Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor *

Francisco J. Calderón-Moreno
Fac. Matemáticas, Univ. de Sevilla, Ap 1160, 41080 Sevilla, España
E-mail: calderon@atlas.us.es

Introduction

In the present work we prove a structure theorem for operators of the 0-th term of the $\mathcal{V}_{\bullet}^{Y}$-filtration relative to a free divisor Y of a complex analytic variety X. As an application, we give a formula for the logarithmic de Rham complex in terms of \mathcal{V}_{0}^{Y}-modules, which generalizes the classical formula for the usual de Rham complex in terms of \mathcal{D}_{X}-modules, and the formula of Esnault-Viehweg in the case that Y is a normal crossing divisor. Using this, we give a sufficient condition for perversity of the logarithmic de Rham complex. Now we comment on the contents of each part of the paper:

In the first section, we recall the concepts of logarithmic derivation and logarithmic form, as well as free divisor, all of them due to Kyogi Saito [14], and the definition of the ring $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$ of logarithmic differential operators along Y.

In the second part, we study the logarithmic operators in the case that Y is free. We give a structure theorem in which we prove that the ring of logarithmic differential operators is the polynomial algebra generated by the logarithmic derivations over the sheaf \mathcal{O}_{X} of holomorphic functions. As a consequence, $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$ is a coherent sheaf. Thanks to this theorem, we can prove the equivalence between $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$-modules and \mathcal{O}_{X}-modules with logarithmic connections. Therefore, an $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$-module (or logarithmic \mathcal{D}_{X}-module) \mathcal{M} defines a logarithmic de Rham complex $\Omega_{X}^{\bullet}(\log Y)(\mathcal{M})$.

In the third part, we prove that the logarithmic de Rham complex is canonically isomorphic to the complex $\mathbf{R} \mathcal{H o m}_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)}\left(\mathcal{O}_{X}, \mathcal{M}\right)$. To show this, we first construct a resolution of \mathcal{O}_{X} as $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$-module, which we call the logarithmic Spencer complex and denote by $\mathcal{S} p^{\bullet}(\log Y)$.

[^0]Finally, we give a sufficient condition for perversity of the logarithmic de Rham complex, which is a perverse sheaf if the symbols of a minimal generating set of logarithmic derivations form a regular sequence in the graded ring associated to the filtration by the order on \mathcal{D}_{X}. This condition always holds in dimension 2.

Some results of this paper have been announced in [4]. We give here the complete proofs of all of the results announced in that note and other new results.

Acknowledgements: I am grateful to David Mond for his interest and encouragement. I wish to thank my advisor Luis Narváez for introducing me to the subject of this work and for giving me suggestions for the proofs of some of the results.

1 Notations and Preliminaries

Let X be a complex analytic variety of dimension n, and Y a hypersurface of X defined by the ideal \mathcal{I}. We will denote by \mathcal{D}_{X} the sheaf of linear differential operators over $X, \mathcal{D e r}_{\mathbb{C}}\left(\mathcal{O}_{X}\right)$ the sheaf of derivations of \mathcal{O}_{X}, and $\mathcal{D}_{X}[\star Y]$ the sheaf of meromorphic differential operators with poles along Y. Given a point x of Y, we will denote by $I=(f), \mathcal{O}, \operatorname{Der}_{\mathbb{C}}(\mathcal{O})$ and \mathcal{D} the respective stalks at x. We will denote by F^{\bullet} the filtration of \mathcal{D}_{X} by the order of the operators and $\Omega_{X}^{\bullet}[\star Y]$ the meromorphic de Rham complex with poles along Y.

1.1 Logarithmic forms and logarithmic derivations. Free divisors

We are going to recall some notions of [14] that we will use repeatedly:
A section δ of $\operatorname{Der}_{\mathbb{C}}\left(\mathcal{O}_{X}\right)$, defined over an open set U of X, is called a logarithmic derivation (or vector field) if for each point x in $Y \cap U, \delta_{x}\left(\mathcal{I}_{x}\right)$ is contained in the ideal \mathcal{I}_{x} (if $I=\mathcal{I}_{x}=(f)$, it is sufficient that $\delta_{x}(f)$ belongs to $\left.(f) \mathcal{O}\right)$. The sheaf of \log arithmic derivations is denoted by $\operatorname{Der}(\log Y)$, and is a coherent \mathcal{O}_{X}-submodule of $\operatorname{Der}_{\mathbb{C}}\left(\mathcal{O}_{X}\right)$ and a Lie subalgebra. We denote by $\operatorname{Der}(\log f)$, or $\operatorname{Der}(\log I)$, the stalks at x of $\mathcal{D e r}(\log Y)$:

$$
\operatorname{Der}(\log f)=\left\{\delta \in \operatorname{Der}_{\mathbb{C}}(\mathcal{O}) / \delta(f) \in(f)\right\}
$$

We say that a meromorphic q-form ω with poles along Y, defined in an open set U, is a logarithmic q-form along Y or, simply, a logarithmic q-form, if for every point x in $U, f \omega$ and $d f \wedge \omega$ are holomorphic at x. The sheaf of logarithmic q-forms along Y in U is denoted by $\Omega_{X}^{q}(\log Y)(U)$. This definition gives rise to a coherent \mathcal{O}_{X}-module $\Omega_{X}^{q}(\log Y)$, whose stalks are:

$$
\Omega^{q}(\log f)=\Omega_{X}^{q}(\log Y)_{x}=\left\{\omega \in \Omega_{X}^{q}[\star Y]_{x} / f \omega \in \Omega^{q}, \text { df } \wedge \omega \in \Omega^{q+1}\right\} .
$$

The logarithmic q-forms along Y define a subcomplex of the meromorphic de Rham complex along Y, that we call the logarithmic de Rham complex and denote by $\Omega_{X}^{\bullet}(\log Y)$.

Contraction of forms by vector fields defines a perfect duality between the \mathcal{O}_{X}-modules $\Omega_{X}^{1}(\log Y)$ and $\operatorname{Der}(\log Y)$, that we denote by \langle,$\rangle . Thus, both$ of them are reflexive. In particular, when $n=\operatorname{dim}_{\mathbb{C}} X=2, \Omega_{X}^{1}(\log Y)$ and $\mathcal{D e r}(\log Y)$ are locally free \mathcal{O}_{X}-modules of rank 2 .

We say that Y is free at x, or I is a free ideal of \mathcal{O}, if $\operatorname{Der}(\log I)$ is free as \mathcal{O}-module (of rank n). If $f \in \mathcal{O}$, we say that f is free if the ideal $I=(f)$ is free. We say that Y is free if it is at every point x. In this case, $\operatorname{Der}(\log Y)$ is a locally free \mathcal{O}_{X}-module of rank n. We can use the following criterion to determine when an hypersurface Y is free at x :

Saito's Criterion: The \mathcal{O}-module $\operatorname{Der}(\log f)$ is free if and only if there exist n elements $\delta_{1}, \delta_{2}, \cdots, \delta_{n}$ in $\operatorname{Der}(\log f)$, with $\delta_{i}=\sum_{j=1}^{n} a_{i j}(z) \frac{\partial}{\partial z_{j}}(i=1, \ldots, n)$, where $z=\left(z_{1}, z_{2}, \cdots, z_{n}\right)$ is a system of coordinates of X centered in x, such that the determinant $\operatorname{det}\left(a_{i j}\right)$ is equal to $a f$, with $a \in \mathcal{O}$ a unit. Moreover, in this case, $\left\{\delta_{1}, \delta_{2}, \cdots, \delta_{n}\right\}$ is a basis of $\operatorname{Der}(\log f)$.

When Y is free, we have the equality: $\Omega_{X}^{p}(\log Y)=\wedge^{p} \Omega_{X}^{1}(\log Y)$. Using the fact that $\Omega_{X}^{1}(\log Y) \cong \mathcal{H o m}_{\mathcal{O}_{X}}\left(\mathcal{D e r}(\log Y), \mathcal{O}_{X}\right)$, we can construct a natural isomorphism:

$$
\Omega_{X}^{p}(\log Y) \stackrel{\gamma^{p}}{\cong} \mathcal{H o m}_{\mathcal{O}_{X}}\left(\stackrel{p}{\wedge} \mathcal{D} \operatorname{er}(\log Y), \mathcal{O}_{X}\right)
$$

defined locally by $\gamma^{p}\left(\omega_{1} \wedge \cdots \wedge \omega_{p}\right)\left(\delta_{1} \wedge \cdots \wedge \delta_{p}\right)=\operatorname{det}\left(\left\langle\omega_{i}, \delta_{j}\right\rangle\right)_{1 \leq i, j \leq p}$.

$1.2 \quad \mathcal{V}$-filtration

We define the \mathcal{V}-filtration relative to Y on \mathcal{D}_{X} as in the smooth case ([10], [9]):

$$
\mathcal{V}_{k}^{Y}\left(\mathcal{D}_{X}\right)=\left\{P \in \mathcal{D}_{X} / P\left(\mathcal{I}^{j}\right) \subset \mathcal{I}^{j-k}, \forall j \in \mathbb{Z}\right\}, \quad k \in \mathbb{Z}
$$

where $\mathcal{I}^{p}=\mathcal{O}_{X}$ when p is negative. Similarly, $\mathcal{V}_{k}^{I}(\mathcal{D})=\left\{P \in \mathcal{D} / P\left(I^{j}\right) \subset\right.$ $\left.I^{j-k}, \forall j \in \mathbb{Z}\right\}$, with k an integer, and $I^{p}=\mathcal{O}$ when $p \geq 0$. In the case of $I=(f)$, we note $\mathcal{V}_{k}^{f}(\mathcal{D})=\mathcal{V}_{k}^{I}(\mathcal{D})$.

