Weak compactness and Orlicz spaces

Pascal Lefèvre, Daniel Li,
Hervé Queffélec, Luis Rodríguez-Piazza

June 19, 2013

Abstract

We give new proofs that some Banach spaces have Pełczyński's property (V). Mathematics Subject Classification. Primary: 46B20; Secondary: 46E30 Key-words. M-ideal; Morse-Transue space; Orlicz space; Pełczyński's property (V).

1 Introduction.

Recall that a Banach space X is said to have Pełczyński’s property (V) if one has a good weak-compactness criterion in the dual space X^{*} of X, namely: every subset A of X^{*} is relatively weakly compact whenever it has the following property (easily seen necessary):

$$
\lim _{n \rightarrow+\infty} \sup _{x^{*} \in A}\left|x^{*}\left(x_{n}\right)\right|=0
$$

for every weakly unconditionaly Cauchy sequence $\left(x_{n}\right)_{n}$ in X (i.e. such that $\sum_{n \geq 1}\left|x^{*}\left(x_{n}\right)\right|<\infty$ for any $\left.x^{*} \in X^{*}\right)$. Equivalently, X has Pełczyński's property (V) if and only if for every Banach space Z and every non-weakly compact operator $T: X \rightarrow Z$, there exists a subspace X_{0}, isomorphic to c_{0}, such that T is an isomorphism between X_{0} and $T\left(X_{0}\right)$. Beside the reflexive spaces (and in particular the L^{p} spaces for $1<p<\infty$), the spaces $\mathcal{C}(S)$ of continuous functions on compact spaces S have property (V); in particular L^{∞} has (V). Another general class of Banach spaces having property (V) is that of Banach spaces which are M-ideal in their bidual, i.e. those for which the canonical decomposition of their third dual is an ℓ_{1} decomposition:

$$
X^{* * *}=X^{*} \oplus_{1} X^{\perp}
$$

(see [8, 9]). Note that every subspace of a Banach space M-ideal of its bidual is itself M-ideal of its bidual; hence every such subspace has property (V).

On the contrary, a non-reflexive Banach space that does not contain c_{0} cannot have property (V). In particular, L^{1} does not have this property. Thus, the L^{p} spaces have (V) for $1<p \leq \infty$, whereas L^{1} does not have it. For the

Orlicz spaces, which are, in a natural sense, intermediate between L^{1} and L^{∞}, D. Leung [12] proved, when the dual space is weakly sequentially complete, not only that these Orlicz spaces have property (V), but that they actually have the local property (V), i.e. all their ultrapowers have property (V).
D. Leung's proof uses non trivial properties of Banach lattices. In this paper, we shall give an elementary proof of the (weaker) result that the Orlicz space L^{Ψ} has property (V), when the complementary function of Ψ satifies the Δ_{2} condition.

Acknowledgement. This work was made during the stay in Lens, in MayJune 2005, of the fourth-named author, as Professeur invité of the Université d'Artois.

We are very grateful to the referee for having simplified the proof of Theorem 2, making it shorter and very more elegant and conceptual, by giving us the statement and the proof of Proposition 5

2 The Morse-Transue space

In this paper, we shall consider Orlicz spaces defined on a probability space (Ω, \mathbb{P}), that we shall assume non purely atomic.

By an Orlicz function, we shall understand that $\Psi:[0, \infty] \rightarrow[0, \infty]$ is a non-decreasing convex function such that $\Psi(0)=0$ and $\Psi(\infty)=\infty$. To avoid pathologies, we shall assume that we work with an Orlicz function Ψ having the following additional properties: Ψ is continuous at 0 , strictly convex (hence strictly increasing), and such that

$$
\frac{\Psi(x)}{x} \underset{x \rightarrow \infty}{\longrightarrow} \infty
$$

This is essentially to exclude the case of $\Psi(x)=a x$. The Orlicz space $L^{\Psi}(\Omega)$ is the space of all (equivalence classes of) measurable functions $f: \Omega \rightarrow \mathbb{C}$ for which there is a constant $C>0$ such that

$$
\int_{\Omega} \Psi\left(\frac{|f(t)|}{C}\right) d \mathbb{P}(t)<+\infty
$$

and then $\|f\|_{\Psi}$ (the Luxemburg norm) is the infinimum of all possible constants C such that this integral is ≤ 1.

