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Some translation-invariant Banahfuntion spaes whih ontain c0Pasal Lefèvre, Daniel Li,Hervé Que�éle, Luis Rodríguez-PiazzaAbstrat. We produe several situations where some natural subspaes of las-sial Banah spaes of funtions over a ompat abelian group ontain the spae
c0.Mathematis Subjet Classi�ation. Primary: 43A46, 46B20; Seondary:42A55, 42B35, 43A07, 46E30Key-words. otype; Hilbert set; invariant mean; Orliz spae; q-Rider set;Riemann-integrable funtion; Rosenthal set; set of uniform onvergene; Sidonset; p-Sidon set.1 IntrodutionLet G be a ompat abelian group and Γ = Ĝ its dual group. It is a familiartheme in Harmoni Analysis to ompare the �thinness� properties of a subset
Λ ⊆ Γ with the Banah spae properties of the spae XΛ, where X is a Banahspae of Haar-integrable funtions on G and XΛ is the subspae of X onsistingof the f ∈ X whose spetrum lies in Λ: f̂(γ) = 0 if γ /∈ Λ. We refer toKwapie«-Peªzy«ski's lassial paper [17℄ for suh investigations.It is known that, denoting by Ψ2 the Orliz funtion ex

2 − 1:
(1) If LΨ2

Λ = L2
Λ, then Λ is a Sidon set (Pisier [35℄, Théorème 6.2);

(2) If CΛ has a �nite otype, then Λ is a Sidon set (Bourgain-Milman [3℄).Reall that Λ is a Sidon set if every ontinuous funtion on G with spetrum in
Λ has an absolutely onvergent Fourier series.In a previous paper, we proved, among other fats, the following extensionof (1) ([19℄, Theorem 2.3):

(1′) If LΨ2

Λ has otype 2, then Λ is a Sidon set;We also showed the following variant of (2) ([19℄, Theorem 1.2):
(2′) If UΛ has a �nite otype, then Λ is a Sidon set,where U = U(T) is the spae of the ontinuous funtions on the irle group Twhose Fourier series onverges uniformly on T.1
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In this work, we study what are the impliations on Λ of the fat that someBanah spae XΛ ontains, or not, the spae c0. In partiular, we shall extend
(1′) and (2′).The paper is organized as follows. In Setion 2, we show that if ψ is an Orlizfuntion whih violates the ∆2-ondition, in a strong sense: lim

x→+∞

ψ(2x)

ψ(x)
= +∞(whih is the ase of Ψ2), and if X0 is a linear subspae of L∞ on whih thenorms ‖ ‖2 and ‖ ‖ψ are not equivalent, then the losure X of X0 in Lψ ontains

c0. It follows that if Λ is not a Sidon set, then LΨ2

Λ ontains c0, and a fortiorithat if LΨ2

Λ has a �nite otype, then Λ is a Sidon set, whih generalizes (1′).In Setion 3, we extend (2′) by showing that: If Λ is not a set of uniformonvergene (i.e. if UΛ 6= CΛ), then UΛ does ontain c0. In partiular, if UΛ hasa �nite otype, then UΛ = CΛ, so CΛ has a �nite otype and therefore, in viewof (2), Λ is a Sidon set. This explains why the proof of (2′) in [19℄ mimikedBourgain and Milman's.In Setion 4, we use the notion of invariant mean in L∞(G). We say that
Λ is a Lust-Piquard set if, for every funtion f ∈ L∞

Λ , the produt γf of fwith every harater γ ∈ Γ has a unique invariant mean. Of ourse, if every
f ∈ L∞

Λ is ontinuous (i.e. Λ is a Rosenthal set), then Λ is a Lust-Piquard set.F. Lust-Piquard ([27℄) showed that there are Lust-Piquard sets whih are notRosenthal sets, and, more preisely, that Λ = P ∩ (5Z + 2), where P is the setof the prime numbers, is a Lust-Piquard set suh that CΛ ontains c0 (if Λ is aRosenthal set, CΛ annot ontain c0). We onstrut here another kind of �big�Lust-Piquard set Λ, namely a Hilbert set. Then CΛ ontains c0 by a result ofthe seond-named author ([22℄, Theorem 2).In Setion 5, we investigate under whih onditions the spae CΛ is omple-mented in L∞
Λ . We onjeture that this happens only if CΛ = L∞

Λ , i.e. Λ isa Rosenthal set. We are only able to show that, under that ondition of om-plementation, CΛ does not ontain c0, and, moreover, every f ∈ L∞
Λ whih isRiemann-integrable is atually in CΛ.Notation. Throughout this paper, G is a ompat abelian group, and Γ = Ĝis its (disrete) dual group. The Haar measure of G is denoted by m, andintegration with respet to m by dt or dx. We shall write the group strutureof Γ additively, so that, for γ ∈ Γ, the harater (−γ) ∈ Γ is the funtion

γ ∈ C(G). When G is the irle group T = R/2πZ, we identify, as usual, theharater en : t 7→ eint with the integer n ∈ Z, and so the dual group Γ to Z;the Haar measure is then dt/2π.For f ∈ L1(G), the Fourier oe�ient of f at γ ∈ Γ is f̂(γ) =
∫
G
f(t) γ(t) dt.If X is a linear funtion subspae of L1(G), we denote by XΛ the subspae ofthose f ∈ X for whih the Fourier oe�ients vanish outside of Λ.When we say that a Banah spae X ontains a Banah spae Y , we meanthat X ontains a (losed) subspae isomorphi to Y .Aknowledgements. This work was partly supported by a Piasso projet(EGIDE-MCYT) between the frenh and spanish governments.2