Definition 1.2.1.- A logarithmic differential operator (or, simplify, a logarithmic operator) is a differential operator of degree 0 with respect to the \mathcal{V}-filtration.

We see that:

$$
\begin{gathered}
\mathcal{D e r}(\log Y)=\operatorname{Der}_{\mathbb{C}}\left(\mathcal{O}_{X}\right) \cap \mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)=\mathcal{G} r_{F}^{1}\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right) \\
F^{1}\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right)=\mathcal{O}_{X} \oplus \mathcal{D e r}(\log Y)
\end{gathered}
$$

where the last expression is consequence of $F^{1}\left(\mathcal{D}_{X}\right)=\mathcal{O}_{X} \oplus \mathcal{D e r}_{\mathbb{C}}\left(\mathcal{O}_{X}\right)$.

Remark 1.2.2.- The inclusion $\operatorname{Der}(\log Y) \subset \mathcal{G r}_{F} \bullet\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right)$ gives rise to a canonical graded morphism of graded algebras:

$$
\kappa: \mathcal{S y m}_{\mathcal{O}_{X}}(\mathcal{D e r}(\log Y)) \longrightarrow \mathcal{G r}_{F} \bullet\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right)
$$

Similarly, we have a canonical graded morphism of graded \mathcal{O}-algebras: $\kappa_{x}: \operatorname{Sym}_{\mathcal{O}}(\operatorname{Der}(\log I)) \longrightarrow \operatorname{Gr}_{F} \bullet\left(\mathcal{V}_{0}^{I}(\mathcal{D})\right)$, which is the stalk of κ at x.

2 Logarithmic operators relative to a free divisor

2.1 The Structure Theorem

We denote by $\{$,$\} the Poisson bracket defined in the graded ring \operatorname{Gr}_{F \cdot}(\mathcal{D})$ (cf. [12], [8]). Given two polynomials F, G in $\operatorname{Gr}_{F} \bullet(\mathcal{D})=\mathcal{O}\left[\xi_{1}, \cdots, \xi_{n}\right]$:

$$
\{F, G\}=\sum_{i=1}^{n} \frac{\partial F}{\partial \xi_{i}} \frac{\partial G}{\partial x_{i}}-\sum_{i=1}^{n} \frac{\partial F}{\partial x_{i}} \frac{\partial G}{\partial \xi_{i}}
$$

Proposition 2.1.1.- Let f be free. Consider a minimal system of generators $\left\{\delta_{1}, \delta_{2}, \cdots, \delta_{n}\right\}$ of $\operatorname{Der}(\log f)$. Let R_{0} be a polynomial in $\operatorname{Gr}_{F} \bullet(\mathcal{D})$, homogeneous of order d, and such that there exist other polynomials R_{k} in $\operatorname{Gr}_{F} \bullet(\mathcal{D})$, with $k=1, \cdots, d$, homogeneous of order $d-k$ such that:

$$
\begin{equation*}
\left\{R_{k}, f\right\}=f R_{k+1}, \quad(0 \leq k<d) \tag{1}
\end{equation*}
$$

(we will say that R_{0} verifies the property ($\mathbb{1}$) for $R_{1}, R_{2}, \cdots, R_{d}$). Then there exist polynomials H_{j}^{k} in $\operatorname{Gr}_{F} \bullet(\mathcal{D})$, homogeneous of order $d-k-1$, with $j=1, \cdots, n$ and $k=1, \cdots, d-1$, such that:
a) $R_{k}=\sum_{j=1}^{n} H_{j}^{k} \sigma\left(\delta_{j}\right)$, where $\sigma\left(\delta_{j}\right)$ denotes the principal symbol of δ_{j}.
b) $\left\{H_{j}^{k}, f\right\}=f H_{j}^{k+1}(1 \leq j \leq n, 0 \leq k<d-1)$. This is the same as saying: H_{j}^{k} verifies the property (1) for $H_{j}^{k+1}, \cdots, H_{j}^{d-1}$.

Proof: Let $A=\left(\alpha_{i}^{j}\right)$ be the square matrix whose rows are the coefficients of the basis $\left\{\delta_{1}, \delta_{2}, \cdots, \delta_{n}\right\}$ of $\operatorname{Der}(\log f)$ with respect to the basis $\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \cdots, \frac{\partial}{\partial x_{n}}$ of $\operatorname{Der}_{\mathbb{C}}\left(\mathcal{O}_{X}\right)$:

$$
\delta_{j}=\sum_{i=1}^{n} \alpha_{i}^{j} \frac{\partial}{\partial x_{i}}=\underline{\alpha}^{j} \bullet \underline{\partial}^{t},
$$

with $j=1, \cdots, n$, where we write $\underline{\partial}$ instead of $\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}\right)$. We consider the ring $\mathcal{O}_{2 n}=\mathbb{C}\left\{x_{1}, \cdots, x_{2}, \xi_{1}, \cdots, \xi_{n}\right\}$. Thanks to the Saito's Criterion, we know that the set

$$
\left\{\delta_{1}, \cdots, \delta_{n}, \frac{\partial}{\partial \xi_{1}}, \cdots, \frac{\partial}{\partial \xi_{n}}\right\}
$$

is a basis of the $\mathcal{O}_{2 n}$-module $\operatorname{Der}_{\mathcal{O}_{2 n}}(\log f)$. So, as we have, for $k=1, \cdots, d$,

$$
(f) \ni\left\{R_{k}, f\right\}=\sum_{i=1}^{n}\left(R_{k}\right)_{\xi_{i}} f_{x_{i}}
$$

where $f_{x_{i}}$ represents $\frac{\partial f}{\partial x_{i}}$ and $\left(R_{k}\right)_{\xi_{i}}$ represents $\frac{\partial R_{k}}{\partial \xi_{i}}$, then there exist homogeneous polynomials G_{j}^{k} in $\operatorname{Gr}_{F} \bullet(\mathcal{D})$, of degree $d-k-1$, or null, with $j=1, \cdots, n$ and $k=1, \cdots, d-1$, such that

$$
\left(\left(R_{k}\right)_{\xi_{1}},\left(R_{k}\right)_{\xi_{2}}, \cdots,\left(R_{k}\right)_{\xi_{n}}\right)=\sum_{j=1}^{n} G_{j}^{k} \underline{\alpha}^{j}
$$

Using the Euler relation $R_{k}=\frac{1}{d} \sum_{i=1}^{n}\left(R_{k}\right)_{\xi_{i}} \xi_{i}$, and as $\sigma\left(\delta_{i}\right)=\underline{\alpha}^{i} \bullet \underline{\xi}^{t}$, we obtain

$$
R_{k}=\frac{1}{d} \sum_{i=1}^{n} \sum_{j=1}^{n} G_{j}^{k} \alpha_{i}^{j} \xi_{i}=\frac{1}{d} \sum_{j=1}^{n} G_{j}^{k} \sigma\left(\delta_{j}\right)
$$

By Saito's Criterion, the determinant of the matrix A is equal to $u f$, with $u \in \mathcal{O}$ invertible. Let $B=\left(b_{i j}\right)=\operatorname{Adj}(A)^{t}$. We have:

$$
\left(\left(R_{k}\right)_{\xi_{1}},\left(R_{k}\right)_{\xi_{2}}, \cdots,\left(R_{k}\right)_{\xi_{n}}\right)=\left(G_{1}^{k}, G_{2}^{k}, \cdots, G_{n}^{k}\right) A
$$

so

$$
\left(\left(R_{k}\right)_{\xi_{1}},\left(R_{k}\right)_{\xi_{2}}, \cdots,\left(R_{k}\right)_{\xi_{n}}\right) B=g\left(G_{1}^{k}, G_{2}^{k}, \cdots, G_{n}^{k}\right)
$$

Now:

$$
\begin{gathered}
g\left\{G_{j}^{k}, f\right\}=\left\{g G_{j}^{k}, f\right\}=\sum_{i=1}^{n} f_{x_{i}} \frac{\partial\left(g G_{j}^{k}\right)}{\partial \xi_{i}}=\sum_{i=1}^{n} f_{x_{i}} \sum_{l=1}^{n} \frac{\partial\left(R_{k}\right)_{\xi_{l}}}{\partial \xi_{i}} b_{l j}= \\
\sum_{l=1}^{n} b_{l j} \sum_{i=1}^{n} \frac{\partial^{2} R_{k}}{\partial \xi_{l} \partial \xi_{i}} f_{x_{i}}=\sum_{l=1}^{n} b_{l j} \frac{\partial\left(\left\{R_{k}, f\right\}\right)}{\partial \xi_{l}}=f \sum_{l=1}^{n} b_{l j} \frac{\partial R_{k+1}}{\partial \xi_{l}}=f \sum_{l=1}^{n} b_{l j}\left(R_{k+1}\right)_{\xi_{l}}= \\
f \sum_{l=1}^{n} b_{l j} \sum_{p=1}^{n} G_{p}^{k+1} \alpha_{l}^{p}=f \sum_{p=1}^{n} G_{p}^{k+1} \sum_{l=1}^{n} b_{l j} \alpha_{l}^{p}=f g G_{j}^{k+1} .
\end{gathered}
$$

Therefore,

$$
\left\{G_{j}^{k}, f\right\}=f G_{j}^{k+1}
$$

with $k=0, \cdots, d-2$ and $j=0, \cdots, n$. We conclude by setting $H_{j}^{k}=\frac{1}{d} G_{j}^{k}$, for $j=1, \cdots, n$ and $k=0, \cdots, d-1$.