To every Orlicz function is associated the complementary Orlicz function $\Phi=\Psi^{*}:[0, \infty] \rightarrow[0, \infty]$ defined by:

$$
\Phi(x)=\sup _{y \geq 0}(x y-\Psi(y))
$$

The extra assumptions on Ψ ensure that Φ is itself strictly convex.
Throughout this paper, we shall assume that the complementary Orlicz function satisfies the Δ_{2} condition $\left(\Phi \in \Delta_{2}\right)$, i.e., for some constant $K>0$, and some $x_{0}>0$, we have:

$$
\Phi(2 x) \leq K \Phi(x), \quad \forall x \geq x_{0}
$$

This is usually expressed by saying that Ψ satisfies the ∇_{2} condition $\left(\Psi \in \nabla_{2}\right)$. This is equivalent to say that for some $\beta>1$ and $x_{0}>0$, one has $\Psi(x) \leq$ $\Psi(\beta x) /(2 \beta)$ for $x \geq x_{0}$, and that implies that $\frac{\Psi(x)}{x} \underset{x \rightarrow \infty}{\longrightarrow} \infty$. In particular, this excludes the case $L^{\Psi}=L^{1}$.

When Φ satisfies the Δ_{2} condition, L^{Ψ} is the dual space of L^{Φ}.
We shall denote by M^{Ψ} the closure of L^{∞} in L^{Ψ}. Equivalently (see [15], page 75) , M^{Ψ} is the space of (classes of) functions such that:

$$
\int_{\Omega} \Psi\left(\frac{|f(t)|}{C}\right) d \mathbb{P}(t)<+\infty, \quad \forall C>0
$$

This space is the Morse-Transue space associated to Ψ, and $\left(M^{\Psi}\right)^{*}=L^{\Phi}$, isometrically if L^{Φ} is provided with the Orlicz norm, and isomorphically if it is equipped with the Luxemburg norm (see [15], Chapter IV, Theorem 1.7, page 110).

We have $M^{\Psi}=L^{\Psi}$ if and only if Ψ satisfies the Δ_{2} condition, and L^{Ψ} is reflexive if and only if both Ψ and Φ satisfy the Δ_{2} condition. When the complementary function $\Phi=\Psi^{*}$ of Ψ satisfies it (but Ψ does not satisfy this Δ_{2} condition, to exclude the reflexive case), we have (see [15], Chapter IV, Proposition 2.8, page 122, and Theorem 2.11, page 123):

$$
\begin{equation*}
\left(L^{\Psi}\right)^{*}=\left(M^{\Psi}\right)^{*} \oplus_{1}\left(M^{\Psi}\right)^{\perp} \tag{*}
\end{equation*}
$$

or, equivalently, $\left(L^{\Psi}\right)^{*}=L^{\Phi} \oplus_{1}\left(M^{\Psi}\right)^{\perp}$, isometrically, with the Orlicz norm on L^{Φ}.

For all the matter about Orlicz functions and Orlicz spaces, we refer to [15], or to [11].

It follows from the preceding equation $(*)$ that M^{Ψ} is an M-ideal in its bidual. Hence M^{Ψ} and all its subspaces have Pełczyński's property (V) ($8, ~[9$; see also 10], Chapter III, Theorem 3.4, and the end of this paper). This result was shown by D. Werner ($\boxed{19}$; see also [10], Chapter III, Example 1.4 (d), page 105), by a different way, using the ball intersection property (in these references, it is assumed moreover that Ψ does not satisfies the Δ_{2} condition, but if it satisfies it, the space L^{Ψ} is reflexive, and so the result is obvious).

The proof given in [8, 9] of the fact that Banach spaces which are M-ideal in their bidual have property (V) uses local reflexivity and the notion of pseudoball. We are going to give below a slightly different proof, which does not use this last notion, and seems to us more transparent. Let us note that, however, a stronger property, namely Pełczyński's property (u), was shown since then to be satisfied by the spaces M-ideal of their bidual (see [7] and, in a more general setting, [6]; that follows also from [17]).

