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Abstract. We show that the approximation numbers of a compact composi-
tion operator on the weighted Bergman spaces Bα of the unit disk can tend to
0 arbitrarily slowly, but that they never tend quickly to 0: they grow at least
exponentially, and this speed of convergence is only obtained for symbols which
do not approach the unit circle. We also give an upper bounds and explicit an
example.
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1 Introduction

Let D be the open unit disk of the complex plane, equipped with its normal-
ized area measure dA(z) = dxdy

π . For α > −1, let Bα be the weighted Bergman
space of analytic functions f(z) =

∑∞
n=0 anz

n on D such that

‖f‖2α = (α+ 1)

∫

D

|f(z)|2(1− |z|2)α dA(z) =
∞∑

n=0

n!Γ(2 + α)

Γ(n+ 2 + α)
|an|2 <∞.

The limiting case, as α
>−→−1, of those spaces is the usual Hardy space H2

(indeed, if f is a polynomial, we have lim
α

>−→−1
‖f‖2α =

∑∞
n=0 |an|2 = ‖f‖2H2),

which we shall treat as B−1. Note that ‖f‖2α ≈ ∑∞
n=0

|an|2
(n+1)α+1 and that

dAα(z) = (α+ 1)(1− |z|2)α dA(z)
is a probability measure on D.

Bergman spaces ([46] page 75, page 78) are Hilbert spaces of analytic func-
tions on D with reproducing kernel Ka ∈ Bα, given by Ka(z) = ( 1

1−az )
α+2,

namely, for every a ∈ D:

(1.1) f(a) = 〈f,Ka〉 , ∀f ∈ Bα; and ‖Ka‖2 = Ka(a) =
( 1

1− |a|2
)α+2

.
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An important common feature of those spaces is that the multipliers of Bα can
be (isometrically) identified with the space H∞ of bounded analytic functions
on D, that is:

(1.2) ∀g ∈ H∞, ‖g‖∞ = sup
f∈Bα,‖f‖α≤1

‖fg‖α.

Indeed, ‖fg‖α ≤ ‖g‖∞‖f‖α is obvious, and if ‖fg‖α ≤ C‖f‖α for all f ∈ Bα,
testing this inequality successively on f = 1, g, . . . , gn, . . . easily gives g ∈ H∞

and ‖g‖∞ ≤ C.

Let now ϕ be a non-constant analytic self-map (a so-called Schur function)
of D and let Cϕ : Bα → H (D) the associated composition operator:

Cϕ(f) = f ◦ ϕ.

It is well-known ([9] page 30) that such an operator is always bounded from Bα

into itself, and we are interested in its approximation numbers.

Also recall that the approximation (or singular) numbers an(T ) of an oper-
ator T ∈ L(H1, H2), between two Hilbert spaces H1 and H2, are defined, for
n = 1, 2, . . . , by:

an(T ) = inf{‖T −R‖ ; rank (R) < n}.

We have:
an(T ) = cn(T ) = dn(T ) ,

where the numbers cn (resp. dn) are the Gelfand (resp. Kolmogorov) numbers
of T ([6], page 59 and page 51 respectively).

In the sequel we shall need the following quantity:

(1.3) β(T ) = lim inf
n→∞

[
an(T )

]1/n
.

Those approximation numbers form a non-increasing sequence such that

a1(T ) = ‖T ‖, an(T ) = an(T
∗) =

√
an(T ∗T )

and verify the so-called “ideal” and “subadditivity” properties ([17] page 57 and
page 68):

(1.4) an(ATB) ≤ ‖A‖ an(T ) ‖B‖ ; an+m−1(S + T ) ≤ an(S) + am(T ).

Moreover, the sequence (an(T )) tends to 0 iff T is compact. If (an(T )) ∈ ℓp, we
say that T belongs to the Schatten class Sp of index p, 0 < p < ∞. Taking for
T a compact diagonal operator, we see that this sequence is non-increasing with
limit 0, but otherwise arbitrary. But if we restrict ourselves to a specified class
of operators, the answer is far from being so simple, although in some cases
the situation is completely elucidated. For example, for the class of Hankel
operators on H2 (those operators Hφ whose matrix (ai,j) on the canonical basis
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of H2 is of the form ai,j = φ̂(i + j) for some function φ ∈ L∞), it is known
that Hφ is compact if and only if the conjugate φ̄ of the symbol φ belongs
to H∞ + C, where C denotes the space of continuous, 2π-periodic functions
(Hartman’s theorem, [32] page 214). For those Hankel operators, the following
theorem, due to A. V. Megretskii, V. V. Peller, and S. R. Treil ([31] and [37],
Theorem 0.1, page 490), shows that the approximation numbers are absolutely
arbitrary, under the following form.

Theorem 1.1 (Megretskii-Peller-Treil) Let (εn)n≥1 be a non-increasing se-
quence of positive numbers. Then there exists a Hankel operator Hφ satisfying:

an(Hφ) = εn, ∀n ≥ 1.

Indeed, if we take a positive self-adjoint operator A whose eigenvalues sn coin-
cide with the εn’s and whose kernel is infinite-dimensional, it is easily checked
that this operator A verifies the three necessary and sufficient conditions of
Theorem 0.1, page 490 in [37] and is therefore unitarily equivalent to a Hankel
operator Hφ which will verify, in view of (1.4):

an(Hφ) = an(A) = εn, n = 1, 2, . . .

In particular, if εn → 0, the above Hankel operator will be compact, and in no
Schatten class if εn = 1/ log(n + 1) for example. We also refer to [16] for the
following slightly weaker form due to S. V. Khruscëv and V. Peller, but with a
more elementary proof based on interpolation sequences in the Carleson sense:
for any δ > 0, there exists a Hankel operator Hφ such that

1

1 + δ
εn ≤ an(Hφ) ≤ (1 + δ) εn, n = 1, 2, . . .

Now, the aim of this work is to prove analogous theorems for the class of
composition operators (whose compactness was characterized in [29] and [42]).
But if we are able to obtain the Khruscëv-Peller analogue for the lower bounds,
we will only obtain subexponential estimates for the upper bounds, a fact which
is explained by our second result: the speed of convergence to 0 of the approx-
imation numbers of a composition operator cannot be greater than geometric
(and is geometric for symbols ϕ verifying ‖ϕ‖∞ < 1). Our first result involves
a constant < 1 and is not as precise as the result of Megretskii-Peller-Treil or
even that of Khruscëv-Peller; this is apparently due to the non-linearity of the
dependence with respect to the symbol for the class of composition operators,
contrary to the case of the Hankel class.This latter lower bound improves several
previously known results on “non-Schattenness” of those operators (see Corol-
lary 4.2 below) and also answers in the positive to a question which was first
asked to us by C. Le Merdy ([26]) in the OT Conference 2008 of Timisoara, con-
cerning the bad rate of approximation of compact composition operators. Those
theorems are, to our knowledge, the first individual results on approximation
numbers an of composition operators (in the work of Parfenov [35], some good
estimates are given for the approximation numbers of the Carleson embedding
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operator in the case of the space H2 = B−1, but they remain fairly implicit,
and are not connected with composition operators), whereas all previous results
where in terms of symmetric norms of the sequence (an), not on the behaviour
of each an.

Before describing our results, let us recall two definitions. For every ξ with
|ξ| = 1 and 0 < h < 1, the Carleson window W (ξ, h) centered at ξ and of size h
is the set

W (ξ, h) = {z ∈ D ; |z| ≥ 1− h and | arg(zξ)| ≤ πh}.

Let µ be a positive, finite, measure on D; the associated maximal function ρµ is
defined by:

(1.5) ρµ(h) = sup
|ξ|=1

µ
(
W (ξ, h)

)
.

The measure µ is called a Carleson measure for the Bergman space Bα, or an
(α+ 2)-Carleson measure (including the case B−1 = H2), if ρµ(h) = O (h2+α)
as h→ 0. For any Schur function ϕ, we shall denote by mϕ the image ϕ∗(m) of
the Haar measure m of the unit circle under the radial limits function ϕ∗(u) =
limr→1− ϕ(ru) of ϕ, |u| = 1, and by Aϕ,α+2 the image of the probability measure
(α + 1)(1 − |z|2)αdA(z) under ϕ. The corresponding maximal function will be

denoted by ρϕ,α+2. This notation is justified by the fact that mϕ
def
= Aϕ,1 is a 1-

Carleson measure and Aϕ,α an (α+2)-Carleson measure for α > −1, in view of
the famous Carleson embedding theorem which, expressed under a quantitative
and generalized form, states the following, implicit as concerns ‖j‖ and with
different notations, but fully proved in [44], Theorem 1.2, for the case α > −1
(see [32], page 153).

Theorem 1.2 (Carleson’s theorem) For any (α + 2)-Carleson measure µ,
the canonical inclusion mapping j : Bα → L2(µ) is defined and continuous, and
its norm satisfies

(1.6) C−1 sup
0<h<1

√
ρµ(h)

h2+α
≤ ‖j‖ ≤ C sup

0<h<1

√
ρµ(h)

h2+α
·

The paper is organized as follows. Section 1 is this introduction. In Sec-
tion 2, we prove some preliminary lemmas. Our first theorems concern lower
bounds. In Section 3, we prove (Theorem 3.1) that the convergence of the ap-
proximation numbers an(Cϕ) of a composition operator Cϕ : Bα → Bα cannot
exceed an exponential speed: for some r ∈ (0, 1) and some constant c > 0, one
has an(Cϕ) ≥ c rn. More precisely, with the notations (1.3) and (3.1), one has
β(Cϕ) ≥ [ϕ]2. Moreover, this speed of convergence is only attained if the values
of ϕ do not approach the boundary of the unit disk: ‖ϕ‖∞ < 1 (Theorem 3.4).
On the other hand, the speed of convergence to 0 of an(Cϕ) can be arbitrarily
slow; this is proved in Section 4. The proof is mainly an adaptation of the

4



one in [7], but is fairly technical at some points, and will require several addi-
tional explanations. In Section 5, we prove an upper estimate (Theorem 5.1),
and give three applications of this theorem. In the final Section 6, we test our
general results against the example of lens maps, which are known to generate
composition operators belonging to all Schatten classes.