Proposition 2.1.2.- Let be $\left\{\delta_{1}, \delta_{2}, \cdots, \delta_{n}\right\}$ a basis of $\operatorname{Der}(\log f)$. If a polynomial R_{0} of $\operatorname{Gr}_{F} \bullet(\mathcal{D})$ is homogeneous and verifies the property ($\left.\mathbb{Z}\right)$ of the last proposition, we can find a differential operator Q in $\mathcal{O}\left[\delta_{1}, \delta_{2}, \cdots, \delta_{n}\right]$ such that R_{0} is the symbol of Q.

Proof: We will do the proof by induction on the order of R_{0}. If $R_{0} \in \mathcal{O}$, it is obvious. We suppose that the result holds if the order of R_{0} is less than d. Now let R_{0} of order d verifying (11). By the last proposition there exist n homogeneous polynomials H_{j}^{0} of order $d-1$ such that:

$$
R_{0}=\sum_{j=1}^{n} H_{j}^{0} \sigma\left(\delta_{j}\right), H_{j}^{0} \text { verifies (1) }(j=1, \ldots, n) .
$$

By induction hypothesis, there exist $Q_{j} \in \mathcal{O}\left[\delta_{1}, \delta_{2}, \cdots, \delta_{n}\right]$ such that $H_{j}^{0}=\sigma\left(Q_{j}\right)$. So

$$
R_{0}=\sum_{i=1}^{n} \sigma\left(Q_{i}\right) \sigma\left(\delta_{i}\right)=\sum_{i=1}^{n} \sigma\left(Q_{i} \delta_{i}\right)=\sigma\left(\sum_{i=1}^{n} Q_{i} \delta_{i}\right)=\sigma(Q)
$$

and $Q=\sum_{i=1}^{n} Q_{i} \delta_{i} \in \mathcal{O}\left[\delta_{1}, \delta_{2}, \cdots, \delta_{n}\right]$.

Remark 2.1.3.- Really, the previous argument proves that if R_{0} verifies (I]), then R_{0} is a polynomial in $\mathcal{O}\left[\sigma\left(\delta_{1}\right), \cdots, \sigma\left(\delta_{n}\right)\right]$.

Theorem 2.1.4.- If f is free and $\left\{\delta_{1}, \delta_{2}, \cdots, \delta_{n}\right\}$ is a basis of the \mathcal{O}-module $\operatorname{Der}(\log f)$, each logarithmic operator P can be written in a unique way as a polynomial

$$
P=\sum \beta_{i_{1} \cdots i_{n}} \delta_{1}^{i_{1}} \delta_{2}^{i_{2}} \cdots \delta_{n}^{i_{n}}, \quad \beta_{i_{1} \cdots i_{n}} \in \mathcal{O} .
$$

In other words, the ring of logarithmic operators is the \mathcal{O}-subalgebra of \mathcal{D} generated by logarithmic derivations:

$$
\mathcal{V}_{0}^{I}(\mathcal{D})=\mathcal{O}\left[\delta_{1}, \delta_{2}, \cdots, \delta_{n}\right]=\mathcal{O}[\operatorname{Der}(\log f)]
$$

Proof: The inclusion $\mathcal{O}\left[\delta_{1}, \delta_{2}, \cdots, \delta_{n}\right] \subseteq \mathcal{V}_{0}^{I}(\mathcal{D})$ is clear. We will prove the other inclusion by induction on the order of $P_{0} \in \mathcal{V}_{0}^{I}(\mathcal{D})$. If the order of P_{0} is zero, then it is a holomorphic function and the result is obvious. We suppose the result is true for every logarithmic operator Q whose order is strictly less than d. Let P_{0} be a logarithmic operator of order d. We know that:

$$
\left[P_{0}, f\right]=f P_{1}
$$

with $P_{1} \in \mathcal{V}_{0}^{I}(\mathcal{D})$. So, there exist several P_{k}, with $k=0, \cdots, d$, such that $\left[P_{k}, f\right]=$ $f P_{k+1}$. If we set $R_{k}=\sigma\left(P_{k}\right)$, in the case that P_{k} has order $d-k$, and $R_{k}=0$ otherwise, we obtain:

$$
\left\{R_{k}, f\right\}=\left\{\sigma_{d-k}\left(P_{k}\right), f\right\}=\sigma_{d-k-1}\left(\left[P_{k}, f\right]\right)=f \sigma_{d-k-1}\left(P_{k+1}\right)=f R_{k+1}
$$

By the previous proposition, there exists Q in $\mathcal{O}\left[\delta_{1}, \delta_{2}, \cdots, \delta_{n}\right]$ of order d and such that $\sigma\left(P_{0}\right)=\sigma(Q)$. As the order of $P_{0}-Q \in \mathcal{V}_{0}^{I}(\mathcal{D})$ is strictly less than d, we apply the induction hypothesis to $P_{0}-Q$ and obtain

$$
P_{0}=P_{0}-Q+Q \in \mathcal{O}\left[\delta_{1}, \delta_{2}, \cdots, \delta_{n}\right],
$$

as we wanted.
On the other hand, using the structure of Lie algebra it is clear that we can write a logarithmic operator as a \mathcal{O}-linear combination of the monomials $\left\{\delta_{1}^{i_{1}}, \cdots, \delta_{n}^{i_{n}}\right\}$. The uniqueness of this expression follows from the fact that these monomials are linearly independent over \mathcal{O}.

Remark 2.1.5.- As a immediate consequence of the theorem (see the previous remark), we obtain an isomorphism:

$$
\operatorname{Gr}_{F} \cdot\left(\mathcal{V}_{0}^{I}(\mathcal{D})\right) \stackrel{\alpha}{\cong} \mathcal{O}\left[\sigma\left(\delta_{1}\right), \cdots, \sigma\left(\delta_{n}\right)\right]
$$

Corollary 2.1.6.- If Y is free at x, the morphism κ_{x} from the symmetric algebra $\operatorname{Sym}_{\mathcal{O}}(\operatorname{Der}(\log f))$ to $\operatorname{Gr}_{F} \bullet\left(\mathcal{V}_{0}^{f}(\mathcal{D})\right)$ (see remark 1.2.2) is an isomorphism of graded \mathcal{O}-algebras. As a consequence, if Y is a free divisor, the canonical morphism

$$
\kappa: \quad \mathcal{S y m}_{\mathcal{O}_{X}}(\mathcal{D e r}(\log Y)) \rightarrow \mathcal{G} r_{F} \bullet\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right)
$$

is an isomorphism.
Proof: Let x be in X and $f \in \mathcal{O}$ a local reduced equation of Y at a neighbourhood of x. Let $\left\{\delta_{1}, \cdots, \delta_{n}\right\}$ be a basis of $\operatorname{Der}(\log f)$.

$$
\operatorname{Der}(\log f)=\oplus_{i=1}^{n} \mathcal{O} \delta_{i} \cong \oplus_{i=1}^{n} \mathcal{O} \sigma\left(\delta_{i}\right)
$$

The symmetric algebra of the \mathcal{O}-module $\operatorname{Der}(\log f)$ is isomorphic to a polynomial ring:

$$
\operatorname{Sym}_{\mathcal{O}}(\operatorname{Der}(\log f)) \stackrel{\beta}{\cong} \mathcal{O}\left[\sigma\left(\delta_{1}\right), \cdots, \sigma\left(\delta_{n}\right)\right]
$$

We also have the inclusion:

$$
\oplus_{i=1}^{n} \mathcal{O} \sigma\left(\delta_{i}\right)=\operatorname{Gr}_{F}^{1} \bullet\left(\mathcal{V}_{0}^{I}(\mathcal{D})\right) \subset \operatorname{Gr}_{F} \bullet\left(\mathcal{V}_{0}^{I}(\mathcal{D})\right),
$$

where $\sigma\left(\delta_{i}\right)$ is the image of δ_{i} by the morphism κ_{x}. Therefore we conclude that the morphism $\kappa_{x}=\alpha^{-1} \beta$ is an isomorphism (see remark 2.1.5). On the other hand, the inclusion

$$
\mathcal{D e r}(\log Y)=\mathcal{G} r_{F}^{1} \bullet\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right) \subset \mathcal{G} \mathrm{r}_{F} \bullet\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right)
$$

gives rise to a canonical graded morphism of graded \mathcal{O}_{X}-algebras (see remark 1.2.2): $\kappa: \mathcal{S y m}_{\mathcal{O}_{X}}(\mathcal{D e r}(\log Y)) \longrightarrow \mathcal{G r}_{F} \bullet\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right)$, whose stalk at each point x of Y is the canonical graded isomorphism κ_{x}. So, κ is also an isomorphism.

Corollary 2.1.7.- $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$ is a coherent sheaf of rings.
Proof: By theorem 9.16 of [1] (p. 83), we have only to prove that $\mathcal{G r}_{F} \bullet\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right)$ is coherent, but this sheaf is locally isomorphic to the polynomial ring $\mathcal{O}_{X}\left[T_{1}, \cdots, T_{n}\right]$, which is coherent ([33, lemma 3.2, VI, pg. 205]).

2.2 Equivalence between \mathcal{O}_{X}-modules with a logarithmic connection and left $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$-modules.

Definition 2.2.1.- (cf. [6]) Let \mathcal{M} be a \mathcal{O}_{X}-module. A connection on \mathcal{M}, with logarithmic poles along Y, (or logarithmic connection on \mathcal{M}), is a \mathbb{C} homomorphism ∇,

$$
\nabla: \mathcal{M} \rightarrow \Omega_{X}^{1}(\log Y) \otimes \mathcal{M}
$$

that verifies Leibniz's identity: $\nabla(h m)=d h \cdot m+h \cdot \nabla(m)$, where d is the exterior derivative over \mathcal{O}_{X}. We will note $\Omega_{X}^{q}(\log Y)(\mathcal{M})=\Omega_{X}^{q}(\log Y) \otimes \mathcal{M}$.