We thank the referee for a very areful reading of this paper and for manysuggestions to improve the writing.2 Subspaes of Orliz spaesLet ψ be an Orliz funtion, that is, an inreasing onvex funtion
ψ : [0,+∞ [→ [0,+∞ [ suh that ψ(0) = 0 and ψ(+∞) = +∞. We shall assumethat ψ violates the ∆2-ondition, in the following strong sense:

lim
x→+∞

ψ(2x)

ψ(x)
= +∞ . (∗)Let (Ω,A,P) be a probability spae. The Orliz spae Lψ(Ω) is the spae ofall the (equivalene lasses of) measurable funtions f : Ω → C for whih thereis a onstant C ≥ 0 suh that

∫

Ω

ψ
( |f(t)|

C

)
dP(t) ≤ 1and then ‖f‖ψ is the least possible onstant C.Observe that (∗) implies that there exists a > 0 suh that ψ(2t) ≥ 4ψ(t) forevery t ≥ a. Hene, for all n ≥ 0, one has ψ(2na) ≥ 4nψ(a). It follows that, for

2na ≤ x < 2n+1a, we have
ψ(x) ≥ ψ(2na) ≥ 4nψ(a) ≥

( x

2a

)2

ψ(a) = C x2 .Hene ψ(x) ≥ C x2 for every x ≥ a, and so the norm ‖ ‖ψ is stronger than thenorm of L2.Theorem 2.1 Suppose that ψ is an Orliz funtion as above. Let X0 be a linearsubspae of L∞(Ω) on whih the norms ‖ ‖2 and ‖ ‖ψ are not equivalent. Thenthere exists in X0 a sequene whih is equivalent, in the losure X of X0 for thenorm ‖ ‖ψ, to the anonial basis of c0.Proof. We �rst remark that, thanks to (∗), we an hoose, for eah n ≥ 1, apositive number xn suh that
ψ

(x
2

)
≤ 1

2n
ψ(x) , ∀x ≥ xn .Sine ψ inreases, we have for every x ≥ 0:

ψ
(x

2

)
≤ 1

2n
ψ(x) + ψ(xn) .Next, ψ is ontinuous sine it is onvex. Hene there exists a > 0 suh that

ψ(a) = 1. Then, sine ψ is inreasing, we have, for every f ∈ L∞(Ω):
∫

Ω

ψ
(
a

|f |
‖f‖∞

)
dP ≤ 1 ,3



and so ‖f‖ψ ≤ (1/a) ‖f‖∞.Now, let αn, n ≥ 1, be positive numbers less than a/2 suh that ∑
n≥1 αn <

a. We shall onstrut indutively a sequene of funtions fn ∈ X0, with ‖fn‖ψ =
1, and a sequene of positive numbers βn ≤ 1/2n suh that:(i) P({|fn| > αn}) ≤ βn, for every n ≥ 1;(ii) if we set M1 = 1 and, for n ≥ 2:

Mn = ψ
(‖f1‖∞ + · · · + ‖fn−1‖∞

2

)
,then (

Mn + ψ(xn)
)
βn ≤ 1/2n;(iii) for every n ≥ 1, ‖gn‖ψ ≥ 1/2, with gn = fn 1I{|fn|>αn}.For this, we start with β1 suh that (

1 + ψ(x1)
)
β1 = 1/2. Sine the norms

‖ ‖ψ and ‖ ‖2 are not equivalent on X0, there is an f1 ∈ X0 with ‖f1‖ψ = 1 and
P({|f1| > α1}) ≤ β1. Suppose now that f1, . . . , fn−1 and β1, . . . , βn−1 have beenonstruted. We hoose then βn ≤ 1/2n in order that (

Mn +ψ(xn)
)
βn ≤ 1/2n.Sine the norms ‖ ‖ψ and ‖ ‖2 are not equivalent on X0, we an �nd fn ∈ X0suh that ‖fn‖ψ = 1 and ‖fn‖2 is so small that

P({|fn| > αn}) ≤ βn .Sine ‖fn−gn‖ψ ≤ (1/a) ‖fn−gn‖∞ ≤ αn/a, we have ‖gn‖ψ ≥ ‖fn‖ψ−αn/a ≥
1/2, and that �nishes the onstrution.Now, onsider

g =
+∞∑

n=1

|gn| .Set An = {|fn| > αn} and, for n ≥ 1:
Bn = An \

⋃

j>n

Aj .We have P
(
lim supAn

)
= 0, beause ∑

n≥1 P(An) ≤ ∑
n≥1 βn < +∞. Now gvanishes out of ⋃

n≥1Bn∪
(
lim supAn

) and ∫
Bn

ψ(|gn|) dP ≤
∫
Ω
ψ(|fn|) dP ≤ 1.Therefore
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∫

Ω

ψ
( |g|

4

)
dP =

+∞∑

n=1

∫

Bn

ψ
( |g|

4

)
dP

≤
+∞∑

n=1

∫

Bn

1

2

[
ψ

(‖f1‖∞ + · · · + ‖fn−1‖∞
2

)
+ ψ

( |gn|
2

)]
dPby onvexity of ψ and beause gj = 0 on Bn for j > n

≤ 1

2

+∞∑

n=1

Mn P(An) +
1

2

+∞∑

n=1

1

2n

∫

Bn

ψ(|gn|) dP +
1

2

+∞∑

n=1

ψ(xn) P(An)

≤ 1

2

+∞∑

n=1

(
Mn + ψ(xn)