Theorem 1 (Godefroy-Saab, [8, 9])] Every Banach space which is M-ideal in its bidual have property (V).

Proof. Assume that $X^{* * *}=X^{*} \oplus_{1} X^{\perp}$ and let $T: X \rightarrow Y$ be a non weakly compact map. By Gantmacher's Theorem, $T^{* *}: X^{* *} \rightarrow Y^{* *}$ is not weakly compact either. This means that $T^{(4)}\left(X^{(4)}\right) \nsubseteq Y^{* *}$. Since $X^{(4)}=X^{* *} \oplus\left(X^{*}\right)^{\perp}$ (canonical decomposition of the third dual of X^{*}), there exists some $u \in\left(X^{*}\right)^{\perp}$, with $\|u\|=1$ such that $T^{(4)}(u) \neq 0$. Now the M-ideal property of X gives $X^{(4)}=\left(X^{*}\right)^{\perp} \oplus_{\infty} X^{\perp \perp}$. It follows that

$$
\|x+a u\|=\max \{\|x\|,|a|\}, \quad \forall x \in X, \forall a \in \mathbb{C} .
$$

By local reflexivity, we can construct a sequence $\left(x_{n}\right)_{n \geq 1}$ in X equivalent to the canonical basis of c_{0} and such that $\left\|T x_{n}\right\| \geq \delta>0$ for every $n \geq 1$.

For that, let $0<\delta<\left\|T^{(4)} u\right\|, \varepsilon_{n}>0$ be such that $\left(1-\varepsilon_{n}\right)\left\|T^{(4)} u\right\|>\delta$ and $\prod_{n \geq 1}\left(1+\varepsilon_{n}\right) \leq 2, \prod_{n \geq 1}\left(1-\varepsilon_{n}\right) \geq 1 / 2$.

Assume that x_{1}, \ldots, x_{n} have been constructed in such a way that $\left\|T x_{k}\right\|>\delta$ and

$$
\begin{aligned}
\prod_{k=1}^{n}\left(1-\varepsilon_{k}\right) \max \left\{\left|a_{1}\right|, \ldots,\left|a_{n}\right|\right\} \leq \| a_{1} x_{1} & +\cdots+a_{n} x_{n} \| \\
& \leq \prod_{k=1}^{n}\left(1+\varepsilon_{k}\right) \max \left\{\left|a_{1}\right|, \ldots,\left|a_{n}\right|\right\}
\end{aligned}
$$

for every scalars a_{1}, \ldots, a_{n}.
Let V_{n} be the linear subspace of $X^{(4)}$ generated by $\left\{u, x_{1}, \ldots, x_{n}\right\}$. By Bellenot's version of the principle of local reflexivity ([1], Corollary 7), there exists an operator $A_{n}: V_{n} \rightarrow X$ such that $\left\|A_{n}\right\|,\left\|A_{n}^{-1}\right\|$ are less or equal than $\left(1+\varepsilon_{n+1}\right), A_{n}$ is the identity on the linear span of $\left\{x_{1}, \ldots, x_{n}\right\}$ and

$$
\left|\left\|T^{(4)} u\right\|-\left\|T A_{n} u\right\|\right| \leq \varepsilon_{n+1}\left\|T^{(4)} u\right\| .
$$

If $x_{n+1}=A_{n} u$, it is now clear that

$$
\begin{aligned}
\prod_{k=1}^{n+1}\left(1-\varepsilon_{k}\right) \max \left\{\left|a_{1}\right|, \ldots,\left|a_{n+1}\right|\right\} \leq \| a_{1} x_{1} & +\cdots+a_{n+1} x_{n+1} \| \\
& \leq \prod_{k=1}^{n+1}\left(1+\varepsilon_{k}\right) \max \left\{\left|a_{1}\right|, \ldots,\left|a_{n+1}\right|\right\}
\end{aligned}
$$

for every scalars a_{1}, \ldots, a_{n+1} and $\left\|T x_{n+1}\right\|>\delta$.
Hence

$$
\frac{1}{2} \max \left\{\left|a_{1}\right|, \ldots,\left|a_{n}\right|\right\} \leq\left\|a_{1} x_{1}+\cdots+a_{n} x_{n}\right\| \leq 2 \max \left\{\left|a_{1}\right|, \ldots,\left|a_{n}\right|\right\}
$$

for every scalars a_{1}, \ldots, a_{n}. Since $\left\|T x_{n}\right\|>\delta$, this ends the proof.

