4)u‖ > δ and

∏

n≥1(1 + εn) ≤ 2,
∏

n≥1(1 − εn) ≥ 1/2.
Assume that x1, . . . , xn have been onstruted in suh a way that ‖Txk‖ > δ

and

n
∏

k=1

(1 − εk)max{|a1|, . . . , |an|} ≤ ‖a1x1 + · · · + anxn‖

≤
n

∏

k=1

(1 + εk)max{|a1|, . . . , |an|}

for every salars a1, . . . , an.

Let Vn be the linear subspae of X(4)
generated by {u, x1, . . . , xn}. By

Bellenot's version of the priniple of loal re�exivity ([1℄, Corollary 7), there

exists an operator An : Vn → X suh that ‖An‖, ‖A−1
n ‖ are less or equal than

(1 + εn+1), An is the identity on the linear span of {x1, . . . , xn} and

∣

∣ ‖T (4)u‖ − ‖TAnu‖
∣

∣ ≤ εn+1‖T (4)u‖.

If xn+1 = Anu, it is now lear that

n+1
∏

k=1

(1 − εk)max{|a1|, . . . , |an+1|} ≤ ‖a1x1 + · · · + an+1xn+1‖

≤
n+1
∏

k=1

(1 + εk)max{|a1|, . . . , |an+1|}

for every salars a1, . . . , an+1 and ‖Txn+1‖ > δ.
Hene

1

2
max{|a1|, . . . , |an|} ≤ ‖a1x1 + · · · + anxn‖ ≤ 2 max{|a1|, . . . , |an|}

for every salars a1, . . . , an. Sine ‖Txn‖ > δ, this ends the proof. �
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3 Peªzy«ski's property (V ) for L
Ψ
.

As we said, the following result is a partiular ase of that of D. Leung ([12℄),

but we shall give an elementary proof.

Theorem 2 ([12℄) Suppose that the onjugate funtion Φ of Ψ satis�es the ∆2

ondition. Then, the spae LΨ
has Peªzy«ski's property (V ).

As it is well-known (and easy to prove), every dual spae with Peªzy«ski's

property (V ) is a Grothendiek spae: every weak-star onvergent sequene in

its dual is weakly onvergent. Hene, we have:

Corollary 3 Suppose that the onjugate funtion Φ of Ψ satis�es the ∆2 on-

dition. Then the spae LΨ
is a Grothendiek spae.

Proof of Theorem 2. We may assume that LΨ
is a real Banah spae.

The proof arises diretly from the two following results, sine E = MΨ
is a

Banah lattie having property (V ) and LΨ = (MΨ)∗∗.

Lemma 4 Suppose that the Orliz funtion Ψ does not satisfy the ∆2 ondition.

Then for every sequene (gn)n in the unit ball of LΨ
, there exist a sequene (fn)n

in MΨ
and a positive funtion g ∈ LΨ

suh that |gn − fn| ≤ g.

Proposition 5 Let E be a Banah lattie that has property (V ). Suppose that

for every sequene (x∗∗
n )n in BE∗∗

, there are a sequene (xn)n in E and a positive

x∗∗ ∈ E∗∗
suh that |x∗∗

n − xn| ≤ x∗∗
. Then E∗∗

has property (V ).

Proof of Lemma 4. Sine, by dominated onvergene,

lim
t→+∞

∫

Ω

Ψ
(

|gn| 1I{|gn|>t}

)

dP = 0,

we an hoose, for every n ≥ 1, a positive number tn so big that:

∫

Ω

Ψ
(

|gn| 1I{|gn|>tn}

)

dP ≤ 1

2n
,

and, moreover suh that:

+∞
∑

n=1

P(|gn| > tn) < +∞.

This last ondition implies, by Borel-Cantelli's lemma, that, almost surely,

|gn| ≤ tn for n large enough. Equivalently, by setting:

g̃n = gn 1I{|gn|>tn},
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we have, almost surely g̃n = 0 for n large enough. It follows that almost surely

supn |g̃n| is attained. Set now:

An = {ω ∈ Ω ; |g̃1(ω)|, . . . , |g̃n−1(ω)| < |g̃n(ω)| and |g̃k(ω)| ≤ |g̃n(ω)|, ∀k ≥ n}

(ω ∈ An if and only if n is the �rst time for whih supk |g̃k(ω)| is attained).
The sets An are disjoint and

sup
n≥1

|g̃n| =

+∞
∑

n=1

|g̃n| 1IAn
.