)
βn +

1

2

+∞∑

n=1

1

2n
≤ 1 .Hene g ∈ Lψ(Ω).It follows that the series ∑

n≥1 gn is weakly unonditionally Cauhy in X .Sine ‖gn‖ψ ≥ 1/2, it has, by the Bessaga-Peªzy«ski's theorem, a subsequenewhih is equivalent to the anonial basis of c0. The same is true for (fn)n≥1sine
+∞∑

n=1

‖fn − gn‖ψ ≤ 1

a

+∞∑

n=1

‖fn − gn‖∞ ≤ 1

a

+∞∑

n=1

αn < 1 .That ends the proof. �Of ourse, the proof shows that the assumption that the norm ‖ ‖ψ is notequivalent to ‖ ‖2 an be replaed by the non-equivalene of ‖ ‖ψ with manyother norms. We only used the fat that the topology of onvergene in measureis not equivalent on X0 to the topology de�ned by ‖ ‖ψ.When we apply this result to the probability spae (G,m), we get (see [19℄,Theorem 2.3):Theorem 2.2 Let ψ be as in Theorem 2.1 and let G be a ompat abelian group.Then, for Λ ⊆ Γ = Ĝ, either LψΛ has otype 2, or it ontains c0.In partiular, either Λ is a Sidon set and LΨ2

Λ = L2
Λ, or LΨ2

Λ ontains c0(and so it has no �nite otype).Proof. Observe that when LψΛ 6= L2
Λ, the norms ‖ ‖ψ and ‖ ‖2 are not equivalenton X0 = PΛ, the subspae of the trigonometri polynomials whose spetrum isontained in Λ. So the �rst part follows diretly from Theorem 2.1. The seondone follows from Pisier's haraterization of Sidon sets ([35℄, Théorème 6.2): Λis a Sidon set if and only if LΨ2

Λ = L2
Λ. �Remark. It is proved in [19℄, Theorem 2.3, that Λ is a Λ(ψ)-set (i.e. LψΛ = L2

Λ)when LΨ2

Λ ⊆ LψΛ ⊆ L2
Λ and LψΛ has otype 2.5



3 Uniform onvergeneA funtion f ∈ C(T) is said to have a uniformly onvergent Fourier series if
‖Sk(f) − f‖∞ −→

k→+∞
0, where

Sk(f) =

k∑

j=−k

f̂(j) ej .The spae U(T) of uniformly onvergent Fourier series is the spae of allsuh f ∈ C(T). With the norm
‖f‖U = sup

k≥1
‖Sk(f)‖∞ ,

U(T) beomes a Banah spae.A set Λ ⊆ Z is said to be a set of uniform onvergene (UC-set) if UΛ = CΛas linear spaes. They are then isomorphi as Banah spaes. There exist sets
Λ whih are not UC-sets, but for whih CΛ does not ontain c0 (for instane,a Rosenthal set whih ontains arbitrarily long arithmetial progressions [38℄).For UΛ the situation is di�erent; we have:Theorem 3.1 If Λ is not a UC-set, then UΛ ontains c0.Corollary 3.2 If UΛ has a �nite otype, then Λ is a Sidon set.Proof. If UΛ has a �nite otype, it annot ontain c0. Hene UΛ is isomorphito CΛ. It follows that CΛ has a �nite otype, and so Λ is a Sidon set, byBourgain-Milman's theorem [3℄. �Remark. This result was proved in [19℄, Theorem 1.2, by adapting the proof ofBourgain and Milman. Now it beomes lear why this proof happened to mimithe original one.Proof of Theorem 3.1. Sine Λ is not a UC-set, there exists a trigonometripolynomial P1 ∈ CΛ suh that ‖P1‖U = 1 and ‖P1‖∞ ≤ 1/2. Let N1 ≥ 2suh that P̂1(n) = 0 for |n| ≥ N1. The spaes UΛ\Λ∩{−N1+1,...,0,...,N1−1} and
CΛ\Λ∩{−N1+1,...,0,...,N1−1} remain non-isomorphi, and so we an �nd a trigono-metri polynomial P2 suh that P̂2(n) = 0 for |n| ≤ N1 − 1 with ‖P2‖U = 1and ‖P2‖∞ ≤ 1/4. Carrying on this onstrution, we get a sequene of integers
2 ≤ N1 < N2 < · · · and a sequene of trigonometri polynomials Pl ∈ CΛ suhthat ‖Pl‖U = 1, ‖Pl‖∞ ≤ 1/2l and P̂l(n) = 0 for n /∈ {±Nl−1, . . . ,±(Nl − 1)}.Now, �x an integer L ≥ 1 and a sequene a1, . . . , aL of omplex numbers.
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For eah k ≥ 1, let lk suh that Nlk ≤ k < Nlk+1. We have, when L ≥ lk + 1:
∥∥∥Sk

( L∑

l=1

alPl

)∥∥∥
∞

≤
∥∥∥

lk∑

l=1

alPl

∥∥∥
∞

+ ‖alk+1Sk(Plk+1)‖∞

≤ max
1≤j≤lk

|aj |
lk∑

l=1

‖Pl‖∞ + |alk+1| ‖Plk+1‖U

≤ 2 max{|a1|, . . . , |alk |, |alk+1|, . . . , |aL|} .The inequality ∥∥Sk
( ∑L

l=1 alPl
)∥∥

∞
≤ 2 max{|a1|, . . . , |alk |, |alk+1|, . . . , |aL|} re-mains trivially true for L ≤ lk, beause in this ase Sk( ∑L

l=1 alPl
)