2 Preliminary lemmas

In this Section, we shall state several lemmas, which are either already known
or quite elementary, but turn out to be necessary for the proofs of our Theo-
rem 3.1 and Theorem 4.1.

For the proof of Theorem 3.1, we shall need the Weyl lemma ([6] Proposi-
tion 4.4.2, page 157).

Lemma 2.1 (Weyl lemma) Let T : H → H be a compact operator. Suppose
that (λn)n≥1 is the sequence of eigenvalues of T rearranged in non-increasing
order. Then, we have:

n∏

k=1

ak(T ) ≥
n∏

k=1

|λk|.

We recall ([3], [13] pages 194–195, [33] pages 302–303) that an interpolation
sequence (zn) with (best) interpolation constant C is a sequence (zn) (necessarily
Blaschke, i.e.

∑∞
n=1(1− |zn|) <∞) in the unit disk such that, for any bounded

sequence (wn) of scalars, there exists a bounded analytic function f (i.e. f ∈
H∞) such that:

f(zn) = wn , ∀n ≥ 1, and ‖f‖∞ ≤ C supn≥1 |wn|.

The Carleson constant δ of a Blaschke sequence (zn) is defined as follows:

(2.1) δn =
∏

j 6=n
ρ(zn, zj) ; δ = inf δn = inf

n≥1
(1− |zn|2)|B′(zn)|,

where B is the Blaschke product with zeroes zn, n ≥ 1. The interpolation
constant C is related to the Carleson constant δ by the following inequality
([10] page 278), in which λ is a positive numerical constant:

(2.2)
1

δ
≤ C ≤ λ

δ

(
1 + log

1

δ

)
·

This latter inequality can be viewed as a quantitative form of the Carleson
interpolation theorem. Interpolation sequences and reproducing kernels of Bα

are related as follows ([33] pages 302–303).

Lemma 2.2 Let (zn)n≥1 be an H∞-interpolation sequence of the unit disk,
with interpolation constant C. Then, the sequence (fn) = (Kzn/‖Kzn‖) of
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normalized reproducing kernels at zn is C-equivalent to an orthonormal basis in
Bα, namely we have for any finite sequence (λn) of scalars:

(2.3) C−1
(∑

n
|λn|2

)1/2

≤
∥∥∥
∑

n
λnfn

∥∥∥
α
≤ C

(∑
n
|λn|2

)1/2

.

The proof in [33] is only for H2, therefore we indicate a simple proof valid for
Bergman spaces Bα as well. Let S =

∑
λnKzn be a finite linear combination

of the kernels Kzn , ω = (ωn) be a sequence of complex signs, Sω =
∑
ωnλnKzn

and g ∈ H∞ an interpolating function for the sequence (ωn), i.e. g(zn) = ωn
and ‖g‖∞ ≤ C. If f ∈ Bα and ‖f‖α ≤ 1, we see that:

〈Sω, f〉 =
∑

ωnλnf(zn) =
∑

λn(fg)(zn) =
∑

λn〈Kzn , fg〉 = 〈S, fg〉,

so that using (1.2):

|〈Sω, f〉| ≤ ‖S‖α‖fg‖α ≤ ‖S‖α‖g‖∞‖f‖α ≤ C‖S‖α

and passing to the supremum on f , we get ‖Sω‖α ≤ C‖S‖α. Since the coeffi-
cients λn are arbitrary, this implies that (fn) is C-unconditional, namely:

C−1
∥∥∥
∑

ωnλnfn

∥∥∥
α
≤

∥∥∥
∑

λnfn

∥∥∥
α
≤ C

∥∥∥
∑

ωnλnfn

∥∥∥
α
.

Now, squaring and integrating with respect to random, independent, choices of
signs ωn’s, we get (2.3). �

We also recall ([13] pages 203–204) that an increasing sequence (rn) of num-
bers such that 0 < rn < 1 and 1−rn+1

1−rn ≤ ρ < 1 (i.e. verifying the so-called
Hayman-Newman condition) is an interpolation sequence (see also [32]). In the
following, let (rn) be such a sequence verifying moreover the backward induction
relation:

(2.4) ϕ(rn+1) = rn.

Set fn = Krn/‖Krn‖ and W = span(fn). Let (en)n≥1 be the canonical basis
of ℓ2, ϕ a Schur function and h ∈ H∞ a function vanishing at r1. Denote by
Mh : Bα → Bα the operator of multiplication by h. Then, we have the following
basic lemma, which shows that some compression of C∗

ϕ is a backward shift with
controlled weights ([7]).

Lemma 2.3 Let J : ℓ2 → W be the isomorphism given by J(en) = fn. Then,
the operator B = J−1C∗

ϕM
∗
hJ : ℓ

2 → ℓ2 is the weighted backward shift given by:

(2.5) B(en+1) = wnen and B(e1) = 0, where wn = h(rn+1)
‖Krn‖
‖Krn+1‖

·
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To exploit Lemma 2.3, we shall need the following simple fact on approxi-
mation numbers of weighted backward shifts.

Lemma 2.4 Let (en)n≥1 be an orthonormal basis of the Hilbert space H and
B ∈ L(H) the weighted backward shift defined by

B(e1) = 0 and B(en+1) = wnen, where wn → 0.

Assume that |wn| ≥ εn for all n ≥ 1, where (εn) is a non-increasing sequence
of positive numbers. Then B is compact, and satisfies:

(2.6) an(B) ≥ εn, ∀n ≥ 1.

Proof. The compactness of B is obvious. Let R be an operator of rank < n.
Then kerR is of codimension < n, and therefore intersects the n-dimensional
space generated by e2, . . . , en+1 in a vector x =

∑n
j=1 xjej+1 of norm one. We

then have:

‖B−R‖2 ≥ ‖Bx−Rx‖2 = ‖Bx‖2 =
∑n

j=1
|wj |2|xj |2

≥
∑n

j=1
ε2j |xj |2 ≥ ε2n

∑n

j=1
|xj |2 = ε2n.

This ends the proof of Lemma 2.4. �

Now, in view of (1.1) and (2.5), the weight wn roughly behaves as
√

1−rn+1

1−rn ,

so we shall need good estimates on that quotient, before defining the sequence
(rn) explicitly.

We first connect this estimate with the hyperbolic distance d in D. We denote
(see [12] or [15] for the definition) by d(z, w;U) the hyperbolic distance of two
points z, w of a simply connected domain U . It follows from the generalized
Schwarz-Pick lemma ([15] Theorem 7.3.1, page 130) applied to the canonical
injection U → V that the bigger the domain the smaller the hyperbolic distance,
namely:

(2.7) U ⊂ V and z, w ∈ U =⇒ d(z, w;V ) ≤ d(z, w;U).

Moreover, as is well-known,

0 ≤ r < 1 =⇒ d(0, r;D) =
1

2
log

1 + r

1− r
·

Recall that the pseudo-hyperbolic and hyperbolic distances ρ and d on D are
defined by:

ρ(a, b) =
∣∣∣ a− b

1− ab

∣∣∣ , d(a, b) =
1

2
log

1 + ρ(a, b)

1− ρ(a, b)
, a, b ∈ D,

In the sequel, we shall omit the symbol D as far as the open unit disk is con-
cerned. For this unit disk, we have the following simple inequality ([7]) .

Lemma 2.5 Let a, b ∈ D with 0 < a < b < 1. Then:

(2.8) e−2d(a,b) ≤ 1− b

1− a
≤ 2 e−2d(a,b).
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Finally, before proceeding to the construction of our Schur function ϕ in
Section 4, it will be useful to note the following simple technical lemma.

Lemma 2.6 Let (εn) be a non-increasing sequence of positive numbers of limit
0. Then there exists a decreasing and logarithmically convex sequence (δn) of
positive numbers, with limit 0, such that δn ≥ εn for all n ≥ 1.

Proof. Provided that we replace εn by εn + 1
n , we may assume that (εn) is

decreasing. Let us define our new sequence by the inductive relation:

δ1 = ε1 ; δ2 = ε2 ; δn+1 = max
(
εn+1, δ

2
n/δn−1

)
.

This sequence is log-convex by definition, i.e. δ2n ≤ δn+1δn−1. By induction,
it is seen to be decreasing. Therefore, it has a limit l ≥ 0. If δn = εn for
infinitely many indices, l = 0. Otherwise, for n large enough, we have the
inductive relation δn+1 = δ2n/δn−1, which implies that δn = exp(λn + µ) for
some constants λ, µ. Since (δn) is decreasing, we must have λ < 0 and again we
get l = 0. �

In the sequel, we may and will thus assume, without loss of generality, that
(εn) is decreasing and logarithmically convex.

3 Lower bounds

We first introduce a notation. If

ϕ#(z) = lim
w→z

ρ(ϕ(w), ϕ(z))

ρ(w, z)
=

|ϕ′(z)|(1− |z|2)
1− |ϕ(z)|2

is the pseudo-hyperbolic derivative of ϕ, we set:

(3.1) [ϕ] = sup
z∈D

ϕ#(z) = ‖ϕ#‖∞.