3 Pełczyński's property (V) for L^{Ψ}.

As we said, the following result is a particular case of that of D. Leung ([12]), but we shall give an elementary proof.

Theorem 2 (12]) Suppose that the conjugate function Φ of Ψ satisfies the Δ_{2} condition. Then, the space L^{Ψ} has Pelczyñski's property (V).

As it is well-known (and easy to prove), every dual space with Pełczyński's property (V) is a Grothendieck space: every weak-star convergent sequence in its dual is weakly convergent. Hence, we have:

Corollary 3 Suppose that the conjugate function Φ of Ψ satisfies the Δ_{2} condition. Then the space L^{Ψ} is a Grothendieck space.

Proof of Theorem 2. We may assume that L^{Ψ} is a real Banach space.
The proof arises directly from the two following results, since $E=M^{\Psi}$ is a Banach lattice having property (V) and $L^{\Psi}=\left(M^{\Psi}\right)^{* *}$.

Lemma 4 Suppose that the Orlicz function Ψ does not satisfy the Δ_{2} condition. Then for every sequence $\left(g_{n}\right)_{n}$ in the unit ball of L^{Ψ}, there exist a sequence $\left(f_{n}\right)_{n}$ in M^{Ψ} and a positive function $g \in L^{\Psi}$ such that $\left|g_{n}-f_{n}\right| \leq g$.

Proposition 5 Let E be a Banach lattice that has property (V). Suppose that for every sequence $\left(x_{n}^{* *}\right)_{n}$ in $B_{E^{* *}}$, there are a sequence $\left(x_{n}\right)_{n}$ in E and a positive $x^{* *} \in E^{* *}$ such that $\left|x_{n}^{* *}-x_{n}\right| \leq x^{* *}$. Then $E^{* *}$ has property (V).

Proof of Lemma 4. Since, by dominated convergence,

$$
\lim _{t \rightarrow+\infty} \int_{\Omega} \Psi\left(\left|g_{n}\right| \mathbb{I}_{\left\{\left|g_{n}\right|>t\right\}}\right) d \mathbb{P}=0
$$

we can choose, for every $n \geq 1$, a positive number t_{n} so big that:

$$
\int_{\Omega} \Psi\left(\left|g_{n}\right| \mathbb{1}_{\left\{\left|g_{n}\right|>t_{n}\right\}}\right) d \mathbb{P} \leq \frac{1}{2^{n}}
$$

and, moreover such that:

$$
\sum_{n=1}^{+\infty} \mathbb{P}\left(\left|g_{n}\right|>t_{n}\right)<+\infty
$$

This last condition implies, by Borel-Cantelli's lemma, that, almost surely, $\left|g_{n}\right| \leq t_{n}$ for n large enough. Equivalently, by setting:

$$
\tilde{g}_{n}=g_{n} \mathbb{I}_{\left\{\left|g_{n}\right|>t_{n}\right\}},
$$

we have, almost surely $\tilde{g}_{n}=0$ for n large enough. It follows that almost surely $\sup _{n}\left|\tilde{g}_{n}\right|$ is attained. Set now:

$$
A_{n}=\left\{\omega \in \Omega ;\left|\tilde{g}_{1}(\omega)\right|, \ldots,\left|\tilde{g}_{n-1}(\omega)\right|<\left|\tilde{g}_{n}(\omega)\right| \text { and }\left|\tilde{g}_{k}(\omega)\right| \leq\left|\tilde{g}_{n}(\omega)\right|, \forall k \geq n\right\}
$$