=
∑L
l=1 alPl.Therefore we get

∥∥∥
L∑

l=1

alPl

∥∥∥
U
≤ 2 max{|a1|, . . . , |aL|} .It follows that the series ∑

l≥1 Pl is weakly unonditionally Cauhy. Sine it isobviously not onvergent, UΛ ontains a subspae isomorphi to c0 by Bessaga-Peªzy«ski's theorem (see [6℄, pages 44�45, Theorem 6 and Theorem 8). �Remark 1. There is the stronger notion of CUC-set. Λ ⊆ Z is a CUC-set if∥∥∥
∑k2
j=k1

f̂(j) ej − f
∥∥∥
∞

−→
k1→−∞
k2→+∞

0 for every f ∈ CΛ. Obviously, for subsets of N,the two notions oinide. Theorem 3.1 is not valid for CUC-sets: let H be aHadamard launary sequene. Then Λ = H − H is not a CUC-set (Fournier[8℄), but it is UC and Rosenthal, so that UΛ = CΛ does not ontain c0.However, it is not known whether CΛ1∪Λ2
laks c0 whenever this is truefor CΛ1

and CΛ2
. If we replae the spae C(G) by U(T), the answer is in thenegative. Indeed, J. Fournier shows ([8℄), ompleting Soardi and Travaglini'swork [43℄, that there exist two UC-sets Λ1,Λ2 ⊆ Z, whih are Rosenthal sets,but Λ1 ∪ Λ2 = H +H −H is not UC. Therefore UΛ1

= CΛ1
and UΛ2

= CΛ2
donot ontain c0, though UΛ1∪Λ2

ontains c0.Remark 2. UC-sets Λ for whih CΛ ontains c0 are onstruted in [24℄.Remark 3. We stated Theorem 3.1 for uniform onvergene beause it isthe lassial ase. Atually, J. Fournier ([8℄, page 72) and S. Hartman ([13℄,page 107) introdued the spae L1 − UC as the set of all f ∈ L1(T) for whih
‖Sk(f) − f‖1 −→

k→+∞
0. It is normed by ‖f‖UL1 = supk≥1 ‖Sk(f)‖1. Λ is said tobe an L1 −UC-set if (L1 −UC)Λ = L1

Λ. The same proof as above shows that if
(L1−UC)Λ 6= L1

Λ, then (L1 −UC)Λ ontains c0. More generally, let Λ ⊆ Z andlet X be a Banah spae ontained, as a linear subspae, in L1(T) suh that thelinear spae generated by X ∩ Λ is dense in X . We an de�ne X − UC in anobvious way, and we have: if X − UC is not isomorphi to X , then it ontains
c0. 7



We give another onsequene of Theorem 3.1. Reall (see [30℄) that Λ ⊆ Γ isa Riesz set if every measure with spetrum in Λ is absolutely ontinuous, withrespet to the Haar measure (in short, MΛ = L1
Λ).Corollary 3.3 If UΛ does not ontain c0, then Λ is a Riesz set.Proof. If UΛ 6⊇ c0, then UΛ = CΛ, by Theorem 3.1, and so CΛ 6⊇ c0. It followsthen that Λ is a Riesz set (F. Lust-Piquard [25℄, her �rst Théorème 3.1). Letus reall why. For µ ∈ MΛ, the onvolution operator Cµ : f ∈ C(G) 7→ f ∗ µ ∈

CΛ ⊆ C(G) is weakly ompat, beause C(G) has Peªzy«ski's property (V ) and
CΛ 6⊇ c0. Its adjoint operator ν ∈ M(G) 7→ ν ∗µ ∈ MΛ is also weakly ompat.Hene, if (Kj)j is an approximate unit for the onvolution, there is a sequene
(jn)n suh that Kjn ∗ µ is weakly onvergent. Sine Kj ∗ µ onverges weak-starto µ, it follows that µ ∈ L1

Λ. �Remark. Another proof an be given, without using Theorem 3.1, but usingthat U(T) has Peªzy«ski's property (V ) (Saone [42℄, Theorem 2.2; for UN(T),see Bourgain [1℄, Lemme 2 and Lemme 3, and Saone [41℄, Theorem 4.1). Then,as before, Kjn ∗µ is weakly onvergent, in U(T)∗ this time. So there are onvexombinations whih onverge in the norm of U(T)∗. But then they onverge inthe norm of UN(T)∗, and so u ∈ L1(G) (see D. Oberlin [33℄, page 310). Note thatOberlin's argument (as well as Bourgain's one) depends on Carleson's Theorem(via [47℄).4 Invariant means and Hilbert setsAn invariant mean M on L∞(G) is a ontinuous linear funtional on L∞(G)suh that M(1I) = ‖M‖ = 1 and M(fx) = M(f) for every f ∈ L∞(G). TheHaar measure m de�nes an invariant mean, and W. Rudin ([40℄) showed that,for in�nite ompat abelian groups G, there always exist other invariant meanson L∞(G). A funtion f ∈ L∞(G) has a unique invariant mean if M(f) = f̂(0)for every invariant mean M on L∞(G). Every ontinuous funtion (or, even,every Riemann-integrable funtion: [39℄, page 38, or [44℄) has a unique invariantmean.De�nition 4.1 A subset Λ of Γ = Ĝ is alled a Lust-Piquard set if γf has aunique invariant mean for every f ∈ L∞
Λ and every γ ∈ Γ.In other words, Λ is a Lust-Piquard set if for every invariant mean M on

L∞(G) and every f ∈ L∞
Λ , one has:

M(γf) = f̂(−γ).In [26℄ (and then in [21℄; see also [28℄), F. Lust-Piquard alled them totallyergodi sets. We use a di�erent name beause J. Bourgain ([2℄, 2.I, page 206),used the terminology �ergodi set� for another property (see also [24℄).8



Note that it is required that the invariant means agree on ⋃
γ∈Γ L

∞
Λ−γ , andnot only on L∞

Λ , beause the invariant means may oinide on L∞
Λ for trivialreasons; for instane, all the invariant means are equal to 0 on L∞