In our first theorem, we get that the approximation numbers cannot super-
sede a geometric speed.

Theorem 3.1 For any Schur function ϕ, there exist positive constants c > 0
and 0 < r < 1 such that, for Cϕ : Bα → Bα, we have:

(3.2) an(Cϕ) ≥ c rn, n = 1, 2, . . .

More precisely, one has β(Cϕ) ≥ [ϕ]2 and hence, for each κ < [ϕ], there exists
a constant cκ > 0 such that:

(3.3) an(Cφ) ≥ cκκ
2n.
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For the proof, we need the following lemma.

Lemma 3.2 Let T : H → H be a compact operator. Suppose that (λn)n≥1, the
sequence of eigenvalues of T rearranged in non-increasing order, satisfies, for
some δ > 0 and r ∈ (0, 1):

|λn| ≥ δrn, n = 1, 2, . . .

Then there exists δ1 > 0 such that

an(T ) ≥ δ1r
2n, n = 1, 2, . . .

In particular β(T ) ≥ r2.

Proof. By Weyl’s inequality (Lemma 2.1), we have

n∏

k=1

ak(T ) ≥
n∏

k=1

|λk| ≥ δnrn(n+1)/2.

Since ak(T ) is non-increasing and ak(T ) ≤ ‖T ‖ for every k, changing n into 2n,
we get:

‖T ‖nan(T )n ≥
2n∏

k=1

ak(T ) ≥ δ2nrn(2n+1) ≥ δ2nr2n
2

and therefore an(T ) ≥ δ2

‖T‖ r
2n = δ1r

2n, as claimed. �

By applying this lemma to composition operators, we get the following result,
which ends the proof of Theorem 3.1.

Proposition 3.3 For every composition operator Cϕ : Bα → Bα of symbol
ϕ : D → D, we have β(Cϕ) ≥ [ϕ]2.

Proof. For every a ∈ D, let Φa be the (involutive) automorphism of the unit
disk defined by

Φa(z) =
a− z

1− az
, z ∈ D.

Observe that we have

Φa(a) = 0, Φa(0) = a, Φ′
a(a) =

1

|a|2 − 1
, Φ′

a(0) = |a|2 − 1.

Define now ψ = Φϕ(a) ◦ ϕ ◦ Φa. We have that 0 is a fixed point of ψ, whose
derivative is, by the chain rule:

(3.4) ψ′(0) = Φ′
ϕ(a)(φ(a))ϕ

′(a)Φ′
a(0) =

ϕ′(a)(1− |a|2)
1− |ϕ(a)|2

def
= ϕ#(a).

By Schwarz’s lemma, we know that |ψ′(0)| ≤ 1 and so |ϕ′(a)|(1−|a|2)
1−|ϕ(a)|2 ≤ 1

(Schwarz-Pick’s inequality).
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Let us first assume that the composition operator Cϕ is compact. Then, so
is Cψ , since we have

(3.5) Cψ = CΦa
◦ Cϕ ◦ CΦϕ(a)

.

If ψ′(0) 6= 0, the sequence of eigenvalues of Cψ is
(
[ψ′(0)]n

)
n≥0

([41], page 96;

the result given for the space H2 holds for Bα ⊂ H2, and would also hold for
any space of analytic functions in D on which Cψ is compact). Lemma 3.2 then
gives us:

β(Cψ) ≥ |ψ′(0)|2 = [ϕ#(a)]2 ≥ 0.

This trivially still holds if ψ′(0) = 0.
Now, since CΦa

and CΦϕ(a)
are invertible operators, (3.5) clearly implies that

β(Cϕ) = β(Cψ), and therefore, with the notation of (3.4):

β(Cϕ) ≥ [ϕ#(a)]2, for all a ∈ D.

By passing to the supremum on a ∈ D, we end the proof of Proposition 3.3, and
that of Theorem 3.1 in the compact case. If Cϕ is not compact, the proposition
trivially holds. Indeed, in this case, we have β(Cϕ) = 1 ≥ [ϕ]2. �

Remark. It is easy to see that the composition operator Cϕ is always of infinite
rank, contrary to the case of a Hankel operator, so that in some sense it refuses
to be approached by finite-rank operators. Theorem 3.1 quantifies things: it is
a well-known and easy fact (see for example [41], page 25 and see Theorem 5.1
to come) that, in the case ‖ϕ‖∞ < 1, we have an(Cϕ) ≤ c‖ϕ‖n∞ (and hence
β(Cϕ) ≤ ‖ϕ‖∞ < 1), showing that the approximation numbers can decrease
at an exponential speed. Theorem 3.1 shows that this speed is the maximal
possible one. The next theorem says that this maximal speed is only obtained
when ‖ϕ‖∞ < 1.

Theorem 3.4 For every α ≥ −1, there exists, for any 0 < r < 1, s = s(r) < 1,
satisfying limr→1− s(r) = 1, such that, for Cϕ : Bα → Bα, one has, with the
notation coined in (1.3):

(3.6) ‖ϕ‖∞ > r =⇒ β(Cϕ) ≥ s2.

In particular, the exponential speed of convergence to 0 of the approximation
numbers of a composition operator Cφ of symbol ϕ takes place if and only if
‖ϕ‖∞ < 1; in other words, we have:

(3.7) ‖ϕ‖∞ = 1 ⇐⇒ β(Cϕ) = 1.

The proof will proceed through a series of lemmas. Throughout that proof,
we assume, without loss of generality, that ϕ(0) = 0.
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Lemma 3.5 Let K be a compact subset of ϕ(D) and µ be a probability supported
by K. Then, there exists a constant δ > 0 such that, if Rµ : Bα → L2(µ) denotes
the restriction operator, we have:

an(Cϕ) ≥ δ an(Rµ).

In particular:
β(Cϕ) ≥ β(Rµ).

Proof. Since ϕ is an open map, there exists a compact set L ⊂ D and a Borel
subset A ⊂ L such that ϕ(A) = K and ϕ : A → K is a bijection (see [36],
Chapter I, Theorem 4.2). Then µ = ϕ(ν), where ν = ϕ−1(µ) is a probability
measure supported by L, and we have automatically ‖Rν‖ < ∞. Then, for
every f ∈ Bα:

‖f‖2L2(µ) =

∫

K

|f |2 dµ =

∫

L

|f ◦ ϕ|2 dν = ‖Cϕf‖2L2(ν).

This yields ‖Rµf‖ = ‖(Rν ◦ Cϕ)f‖, so Cϕ acts as an isometry from L2(µ) into
L2(ν), and the lemma follows, since we have then:

an(Rµ) = an(Rν ◦ Cϕ) ≤ ‖Rν‖ an(Cϕ)

for every n ≥ 1. �

Observe that this provides a new proof of Theorem 3.1. Indeed, if K ⊂ ϕ(D)
is a small ball of center 0 and radius r, we can take for µ the normalized area
measure on K; then Parseval’s formula easily shows that β(Rµ) ≥ r in that
case.

The strategy of the proof of Theorem 3.4 will consist of refining this obser-
vation. More precisely, we shall show that the situation can be reduced to the
case K = [0, r], and that an appropriate choice of µ can be made in that case,
giving a sharp lower bound for β(Rµ). We begin with explaining that choice in
the next two lemmas.

Lemma 3.6 For every r ∈ (0, 1) there exists s = s(r) < 1 and f = fr ∈ H∞

with the following properties:

1) limr→1− s(r) = 1;

2) ‖f‖∞ ≤ 1;

3) f((0, r]) = s ∂D in a one-to-one way.

Proof. Let ρ = 1−
√
1−r2
r . Then r = 2ρ

1+ρ2 and the automorphism ϕρ(z) =
ρ−z
1−ρz

maps [0, r] onto [−ρ, ρ]. We define ε = ε(r) and s = s(r) by the following
relations:

(3.8) ε(r) =
π

log 1+ρ
1−ρ

, and s = e−επ/2.
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Let now

(3.9) χ(z) = ε log
1 + ϕρ(z)

1− ϕρ(z)

and

(3.10) f(z) = s eiχ(z) .

Note that f = eh, where

h(z) = iε log
1 + ϕρ(z)

1− ϕρ(z)
− ε

π

2

is a conformal mapping from D onto a small vertical strip of the left-half plane.
This function f fulfills all the requirements of the lemma. Indeed, we have
|f(z)| ≤ 1 for all z ∈ D and

h([0, r]) =

[
− iε log

1 + ρ

1− ρ
, iε log

1 + ρ

1− ρ

]
− ε

π

2
= [−iπ, iπ]− ε

π

2
,

so that f((0, r]) = {w = seiθ ; −π ≤ θ ≤ π}, in a one-to-one way. �

Lemma 3.6 allows a good choice of the measure µ as follows.

Lemma 3.7 Let f be as in Lemma 3.6. Then, there exists a probability measure
µ = µr supported by [0, r] and a constant δr > 0 such that, for any integer n ≥ 1
and any choice of scalars c0, c1, . . . , cn−1, we have:

∥∥∥∥
n−1∑

j=0

cjRµ(f
j)

∥∥∥∥
L2(µ)

≥ sn√
n

∥∥∥∥
n−1∑

j=0

cjf
j

∥∥∥∥
H2

≥ sn√
n

∥∥∥∥
n−1∑

j=0

cjf
j

∥∥∥∥
Bα

.

As a consequence, we can claim that, for Cϕ : Bα → Bα:

(3.11) ϕ(D) ⊃ [0, r] =⇒ β(Cϕ) ≥ s = s(r).