If δ is a logarithmic derivation along Y, it defines a \mathbb{C}-morphism:

$$
\begin{array}{ccc}
\mathcal{D e r}(\log Y) & \longrightarrow & \mathcal{E} \operatorname{nd}_{\mathbb{C}}(\mathcal{M}), \\
\delta & \mapsto & \nabla_{\delta}
\end{array}
$$

where $\nabla_{\delta}(m)=\langle\delta, \nabla(m)\rangle$
Remark 2.2.2.- A logarithmic connection ∇ on \mathcal{M} gives rise to a morphism of \mathcal{O}_{X}-modules

$$
\nabla^{\prime}: \mathcal{D e r}(\log Y) \rightarrow \mathcal{H}_{\mathbb{C}}(\mathcal{M}, \mathcal{M})
$$

which verifies Leibniz's condition: $\quad \nabla_{\delta}^{\prime}(f m)=\delta(f) \cdot m+f \cdot \nabla_{\delta}^{\prime}(m)$. Conversely, given ∇^{\prime} verifying this condition, we define

$$
\nabla: \mathcal{M} \rightarrow \Omega_{X}^{1}(\log Y)(\mathcal{M})
$$

with $\nabla(m)$ the element of $\Omega_{X}^{1}(\log Y)(\mathcal{M})=\mathcal{H o m}_{\mathcal{O}_{X}}(\mathcal{D e r}(\log Y), \mathcal{M})$ such that:

$$
\nabla(m)(\delta)=\nabla_{\delta}^{\prime}(m)
$$

Definition 2.2.3.- A logarithmic connection ∇ is integrable if, for each pair δ and δ^{\prime} of logarithmic derivations, it verifies:

$$
\nabla_{\left[\delta, \delta^{\prime}\right]}=\left[\nabla_{\delta}, \nabla_{\delta^{\prime}}\right]
$$

where [,] represents the Lie bracket in $\mathcal{D e r}(\log Y)$ and the commutator in $\mathcal{H o m}_{\mathbb{C}}(\mathcal{M}, \mathcal{M})$.

Given a logarithmic connection ∇ and the exterior derivative d, we can construct a morphism:

$$
\nabla^{q}: \Omega_{X}^{q}(\log Y)(\mathcal{M}) \rightarrow \Omega_{X}^{q+1}(\log Y)(\mathcal{M})
$$

for each $q=1, \cdots, n$. If ω and m are sections of the sheaves $\Omega_{X}^{p}(\log Y)$ and \mathcal{M} :

$$
\nabla^{q}(\omega \otimes m)=d \omega \otimes m+(-1)^{q} \omega \wedge \nabla(m)
$$

The integrability condition is equivalent to $\nabla^{q} \circ \nabla^{q-1}=0$, for every q (cf. [6]).
Definition 2.2.4.- Let \mathcal{M} be a \mathcal{O}_{X}-module, and ∇ an integrable logarithmic connection along Y on \mathcal{M}. With the above notation, we call the logarithmic de Rham complex of \mathcal{M}, and we denote by $\Omega_{X}^{\bullet}(\log Y)(\mathcal{M})$, the complex (of sheaves of \mathbb{C}-vector spaces):

$$
\begin{gathered}
0 \rightarrow \mathcal{M} \xrightarrow{\nabla} \Omega_{X}^{1}(\log Y)(\mathcal{M}) \xrightarrow{\nabla^{1}} \cdots \xrightarrow{\nabla^{q-1}} \Omega_{X}^{q}(\log Y)(\mathcal{M}) \xrightarrow{\nabla^{q}} \\
\Omega_{X}^{q+1}(\log Y)(\mathcal{M}) \xrightarrow{\nabla+1} \cdots \xrightarrow{\nabla^{n-1}} \Omega_{X}^{n}(\log Y)(\mathcal{M}) \rightarrow 0 .
\end{gathered}
$$

In the particular case where the \mathcal{O}_{X}-module \mathcal{M} is equal to \mathcal{O}_{X} and the logarithmic connection ∇ is equal to the exterior derivative $d: \mathcal{O}_{X} \rightarrow \Omega_{X}^{1}(\log Y)$, the morphisms

$$
\nabla^{q}: \Omega_{X}^{q}(\log Y) \longrightarrow \Omega_{X}^{q+1}(\log Y)
$$

define the logarithmic de Rham complex of Saito.
We consider the rings $R_{0}=\mathcal{O}_{X} \subset R_{1}$ and $R=\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)=\bigcup_{k \geq 0} R_{k}\left(1 \in R_{0} \subset\right.$ $R)$, with $R_{k}=F^{k}\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right)$. The ring $\mathcal{G} r(R)$ is commutative and verifies
(1) The canonical morphism $\alpha: \operatorname{Sym}_{R_{0}}\left(\mathcal{G} r^{1}(R)\right) \rightarrow \mathcal{G} r(R)$, defined by $\alpha\left(s_{1} \otimes\right.$ $\left.\cdots \otimes s_{t}\right)=s_{1} \cdots s_{t}$, is an isomorphism (see Corollary 2.1.6).
With these conditions, R_{1} is an $\left(R_{0}, R_{0}\right)$-bimodule, and a Lie algebra $([x, y]=$ $x y-y x \in R_{1}$, because $\mathcal{G} r(R)$ is conmutative). Moreover, R_{0} is a sub- $\left(R_{0}, R_{0}\right)$ bimodule of R_{1} such that the two induced structures of R_{0}-module over the quotient R_{1} / R_{0} are the same.

Let $\mathbf{T}_{R_{0}}\left(R_{1}\right)=R_{0} \oplus R_{1} \oplus\left(R_{1} \otimes_{R_{0}} R_{1}\right) \oplus \cdots$ be the tensor algebra of the $\left(R_{0}, R_{0}\right)-$ bimodule R_{1}, and let $\psi: \mathbf{T}_{R_{0}}\left(R_{1}\right) \rightarrow R$ be the canonical morphism defined by the inclusion $R_{1} \subset R$. We prove a reciprocal theorem of one Poincaré-Birkhoff-Witt theorem [13, theorem 3.1,p.198] .

Proposition 2.2.5.- The morphism ψ induces an isomorphism:

$$
\phi: \mathbf{S}=\frac{\mathbf{T}_{R_{0}}\left(R_{1}\right)}{J} \cong R, \quad \phi\left(\left(i\left(x_{1}\right) \otimes \cdots \otimes i\left(x_{t}\right)\right)+J\right)=x_{1} x_{2} \cdots x_{t},
$$

where i the inclusion of R_{1} in the tensor algebra, and J is the two sided ideal generated by the elements:
a) $a-i(a), a \in R_{0} \subset R_{1}$,
b) $i(x) \otimes i(y)-i(y) \otimes i(x)-i([x, y]), x, y \in R_{1}$.

Proof: First, we check that the morphism $\phi: \mathbf{S} \rightarrow R$ is well defined:

$$
\begin{gathered}
\psi(a-i(a))=a-a=0, a \in R_{0} \\
\psi(i(x) \otimes i(y)-i(y) \otimes i(x)-i([x, y]))=x y-y x-[x, y]=0, x, y \in R_{1} .
\end{gathered}
$$

The algebra $\mathbf{T}_{R_{0}}\left(R_{1}\right)$ is graded, so it is filtered, and induces a filtration on the quotient. The induced morphism $\phi: \mathbf{S} \rightarrow R$ is filtered:

$$
\psi(a)=a \in R_{0}, \psi\left(i\left(x_{1}\right) \otimes \cdots \otimes i\left(x_{t}\right)\right)=x_{1} x_{2} \cdots x_{t} \in R_{t} .
$$

So, we can define a graded morphism of R_{0}-rings.

$$
\begin{gathered}
\pi: \mathcal{G} r(\mathbf{S}) \rightarrow \mathcal{G} r(R), \\
\pi\left(\sigma_{t}\left(i\left(x_{1}\right) \otimes \cdots \otimes i\left(x_{t}\right)+J\right)\right)=\sigma_{t}^{\prime}\left(x_{1} \cdots x_{t}\right)=\overline{x_{1}} \cdots \overline{x_{t}},
\end{gathered}
$$

where $x_{i} \in R_{1}, \overline{x_{i}}=\sigma_{1}^{\prime}\left(x_{1}\right)$ is the class of x_{i} in $R_{1} / R_{0}, \sigma_{t}(P)$ is the class of $P \in \mathbf{S}$ in $\mathcal{G} r^{t}(\mathbf{S})$, and $\sigma_{t}^{\prime}(Q)$ the class of $Q \in R_{t}$ in $\mathcal{G} r^{t}(R)$. Note that $\mathcal{G} r(\mathbf{S})$ is conmutative: it is generated by the elements $\sigma_{0}(a+J), \sigma_{1}(i(x)+J)$, with $a \in R_{0}$, $x \in R_{1}$, and

$$
\begin{gathered}
{[i(x)+J, i(y)+J]=i([x, y])+J} \\
{[a+J, i(x)+J]=i(a x-x a)+J=b+J, b=a x-x a \in R_{0} .}
\end{gathered}
$$

On the other hand, the image of $R_{0} \subset R_{1}$ in \mathbf{S} is exactly the part of degree zero of \mathbf{S}, and then we obtain a morphism of R_{0}-modules from $\mathcal{G} r^{1}(R)=R_{1} / R_{0}$ to $\mathcal{G} r^{1}(\mathbf{S})$ which induces a morphism of R_{0}-algebras:

$$
\begin{gathered}
\rho: \operatorname{Sym}_{R_{0}}\left(\frac{R_{1}}{R_{0}}\right) \rightarrow \mathcal{G} r(\mathbf{S}), \\
\rho\left(\overline{x_{1}} \otimes \cdots \otimes \overline{x_{t}}\right)=\sigma_{t}\left(i\left(x_{1}\right) \otimes \cdots \otimes i\left(x_{t}\right)+J\right)
\end{gathered}
$$

which is obviously surjective. The composition $\pi \rho$ is equal to α, and, by property (1) of R, we deduce that ρ is injective. As ρ and $\pi \rho$ are isomorphisms, π is as well, as we wanted to prove.