2Z+1 (sine
f(x+ 1/2) = −f(x) for f ∈ L∞

2Z+1). It is lear that if Λ is a Lust-Piquard set,then Λ − γ is also a Lust-Piquard set for every γ ∈ Γ.It is obvious that every Rosenthal set is a Lust-Piquard set (sine everyontinuous funtion has a unique invariant mean), and it is shown in [21℄ thatevery Lust-Piquard set is a Riesz set. On the other hand, Y. Katznelson (see[39℄, pages 37�38) proved that N is not a Lust-Piquard set.F. Lust-Piquard ([27℄, Theorem 2 and Theorem 4) showed that Λ = P∩(5Z+
2), where P is the set of the prime numbers, is totally ergodi (a Lust-Piquardset, with our terminology) although CΛ ontains c0.In the following theorem, we give another example of suh a situation. Letus reall that H ⊆ Z is a Hilbert set if there exist two sequenes of integers
(pn)n≥1 and (qn)n≥1, with qn 6= 0, suh that

H =
⋃

n≥1

{
pn +

n∑

k=1

εk qk ; ε1, . . . , εn = 0 or 1
}
.It is shown in [22℄, Theorem 2, that CH ontains c0 when H is a Hilbert set.Theorem 4.2 There exists a Hilbert set H ⊆ N whih is a Lust-Piquard set.We begin with a lemma, whih is impliit in [27℄, proof of Theorem 4.Lemma 4.3 The family of Lust-Piquard sets in Γ is loalizable for the Bohrtopology.Let us reall that the Bohr topology of a disrete abelian group Γ is thetopology of pointwise onvergene, when Γ is seen as a subset of C(G); it is alsothe natural topology on Γ as a subset of the dual group of Gd, the group Gwith the disrete topology. A lass F of subsets of Γ is loalizable for the Bohrtopology if Λ ∈ F whenever for every γ ∈ Γ there is a neighbourhood Vγ of γ forthe Bohr topology suh that Λ∩Vγ ∈ F . This notion is due to Y. Meyer ([30℄).For the sake of ompleteness, we shall give a proof.Proof of Lemma 4.3. We are going to prove that if Vγ is a neighbourhood of

γ ∈ Γ suh that Λ ∩ Vγ is a Lust-Piquard set, then γf has a unique invariantmean for every f ∈ L∞
Λ , and that will prove the lemma.By the regularity of the algebra L1(Gd) = ℓ1(G) = Md(G), there exists adisrete measure ν ∈ Md(G) suh that ν̂(γ) = 1 and ν̂ = 0 outside Vγ . Sine

(γf) ∗ (γν) ∈ L∞
(Λ∩Vγ)−γ , and sine (Λ∩ Vγ)− γ is a Lust-Piquard set, we have:

M
(
(γf) ∗ (γν)

)
= ̂[(γf) ∗ (γν)](0) = f̂(γ) ν̂(γ) = f̂(γ).But γν is a disrete measure, and we have, for every disrete measure µ:
M(µ ∗ g) = M(g) µ̂(0)9



for every g ∈ L∞(G) and every invariant mean M . This is so sine, if µ =∑
k ak δxk

, with ∑
k |ak| < +∞, we have
M(µ ∗ g) =

∑

k

akM(gxk
) =

∑

k

akM(g).Hene M(γf) = f̂(γ), as required. �Proof of Theorem 4.2. We are going to onstrut a Hilbert set H ⊆ N whihis disrete in Z for the Bohr topology. For suh a set, there is, for every k ∈ Z,some Bohr-neighbourhood Vk of k suh that H ∩Vk is �nite. Therefore, we have
L∞
H∩Vk

= CH∩Vk
, and so H ∩ Vk is a Lust-Piquard set.Let (dn)n≥0 be a stritly inreasing sequene of positive integers suh that:

dn | dn+1 , n ≥ 0 ,

+∞∑

n=0

2n+1

dn
< 1 .For every k ∈ Z, onsider:

V (k) = k + d|k|Z ,whih is a Bohr-neighbourhood of k.Now, we are going to show that we an hoose, for every n ≥ 0, an integer
rn ∈ {0, 1, 2, . . . , dn − 1} suh that, if

Hn = dn + rn +
{ n−1∑

l=0

εldl ; εl = 0 or 1
}
,then

Hp ∩ V (k) = ∅for every k ∈ Z and every p > |k|. The set H =
⋃
n≥0Hn will be the requiredset.We are going to do this by indution. First, we may hoose an arbitrary

r0 ∈ {0, 1, 2, . . . , d0 − 1}, and we set H0 = {d0 + r0}. Suppose now that we havefound r1, r2, . . . , rp−1 suh that the previous onditions are ful�lled:
Hj ∩ V (k) = ∅ , for 1 ≤ j ≤ p− 1 , |k| < j .To �nd rp, note that m ∈ Hp ∩ V (k) if and only if

m ∈ k + d|k|Z (1)and there exist ε0, ε1, . . . , εp−1 ∈ {0, 1} suh that
m = dp + rp +

p−1∑

l=0

εldl . (2)10



Sine, for 0 ≤ l < p, one has dl | dl+1 | · · · | dp, onditions (1) and (2) areequivalent to rp ≡ 0 (mod d0), for k = 0, and, for 1 ≤ l = |k| < p, to:
k ≡ rp +

|k|−1∑

j=0

εjdj (mod d|k|) .For eah suh k (0 ≤ |k| < p), there are
dp
d|k|

· 2|k|possible hoies for rp. As
dp
d0

+ 2

p−1∑

l=1

2l
dp
dl

≤ dp
d0

+ 2

+∞∑

l=1

2l
dp
dl
< dp ,by hypothesis, we an �nd an rp ∈ {0, 1, . . . , dp − 1} suh that the set Hponstruted from it veri�es Hp ∩ V (k) = ∅ for |k| < p. That ends the proof. �Remark 1. Some partiular Hilbert sets are the IP -sets, i.e. the sets F forwhih there exists a sequene (pn)n≥1 of integers suh that