($\omega \in A_{n}$ if and only if n is the first time for which $\sup _{k}\left|\tilde{g}_{k}(\omega)\right|$ is attained).
The sets A_{n} are disjoint and

$$
\sup _{n \geq 1}\left|\tilde{g}_{n}\right|=\sum_{n=1}^{+\infty}\left|\tilde{g}_{n}\right| \mathbb{1}_{A_{n}} .
$$

Hence, if we set:

$$
g=\sup _{n \geq 1}\left|\tilde{g}_{n}\right|,
$$

we have $g \in L^{\Psi}$, since, using the disjointness of the A_{n} 's:

$$
\int_{\Omega} \Psi(g) d \mathbb{P}=\sum_{n=1}^{+\infty} \int_{A_{n}} \Psi\left(\left|\tilde{g}_{n}\right|\right) d \mathbb{P} \leq \sum_{n=1}^{+\infty} \int_{\Omega} \Psi\left(\left|\tilde{g}_{n}\right|\right) d \mathbb{P} \leq \sum_{n=1}^{+\infty} \frac{1}{2^{n}}=1
$$

That proves the lemma, by taking $f_{n}=g_{n}-\tilde{g}_{n}$, which is in $L^{\infty} \subseteq M^{\Psi}$.
Proof of Proposition 5. Suppose that $T: E^{* *} \rightarrow Y$ is not weakly compact. Then there exists a sequence $\left(x_{n}^{* *}\right)_{n}$ in $B_{E^{* *}}$ such that $\left(T x_{n}^{* *}\right)_{n}$ is not relatively weakly compact. Choose $\left(x_{n}\right)_{n}$ and $x^{* *}$ as in the statement of the Proposition, and set $y_{n}^{* *}=x_{n}^{* *}-x_{n}$ for all n. We have either:
(a) $\left(T x_{n}\right)_{n}$ is not weakly compact, or
(b) $\left(T y_{n}^{* *}\right)_{n}$ is not weakly compact.

If (a) holds, $T_{\mid E}: E \rightarrow Y$ is not weakly compact; hence $T_{\mid E}$ fixes a copy of c_{0}.

If (b) holds, let I be the closed lattice ideal generated by $x^{* *}$ in $E^{* *}$, normed so that $\left[-x^{* *}, x^{* *}\right]$ is the unit ball, and let $i: I \rightarrow E^{* *}$ be the inclusion map. Since $\left(y_{n}^{* *}\right)_{n}$ lies in $\left[-x^{* *}, x^{* *}\right], T \circ i$ is not weakly compact. But I is lattice isomorphic to a $C(K)$ space, and hence has property (V). Thus $T \circ i$ fixes a copy of c_{0}. So T fixes a copy of c_{0}.

Remark. We cannot expect that, for t_{n} big enough, the functions \tilde{g}_{n} could have a small norm. For example, let G be a standard gaussian random variable $\mathcal{N}(0,1)$. For $\Psi=\Psi_{2}\left(\Psi_{2}(x)=\mathrm{e}^{x^{2}}-1\right)$, we have, for every $t>0$:

$$
\int_{\Omega} \Psi_{2}\left(\frac{|G| \mathbb{I}_{\{|G|>t\}}}{\varepsilon}\right) d \mathbb{P}=\frac{1}{\sqrt{2 \pi}} \int_{|x|>t}\left(\mathrm{e}^{x^{2} / \varepsilon^{2}}-1\right) \mathrm{e}^{-x^{2} / 2} d x=+\infty
$$

for every $\varepsilon<\sqrt{2}$; that means that $\left\|G \mathbb{\mathbb { I }}_{\{|G|>t\}}\right\|_{\Psi_{2}} \geq \sqrt{2}$ for every $t>0$ (recall that $\|G\|_{\Psi_{2}}=\sqrt{8 / 3}$: see [13], page 31).