Corollary 2.2.6.- Let Y be a free divisor. Let \mathcal{M} be a \mathcal{O}_{X}-module. An integrable logarithmic connection on \mathcal{M} gives rise to a left $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$-structure on \mathcal{M}, and vice versa.

Proof: A \mathcal{O}_{X}-module \mathcal{M} with an integrable logarithmic connection ∇ has a natural structure of left $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$-module defined by its structure as \mathcal{O}_{X}-module. Let μ be the morphism of $\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right)$-bimodules:

$$
\mu: R_{1}=\mathcal{O}_{X} \oplus \mathcal{D} \operatorname{er}(\log Y) \rightarrow \mathcal{E} \operatorname{nd}_{\mathbb{C}}(\mathcal{M}), \quad \mu(a)(m)=a m, \quad \mu(\delta)(m)=\nabla_{\delta}(m)
$$

μ induces a morphism $\nu: \mathbf{T}_{R_{0}}\left(R_{1}\right) \rightarrow \mathcal{E}^{\operatorname{nd}} \mathbb{C}_{\mathbb{C}}(\mathcal{M})$, and, as $\nu(J)=0$, we have a morphism

$$
\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right) \simeq \frac{\mathbf{T}_{R_{0}}\left(R_{1}\right)}{J} \rightarrow \mathcal{E}^{\operatorname{nd}_{\mathbb{C}}(\mathcal{M})}
$$

which defines an structure of $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$-module on \mathcal{M}.

On the other hand, a left $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$-module structure on \mathcal{M} defines an integrable logarithmic connection ∇ on the \mathcal{O}_{X}-module \mathcal{M} :

$$
\nabla: \mathcal{D} \operatorname{er}(\log Y) \rightarrow \mathcal{E}^{\operatorname{nd}_{\mathbb{C}}}(\mathcal{M}), \quad \nabla_{\delta}(m)=\delta \cdot m
$$

Remark 2.2.7.- A left $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$-module structure on \mathcal{M} defines a logarithmic de Rham complex. In local coordinates $\left(U ; x_{1}, \cdots, x_{n}\right)$, with $\left\{\delta_{1}, \cdots, \delta_{n}\right\}$ a local basis of $\mathcal{D e r}(\log Y)$ and $\left\{\omega_{1}, \cdots, \omega_{n}\right\}$ its dual basis, the differential of the complex is defined by:

$$
\nabla^{p}(U)(\omega \otimes m)=d \omega \otimes m+\sum_{i=1}^{n}\left(\left(\omega_{i} \wedge \omega\right) \otimes \delta_{i} \cdot m\right)
$$

for any sections $\omega \in \Omega_{X}^{1}(\log Y)$ and $m \in \mathcal{M}$. In the particular case of the left $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$-module \mathcal{O}_{X}, defined as $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$-module in a natural way $(P \cdot g=P(g)$, with g a holomorphic function and P a logarithmic operator), this canonical structure of \mathcal{O}_{X} as left $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$-module is obviously equivalent to the integrable logarithmic connection over \mathcal{O}_{X} defined naturally by the exterior derivative $(\nabla=$ d):

$$
\nabla_{\delta}(g)=\langle\delta, d g\rangle=\delta(g)
$$

3 The Logarithmic de Rham Complex

In this section, Y will be a free divisor.

3.1 The Logarithmic Spencer Complex

Definition 3.1.1.- We call the logarithmic Spencer complex, and denote by $\mathcal{S p}^{\bullet}(\log Y)$, the complex:

$$
\begin{aligned}
0 \rightarrow \mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right) \otimes_{\mathcal{O}_{X}} \stackrel{n}{\wedge} \operatorname{Der} & (\log Y) \\
& \ldots \stackrel{\varepsilon_{-n}}{\rightarrow} \ldots \\
& \xrightarrow{\varepsilon_{-2}} \mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right) \otimes_{\mathcal{O}_{X}} \stackrel{1}{\wedge} \operatorname{Der}(\log Y) \xrightarrow{\varepsilon_{-1}} \mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)
\end{aligned}
$$

where

$$
\begin{gathered}
\varepsilon_{-p}\left(P \otimes\left(\delta_{1} \wedge \cdots \wedge \delta_{p}\right)\right)=\sum_{i=1}^{p}(-1)^{i-1} P \delta_{i} \otimes\left(\delta_{1} \wedge \cdots \wedge \widehat{\delta}_{i} \wedge \cdots \wedge \delta_{p}\right)+ \\
\sum_{1 \leq i<j \leq p}(-1)^{i+j} P \otimes\left(\left[\delta_{i}, \delta_{j}\right] \wedge \delta_{1} \wedge \cdots \wedge \widehat{\delta}_{i} \wedge \cdots \wedge \widehat{\delta}_{j} \wedge \cdots \wedge \delta_{p}\right), \quad(2 \leq p \leq n)
\end{gathered}
$$

$$
\varepsilon_{-1}(P \otimes \delta)=P \delta
$$

We can augment this complex of left $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$-modules by another morphism:

$$
\varepsilon_{0}: \mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right) \rightarrow \mathcal{O}_{X}, \quad \varepsilon_{0}(P)=P(1)
$$

We call the new complex $\widetilde{\mathcal{S}} p^{\bullet}(\log Y)$.
This definition is essentially the same as the definition of the usual Spencer complex $\mathcal{S} p^{\bullet}$ of \mathcal{O}_{X} (cf. [11, 2.1]) and generalizes the definition given by Esnault and Viehweg [7, App. A] in the case of a normal crossing divisor. We denote by $\mathcal{S} p^{\bullet}[\star Y]=\mathcal{D}_{X}[\star Y] \otimes_{\mathcal{D}_{X}} \mathcal{S} p^{\bullet}$ the meromorphic Spencer complex of $\mathcal{O}_{X}[\star Y]$.
Theorem 3.1.2.- The complex $\mathcal{S} p^{\bullet}(\log Y)$ is a locally free resolution of \mathcal{O}_{X} as left $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$-module.

Proof: To see the exactness of $\widetilde{\mathcal{S}} \bullet^{\bullet}(\log Y)$ we define a discrete filtration G^{\bullet} such that it induces an exact graded complex (cf. [1], lemma 3.16]):

$$
\begin{gathered}
G^{k}\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right) \otimes \stackrel{p}{\wedge} \mathcal{D} \operatorname{er}(\log Y)\right)=F^{k-p}\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right) \otimes{ }_{\wedge}^{p} \operatorname{D} \operatorname{er}(\log Y) \\
G^{k}\left(\mathcal{O}_{X}\right)=\mathcal{O}_{X}
\end{gathered}
$$

We have

$$
\begin{gathered}
\mathcal{G r}_{G} \bullet\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right) \otimes \wedge{ }^{p} \mathcal{D} \operatorname{er}(\log Y)\right)=\mathcal{G r}_{F} \bullet\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right)[-p] \otimes \stackrel{p}{\wedge} \operatorname{Der}(\log Y), \\
\mathcal{G} \mathrm{r}_{G} \cdot\left(\mathcal{O}_{X}\right)=\mathcal{O}_{X}
\end{gathered}
$$

As the above filtrations are compatible with the differential of the complex $\widetilde{\mathcal{S}} p^{\bullet}(\log Y)$, we can consider the complex $\mathcal{G r}_{G} \cdot\left(\widetilde{\mathcal{S}} p^{\bullet}(\log Y)\right)$:

$$
\begin{gathered}
0 \rightarrow \mathcal{G r}_{F} \cdot\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right)[-n] \otimes_{\mathcal{O}_{X}} \stackrel{n}{\wedge} \operatorname{Der}(\log Y) \xrightarrow{\psi_{-n}} \cdots \\
\stackrel{\psi_{-2}}{\rightarrow} \mathcal{G r}_{F} \cdot\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right)[-1] \otimes_{\mathcal{O}_{X}} \stackrel{1}{\wedge} \operatorname{Der}(\log Y) \xrightarrow{\psi_{-1}} \mathcal{G r}_{F} \cdot\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right) \xrightarrow{\psi_{0}} \mathcal{O}_{X} \rightarrow 0
\end{gathered}
$$

where the local expression of the differential is defined by:

$$
\begin{gathered}
\psi_{-p}\left(G \otimes \delta_{j_{1}} \wedge \cdots \wedge \delta_{j_{p}}\right)=\sum_{i=1}^{p}(-1)^{i-1} G \sigma\left(\delta_{j_{i}}\right) \otimes \delta_{j_{1}} \wedge \cdots \wedge \widehat{\delta_{j_{i}}} \wedge \cdots \wedge \delta_{j_{p}}, \quad(2 \leq p \leq n) . \\
\psi_{-1}\left(G \otimes \delta_{i}\right)=G \sigma\left(\delta_{i}\right), \quad \psi_{0}(G)=G_{0}
\end{gathered}
$$

with $\left\{\delta_{1}, \cdots, \delta_{n}\right\}$ a (local) basis of $\mathcal{D e r}(\log Y)$. This complex is the Koszul complex of the ring

$$
\mathcal{G r}_{F} \bullet\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right) \cong \mathcal{S y m}_{\mathcal{O}_{X}}(\mathcal{D e r}(\log Y))
$$

with respect to the $\mathcal{G r}_{F} \cdot\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right)$-regular sequence $\sigma\left(\delta_{1}\right), \cdots, \sigma\left(\delta_{n}\right)$ in the ring $\mathcal{G r}_{F} \bullet\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right)$. Consequently, it is exact.