F =
{ n∑

k=1

εk pk ; ε1, . . . , εn = 0 or 1 , n ≥ 1
}
.Question. Does there exist an IP -set F whih is a Lust-Piquard set?Every point of an IP -set F is non-isolated in F (see [10℄, Theorem 2.19; notethat every point of an IP -set is inside the translation by this point of a sub-

IP -set). Therefore we annot use an argument similar to that of the previoustheorem. Hilbert sets and IP -sets are di�erent in several ways. For instane,every set Λ ⊆ Z whih has a positive uniform density ontains a Hilbert set ([14℄,Theorem 11.11; [22℄, Theorem 4), but not neessarily an IP -set ([14℄, Theorem11.6; [32℄, page 151). Another di�erene is that CΛ never has the UnonditionalMetri Approximation Property if Λ ⊆ Z is an IP -set ([23℄, Proposition 11),but an have this property when Λ is a Hilbert set ([23℄, Theorem 10).Remark 2. Let F be a lass of subsets of Γ, whih ontains all the �nite sets,and whih is loalizable for the Bohr topology. It follows from the proof ofTheorem 4.2 that suh a lass must ontain some Hilbert sets. In partiular Fhas to ontain sets Λ suh that Λ ontains parallelepipeds of arbitrarily largedimensions. Note that this last assertion is atually impliit in [27℄. Indeed, byDirihlet's theorem, ∑
n∈P∩(5Z+2)

1
n

= +∞, and by [31℄, Corollary 2, we have∑
n∈Λ

1
n
< +∞ when Λ does not ontain parallelepipeds of arbitrarily largedimensions. It is known that the sets belonging to the following lasses annotontain parallelepipeds of arbitrarily large dimensions:11



a) Λ(p)-sets (see [31℄, Theorem 3, and [9℄, Theorem 4);b) UC-sets ([9℄, Theorem 4);) p-Sidon sets ([15℄, Lemma 1);d) stationary sets ([18℄, Proposition 2.5);e) q-Rider sets (see [24℄ or [19℄ for the de�nition). Note that, for 1 ≤ q < 4/3,
q-Rider sets are p-Sidon sets, for every p > q/(2− q) (see [20℄), and so theresult is in ). For 4/3 ≤ q < 2, there is no expliit published proof ofthat, and therefore we shall give one in Proposition 4.4, after this Remark.Hene these lasses are not loalizable for the Bohr topology.This remark shows that there is no hope to onstrut sets of the above lassesby way of loalization.Proposition 4.4 If Λ is a q-Rider set, 1 ≤ q < 2, then Λ annot ontainparallelepipeds of arbitrarily large dimensions.Proof. A Sidon set (with onstant less than 10, say) inside a parallelepiped

P of size 2n annot ontain more than C n logn elements ([16℄, Chapter 6, � 3,Theorem 5, page 71), whereas if P were ontained in a q-Rider set, it shouldontain a quasi-independent (hene Sidon with onstant less than 10) set of sizeat least C 2εn, with ε = (2 − q)/q ([36℄, or [37℄, Teorema 2.3). �Note that another proof of Proposition 4.4 is impliit in [15℄. Indeed the proofgiven in [15℄, Lemma 1, that p-Sidon sets share this property only uses the fat,proved in [4℄, Eq. (9), that if Λ is a p-Sidon set, then, with α = 2p/(3p−2), thereis a onstant C > 0 suh that ‖f‖r ≤ C
√
r ‖f̂‖α for all r ≥ 2 (equivalently:

‖f‖Ψ2
≤ C′ ‖f̂‖α) for every f ∈ CΛ. Now the fourth-named author proved thatthese inequalities haraterize p-Rider sets ([36℄; see also [37℄, Teorema 2.3).5 Complemented subspaesSine Λ is a Rosenthal set if L∞

Λ = CΛ, it is natural to ask whether Λ isa Rosenthal set if there exists a projetion from L∞
Λ onto CΛ. We have notbeen able to answer this, even if this projetion were to have norm 1 (see [12℄,where the ondition that the spae does not ontain ℓ1 is ruial), but we havea partial result. Reall that it is not known whether CΛ 6⊇ c0 implies that Λ isa Rosenthal set.Theorem 5.1 Let Λ ⊆ Γ be suh that there exists a surjetive projetion

P : L∞
Λ → CΛ. Then CΛ does not ontain c0. Moreover, every Riemann-integrable funtion in L∞

Λ is atually in CΛ.
12



Reall that a funtion h : G→ C is Riemann-integrable if it is bounded andalmost everywhere ontinuous. Atually, the last assertion of the propositionmeans that every element of L∞
Λ whih ontains a Riemann-integrable funtionontains also a ontinuous one.Proof. 1) By [22℄, Proposition 14, if CΛ ontains c0, there is a sequene (fn)n≥1in CΛ, whih is equivalent to the anonial basis of c0, and whose w∗ linear span

F in L∞
Λ is isomorphi to ℓ∞. The restrition P|F is a projetion from F ontoa subspae of CΛ whih ontains E = span {fn ; n ≥ 1}.Observe that E is a separable subspae of CΛ. So there exists a ountablesubset Λ1 ⊆ Λ suh that E ⊆ CΛ1