Proof. With our previous notations, we know that χ is a bijective map from
]0, r] onto the unit circle ∂D. Let µ = χ−1(m) be the image of the Haar measure
m of ∂D by χ−1. We have by definition of µ:

∥∥∥∥
n−1∑

j=0

cjRµ(f
j)

∥∥∥∥
2

L2(µ)

=

∫ r

0

∣∣∣∣
n−1∑

j=0

cjf
j(x)

∣∣∣∣
2

dµ(x) =

∫ r

0

∣∣∣∣
n−1∑

j=0

cjs
jeijχ(x))

∣∣∣∣
2

dµ(x)

=

∫ π

−π

∣∣∣∣
n−1∑

j=0

cjs
jeijθ

∣∣∣∣
2
dθ

2π
=

n−1∑

j=0

|cj |2s2j

≥ s2n
n−1∑

j=0

|cj |2.

12



Now, ‖f j‖H2 ≤ ‖f j‖∞ ≤ 1, so that we have, using the Cauchy-Schwarz inequal-
ity:

∥∥∥∥
n−1∑

j=0

cjf
j

∥∥∥∥
H2

≤
n−1∑

j=0

|cj | ‖f j‖H2 ≤
n−1∑

j=0

|cj | ≤
√
n

( n−1∑

j=0

|cj |2
)1/2

,

giving the first inequality, since ‖ ‖H2 ≥ ‖ ‖Bα
. Finally, let R : Bα → L2(µ)

be an operator of rank < n. We can find a function g =
∑n−1

j=0 cjf
j such that

‖g‖Bα
= 1 and R(g) = 0. The first part of the proof gives:

‖Rµ −R‖ ≥ ‖Rµ(g)−R(g)‖ = ‖Rµ(g)‖ =

∥∥∥∥
n−1∑

j=0

cjf
j

∥∥∥∥
L2(µ)

≥ sn√
n

∥∥∥∥
n−1∑

j=0

cjf
j

∥∥∥∥
Bα

=
sn√
n
·

Therefore an(Rµ) ≥ sn/
√
n and, in view of Lemma 3.5, the last conclusion of

Lemma 3.7 follows. �

The next lemma explains how to reduce the situation to the case K = [0, r]
when we only know that ‖ϕ‖∞ > r. It was inspired to us by the proof of
the Lindelöf theorem that convergence along a curve implies non-tangential
convergence for functions in Hardy spaces ([39] page 300).

Lemma 3.8 Suppose that 0 and r belong to ϕ(D), with 0 < r < 1. Let µ be a
probability measure carried by [0, r]. Then, there exists a probability measure ν
carried by a compact set K ⊂ ϕ(D) such that, for any f ∈ H(D):

(3.12)
∫

[0,r]

|f(x)|2 dµ(x) ≤ 1

2

∫

K

(
|f(z)|2 + |f(z̄)|2

)
dν(z).

Proof. Since ϕ(D) is open and connected and 0, r ∈ ϕ(D), there is a curve with
image K ⊂ ϕ(D) connecting 0 and r. Put K̃ = {z̄ ; z ∈ K}. Then, there exists
a compact set L such that [0, r] ⊂ L and whose boundary ∂L ⊂ (K ∪ K̃). Now,
the existence of ν carried by K will be provided by an appropriate application
of the Pietsch factorization Theorem. To that effect, let X be the real subspace
of C(L) formed by the real functions which are harmonic in the interior of L. By
the maximum principle for harmonic functions, X can be viewed as a subspace
of C(K ∪ K̃). Now, the inclusion map j of X into L2(µ) has 2-summing norm
less than one ([1] page 208, or [24], Chapitre 5, Proposition I.3). Therefore, the
Pietsch factorization Theorem ([1] page 209, or [24], Chapitre 5, Théorème I.5)
implies the existence of a probability σ on K ∪ K̃ such that, for every u ∈ X :

(3.13) ‖u‖2L2(µ) =

∫

[0,r]

u2 dµ ≤
∫

K∪K̃
u2 dσ.

13



For any harmonic function u on D, we can apply (3.13) to u(z) and u(z̄) to get:

2

∫

[0,r]

u2 dµ ≤
∫

K∪K̃

[
u2(z) + u2(z̄)

]
dσ(z) =

∫

K∪K̃

[
u2(z) + u2(z̄)

]
dσ̃(z),

where σ̃ is the symmetric measure of σ, defined by σ̃(E) = σ(Ē). There is a
probability ν on K such that ν + ν̃ = σ + σ̃. For this probability ν, we thus
have, for any real harmonic function u on D:

(3.14) ‖u‖2L2(µ) ≤
∫

K

[
u2(z) + u2(z̄)

]
dν(z).

Now, given f ∈ H(D), we use (3.14) with u the real and imaginary parts of f ,
and sum up to get (3.12). �

We can now finish the proof of Theorem 3.4 as follows.
Suppose that ‖ϕ‖∞ > r. Then, making a rotation if necessary, we may

assume that 0, r ∈ ϕ(D) (recall that ϕ(0) = 0). Let µ as in Lemma 3.7. Using
Lemma 3.8, we find a probability measure ν, compactly supported by ϕ(D),
such that (3.12) holds. This inequality shows that:

‖Rµf‖2 ≤
1

2

(
‖Rνf‖2 + ‖Rν̃f‖2

)
,

so that Rµ = A(Rν ⊕ Rν̃) with ‖A‖ ≤ 1/
√
2 ≤ 1. Therefore, by the ideal and

sub-additivity properties (1.4):

a2n(Rµ) ≤ a2n(Rν ⊕Rν̃) ≤ an(Rν) + an(Rν̃) = 2 an(Rν),

implying β(Rν) ≥ β(Rµ)
2. Finally, Lemma 3.5 and Lemma 3.7 give:

β(Cϕ) ≥ β(Rν) ≥ β(Rµ)
2 ≥ s(r)2,

and this ends the proof of Theorem 3.4. �

Remark. The proof of Theorem 3.4 is strongly influenced by the papers [8]
and [45]. In the first one, it is proved that, if K is a continuum of a connected
open set Ω and if the doubly connected region Ω \K is conformally equivalent
to the annulus 1 < |z| < R, then there exists a linearly independent sequence
(fn) in H∞(Ω) satisfying, for all scalars cj :

∥∥∥∥
n∑

j=1

cjfj

∥∥∥∥
H∞(Ω)

≤ Rn
∥∥∥∥

n∑

j=1

cjfj

∥∥∥∥
C(K)

.

As a consequence, the author proves that limn→∞ d
1/n
n = 1/R, where the num-

bers dn are the Kolmogorov numbers (see [6] page 49 for the definition) of the
restriction map H∞(Ω) → C(K). This statement led us to Lemma 3.7. In the

second paper, it is proved that, for the same operator, one has limn→∞ d
1/n
n =
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e−1/C(K,Ω), where C(K,Ω) is the Green capacity of K relative to Ω. So that
one has 1/R = e−1/C(K,Ω). In the case we were interested in, namely Ω = D and
Kr = [−r, r], it seemed to us, for topological and analytic reasons, that R should
tend to 1 as r → 1, in other terms that we should have limr→1− C(Kr,D) = ∞.
This is indeed the case ([40], Example II.1), but the proof is fairly involved, and
the desire to get a reasonably simple and self-contained proof of Theorem 3.4
led us to the previous series of lemmas, once we were sure that the result was
true.

4 Slow speed

In this section, we shall see that the speed of convergence to 0 of the ap-
proximation numbers of a compact composition operator can be as slow as one
wants. This answers in the positive to a question which was first asked to us by
C. Le Merdy ([26]) in the OT Conference 2008 of Timisoara.

Theorem 4.1 Let (εn)n≥1 be a non-increasing sequence of positive real num-
bers of limit zero. Then, there exists an injective Schur function ϕ such that
ϕ(0) = 0 and Cϕ : Bα → Bα is compact, i.e. an(Cϕ) → 0, but:

(4.1) lim inf
n→∞

an(Cϕ)

εn
> 0.

Equivalently, we have for some positive number δ > 0, independent of n:

an(Cϕ) ≥ δ εn for all n ≥ 1.

As in the case of Hankel operators, an immediate consequence of Theorem 4.1
is the following:

Corollary 4.2 There exists a composition operator Cϕ : H
2 → H2 which is

compact, but in no Schatten class.

This corollary, which Theorem 4.1 reinforces and precises, was an answer to a
question of Sarason, and has been first proved in [7]. Other proofs appeared in
[2], [14], [19], [20], [47] (for a positive result on Schatten-ness, we refer to [28]).