Lemma 3.1.3.- For every logarithmic operator $P \in \mathcal{V}_{0}^{f}(\mathcal{D})$, there exist, for each integer p, a logarithmic operator $Q \in \mathcal{V}_{0}^{f}(\mathcal{D})$ and an integer k such that $f^{-p} P=Q f^{-k}$.

Proof: We will prove the lemma by induction on the order of the logarithmic operator. If P has order 0 , it is in \mathcal{O}, and it is clear that $f^{-p} P=P f^{-p}$. Let P be of order d, and consider the logarithmic operator $\left[P, f^{p}\right]$, of order $d-1$. By induction hypothesis, there exists an integer m such that:

$$
\left[P, f^{-p}\right] f^{m} \in \mathcal{V}_{0}^{f}(\mathcal{D})
$$

Let k be the greatest of the integers m and p. It is clear that:

$$
f^{-p} P f^{k}=P f^{k-p}-\left[P, f^{-p}\right] f^{k} \in \mathcal{V}_{0}^{f}(\mathcal{D})
$$

This proves the result: $Q=P f^{k-p}-\left[P, f^{-p}\right] f^{k}$.

Remark 3.1.4.- For every operator Q in $\mathcal{D}_{X}[\star Y]_{x}$, we can always find a strictly positive integer m such that $f^{m} Q \in \mathcal{V}_{0}^{f}(\mathcal{D})$. Equivalently, for each meromorphic differential operator Q, there exists a positive integer p and a logarithmic operator Q^{\prime} such that we can write:

$$
Q=f^{-p} Q^{\prime}
$$

Now we introduce several morphisms that we will use later.
Lemma 3.1.5.- We have the following isomorphisms:

1. $\mathcal{O}_{X}[\star Y] \otimes_{\mathcal{O}_{X}} \mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right) \stackrel{\sim}{\hookrightarrow} \mathcal{D}_{X}[\star Y] \stackrel{\sim}{\hookrightarrow} \mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right) \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}[\star Y]$.
2. $\alpha: \mathcal{D}_{X}[\star Y] \otimes_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)} \mathcal{O}_{X} \cong \mathcal{O}_{X}[\star Y], \quad \alpha(P \otimes g)=P(g)$.
3. $\rho: \mathcal{D}_{X}[\star Y] \otimes_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)} \mathcal{D}_{X}[\star Y] \cong \mathcal{D}_{X}[\star Y], \quad \rho(P \otimes Q)=P Q$.

Proof:

1. The inclusions $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right), \mathcal{O}_{X}[\star Y] \subset \mathcal{D}_{X}[\star Y]$ give rise to the previous isomorphisms of $\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right), \mathcal{O}_{X}[\star Y]\right)$-modules. Locally:

$$
a f^{-k} \otimes P=a f^{-k} P=a Q \otimes f^{-p}
$$

with P and Q logarithmic operators such that $f^{-k} P=Q f^{-p}$. We have seen how to obtain Q from P (lemma 3.1.3), and we can obtain P from Q in the same way. On the other hand, we saw in the previous remark how to express a meromorphic
differential operator as a product of a meromorphic function and a logarithmic operator.
2. We have to compose the following isomorphisms of left $\mathcal{D}_{X}[\star Y]$-modules:

$$
\mathcal{O}_{X}[\star Y] \otimes_{\mathcal{O}_{X}} \mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right) \otimes_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)} \mathcal{O}_{X} \cong \mathcal{O}_{X}[\star Y] \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X} \cong \mathcal{O}_{X}[\star Y]
$$

3. We obtain this isomorphism of $\mathcal{D}_{X}[\star Y]$-bimodules from the composition of the following isomorphisms:

$$
\begin{gathered}
\mathcal{O}_{X}[\star Y] \otimes_{\mathcal{O}_{X}} \mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right) \otimes_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)} \mathcal{D}_{X}[\star Y] \cong \mathcal{O}_{X}[\star Y] \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X}[\star Y] \cong \\
\mathcal{O}_{X}[\star Y] \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}[\star Y] \otimes_{\mathcal{O}_{X}} \mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right) \cong \mathcal{O}_{X}[\star Y] \otimes_{\mathcal{O}_{X}} \mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right) \cong \mathcal{D}_{X}[\star Y],
\end{gathered}
$$

where the isomorphism $\mathcal{O}_{X}[\star Y] \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}[\star Y] \cong \mathcal{O}_{X}[\star Y]$ sends (locally) the tensor product $g_{1} \otimes g_{2}$ to the meromorphic function $g_{1} g_{2}$.

Proposition 3.1.6.- We have the following isomorphisms of complexes of $\mathcal{D}_{X}[\star Y]$-modules:
(a) $\mathcal{D}_{X}[\star Y] \otimes_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)} \mathcal{S} p^{\bullet} \cong \mathcal{S} p^{\bullet}[\star Y]$.
(b) $\mathcal{D}_{X}[\star Y] \otimes_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)} \mathcal{S} p^{\bullet}(\log Y) \cong \mathcal{S} p^{\bullet}[\star Y]$.

Proof: (a) As $\mathcal{S} p^{\bullet}$ is a subcomplex of \mathcal{D}_{X}-modules of $\mathcal{S} p^{\bullet}[\star Y]$, and $\mathcal{D}_{X}[\star Y]$ is flat over $\varnothing \mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$, the complex $\mathcal{D}_{X}[\star Y] \otimes_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)}{ }^{`}$ ffl $\varnothing \mathcal{S} p$ • is a subcomplex of $\mathcal{D}_{X}[\star Y] \otimes_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)} \mathcal{S} p^{\bullet}[\star Y]$, (see lemma 3.1.5, 1.). But, by the third isomorphism of lemma 3.1.5, this complex is the same as $\mathcal{S} p^{\bullet}[\star Y]$. Hence, we have an injective morphism of complexes:

$$
\mathcal{D}_{X}[\star Y] \otimes_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)} \mathcal{S} p^{\bullet} \longrightarrow \mathcal{S} p^{\bullet}[\star Y],
$$

defined locally in each degree by: $P \otimes Q \otimes \delta_{1} \wedge \cdots \wedge \delta_{p} \mapsto P Q \otimes\left(\delta_{1} \wedge \cdots \wedge \delta_{p}\right)$. This morphism is clearly surjective and, consequently, an isomorphism.
(b) We consider $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$ as a subsheaf of \mathcal{O}-modules of \mathcal{D}_{X}. Using the fact that ${ }_{\wedge}^{p} \mathcal{D} \operatorname{Der}(\log Y)$ is \mathcal{O}_{X}-free, we have an inclusion

$$
\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right) \otimes_{\mathcal{O}_{X}} \stackrel{p}{\wedge} \mathcal{D} \operatorname{er}(\log Y) \hookrightarrow \mathcal{D}_{X} \otimes_{\mathcal{O}_{X}} \stackrel{p}{\wedge} \operatorname{Der}(\log Y) .
$$

On the other hand, as Y is free, we have a natural injective morphism from $\stackrel{p}{\wedge} \mathcal{D e r}(\log Y)$ to $\stackrel{p}{\wedge} \operatorname{Der}_{\mathbb{C}}\left(\mathcal{O}_{X}\right)$ (cf. [2, AIII 88, Cor.]). As \mathcal{D}_{X} is flat over \mathcal{O}_{X}, we have other inclusion:

$$
\mathcal{D}_{X} \otimes_{\mathcal{O}_{X}} \stackrel{p}{\wedge} \operatorname{Der}(\log Y) \hookrightarrow \mathcal{D}_{X} \otimes_{\mathcal{O}_{X}} \stackrel{p}{\wedge} \operatorname{Der}_{\mathbb{C}}\left(\mathcal{O}_{X}\right)(p \geq 0)
$$