. Moreover, there exists a ountable subgroup
Γ0 ⊆ Γ suh that Λ1 is ontained in Γ0. Taking Λ0 = Λ∩ Γ0, we have E ⊆ CΛ0

,and CΛ0
is a separable spae.The set Γ0 being a subgroup, there exists a measure µ on G whose Fouriertransform is µ̂ = 1IΓ0

. The map f 7→ f ∗ µ gives a projetion from CΛ onto CΛ0
,and Sobzyk's theorem gives a projetion from CΛ0

onto E. So there exists aprojetion from F ≃ ℓ∞ onto E ≃ c0, whih is a ontradition.2) We �rst assume that the group G is metrizable, so that C(G) is separable.Let RIΛ be the subspae of L∞
Λ onsisting of Riemann-integrable funtions(more preisely: the elements of L∞
Λ whih have a Riemann-integrable represen-tative).Consider the restrition of P to RIΛ. For f ∈ RI, the set

{x 7→ ξ(fx) ; ξ ∈ L∞(G)∗, ‖ξ‖ ≤ 1}is stable ([46℄, Theorem 15-6 )). Let µ ∈ (CΛ)∗, and set ϕ(x, y) =
(
P ∗µy)(fx)for x, y ∈ G. The map x ∈ G 7→ fx ∈ L∞(G) is salarly measurable ([45℄,Theorem 16) and y 7→ P ∗µy is ontinuous for the w∗-topology. Moreover {x 7→

(P ∗µy)(fx) ; y ∈ G} is stable, so by [46℄, Theorem 10-2-1, ϕ is measurable.Measurability refers here to the ompletion of the produt measure m ⊗m on
G × G, so in order to dedue that the map x ∈ G 7→ ϕ(x, x) = (P ∗µx)(fx) ismeasurable, we need the following lemma (note that our ϕ is bounded).Lemma 5.2 Let G be a metrizable ompat abelian group, and ϕ : G×G→ Ca funtion suh that:1) ϕ ∈ L∞(G×G);2) the map y 7→ ϕ(x, y) is ontinuous, for every x ∈ G.Then the map x 7→ ϕ(x, x) is measurable.Proof. G being metrizable, there exists a bounded sequene (fn)n in L1(G)suh that

g(0) = lim
n→∞

∫

G

fng dm , for every g ∈ C(G). (3)This sequene (fn)n represents an approximate identity.For every n, the funtion (x, y) 7→ fn(x − y)ϕ(x, y) is integrable in G × G.De�ne
Fn(x) =

∫

G

fn(x− y)ϕ(x, y) dm(y) =

∫

G

fn(t)ϕ(x, x − t) dm(t).13



By Fubini's theorem Fn is de�ned almost everywhere, and is integrable. So Fnis measurable, for every n. The lemma follows sine, by (3),
ϕ(x, x) = lim

n→∞
Fn(x) , for every x ∈ G. �The fat that the map x ∈ G 7→ (P ∗µx)(fx) =< µ,

[
P (fx)

]
−x

> is mea-surable means, sine µ is arbitrary, that x 7→
[
P (fx)

]
−x

∈ CΛ is salarly mea-surable. Sine we have assumed that C(G) is separable, this map is stronglymeasurable, by Pettis's measurability theorem ([7℄, II � 1, Theorem 2). Now weshowed in the beginning of the proof that CΛ does not ontain c0; so a result ofJ. Diestel [5℄ (see [7℄, II, � 3, Theorem 7) says that this map is Pettis-integrable,whih means that if we de�ne Qf using
< Qf, µ >=

∫

G

< fx, P
∗(µx) > dx ,for every µ ∈ (CΛ)∗, then Q maps RIΛ into CΛ, and not only into its bidual (seethe de�nition of Pettis-integrability in [7℄, II, � 3, page 53, De�nition 2, or in[46℄, De�nition 4-2-1).Thus Q is a projetion from RIΛ onto CΛ suh that Q(fx) = (Qf)x for every

f ∈ RIΛ and every x ∈ G.We want to prove that Qf = f for every f ∈ RIΛ, and for that we have tosee that Q̂f(γ) = f̂(γ) for every γ ∈ Γ. But it su�es to show that Q̂f(0) =

f̂(0), sine, after replaing Λ by (Λ − γ) and Q by Qγ : L∞
Λ−γ → CΛ−γ , with

Qγ(g) = γQ(γg), we then get for f ∈ RIΛ with g = γf :
Q̂f(γ) = [γ(Qf)]̂(0) = Q̂γg(0) = ĝ(0) = (̂γf)(0) = f̂(γ) .So, let f ∈ RIΛ. Every Riemann-integrable funtion has a unique invariantmean ([39℄, Lemma 7; [44℄); hene there are ([39℄, Proposition page 38; or [26℄,Proposition 1) onvex ombinations ∑

k∈In

cn,k fxn,k
, cn,k > 0, ∑

k∈In

cn,k = 1, oftranslates of f whih onverge in norm to the onstant funtion f̂(0) 1I. Wehave:
Q

( ∑

k∈In

cn,kfxn,k

)
−→

n→+∞
Q

[
f̂(0)1I

]
= f̂(0)1I .But Q(∑

k∈In
cn,kfxn,k

)
=

∑
k∈In

cn,k(Qf)xn,k
, and its Fourier oe�ient at 0is: ∑

k∈In

cn,kQ̂f(0) = Q̂f(0) .Therefore Q̂f(0) = f̂(0). �3) In order to �nish the proof, we have to explain why we may assume that
G is metrizable.Let Λ be as in the theorem, and f ∈ RIΛ. As explained in the proof of the�rst part of the theorem, there exists a ountable subgroup Γ0 ⊆ Γ suh that
f ∈ RIΛ0