The construction of the symbol ϕ in Theorem 4.1 follows that given in [7], but
we have to proceed to some necessary adjustments. In order to exploit (2.8), we
shall use, as in [7], the following two results due to Hayman ([12]) concerning the
hyperbolic distance d(z, w;U) of two points z, w of a simply connected domain
U (see also [15]), whose proof uses in particular the comparison principle (2.7):

Proposition 4.3 Suppose that U contains the rectangle

R = {z ∈ C ; a1 − b < Re z < a2 + b, |Im z| < b},
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where a1 < a2 and b > 0. Then, we have the upper estimate:

(4.2) d(a1, a2;U) ≤ π

4b
(a2 − a1) +

π

2
·

Proposition 4.4 Suppose that U contains the rectangle

R = {z ∈ C ; a1 − c < Re z < a2 + c, |Im z| < c},

where a1 < a2 and c > 0, but that the horizontal sides

{z ∈ C ; a1 − c ≤ Re z ≤ a2 + c, |Im z| = c}

of that rectangle are disjoint from U . Then, we have the lower estimate:

(4.3) d(a1, a2;U) ≥ π

4c
(a2 − a1)−

π

2
·

We now proceed to the construction of our Schur function ϕ.
We first define a continuous map ψ : R → R as follows:

ψ(t) =

{
K(1 + |t|) if |t| ≤ 1

|t|/A(|t|) if |t| > 1,

whereK is a positive constant adjusted below and A : [0,∞[→ [0,∞[ an increas-
ing piecewise linear function on the intervals (0, 1) and (en−1, en) such that

A(0)
def
= A0 = 0, A(en−1)

def
= An for n ≥ 1, and 2K = 1/A(1),

the increasing sequence (An) being positive and concave for n ≥ 1, and tending
to ∞. It then follows that the sequence of slopes An−An−1

en−en−1 is decreasing, since
An+1 − An ≤ An − An−1 ≤ e (An − An−1), that the function A is increasing
and concave on (0,∞) and vanishing at 0, implying that A(t)/t is decreasing on
(0,∞), and that in particular ψ is increasing on (1,∞).

We then define a domain Ω of the complex plane by:

(4.4) Ω = {w ∈ C ; |Imw| < ψ(|Rew|)}.

Let σ : D → Ω be the unique Riemann map such that σ(0) = 0 and σ′(0) > 0.
This map exists in view of the following simple fact.

Lemma 4.5 The domain Ω defined by (4.4) is star-shaped with respect to the
origin and σ : (−1, 1) → R is an increasing bijection such that σ(−1) = −∞
and σ(1) = ∞.

Proof. The star-shaped character of Ω will follow from the implication:

|Imw| < ψ(|Rew|) and 0 < λ < 1 =⇒ |Im(λw)| < ψ(|Re (λw)|).
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We may assume that both Rew, Imw are positive, and it is enough to prove:

(4.5) λψ(x) ≤ ψ(λx), ∀λ ∈ [0, 1], ∀x > 0.

This is easy to check separating three cases:

1) x ≤ 1; then λψ(x) = λK(1 + x) ≤ K(1 + λx) = ψ(λx);

2) λx ≤ 1 < x; then, since A(x) > A(1),

λψ(x) = λ
x

A(x)
< 2Kλx ≤ K(1 + λx) = ψ(λx);

3) λx > 1; we then have, since ψ increases,

λψ(x) = λ
x

A(x)
≤ λx

A(λx)
= ψ(λx)

and this ends the proof of (4.5). Now, since σ is determined by the value of σ(0)
and the sign of σ′(0), we have σ(z) = σ(z) for all z ∈ D, so that σ[(−1, 1)] ⊂ R.
And since the derivative of an injective analytic function does not vanish and
σ′(0) > 0, we get that σ is increasing on (−1, 1). Finally, if w ∈ R and w = σ(z),
we have w = w, so that σ(z) = σ(z) and z = z, which proves the surjectivity of
σ : (−1, 1) → R. �

We now choose An as follows, η > 0 denoting a positive numerical constant
to be specified later.

(4.6) An = η log
1

εn
, n ≥ 1.

Observe that this is an increasing, concave sequence tending to ∞ since we
assumed that (εn) is log-convex and decreasing to 0.

Finally, we define our Schur function ϕ and our sequence (rn) under the form
of the following lemma, in which the increasing character of ψ is important.

Lemma 4.6 Let ϕ be defined by

ϕ(z) = σ−1(e−1σ(z)),

and let rn = σ−1(en). Then we have:

1. ϕ is univalent and maps D to D, (rn) increases, and ϕ(0) = 0;

2. ϕ(rn+1) = rn;

3. 1−rn+1

1−rn → 0 and therefore (rn) is an interpolation sequence;

4. Cϕ : Bα → Bα is compact.

Proof. 1. Since Ω is star-shaped, e−1σ(z) ∈ Ω when z ∈ D, so ϕ is well-defined
and maps D to itself in a univalent way. Moreover, ϕ(0) = σ−1(0) = 0, and (rn)
increases since σ−1 increases on R.

2. We have ϕ(rn+1) = σ−1
(
1
eσ(rn+1)

)
= σ−1

(
1
e e

n+1
)
= σ−1(en) = rn.
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3. This assertion is more delicate and relies on Proposition 4.4 as follows.
Set dn = ψ(en). We have clearly en+1 + dn+2 < en+2 for large n (recall that

ψ(t) = o (t) as t → ∞), so that ψ(en+1 + dn+2) < ψ(en+2) = dn+2 since ψ is
increasing. By the intermediate value theorem for the function ψ(en+1+x)−x,
we can therefore find a positive number cn < dn+2 such that ψ(en+1+ cn) = cn.

Now, consider the open sets:

Rn = {z ∈ C ; en − cn < Re z < en+1 + cn and |Im z| < cn}, Un = Rn ∪ Ω.

Those sets Un satisfy the assumptions of Proposition 4.4 in view of (4.4). Indeed,
if z belongs to the horizontal sides of Rn, we have z /∈ Un since

en − cn ≤ Re z ≤ en+1 + cn =⇒ ψ(Re z) ≤ ψ(en+1 + cn) = cn = |Im z|.

This proposition then gives, since Ω ⊂ Un and cn < dn+2, and since the hyper-
bolic metric is conformally invariant,

d(rn, rn+1) = d(en, en+1; Ω) ≥ d(en, en+1;Un) ≥
π

4cn
(en+1 − en)− π

2

≥ c
en+2

ψ(en+2)
= cA(en+2) ≥ cAn,

where c is a positive constant. Now, we use Lemma 2.5 to obtain:

1− rn+1

1− rn
≤ 2 e−2d(rn,rn+1) ≤ 2 e−2cAn,

which proves that 1−rn+1

1−rn → 0, and implies that (rn) is an interpolation se-
quence.

4. Since ϕ is univalent, the compactness of Cϕ : Bα → Bα amounts to prov-

ing that lim|z|→1
1−|ϕ(z)|
1−|z| = ∞. For α > −1, this follows from [30], Theorem 3.5

and for α = −1 from [41], page 39. By the Julia-Carathéodory Theorem ([41],
page 57), this in turn is equivalent to proving that for any u, v on the unit circle,
the quotient ϕ(z)−v

z−u has no finite limit as z tends to u radially. This latter fact
requires some precise justification.

First, we notice that σ extends continuously to an injective map of the
open upper half of the unit circle onto the upper part of the boundary of Ω
(and similarly for lower parts). This follows from the Carathéodory extension
theorem ([39], page 290), applied to the restriction of σ−1 to the Jordan region
limited by ∂Ω and two vertical lines Rew = ±R where R > 0 is arbitrarily
large. Now, let u ∈ ∂D with u 6= ±1. Then, σ(ru) → w ∈ ∂Ω as r → 1−, so
that e−1σ(ru) → e−1w = w′ ∈ Ω and that ϕ(ru) → σ−1(w′) ∈ D. Therefore
the image of ϕ touches the unit circle only at ±1, and the assumption of the
Julia-Carathéodory Theorem is fulfilled if u 6= ±1. By symmetry, it remains to
test the point u = 1 for which we have:

lim sup
r

<−→ 1

1− ϕ(r)

1− r
≥ lim sup

n→∞

1− ϕ(rn+1)

1− rn+1
= lim sup

n→∞

1− rn
1− rn+1

= ∞

18



by the preceding point 3. Since |v − ϕ(r)| ≥ 1 − ϕ(r), this ends the proof of
Lemma 4.6. �

We now want a good lower bound for the weights wn appearing in (2.5). To
that effect, we apply Proposition 4.3 with

U = Ω, a1 = en, a2 = en+1 and bn = ψ(en−1),

as well as

R′
n = {z ∈ C ; en − bn < Re z < en+1 + bn and |Im z| < bn}.

We have en − bn > en−1 for large n, since this amounts to

en − en−1 > bn =
en−1

A(en−1)
, or e− 1 >

1

A(en−1)
,

which holds for large n since A(t) tends to ∞ with t. We then observe that
R′
n ⊂ Ω. Indeed, z ∈ R′

n =⇒ Re z > en − bn > en−1 and, since ψ is increasing,
we have ψ(Re z) > ψ(en−1) = bn > |Im z|. Therefore, we can apply (4.2) and
get, for all n ≥ 1:

d(en, en+1; Ω) ≤ π

4ψ(en−1)
(en+1 − en) +

π

2
≤ C0A(e

n−1) = C0An,

where C0 is a numerical constant. By conformal invariance, we have as well
d(rn, rn+1) ≤ C0An. It then follows from (2.8) that:

(4.7)
1− rn+1

1− rn
≥ exp

(
− 2d(rn, rn+1)

)
≥ exp(−2C0An).

Now, we take h(z) = z− r1 in Lemma 2.4 and use the ideal property (1.4) of
the approximation numbers. We get, denoting by C the interpolation constant
of the sequence (rn), and using the fact that ‖Mh‖ = ‖h‖∞ ≤ 2:

(4.8) an(B) ≤ ‖J−1‖ an(Cϕ) ‖Mh‖ ‖J‖ ≤ 2C2an(Cϕ).

Next, we choose η = 1/C0 in (4.6) and we set d = (r2−r1)/
√
2. Using Lemma 2.3

and relations (1.1), (2.5) and (4.7), we see that the weights wn associated with
B verify:

|wn| = h(rn+1)
‖Krn‖
‖Krn+1‖

= h(rn+1)

√
1− r2n+1

1− r2n
≥ r2 − r1√

2

√
1− rn+1

1− rn

≥ d exp(−C0An) ≥ dεn for all n ≥ 1.