Composing both of them, we obtain a new inclusion:

$$
\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right) \otimes_{\mathcal{O}_{X}} \stackrel{p}{\wedge} \mathcal{D e r}(\log Y) \hookrightarrow \mathcal{D}_{X} \otimes_{\mathcal{O}_{X}} \stackrel{p}{\wedge} \operatorname{Der}_{\mathbb{C}}\left(\mathcal{O}_{X}\right)
$$

for $p=0, \cdots, n$. These inclusions give rise to an injective morphism of complexes of $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$-modules

$$
\mathcal{S} p^{\bullet}(\log Y) \hookrightarrow \mathcal{S} p^{\bullet}
$$

As $\mathcal{D}_{X}[\star Y]$ is flat over $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$ (see lemma 3.1.5, 1.) we have an injective morphism of complexes of $\mathcal{D}_{X}[\star Y]$-modules:

$$
\theta^{\prime}: \mathcal{D}_{X}[\star Y] \otimes_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)} \mathcal{S} p^{\bullet}(\log Y) \hookrightarrow \mathcal{D}_{X}[\star Y] \otimes_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)} \mathcal{S} p^{\bullet},
$$

defined by: $\theta^{\prime}\left(P \otimes Q \otimes\left(\delta_{1} \wedge \cdots \wedge \delta_{p}\right)\right)=P \otimes Q \otimes\left(\delta_{1} \wedge \cdots \wedge \delta_{p}\right)$. This morphism is surjective, given P local section of $\mathcal{D}_{X}[\star Y], Q$ in \mathcal{D} and $\delta_{1}, \cdots, \delta_{n}$ in $\operatorname{Der}_{\mathbb{C}}(\mathcal{O})$, we have:

$$
P \otimes Q \otimes\left(\delta_{1} \wedge \cdots \wedge \delta_{p}\right)=\theta^{\prime}\left(\left(P f^{-k}\right) \otimes Q^{\prime} \otimes\left(f \delta_{1} \wedge \cdots \wedge f \delta_{p}\right)\right)
$$

with $k>0$ and Q^{\prime} a local section of $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$ verifying $f^{k} Q=Q^{\prime} f^{p}$ (see lemma 3.1.3). Composing θ^{\prime} with the isomorphism of (a), we obtain the isomorphism:

$$
\theta: \mathcal{D}_{X}[\star Y] \otimes_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)} \mathcal{S} p^{\bullet}(\log Y) \xrightarrow{\sim} \mathcal{S} p^{\bullet}[\star Y],
$$

with local expression: $\theta\left(P \otimes Q \otimes\left(\delta_{1} \wedge \cdots \wedge \delta_{p}\right)\right)=P Q \otimes\left(\delta_{1} \wedge \cdots \wedge \delta_{p}\right)$.

3.2 The Logarithmic de Rham Complex

For each divisor Y, we have a standard canonical isomorphism:

$$
\mathcal{H o m}_{\mathcal{O}_{X}}\left(\stackrel{p}{\wedge} \mathcal{D} \operatorname{er}(\log Y), \mathcal{O}_{X}\right) \stackrel{\lambda^{p}}{\approx} \mathcal{H o m}_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)}\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right) \otimes_{\mathcal{O}_{X}} \stackrel{p}{\wedge} \operatorname{Der}(\log Y), \mathcal{O}_{X}\right)
$$

defined by: $\lambda^{p}(\alpha)\left(P \otimes \delta_{1} \wedge \cdots \wedge \delta_{p}\right)=P\left(\alpha\left(\delta_{1} \wedge \cdots \wedge \delta_{p}\right)\right)$.
Composing this isomorphism with the isomorphism γ^{p} defined in section 1.1, we can construct a natural morphism $\psi^{p}=\lambda^{p} \circ \gamma^{p}$:

$$
\Omega_{X}^{p}(\log Y) \stackrel{\psi^{p}}{\cong} \mathcal{H o m}_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)}\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right) \otimes \stackrel{p}{\wedge} \operatorname{Der}(\log Y), \mathcal{O}_{X}\right)
$$

for $p=0, \cdots, n$. Locally:

$$
\psi^{p}\left(\omega_{1} \wedge \cdots \wedge \omega_{p}\right)\left(P \otimes \delta_{1} \wedge \cdots \wedge \delta_{p}\right)=P\left(\operatorname{det}\left(\left\langle\omega_{i}, \delta_{j}\right\rangle\right)_{1 \leq i, j \leq p}\right)
$$

with $\omega_{i}(i=1, \cdots, n)$ local sections of $\Omega_{X}^{1}(\log Y)$ and P a logarithmic operator.
Similarly, if \mathcal{M} is a left $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$-module, given an integer $p \in\{1, \cdots, n\}$, there exist the following canonical isomorphisms:

$$
\gamma_{\mathcal{M}}^{p}: \Omega_{X}^{p}(\log Y) \otimes_{\mathcal{O}_{X}} \mathcal{M} \xrightarrow{\sim} \mathcal{H}_{\mathrm{O}_{\mathcal{O}_{X}}}\left(\stackrel{p}{\wedge} \mathcal{D} \operatorname{er}(\log Y), \mathcal{M}_{X}\right)
$$

$$
\begin{aligned}
& \lambda_{\mathcal{M}}^{p}: \mathcal{H o m}_{\mathcal{O}_{X}}(\stackrel{p}{\wedge} \operatorname{Der}(\log Y), \mathcal{M}) \xrightarrow{\sim} \mathcal{H o m}_{\mathcal{V}_{0}^{Y}}\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right) \otimes_{\mathcal{O}_{X}} \stackrel{p}{\wedge} \operatorname{Der}(\log Y), \mathcal{M}\right), \\
& \psi_{\mathcal{M}}^{p}=\lambda_{\mathcal{M}}^{p} \circ \gamma_{\mathcal{M}}^{p}: \Omega_{X}^{p}(\log Y)(\mathcal{M}) \xrightarrow{\sim} \mathcal{H}_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)}\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right) \otimes \stackrel{p}{\wedge} \operatorname{Der}(\log Y), \mathcal{M}\right) .
\end{aligned}
$$

Locally:

$$
\psi_{\mathcal{M}}^{p}\left(\omega_{1} \wedge \cdots \wedge \omega_{p} \otimes m\right)\left(P \otimes \delta_{1} \wedge \cdots \wedge \delta_{p}\right)=P \cdot \operatorname{det}\left(\left\langle\omega_{i}, \delta_{j}\right\rangle\right)_{1 \leq i, j \leq p} \cdot m
$$

Theorem 3.2.1.- If \mathcal{M} is a left $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$-module (or, equivalently, is a $\mathcal{O}_{X^{-}}$ module with an integrable logarithmic connection), the complexes of sheaves of \mathbb{C}-vector spaces $\Omega_{X}^{\bullet}(\log Y)(\mathcal{M})$ and $\mathcal{H o m}_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)}\left(\mathcal{S} p^{\bullet}(\log Y), \mathcal{M}\right)$ are canonically isomorphic.

Proof: The general case is solved if we prove the case $\mathcal{M}=\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$, using the isomorphisms:

$$
\begin{aligned}
\Omega_{X}^{\bullet}(\log Y)(\mathcal{M}) & \cong \Omega_{X}^{\bullet}(\log Y)\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right) \otimes_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)} \mathcal{M} \\
\mathcal{H o m}_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)}\left(\mathcal{S} p^{\bullet}(\log Y), \mathcal{M}\right) & \cong \mathcal{H}_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)}\left(\mathcal{S} p^{\bullet}(\log Y), \mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right) \otimes_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)} \mathcal{M} .
\end{aligned}
$$

For $\mathcal{M}=\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$, we obtain the right $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$-isomorphisms

$$
\phi^{p}=\psi_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)}^{p}: \Omega_{X}^{p}(\log Y)\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right) \rightarrow \mathcal{H o m}_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)}\left(\mathcal{S}^{-p}(\log Y), \mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right)
$$

whose local expression are:

$$
\phi^{p}\left(\left(\omega_{1} \wedge \cdots \wedge \omega_{p}\right) \otimes Q\right)\left(P \otimes\left(\delta_{1} \wedge \cdots \wedge \delta_{p}\right)\right)=P \cdot \operatorname{det}\left(\left\langle\omega_{i}, \delta_{j}\right\rangle\right) \cdot Q
$$

To prove that these isomorphisms produce a isomorphism of complexes we have to check that they commute with the differential of the complex. Thanks to the isomorphism (b) of the proposition 3.1.6,

$$
\mathcal{D}_{X}[\star Y] \otimes_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)} \mathcal{S} p^{\bullet}(\log Y) \simeq \mathcal{S} p^{\bullet}[\star Y]
$$

we obtain a natural morphism of complexes of sheaves of right $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$-modules:

$$
\tau^{\bullet}: \mathcal{H o m}_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)}\left(\mathcal{S} p^{\bullet}(\log Y), \mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right) \longrightarrow \mathcal{H o m}_{\mathcal{D}_{X}[\star Y]}\left(\mathcal{S} p^{\bullet}[\star Y], \mathcal{D}_{X}[\star Y]\right)
$$

locally defined by:

$$
\tau^{p}(\alpha)\left(R \otimes\left(\delta_{1} \wedge \cdots \wedge \delta_{p}\right)\right)=f^{-k} \alpha\left(P \otimes\left(f \delta_{1} \wedge \cdots \wedge f \delta_{p}\right)\right)
$$

(for any local sections α of $\mathcal{H o m}_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)}\left(\mathcal{S} p^{\bullet}(\log Y), \mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right), R$ of $\mathcal{D}_{X}[\star Y]$ and $\delta_{1}, \cdots, \delta_{p}$ of $\mathcal{D e r}_{\mathbb{C}}\left(\mathcal{O}_{X}\right)$), where P is a local section of $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$ such that $R f^{-p}=$ $f^{-k} P$ (see lemma 3.1.3). The morphisms τ^{i} are injective, because:

$$
\alpha\left(P \otimes\left(\delta_{1} \wedge \cdots \wedge \delta_{p}\right)\right)=\tau^{i}(\alpha)\left(P \otimes\left(\delta_{1} \wedge \cdots \wedge \delta_{p}\right)\right)
$$