, for Λ0 = Λ ∩ Γ0, and there exists a projetion from L∞
Λ0

onto CΛ0
.14



Let H be the annihilator of Γ0; that is, H is the following losed subgroupof G:
H = Γ⊥

0 = {x ∈ G ; γ(x) = 1, ∀γ ∈ Γ0}.The quotient group G/H is metrizable sine its dual group Γ0 is ountable. Let
πH denote the quotient map from G onto G/H . It is known that that the map
g 7→ g ◦ πH gives an isometry from L∞

Λ0
(G/H) onto L∞

Λ0
(G) sending CΛ0

(G/H)onto CΛ0
(G).In order to �nish our redution to the metrizable ase we only have to seethat this isometry sends RIΛ0

(G/H) onto RIΛ0
(G). It is easy to see, via themap g 7→ g ◦ πH , that having a Riemann-integrable funtion g : G/H → C isthe same as having a Riemann-integrable funtion g : G→ C with the property

g(x+h) = g(x), for every x ∈ G and every h ∈ H . Therefore the above isometrysends RIΛ0
(G/H) into RIΛ0

(G). The surjetivity of this map is a onsequeneof the following proposition:Proposition 5.3 Let f : G → C be a Riemann-integrable funtion suh that
f̂(γ) = 0, for every γ ∈ Γ\Γ0. Then there exists a Riemann-integrable funtion
g : G→ C suh that:a) f = g almost everywhere;b) g(x) = g(x+ h), for all x ∈ G and for all x ∈ H.Proof. We an and we will assume that f is in fat real valued. Take aninreasing sequene (Kn)n of ompat subsets of G suh that, if B =

⋃
nKn,then:

i) f is ontinuous at every point of B;
ii) m(G \B) = 0.Using the ompatness of Kn and the ontinuity of f on B, one an �nd aneighbourhood Wn of 0 suh that

|f(x) − f(x+ y)| ≤ 1

n
, for every x ∈ Kn, and every y ∈Wn. (4)Let (Vn)n be a dereasing sequene of open symmetri neighbourhoods of 0suh that Vn + Vn ⊆Wn, for every n. For every n, de�ne fn as:

fn(x) =
1

m(Vn)

∫

Vn

f(x− y) dm(y) , x ∈ G.

fn is a ontinuous funtion sine it is the onvolution of f and
ψn =

1

m(Vn)
1IVn

.We also have
f̂n(γ) = f̂(γ)ψ̂n(γ) = 0 , for all γ ∈ Γ \ Γ0.Then the ontinuous funtion fn only depends on the lasses in G/H ; that is,

fn(x) = fn(x+ h) , for all x ∈ G, all h ∈ H and all n.15



De�ne
g(x) =

1

2

(
lim sup
n→∞

fn(x) + lim inf
n→∞

fn(x)
)
, x ∈ G.It is lear that g(x) = g(x + h), for all x ∈ G and for all h ∈ H . Sine

Vn ⊆ Wn, we have from (4) that |fn(x) − f(x)| ≤ 1/n, for all x ∈ Kn. If
x ∈ B =

⋃
nKn, then there exists N suh that x ∈ Kn, for all n ≥ N .Therefore |fn(x) − f(x)| ≤ 1/n, for all n ≥ N , and g(x) = f(x). So f = galmost everywhere.In order to �nish the proof we are going to see that every point of B is apoint of ontinuity of g, and so g is Riemann-integrable. Let x be in B. Given

ε > 0, there exists N suh that 1/N ≤ ε and x ∈ Kn, for all n ≥ N . We aregoing to prove
|g(x) − g(x+ y)| ≤ ε, for every y ∈ VN . (5)So g will be ontinuous at x.Take n ≥ N , and y ∈ VN . For every z ∈ Vn we have x + y + z ∈ WN , and

|f(x)− f(x+ y+ z)| ≤ 1/N . By the de�nition of fn we get |f(x)− fn(x+ y)| ≤
1/N , for every n ≥ N . Then we obtain (5) easily, sine f(x) = g(x). �Remarks. 1) Atually the proof shows that if Λ is a Lust-Piquard set and ifthere exists a surjetive projetion Q : L∞

Λ → CΛ whih ommutes with transla-tions, then Λ is a Rosenthal set.2) Talagrand's work [45℄ uses Martin's axiom, and, in [46℄, another ax-iom,alled L. But these axioms do not intervene in the results we use (they areneeded to obtain Riemann-integrability from the weak measurability of trans-lations: see [46℄, Theorem 15-4).3) F. Lust-Piquard and W. Shahermayer ([29℄, Corollary IV.4 and Propo-sition IV.15; see also [11℄, Theorem V.1, Corollary VI.18, and Example VIII.10)showed that if L1(G)/L1
Γ\(−Λ) does not ontain ℓ1 (whih is equivalent to L∞

Λhaving the weak Radon-Nikodym property [46℄, Corollary (7-3-8)), then L∞
Λ =

RIΛ. Hene Λ must be a Rosenthal set if L∞
Λ has the weak Radon-Nikodymproperty and there exists a projetion from L∞

Λ onto CΛ. However, a diret proofis available. For a more general result, see [11℄, Example following PropositionVII.6.4) The �rst part of the proof is the same as the one used by A. Peªzy«ski([34℄, Cor. 9.4 (a)) to show that A(D) = CN is not omplemented in H∞ = L∞
N
.Question. When Λ is not a Rosenthal set, or, merely when CΛ ontains c0,how big an L∞

Λ /CΛ be?Referenes[1℄ J. Bourgain, Quelques propriétés linéaires topologiques de l'espae desséries de Fourier uniformément onvergentes, Séminaire d'Initiation à16
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