4 Concluding remarks and questions

1. The full D. Leung's result that L^{Ψ} have the local property (V), i.e. every ultrapower of L^{Ψ} have the property (V) (see [3]) cannot be obtained straightforwardly from our proof. Indeed, since $L^{\Psi}=\left(M^{\Psi}\right)^{* *}$ is 1-complemented in every ultrapower of M^{Ψ}, it would suffice to prove that every such ultrapower has property (V); but if $\left[\left(M^{\Psi}\right)_{\mathcal{U}}\right]^{*}$ contains $\left(L^{\Phi}\right)_{\mathcal{U}}$ as a w^{*}-dense subspace, it is bigger. The ultraprower $\left(L^{\Phi}\right) \mathcal{U}$ is not exactly known in general. In the particular case of $\Psi=\Psi_{2}\left(\Psi_{2}(x)=\mathrm{e}^{x^{2}}-1\right.$), we have ([4], Proposition 4.1 and Proposition 4.2):

$$
\left(L^{\Phi_{2}}\right)_{\mathcal{U}} \cong L^{\Phi_{2}}\left(\mathbb{P}_{\mathcal{U}}\right) \oplus L^{1}\left(\mu_{\mathcal{U}}\right)
$$

However, since $\left(L^{\Psi}\right)^{*}=\left(L^{\Phi}\right)^{* *} \cong L^{\Phi} \oplus_{1} L^{1}(\mu)$, all the odd duals of L^{Ψ} can be written

$$
\left(L^{\Psi}\right)^{(2 n+1)} \cong\left(L^{\Psi}\right)^{*} \oplus_{1} L^{1}\left(\mu_{n}\right)
$$

Hence we get that all the even duals of L^{Ψ} have the property (V).
2. We can define the Hardy-Orlicz spaces H^{Ψ}, in a natural way: it is the subspace of L^{Ψ} consisting of the functions on the unit circle $\mathbb{T}=\partial \mathbb{D}$ which have an analytic extension in \mathbb{D}; equivalently, it is the subspace of L^{Ψ} whose negative Fourier coefficients vanish. In [2], J. Bourgain proved that H^{∞} has property (V). Does H^{Ψ} have property (V) ?

Note that the answer cannot follow trivially from our Theorem 2 since H^{Ψ} is complemented in L^{Ψ} if and only if L^{Ψ} is reflexive: indeed, the Riesz projection from L^{Ψ} onto H^{Ψ} is bounded if and only if L^{Ψ} is reflexive ([18]; see [16], Chapter VI, Theorem 2.8, page 196), and we have:

Proposition 6 Assume that $\Psi \in \nabla_{2}$. Then the Hardy-Orlicz space H^{Ψ} is complemented in L^{Ψ} if and only if the Riesz projection is bounded on L^{Ψ}. Hence H^{Ψ} is complemented in L^{Ψ} if and only if L^{Ψ} is reflexive.

Proof. Only the necessary condition needs a proof. Assume that there is a bounded projection P from L^{Ψ} onto H^{Ψ}. For every $f \in M^{\Psi}$, and for every $g_{\tilde{P}} \in L^{\Phi}$, the translations $t \mapsto f_{t}$ and $t \mapsto g_{t}$ are continuous. Hence we can define \tilde{P} by setting:

$$
\langle\tilde{P} f, g\rangle=\int_{\mathbb{T}}\left\langle P\left(f_{t}\right), g_{t}\right\rangle d t
$$

One has $\|\tilde{P} f\|_{\Psi} \leq\|P\|\|f\|_{\Psi}$, so that \tilde{P} is bounded from M^{Ψ} into L^{Ψ}. On the other hand, it is immediate to see that for every trigonometric polynomial f, one has, if $e_{n}(x)=\mathrm{e}^{i n x}$:

$$
\tilde{P}(f)=\sum_{n \in \mathbb{Z}} \hat{f}(n) \widehat{P\left(e_{n}\right)}(n) e_{n}
$$

Since P is a projection, we have $P\left(e_{n}\right)=e_{n}$ for $n \geq 0$; and since P takes its values in H^{Ψ}, we have $\widehat{P\left(e_{n}\right)}(k)=0$ for $k<0$; in particular $\widehat{P\left(e_{n}\right)}(n)=0$ for $n<0$.