(4.9)

Finally, using Lemma 2.4, (4.8) and (4.9):

an(Cϕ) ≥
1

2C2
an(B) ≥ 1

2C2
d εn

def
= δεn for all n ≥ 1.

We thus get the desired conclusion (4.1) of Theorem 4.1. �
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5 An upper bound

We do not obtain a fairly good upper bound, and we shall content ourselves
with the following result, whose proof is quite simple and, for the case α = −1,
partly contained in [35], but under a very cryptic form which is not easy to
decipher.

Theorem 5.1 Let ϕ be a Schur function and α ≥ −1.Then, we have for the
approximation numbers of Cϕ : Bα → Bα the upper bound:

(5.1) an(Cϕ) ≤ C inf
0<h<1

[
n

α+1
2 (1− h)n +

√
ρϕ,α+2(h)

h2+α

]
, n = 1, 2, . . .

where C is a constant. In particular, if
ρϕ,α+2(h)
h2+α ≤ e−h/A(h), where the function

A : [0, 1] → [0, 1] is increasing, with A(0) = 0 and with inverse function A−1,
we have:

(5.2) an(Cϕ) ≤ Cn
α+1
2 e−nA

−1(1/2n), n = 1, 2, . . . .

The proof of (5.1) uses a contraction principle which was first proved for
α = −1 ([18]) and α = 0 ([23]), but is also valid for any α ≥ −1, as follows from
the forthcoming work [25].

To prove Theorem 5.1, it will be convenient to prove first the following simple
lemma.

Lemma 5.2 Let n be a positive integer, g ∈ Bα and f(z) = zng(z). Then, we
have:

(5.3) ‖g‖α ≤ Cn
α+1
2 ‖f‖α.

Proof. Let wn = n!Γ(2+α)
Γ(n+2+α) and f(z) =

∑∞
n=0 anz

n. We first observe that

(5.4)
wk
wk+n

≤ Cnα+1, ∀k ≥ 0, ∀n ≥ 1.

Indeed, we have:

wk
wk+n

=
k!

(k + n)!

Γ(k + α+ 2 + n)

Γ(k + α+ 2)
=

n∏

j=1

(k + j + α+ 1)

(k + j)
≤

n∏

j=1

j + α+ 1

j

=

n∏

j=1

(
1 +

α+ 1

j

)
≤ exp

[
(α+ 1)

n∑

j=1

1

j

]
≤ Cnα+1,

which proves (5.4).
Now, if f(z) =

∑∞
k=n akz

k, we have g(z) =
∑∞

k=0 ak+nz
k so that, using

(5.4):

‖g‖2α =

∞∑

k=0

|ak+n|2wk =

∞∑

l=n

|al|2wl−n ≤ Cnα+1
∞∑

l=n

|al|2wl = Cnα+1‖f‖2α,
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proving (5.3). �

We shall now majorize an+1(Cϕ), but provided that we change the con-
stant C, this makes no difference with majorizing an(Cϕ). The choice of the
approximating operator R of rank ≤ n for Cϕ is quite primitive, but in coun-
terpart we shall estimate ‖Cϕ − R‖ rather sharply. We denote by Pn the pro-
jection operator defined by Pnf =

∑n−1
k=0 f̂(k)z

k and we take R = Cϕ ◦ Pn,
i.e. if we have f(z) =

∑∞
k=0 f̂(k)z

k ∈ Bα, then R(f) =
∑n−1
k=0 f̂(k)ϕ

k, so that
(Cϕ −R)f = Cϕ(r), with, making use of (5.3):

(5.5) r(z) =

∞∑

k=n

f̂(k)zk = zns(z), with ‖s‖2α ≤ Cnα+1‖r‖2α, ‖r‖α ≤ ‖f‖α.

Assume that ‖f‖α ≤ 1, fix 0 < h < 1 and denote by µh the restriction of the
measure Aϕ,α+2 to the annulus 1− h < |z| ≤ 1. Then, we have:

‖(Cϕ −R)f‖2α = ‖Cϕ(r)‖2α =

∫

D

|r(z)|2 dAϕ,α+2(z)

≤ (1 − h)2n
∫

|z|≤1−h
|s(z)|2 dAϕ,α+2(z)

+

∫

1−h<|z|≤1

|r(z)|2 dAϕ,α+2(z)

≤ (1 − h)2n
∫

D

|s(z)|2 dAϕ,α+2(z) +

∫

D

|r(z)|2 dµh(z)

= (1 − h)2n‖Cϕ(s)‖2α +

∫

D

|r(z)|2 dµh(z)

≤ C

[
(1− h)2n‖s‖2α +

∫

D

|r(z)|2 dµh(z)
]

≤ C

[
nα+1(1− h)2n + sup

0<t≤h

ρϕ,α+2(t)

t2+α

]

if we use (5.5), as well as (1.6) under the form
∫

D

|r(z)|2 dµh(z) ≤ C sup
0<t≤h

ρϕ,α+2(t)

t2+α
‖r‖2α,

and we know that ‖r‖α ≤ ‖f‖α ≤ 1.

To get rid of the supremum with respect to t, we make use of the following
inequality, which holds for h ≤ 1− |ϕ(0)| and 0 < ε ≤ 1:

(5.6) ρϕ,α+2(εh) ≤ Cεα+2ρϕ,α+2(h).

For α = 0 or α = −1, this follows respectively from [18], Theorem 4.19, p. 55,
and from [23], Theorem 3.1. The general case is proved in [25]. Setting t = εh

for 0 < t ≤ h, this also reads ρϕ,α+2(t)
tα+2 ≤ C

ρϕ,α+2(h)
hα+2 , and we can forget the
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supremum in t in the previous inequalities. Taking square roots, we get the
relation (5.1).

When ρϕ,α+2(h)
h2+α ≤ e−h/A(h), let us take for h the nearly optimal value h =

A−1(1/2n), so that h/A(h) = 2nh. We then have from (5.1), since (1− h)2n ≤
e−2nh:

an+1(Cϕ)
2 ≤ ‖Cϕ −R‖2α ≤ Cnα+1[e−2nh + e−h/A(h)] ≤ 2Cnα+1e−2nA−1(1/2n),

proving (5.2), and ending the proof of Theorem 5.1. �

Let us now indicate three corollaries, which improve results of [19], [22], and
[23] respectively.

Corollary 5.3 Suppose that ρϕ,α+2(h) ≤ Ch(2+α)β for some β > 1. Then:

an(Cϕ) ≤ Cn− (β−1)(α+2)
2 (logn)

(β−1)(α+2)
2 .

In particular, Cϕ belongs to the Schatten class Sp = Sp(Bα) for each p >
2

(β−1)(α+2) ·

Proof. Set γ = (β − 1)(α + 2)/2, a = (α + 1)/2, and c = a + γ. If we apply
(5.1) of Theorem 5.1 with the value h = c logn/n which satisfies nae−nh = n−γ ,
as well as the inequality (1− h)n ≤ e−nh, we get:

an(Cϕ) ≤ C

[
n−γ +

( logn
n

)γ]
≤ C

( logn
n

)γ
,

ending the proof. �

In [19], we had only the assertion on Schatten classes, for the single value
α = −1, and not the upper bound for the individual approximation numbers
an(Cϕ).

Corollary 5.4 Let (εn) a sequence of positive numbers which tends to 0. Then,
there exists a Schur function ϕ with the following properties:

1. ϕ : D → D is surjective and 4-valent;

2. an(Cϕ) ≤ Ce−nεn , n = 1, 2, . . .

In particular, we can get an(Cϕ) ≤ Ce−
n

log(n+1) and Cϕ is in every Schatten
class Sp(Bα), p > 0.

Notice that the sequence (εn) in the statement cannot be dispensed with.
Indeed, if ϕ is surjective, we surely have ‖ϕ‖∞ = 1! And we know from Theo-
rem 3.4 that β(Cϕ) = 1 in that case.

We begin with a lemma of independent interest.
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Lemma 5.5 Let δ : (0, 1] → R be a positive and non-decreasing function. Then
there exists a Schur function ϕ with the following properties:

1. ϕ : D → D is surjective and 4-valent;

2. ρϕ,α+2(h) ≤ δ(h), for h > 0 small enough.

Proof. We begin with the case α = −1. Set, for a = 1/2:

Φa(z) =
a− z

1− az
, B = Φ2

a,

and C = 1+a
2(1−a) = 3/2. Note that B

(
2a
a+1

)
= B(0). Let now

bn =
1

4nπ
, ε(h) =

1

2
δ(h/C), εn = ε(bn+1).

In the proof of Theorem 4.1 of [22], using an argument of harmonic measure
and of barrier, we have found a 2-valent symbol ϕ1 with ϕ1(D) = D

∗ such that,
noting ρϕ for ρϕ,1:

(5.7) bn+1 < h ≤ bn =⇒ ρϕ1(h) ≤ εn.

This gives ρϕ1(h) ≤ ε(bn+1) ≤ ε(h). Let now, as in [22], ϕ = B ◦ ϕ1. This
Schur function is surjective (since ϕ(D) = B(D∗) = B(D) = D), and 4-valent.
Moreover, if I = (u, v) is an arc of T of length h < 1/2 and J = (u2 ,

v
2 ), we have

B−1(I) ⊂ Φa(J) ∪Φa(−J) = I1 ∪ I2, where I1, I2 are two arcs of T of length at
most ‖Pa‖∞(h/2) = Ch, since Φa being an inner function, we have ([34]), Pa
being the Poisson kernel at a:

mΦa
= Pam.