Hene, if we set:

g = sup
n≥1

|g̃n|,

we have g ∈ LΨ
, sine, using the disjointness of the An's:

∫

Ω

Ψ(g) dP =

+∞
∑

n=1

∫

An

Ψ(|g̃n|) dP ≤
+∞
∑

n=1

∫

Ω

Ψ(|g̃n|) dP ≤
+∞
∑

n=1

1

2n
= 1.

That proves the lemma, by taking fn = gn − g̃n, whih is in L∞ ⊆ MΨ
. �

Proof of Proposition 5. Suppose that T : E∗∗ → Y is not weakly ompat.

Then there exists a sequene (x∗∗
n )n in BE∗∗

suh that (Tx∗∗
n )n is not relatively

weakly ompat. Choose (xn)n and x∗∗
as in the statement of the Proposition,

and set y∗∗
n = x∗∗

n − xn for all n. We have either:

(a) (Txn)n is not weakly ompat, or

(b) (Ty∗∗
n )n is not weakly ompat.

If (a) holds, T|E : E → Y is not weakly ompat; hene T|E �xes a opy of

c0.

If (b) holds, let I be the losed lattie ideal generated by x∗∗
in E∗∗

, normed

so that [−x∗∗, x∗∗] is the unit ball, and let i : I → E∗∗
be the inlusion map.

Sine (y∗∗
n )n lies in [−x∗∗, x∗∗], T ◦ i is not weakly ompat. But I is lattie

isomorphi to a C(K) spae, and hene has property (V ). Thus T ◦ i �xes a
opy of c0. So T �xes a opy of c0. �

Remark. We annot expet that, for tn big enough, the funtions g̃n ould

have a small norm. For example, let G be a standard gaussian random variable

N (0, 1). For Ψ = Ψ2 (Ψ2(x) = ex2 − 1), we have, for every t > 0:

∫

Ω

Ψ2

( |G|1I{|G|>t}

ε

)

dP =
1√
2π

∫

|x|>t

(ex2/ε2 − 1) e−x2/2 dx = +∞

for every ε <
√

2; that means that ‖G1I{|G|>t}‖Ψ2
≥

√
2 for every t > 0 (reall

that ‖G‖Ψ2
=

√

8/3: see [13℄, page 31).
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4 Conluding remarks and questions

1. The full D. Leung's result that LΨ
have the loal property (V ), i.e. every

ultrapower of LΨ
have the property (V ) (see [3℄) annot be obtained straight-

forwardly from our proof. Indeed, sine LΨ = (MΨ)∗∗ is 1-omplemented in

every ultrapower of MΨ
, it would su�e to prove that every suh ultrapower

has property (V ); but if
[

(MΨ)U
]∗

ontains (LΦ)U as a w∗
-dense subspae, it

is bigger. The ultraprower (LΦ)U is not exatly known in general. In the par-

tiular ase of Ψ = Ψ2 (Ψ2(x) = ex2 − 1), we have ([4℄, Proposition 4.1 and

Proposition 4.2):

(LΦ2)U ∼= LΦ2(PU ) ⊕ L1(µU ).

However, sine (LΨ)∗ = (LΦ)∗∗ ∼= LΦ ⊕1 L1(µ), all the odd duals of LΨ
an

be written

(LΨ)(2n+1) ∼= (LΨ)∗ ⊕1 L1(µn).

Hene we get that all the even duals of LΨ
have the property (V ).

2. We an de�ne the Hardy-Orliz spaes HΨ
, in a natural way: it is the

subspae of LΨ
onsisting of the funtions on the unit irle T = ∂D whih have

an analyti extension in D; equivalently, it is the subspae of LΨ
whose negative

Fourier oe�ients vanish. In [2℄, J. Bourgain proved that H∞
has property

(V ). Does HΨ
have property (V )?

Note that the answer annot follow trivially from our Theorem 2 sine HΨ
is

omplemented in LΨ
if and only if LΨ

is re�exive: indeed, the Riesz projetion

from LΨ
onto HΨ

is bounded if and only if LΨ
is re�exive ([18℄; see [16℄, Chapter

VI, Theorem 2.8, page 196), and we have:

Proposition 6 Assume that Ψ ∈ ∇2. Then the Hardy-Orliz spae HΨ
is

omplemented in LΨ
if and only if the Riesz projetion is bounded on LΨ

. Hene

HΨ
is omplemented in LΨ

if and only if LΨ
is re�exive.