We get therefore:

$$
\tilde{P}(f)=\sum_{n \geq 0} \hat{f}(n) e_{n}
$$

that is \tilde{P} is the restriction to M^{Ψ} of the Riesz projection. Hence the Riesz projection is bounded on M^{Ψ}. By taking its bi-adjoint, we get that it is bounded on L^{Ψ}.

In Ryan's paper ([18]), it is assumed that Ψ is an N-function, that is $\lim _{x \rightarrow 0} \frac{\Psi(x)}{x}=0$. But we may modify Ψ on $[0,1]$ to get an N-function Ψ_{1}. Since we work on a probability space (Ω, \mathbb{P}), the new space $L^{\Psi_{1}}$ is equal, as a vector space, to L^{Ψ}, but with an equivalent norm. Hence Ryan's result remains true without this assumption.

Note that, when the probability space (Ω, \mathbb{P}) is separable, since we have assumed that $\Psi \in \nabla_{2}$, the reflexivity of L^{Ψ} is equivalent to its separability (see [15], Chapter III, Theorem 5.1, pages 87-88).
3. Property (V) allows us to say that L^{Ψ} looks like $L^{p}, 1<p \leq \infty$. In some sense, it may be seen as close to L^{∞} when $\Psi \notin \Delta_{2}$, since it is not reflexive. However, from other points of view, it is closer to L^{p} with $p<\infty$; on the one hand, it is a bidual space; on the other hand, one has:

Proposition 7 If $\Psi \in \nabla_{2}$, then L^{Ψ} never has the Dunford-Pettis property.
Proof. We are actually going to show that M^{Ψ} does not have the DunfordPettis property. That will prove the proposition, since $L^{\Psi}=\left(M^{\Psi}\right)^{* *}$.
Since $\Psi \in \nabla_{2}$, there is some $\alpha>1$ and some $c>0$ such that $\Psi(x) \geq c x^{\alpha}$. It follows that $L^{\Psi} \subseteq L^{\alpha}$ and the natural injection $i: L^{\Psi} \rightarrow L^{\alpha}$ is bounded, and hence weakly compact, since L^{α} is reflexive.
Take now an orthonormal sequence $\left(r_{n}\right)_{n \geq 1}$ in L^{2} with constant modulus equal to 1 (for example, an independent sequence of random variables taking the values ± 1 each with probability $1 / 2$). One has $\int_{\Omega} r_{n} f d \mathbb{P} \underset{n \rightarrow+\infty}{\longrightarrow} 0$ for every $f \in L^{2}$. By density, this remains true for every $f \in L^{1}$, and in particular for every $f \in L^{\Phi}$, since $L^{\Phi} \subseteq L^{1}$. Therefore, $\left(r_{n}\right)_{n \geq 1}$ weakly converges to 0 in M^{Ψ}. Since $\left\|r_{n}\right\|_{\alpha}=1,\left(i\left(r_{n}\right)\right)_{n}$ does not norm-converge to 0 , and hence the weakly compact map $i: M^{\Psi} \rightarrow L^{\alpha}$ is not a Dunford-Pettis operator. Therefore M^{Ψ} does not have the Dunford-Pettis property.

A slightly different way to prove this is to use that for every Banach space X which has the Dunford-Pettis property and which does not contain ℓ_{1}, its dual X^{*} has the Schur property ([5, 14]; see also [13], Chapitre 7, Exercice 7.2). But M^{Ψ} does not contain ℓ_{1} (because all its subspaces have property (V); or because its dual L^{Φ} is separable). Hence L^{Φ} would have the Schur property. The same argument as above shows that is not the case.
4. We have required in this paper that the complementary function Φ satisfies the Δ_{2} condition. Hence, in some sense, the space L^{Ψ} is far from L^{1}. We may ask what happens when we are in the other side of the scale, namely when L^{Ψ}
is close to L^{1}. But if Ψ satisfies the Δ_{2} condition, then $L^{\Psi}=\left(M^{\Phi}\right)^{*}$ and M^{Φ}, being M-ideal of its bidual, has property (V), as said in the Introduction. It follows that L^{Ψ} is weakly sequentially complete (and in fact has property $\left(V^{*}\right)$), and if we assume that $\Phi \notin \Delta_{2}$ (so as L^{Ψ} is not reflexive), then L^{Ψ} does not have property (V).