Hence, using (5.7), we obtain:

mϕ(I) = mϕ1(B
−1(I)) ≤ mϕ1(I1) +mϕ1(I2) ≤ 2ρϕ1(Ch) ≤ 2ε(Ch) = δ(h),

and ρϕ(h) ≤ δ(h) for small h, by passing to the supremum on all I’s.

For the general case α ≥ −1, we use the following extension of an inequality
from [23] (which treats the case α = 0, see Remark before Corollary 3.11):

Lemma 5.6 For small h, namely 0 < h < (1 − |ϕ(0)|)/4, we have, for every
α > −1:

(5.8) ρϕ,α+2(h) ≤ C[ρϕ(Ch)]
α+2.

Proof. Let us define, as in [42], the generalized Nevanlinna counting function
Nϕ,α+2 by the formula

Nϕ,α+2(w) =
∑

ϕ(z)=w

[log(1/|z|)]α+2, w ∈ D \ {ϕ(0)}.
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The case α = −1 corresponds to the usual Nevanlinna counting function, which
will be denoted by Nϕ. The partial Nevanlinna counting function Nϕ(r, w) is
defined, for 0 ≤ r ≤ 1, by:

Nϕ(r, w) =
∑

ϕ(z)=w

log+(r/|z|),

so that Nϕ(1, w) = Nϕ(w).
Since α+ 2 ≥ 1, we have the obvious but useful inequality:

(5.9) Nϕ,α+2(w) ≤ [Nϕ(w)]
α+2.

We shall also make use of the following identity, due to J. Shapiro ([42], Propo-
sition 6.6, where a weight 1/r is missing), and which can easily be checked after
two integrations by parts:

(5.10) Nϕ,α+2(w) = (α+ 2)(α+ 1)

∫ 1

0

Nϕ(r, w)[log(1/r)]
α dr

r
·

As it was noticed in ([23], Theorem 3.10), this formula reads, for w close to the
boundary, as follows, for 0 < h < (1− |ϕ(0)|)/4 and |w| > 1− h:

(5.11) Nϕ,α+2(w) = (α+ 2)(α+ 1)

∫ 1

1/3

Nϕ(r, w)[log(1/r)]
α dr

r
·

Under the same conditions on h and w, this obviously implies:

Nϕ,α+2(w) ≥
1

C

∫ 1

1/3

Nϕ(r, w)(1 − r2)αr dr =
1

C

∫ 1

0

Nϕ(r, w)(1 − r2)αr dr.

Now, using the same arguments as in [23], Theorem 3.10 and in particular using
(5.11) for ϕr(z) = ϕ(rz), the identity Nϕ(r, w) = Nϕr

(w) and an integration in
polar coordinates, we get:

(5.12) sup
|w|≥1−h

Nϕ,α+2(w) ≥
1

C
ρϕ,α+2(h/C).

The end of the proof is easy: changing h into Ch and using successively (5.12)
and (5.9), we get for small h, depending on ϕ:

ρϕ,α+2(h) ≤ C sup
|w|≥1−Ch

Nϕ,α+2(w) ≤ C sup
|w|≥1−Ch

[Nϕ(w)]
α+2 ≤ C [ρϕ(Ch)]

α+2,

the last inequality coming from [21], Theorem 3.1. This ends the proof of (5.8).

Going back to the proof of Lemma 5.5, if we apply the already settled case
α = −1 to the function δ̃(h) = [δ(h/C)/C]

1
α+2 , we obtain a surjective and

4-valent Schur function ϕ such that:

ρϕ,α+2(h) ≤ C [ρϕ(Ch)]
α+2 ≤ C [δ̃(Ch)]α+2 = δ(h),
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for h small enough. �

Proof of Corollary 5.4. Set a = (α + 1)/2. Provided that we replace (εn)
by the decreasing sequence (ε′n) with ε′n = 1

n + supk≥n εk ≥ εn, we can assume
that (εn) decreases. Let A : [0, 1] → [0, 1] be a function such that A(0) = 0, and
which increases (as well as A(t)/t) so slowly that A(εn + a(logn/n)) ≤ 1/2n;
therefore A−1(1/2n) ≥ εn + a(logn/n) and

nae−nA
−1(1/2n) ≤ e−nεn .

We now apply Lemma 5.5 to the non-decreasing function δ(h) = h2+αe−h/A(h)

to get the result, in view of (5.2) of Theorem 5.1. �

Our last corollary involves Hardy-Orlicz spaces Hψ and Bergman-Orlicz
spaces B

ψ . For the definitions, we refer to [18].

Corollary 5.7 There exists a Schur function ϕ and an Orlicz function ψ such
that Cϕ : H

ψ → Hψ is compact whereas Cϕ : B
ψ → B

ψ is not compact. More-
over, the approximation numbers an(Cϕ) of Cϕ : Bα → Bα satisfy the upper

estimate an(Cϕ) ≤ a e−b
√
n where a, b are positive constants independent of n,

and therefore Cϕ belongs to
⋂
p>0 Sp(Bα).

Proof. Let α ≥ −1 be fixed. The Schur function constructed in the proof of
Theorem 4.2 of [23] satisfies the two first assertions, as well as ρϕ(h)/h ≤ e−d/h

for some positive constant d > 0. We now apply (5.8) to get for small h:

ρϕ,α+2(h)

hα+2
≤ C

[ρϕ(Ch)]
α+2

hα+2
≤ Cα+3e−(α+2)d/Ch ≤ a e−b/h

for positive constants a and b. We can thus apply (5.2) of Theorem 5.1, for
some δ > 0, with the increasing function A(h) = h2/δ (hence A−1(x) =

√
δx)

to get the result, diminishing slightly b to absorb the power factor n
α+1
2 . �

Remark. Let us alternatively consider the entropy numbers en(Cϕ) (see [4]
or [17], page 69 for the definition) of composition operators. Those numbers
are also a very good indicator of the “degree of compactness” of general op-
erators T : X → Y where X,Y are Banach spaces and are smaller than the
approximation numbers, in the following weak sense ([38], page 64).

sup
1≤k≤n

[kαek(T )] ≤ Cα sup
1≤k≤n

[kαak(T )], ∀α > 0.(5.13)

(an(T )) ∈ ℓq =⇒ (en(T )) ∈ ℓq, ∀q > 0.(5.14)

The converse of (5.14) does not hold in Banach spaces, but it does for oper-
ators between Hilbert spaces, by polar decomposition. More precisely, we have
([38], page 68) an(T ) ≤ 4 en(T ) and, in particular, (en(T )) ∈ ℓq if and only if
(an(T )) ∈ ℓq.

We now have the following improved version of Theorem 3.1. Recall that

ϕ#(z) = |ϕ′(z)|(1−|z|2)
1−|ϕ(z)|2 and [ϕ] = ‖ϕ#‖∞.
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Theorem 5.8 Let T = Cϕ be a compact composition operator on Bα, and
γ(T ) = lim infn→∞[en(T )]

1/n. Then:

(5.15) γ(T ) ≥ [ϕ]1/2.

Proof. We proceed as in the proof of Theorem 3.1. First, recall that the entropy
numbers en(T ) also have the ideal property ([17], page 69), namely:

en(ATB) ≤ ‖A‖ en(T ) ‖B‖.

Then, we use an improved Weyl-type inequality for entropy numbers, due to
Carl and Triebel ([5]), in which (λn(T ))n≥1 denotes the sequence of eigenvalues
of T rearranged in non-increasing order of moduli and C =

√
2:

(5.16)
( n∏

k=1

|λk(T )|
)1/n

≤ Cen(T ).

It should be noted that this inequality can itself be improved ([11]):

(5.17)
( n∏

k=1

ak(T )
)1/n

≤ Cen(T ).

Yet, the tempting similar inequality
(∏n

k=1 |λk(T )|
)1/n

≤ Can(T ) is wrong

(even the inequality |λn(T )| ≤ Can(T ) is wrong) as follows from an example of
([17], pages 133–134). Note that (5.17) implies the following:

an(T ) ≥ δrn =⇒ en(T ) ≥
δ

C
r1/2 rn/2.

This might explain why a square root appears in (5.15), and tends to indicate
that [ϕ] should appear instead of [ϕ]2 in Theorem 3.1.

Now, for every a ∈ D, let again Φa be defined by Φa(z) =
a−z
1−az , for z ∈ D.

Set b = ϕ(a) and define ψ = Φb ◦ ϕ ◦ Φa. We already know that 0 is a fixed
point of ψ with derivative ψ′(0) = φ#(a) and that Cψ = CΦa

◦ Cφ ◦ CΦb
. We

may assume that ψ′(0) = φ#(a) 6= 0. The sequence of eigenvalues of Cψ is then,
as we have seen, ((ψ′(0)n)n≥0 ([41], p. 96). The equation (5.16) then gives us,
setting r = |ψ′(0)| = φ#(a):

en(Cψ) ≥
1

C

( n−1∏

k=0

rk
)1/n

=
1

C
r(n−1)/2.