Proof. Only the neessary ondition needs a proof. Assume that there is a

bounded projetion P from LΨ
onto HΨ

. For every f ∈ MΨ
, and for every

g ∈ LΦ
, the translations t 7→ ft and t 7→ gt are ontinuous. Hene we an de�ne

P̃ by setting:

〈P̃ f, g〉 =

∫

T

〈P (ft), gt〉 dt.

One has ‖P̃ f‖Ψ ≤ ‖P‖ ‖f‖Ψ, so that P̃ is bounded from MΨ
into LΨ

. On the

other hand, it is immediate to see that for every trigonometri polynomial f ,
one has, if en(x) = einx

:

P̃ (f) =
∑

n∈Z

f̂(n)P̂ (en)(n) en.

Sine P is a projetion, we have P (en) = en for n ≥ 0; and sine P takes its

values in HΨ
, we have P̂ (en)(k) = 0 for k < 0; in partiular P̂ (en)(n) = 0 for

n < 0.
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We get therefore:

P̃ (f) =
∑

n≥0

f̂(n)en,

that is P̃ is the restrition to MΨ
of the Riesz projetion. Hene the Riesz

projetion is bounded on MΨ
. By taking its bi-adjoint, we get that it is bounded

on LΨ
. �

In Ryan's paper ([18℄), it is assumed that Ψ is an N -funtion, that is

limx→0
Ψ(x)

x = 0. But we may modify Ψ on [0, 1] to get an N -funtion Ψ1.

Sine we work on a probability spae (Ω, P), the new spae LΨ1
is equal, as a

vetor spae, to LΨ
, but with an equivalent norm. Hene Ryan's result remains

true without this assumption.

Note that, when the probability spae (Ω, P) is separable, sine we have

assumed that Ψ ∈ ∇2, the re�exivity of LΨ
is equivalent to its separability (see

[15℄, Chapter III, Theorem 5.1, pages 87�88).

3. Property (V ) allows us to say that LΨ
looks like Lp

, 1 < p ≤ ∞. In some

sense, it may be seen as lose to L∞
when Ψ /∈ ∆2, sine it is not re�exive.

However, from other points of view, it is loser to Lp
with p < ∞; on the one

hand, it is a bidual spae; on the other hand, one has:

Proposition 7 If Ψ ∈ ∇2, then LΨ
never has the Dunford-Pettis property.

Proof. We are atually going to show that MΨ
does not have the Dunford-

Pettis property. That will prove the proposition, sine LΨ = (MΨ)∗∗.
Sine Ψ ∈ ∇2, there is some α > 1 and some c > 0 suh that Ψ(x) ≥ cxα

. It

follows that LΨ ⊆ Lα
and the natural injetion i : LΨ → Lα

is bounded, and

hene weakly ompat, sine Lα
is re�exive.

Take now an orthonormal sequene (rn)n≥1 in L2
with onstant modulus equal

to 1 (for example, an independent sequene of random variables taking the

values ±1 eah with probability 1/2). One has

∫

Ω
rnf dP −→

n→+∞
0 for every

f ∈ L2
. By density, this remains true for every f ∈ L1

, and in partiular for

every f ∈ LΦ
, sine LΦ ⊆ L1

. Therefore, (rn)n≥1 weakly onverges to 0 in MΨ
.

Sine ‖rn‖α = 1,
(

i(rn)
)

n
does not norm-onverge to 0, and hene the weakly

ompat map i : MΨ → Lα
is not a Dunford-Pettis operator. Therefore MΨ

does not have the Dunford-Pettis property. �

A slightly di�erent way to prove this is to use that for every Banah spae

X whih has the Dunford-Pettis property and whih does not ontain ℓ1, its

dual X∗
has the Shur property ([5, 14℄; see also [13℄, Chapitre 7, Exerie 7.2).

But MΨ
does not ontain ℓ1 (beause all its subspaes have property (V ); or

beause its dual LΦ
is separable). Hene LΦ

would have the Shur property.

The same argument as above shows that is not the ase.

4. We have required in this paper that the omplementary funtion Φ satis�es

the ∆2 ondition. Hene, in some sense, the spae LΨ
is far from L1

. We may

ask what happens when we are in the other side of the sale, namely when LΨ

8



is lose to L1
. But if Ψ satis�es the ∆2 ondition, then LΨ = (MΦ)∗ and MΦ

,

being M -ideal of its bidual, has property (V ), as said in the Introdution. It

follows that LΨ
is weakly sequentially omplete (and in fat has property (V ∗)),

and if we assume that Φ /∈ ∆2 (so as LΨ
is not re�exive), then LΨ

does not

have property (V ).
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