References

[1] S. F. Bellenot, Local Reflexivity of Normed Spaces, Operators, and Fréchet Spaces, J. Funct. Anal. 59(1) (1984), 1-11.
[2] J. Bourgain, H^{∞} is a Grothendieck space, Studia Math. 75 (1983), 193-216.
[3] M. D. Contreras and S. Díaz, Some Banach Space Properties of the Duals of the Disk Algebra and H^{∞}, Michigan Math. J. 46 (1999), 123-141.
[4] D. Dacunha-Castelle et J.-L. Krivine, Applications des ultraproduits à l'étude des espaces et des algèbres de Banach, Studia Math. 41 (1972), 315-334.
[5] H. Fakhoury, Sur les espaces de Banach ne contenant pas $\ell_{1}(\mathbb{N})$, Math. Scand. 41 (1977), 277-289.
[6] G. Godefroy, N. J. Kalton, and P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104, no. 1 (1993), 13-59.
[7] G. Godefroy and D. Li, Banach spaces which are M-ideals in their bidual have property (u), Ann. Inst. Fourier (Grenoble) 39, no. 2 (1989), 361-371.
[8] G. Godefroy et P. Saab, Quelques espaces de Banach ayant les propriétés (V) ou $\left(V^{*}\right)$ de A. Pełczyński, C.R. Acad. Sci. Paris, Série A 303 (1986), 503-506.
[9] G. Godefroy and P. Saab, Weakly unconditionally convergent series in M ideals, Math. Scand. 64 (1989), 307-318.
[10] P. Harmand, D. Werner and W. Werner, M-ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer (1993).
[11] M. A. Krasnosel'skiĭ and Ya. B. Rutickiŭ, Convex functions and Orlicz spaces (translation), P. Noordhoff Ltd., Groningen (1961).
[12] D. Leung, Weak* convergence in higher duals of Orlicz spaces, Proceedings Amer. Math. Soc. 103 (3) (1988), 797-800.
[13] D. Li et H. Queffélec, Introduction à l'étude des espaces de Banach - Analyse et Probabilités, Cours Spécialisés 12, Société Mathématique de France (2004).
[14] P. Pethe and N. Thakare, Note on Dunford-Pettis Property and Schur Property, Indiana Univ. Math. J. 27 (1) (1978), 91-92.
[15] M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Pure and Applied Mathematics 146, Marcel Dekker, Inc. (1991).
[16] M. M. Rao and Z. D. Ren, Applications of Orlicz spaces, Pure and Applied Mathematics 250, Marcel Dekker, Inc. (2002).
[17] H. Rosenthal, A characterization of Banach spaces containing c_{0}, J. Amer. Math. Soc. 7, no. 3 (1994), 707-748.
[18] R. Ryan, Conjugate functions in Orlicz spaces, Pacific J. Math. 13 (4) (1963), 1371-1377.
[19] D. Werner, New classes of Banach spaces which are M-ideals in their biduals, Math. Proc. Cambridge Philos. Soc. 111 (2) (1992), 337-354.
P. Lefèvre et D. Li, Université d'Artois, Laboratoire de Mathématiques de Lens EA 2462, Fédération CNRS Nord-Pas-de-Calais FR 2956, Faculté des Sciences Jean Perrin, Rue Jean Souvraz, S.P. 18,
62307 LENS Cedex, FRANCE
pascal.lefevre@euler.univ-artois.fr - daniel.li@euler.univ-artois.fr
H. Queffélec, Université des Sciences et Techniques de Lille, Laboratoire Paul Painlevé U.M.R. CNRS 8524, U.F.R. de Mathématiques,
59655 VILLENEUVE D'ASCQ Cedex, FRANCE
queff@math.univ-lille1.fr
Luis Rodríguez-Piazza, Universidad de Sevilla, Facultad de Matematicas, Dpto de Análisis Matemático, Apartado de Correos 1160, 41080 SEVILLA, SPAIN
piazza@us.es