This clearly gives us γ(Cψ) ≥ √
r. Now, since CΦa

and CΦb
are invertible

operators, the relation Cψ = CΦa
◦ Cφ ◦ CΦb

and the ideal property of the
numbers en(T ) imply that γ(Cϕ) = γ(Cψ), and therefore, with the notation of

(3.4), γ(Cϕ) ≥
(
φ#(a)

)1/2
, for all a ∈ D. Passing to the supremum on a ∈ D,

we end the proof of Theorem 5.8. �
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6 The explicit example of lens maps

To ease notation, we shall suppose in this section that α = −1, i.e. we
are concerned with the Hardy space H2. Fix 0 < θ < 1. Denote by H =
{z ∈ C ; Re z > 0} the right half-plane, by T : D → C \ {−1} the involutive
transformation defined by T (z) = 1−z

1+z , which maps D to H, and by τθ the
transformation z ∈ H 7→ zθ ∈ H. Recall that the associated lens map ϕθ : D → D

is:
ϕθ = T ◦ τθ ◦ T.

It is known that the associated composition operator on H2 is in all Schatten
classes Sp ([43], Theorem 6.3). Alternatively, one could use Luecking’s criterion
([27]). Therefore, its approximation numbers decrease rather quickly. Still more
precisely, adapting techniques of Parfenov ([35], page 511), we might show the
following (where βθ, γθ, . . . are positive constants):

(6.1) an(Cϕθ
) ≤ γθe

−βθ

√
n.

We shall not detail this adaptation of Parfenov’s methods from Carleson embed-
dings to composition operators, but shall dwell on the converse inequality, which
is not proved in [35]. First, the proof of the second assertion being postponed,
we show that there is no converse to the inequality of Theorem 3.1.

Proposition 6.1 The value of [ϕθ] for the lens map is

(6.2) [ϕθ] = θ.

In particular, [ϕθ] can be as small as we wish, although β(Cϕθ
) = 1.

Recall that β is defined in (1.3) and [ϕ] in (3.1).

Proof. First note the simple

Lemma 6.2 Let z ∈ D and v = T (z) ∈ H. Then:

|T ′(z)|(1− |z|2) = 2Re (T (z)) and
|T ′(v)|

1− |T (v)|2 =
1

2Re v
·

The two equalities are the same because |T ′(v)| = 1
|T ′(z)| in view of T = T−1.

For the first one, we have:

|T ′(z)|(1− |z|2) = 2(1− |z|2)
|1 + z|2 = 2Re (T (z)).

Let now z ∈ D and w = T (z) ∈ H. By the chain rule, we have:

ϕ′
θ(z) = T ′(τθ(w)) τ

′
θ(w)T

′(z).

Taking moduli and using the lemma with z and v = τθ(w), we obtain:

|ϕ′
θ(z)|(1− |z|2)
1− |ϕθ(z)|2

=
|T ′(τθ(w))|

1− |T (τθ(w))|2
|τ ′θ(w)| |T ′(z)|(1− |z|2) = |τ ′θ(w)|Rew

Re (τθ(w))
·
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Now, setting w = reit with r > 0 and −π/2 < t < π/2, this writes as well:

ϕ#
θ (z) =

θrθ−1r cos t

rθ cos θt
=
θ cos t

cos θt
.

Using the fact that w runs over H as z runs over D and that the cosine decreases
on (0, π/2), we obtain (6.2) by taking t = 0. �

We now prove the second assertion of Proposition 6.1 under the following
form (the small roman and Greek letters aθ, . . . , βθ, . . . will denote positive con-
stants depending only on θ):

Proposition 6.3 There exist constants bθ, cθ, , βθ, γθ with bθ = π
√

2(1−θ)
θ such

that:

(6.3) cθ e
−bθ

√
n ≤ an(Cϕθ

) ≤ γθ e
−βθ

√
n.

In particular, we have β(Cϕθ
) = 1 and Cϕθ

is in all Schatten classes Sp, p > 0
but its approximation numbers do not decrease exponentially.

The upper bound is (6.1). For the lower bound, we shall need two simple
lemmas.

Lemma 6.4 Let 0 < σ < 1 and u = (uj) be a sequence of points of D such that
1−|uj+1|
1−|uj | ≤ σ. Then, the Carleson constant δu of the sequence u satisfies:

δu ≥ exp

(
− a

1− σ

)
, with a =

π2

2
·

Proof. We use the following fact ([13], pages 203–204):

(6.4) δu ≥
∞∏

j=1

(
1− σj

1 + σj

)2

.

This implies log δu ≥ 2
∑∞
j=1 log(

1−σj

1+σj ). Now, expanding the logarithm in power
series and permuting sums, we note that:

2

∞∑

j=1

log
(1 + σj

1− σj

)
= 4

∞∑

k=0

σ2k+1

(2k + 1)(1− σ2k+1)

≤ 4

∞∑

k=0

1

(2k + 1)2(1− σ)
=

a

1− σ
,

where we used 1− σ2k+1 ≥ (2k + 1)(1− σ)σ2k+1 and
∑∞

k=0
1

(2k+1)2 = π2/8. So

that δu ≥ exp
(
− a/(1− σ)

)
, which was to be proved. �

The second lemma is similar.
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Lemma 6.5 Let 0 < σ < 1, uj = 1− σj, vj = ϕθ(uj) and v = (vj). Then, the
Carleson constant δv of the sequence v satisfies:

δv ≥ exp
(
− aθ

1− σ

)
, with aθ =

π2

2θθ
·

Proof. We first note that 1− ϕθ(r) =
2(1−r)θ

(1+r)θ+(1−r)θ , and so

1− vj+1

1− vj
= σθ

σjθ + (2− σj)θ

σ(j+1)θ + (2− σj+1)θ
= σj ,

with σj ≤ σ′ = 1− θ
22
θ(1− σ). To see this, observe that:

1− σj =
(2− σj+1)θ − (2σ − σj+1)θ

σ(j+1)θ + (2 − σj+1)θ
def
=

N

D
≥ θ2θ−1(1 − σ) = 1− σ′.

Indeed, the function f(x) = xθ+(2−x)θ increases on [0, 1], soD ≤ f(1) = 2. On
the other hand, the mean-value theorem gives N = 2(1− σ)θ cθ−1 ≥ θ(1− σ)2θ

for some c ∈ (0, 2). Lemma 6.4 then gives the result for the sequence v. �

Proof of Proposition 6.3. Fix an integer n ≥ 1, and take (uj), (vj) as in
Lemma 6.5. We have ϕθ(0) = 0, |ϕθ(z)| ≤ |z| and so for 0 < r < 1:

1− r2

1− ϕθ(r)2
≥ 1− r

1− ϕθ(r)
=

(1− r)[(1 − r)θ + (1 + r)θ ]

2(1− r)θ
≥ (1 − r)1−θ

2
,

implying
1− u2j
1− v2j

≥ 1

2
σn(1−θ), for 1 ≤ j ≤ n.

Let now R be an operator of rank < n. There exists a function f =∑n
j=1 λjKuj

∈ H2 ∩ kerR with ‖f‖ = 1. We thus have, denoting by Cu and
Cv the interpolation constants of the sequences u and v, and using Lemma 2.2
twice:

‖C∗
ϕθ

−R‖2 ≥ ‖C∗
ϕθ
(f)−R(f)‖2 = ‖C∗

ϕθ
(f)‖2 =

∥∥∥∥
n∑

j=1

λjKvj

∥∥∥∥
2

≥ C−2
v

n∑

j=1

|λj |2‖Kvj‖2 = C−2
v

n∑

j=1

|λj |2
1− v2j

≥ 1

2
C−2
v σn(1−θ)

n∑

j=1

|λj |2
1− u2j

≥ 1

2
C−2
u C−2

v σn(1−θ)‖f‖2

=
1

2
C−2
u C−2

v σn(1−θ).

Therefore, an(Cϕθ
) = an(C

∗
ϕθ
) ≥ 1

2 C
−1
u C−1

v σn(1−θ)/2. But it follows from (2.2),
Lemma 6.4 and Lemma 6.5 that Cu, Cv satisfy, provided that we now take the
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value aθ = π2

θ > π2

2 + π2

2θθ , since θ + 21−θ < 2, to absorb the logarithmic factor
of (2.2):

CuCv ≤ c−1
θ exp

(
aθ/(1− σ)

)
.

The preceding now gives us (cθ changing from line to line):

an(Cϕθ
) ≥ cθ exp

(
− aθ

1− σ

)
exp

(
n(1− θ)

2
log σ

)
.

Finally, adjust σ = 1 − λn−1/2 so that aθ
λ = 1−θ

2 λ, i.e. λ =
√

2aθ
1−θ and use

log(1− x) ≥ −x− x2 for 0 ≤ x ≤ 1/2; this gives (6.3) with the value

bθ =
2aθ
λ

=
√
2aθ(1 − θ) = π

√
2(1− θ)

θ
,

and that ends the proof of Proposition 6.3. �

Remarks.
1) The procedure used here to get lower estimates for the approximation

numbers for lens maps might be easily adapted to a general symbol, to provide
a new proof of Theorem 3.1. But the value of β(Cϕ) which we obtain in the
general case is worse than the one obtained in Section 3, therefore we did not
think it useful to include this second proof.

2) It is easy to see that, for the lens map ϕθ, one has ρϕθ
(h) ≈ h1/θ. Then

Corollary 5.3 gives an(Cϕθ
) ≤ C n− 1−θ

2θ (logn)
1−θ
2θ and so Cϕθ

∈ Sp for all p >
2θ/(1 − θ). On the other hand, we know ([43]) that Cϕθ

∈ ⋂
p>0 Sp, so that

an(Cϕθ
) must be rapidly decreasing: an(Cϕθ

) ≤ Cqn
−q for all q > 0. This shows

that Theorem 5.1 is very imprecise in general, becoming more accurate when
ρϕ is very small, as this is the case in Corollary 5.7.

We hope to return to upper bounds for approximation numbers in another
work.
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