Let us see the following diagram commutes:

$$
\begin{array}{ccc}
\Omega_{X}^{p}(\log Y)\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right) & \xrightarrow{j^{p}} & \Omega_{X}^{p}[\star Y]\left(\mathcal{D}_{X}[\star Y]\right) \\
\downarrow \phi^{p} & \# & \downarrow \Phi^{p} \\
\mathcal{H o m}_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)}\left(\mathcal{S}^{p}(\log Y), \mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right) & \xrightarrow{\tau^{p}} & \mathcal{H o m}_{\mathcal{D}_{X}[\star Y]}\left(\mathcal{S p}^{p}[\star Y], \mathcal{D}_{X}[\star Y]\right)
\end{array}
$$

for each $p \geq 0$, where the Φ^{p} are the isomorphisms:

$$
\begin{aligned}
& \Phi^{p}: \Omega_{X}^{p}[\star Y]\left(\mathcal{D}_{X}[\star Y]\right) \longrightarrow \mathcal{H o m}_{\mathcal{D}_{X}[\star Y]}\left(\mathcal{D}_{X}[\star Y] \otimes \stackrel{p}{\wedge} \operatorname{Der}_{\mathbb{C}}\left(\mathcal{O}_{X}\right), \mathcal{D}_{X}[\star Y]\right) \\
& \Phi^{p}\left(\left(\omega_{1} \wedge \cdots \wedge \omega_{p}\right) \otimes Q\right)\left(P \otimes\left(\delta_{1} \wedge \cdots \wedge \delta_{p}\right)\right)=P \cdot \operatorname{det}\left(\left\langle\omega_{i} \cdot \delta_{j}\right\rangle_{1 \leq i, j \leq p}\right) \cdot Q
\end{aligned}
$$

Given $\omega_{1}, \cdots, \omega_{p}$ local sections of $\Omega_{X}^{1}(\log Y), Q$ and R local sections of $\mathcal{D}_{X}[\star Y]$ and $\delta_{1}, \cdots, \delta_{p}$ local sections of $\mathcal{D e r}_{\mathbb{C}}\left(\mathcal{O}_{X}\right)$, we have

$$
\begin{gathered}
\left(\tau^{p} \circ \phi^{p}\right)\left(\left(\omega_{1} \wedge \cdots \wedge \omega_{p}\right) \otimes Q\right)\left[R \otimes\left(\delta_{1} \cdots \wedge \delta_{p}\right)\right]= \\
f^{-k} \phi_{p}\left(\left(\omega_{1} \wedge \cdots \wedge \omega_{p}\right) \otimes Q\right)\left[P \otimes\left(f \delta_{1} \wedge \cdots \wedge f \delta_{p}\right)\right]= \\
f^{-k} P \cdot \operatorname{det}\left(\left\langle\omega_{i} f \delta_{j}\right\rangle\right) \cdot Q=R \cdot f^{-p} \operatorname{det}\left(\left\langle\omega_{i} f \delta_{j}\right\rangle\right) \cdot Q=R \cdot \operatorname{det}\left(\left\langle\omega_{i} \delta_{j}\right\rangle\right) \cdot Q= \\
\Phi^{p} \circ j^{p}\left(\left(\omega_{1} \wedge \cdots \wedge \omega_{p}\right) \otimes Q\right)\left[R \otimes\left(\delta_{1} \wedge \cdots \wedge \delta_{p}\right)\right],
\end{gathered}
$$

with P a local section of $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$ such that $R f^{-p}=f^{-k} P$.
But $\Phi^{\bullet}, j^{\bullet}$ and τ^{\bullet} are morphisms of complexes, and τ^{\bullet} is injective, hence we deduce that the ϕ^{p} commute with the differential and so define a isomorphism of complexes:

$$
\phi^{\bullet}: \Omega_{X}^{\bullet}(\log Y)\left(\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right) \longrightarrow \mathcal{H o m}_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)}\left(\mathcal{S} p^{\bullet}(\log Y), \mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)\right)
$$

as we wanted to prove.

Corollary 3.2.2.- There exists a canonical isomorphism in the derived category:

$$
\Omega_{X}^{\bullet}(\log Y)(\mathcal{M}) \cong \mathbf{R} \mathcal{H o m}_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)}\left(\mathcal{O}_{X}, \mathcal{M}\right)
$$

Proof: By theorem 3.1.2, the complex $\mathcal{S p}^{\bullet}(\log Y)$ is a locally free resolution of \mathcal{O}_{X} as left $\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)$-module. So, we have only to apply the theorem 3.2.1.

Remark 3.2.3.- In the specific case that $\mathcal{M}=\mathcal{O}_{X}$, we have that the complexes $\Omega_{X}^{\bullet}(\log Y)$ and $\mathcal{H o m}_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)}\left(\mathcal{S} p^{\bullet}(\log Y), \mathcal{O}_{X}\right)$ are canonically isomorphic and so, there exists a canonical isomorphism:

$$
\Omega_{X}^{\bullet}(\log Y) \cong \mathbf{R} \mathcal{H o m}_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right)
$$

Remark 3.2.4.- A classical problem is the comparison between the logarithmic de Rham complex and the meromorphic de Rham complex relative to a divisor Y,

$$
\Omega_{X}^{\bullet}[\star Y] \cong \mathbf{R} \mathcal{H o m}_{\mathcal{D}_{X}}\left(\mathcal{O}_{X}, \mathcal{O}_{X}[\star Y]\right) \cong \mathbf{R H}_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)}\left(\mathcal{O}_{X}, \mathcal{O}_{X}[\star Y]\right)
$$

If Y is a normal crossing divisor, an easy calculation shows that they are quasiisomorph (cf. [6]). The same result is true if Y is a strongly weighted homogeneous free divisor [5]. As a consequence of theorem 2.1.4, if Y is an arbitrary free divisor, the meromorphic de Rham complex and the logarithmic de Rham complex are quasi-isomorphic if and only if:

$$
0=\mathbf{R} \mathcal{H o m}_{\mathcal{D}_{X}}\left(\mathcal{D}_{X} \otimes_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)}^{\mathbf{L}} \mathcal{O}_{X}, \frac{\mathcal{O}_{X}[\star Y]}{\mathcal{O}_{X}}\right)\left(=\mathbf{R} \mathcal{H o m}_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)}\left(\mathcal{O}_{X}, \frac{\mathcal{O}_{X}[\star Y]}{\mathcal{O}_{X}}\right)\right)
$$

4 Perversity of the logarithmic complex

Now we consider the complex $\mathcal{D}_{X} \otimes_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)} \mathcal{S} p \cdot(\log Y)$:

$$
0 \rightarrow \mathcal{D}_{X} \otimes_{\mathcal{O}_{X}} \wedge{ }^{n} \operatorname{Der}(\log Y) \xrightarrow{\varepsilon_{-n}} \ldots \cdots \stackrel{\varepsilon_{-2}}{\rightarrow} \mathcal{D}_{X} \otimes_{\mathcal{O}_{X}} \stackrel{1}{\wedge} \operatorname{Der}(\log Y) \xrightarrow{\varepsilon_{-1}} \mathcal{D}_{X}
$$

where the local expressions of the morphisms are defined by:

$$
\begin{gathered}
\varepsilon_{-p}\left(P \otimes\left(\delta_{1} \wedge \cdots \wedge \delta_{p}\right)\right)=\sum_{i=1}^{p}(-1)^{i-1} P \delta_{i} \otimes\left(\delta_{1} \wedge \cdots \wedge \widehat{\delta}_{i} \wedge \cdots \wedge \delta_{p}\right)+ \\
\sum_{1 \leq i<j \leq p}(-1)^{i+j} P \otimes\left(\left[\delta_{i}, \delta_{j}\right] \wedge \delta_{1} \wedge \cdots \wedge \widehat{\delta}_{i} \wedge \cdots \wedge \widehat{\delta_{j}} \wedge \cdots \wedge \delta_{p}\right), \quad(2 \leq p \leq n) \\
\varepsilon_{-1}(P \otimes \delta)=P \delta
\end{gathered}
$$

In the case that Y is a free divisor, we can work at each point x of Y with a basis $\left\{\delta_{1}, \cdots, \delta_{n}\right\}$ of $\operatorname{Der}(\log f)$, with f a local reduced equation of Y at x.

Proposition 4.0.5.- If $\left\{\delta_{1}, \cdots, \delta_{n}\right\}$ is a basis of $\operatorname{Der}(\log f)$, and the sequence $\left\{\sigma\left(\delta_{1}\right), \cdots, \sigma\left(\delta_{n}\right)\right\}$ is $\operatorname{Gr}_{F} \bullet(\mathcal{D})$-regular, it verifies

$$
\sigma\left(\mathcal{D}\left(\delta_{1}, \cdots, \delta_{n}\right)\right)=\operatorname{Gr}_{F} \bullet(\mathcal{D})\left(\sigma\left(\delta_{1}\right), \cdots, \sigma\left(\delta_{n}\right)\right)
$$

Proof: The inclusion $\operatorname{Gr}_{F} \bullet(\mathcal{D})\left(\sigma\left(\delta_{1}\right), \cdots, \sigma\left(\delta_{n}\right)\right) \subset \sigma\left(\mathcal{D}\left(\delta_{1}, \cdots, \delta_{n}\right)\right)$ is clair. Let F be the symbol of an operator P of order d, with

$$
P=\sum_{i=1}^{n} P_{i} \delta_{i} \in \mathcal{D}\left(\delta_{1}, \cdots, \delta_{n}\right)
$$

We will prove by induction that $F=\sigma(P)$ belongs to $\operatorname{Gr}_{F} \bullet(\mathcal{D})\left(\sigma_{1}, \cdots, \sigma_{n}\right)$, with $\sigma_{i}=\sigma\left(\delta_{i}\right)$. We will do the induction on the maximum order of the $P_{i}(i=$ $1, \cdots, n)$, order that we will denote by k_{0}. As P has order d, k_{0} is greater or equal to $d-1$. If $k_{0}=d-1$, we have:

$$
\sigma(P)=\sum_{i \in K} \sigma\left(P_{i}\right) \sigma_{i}
$$

with K the set of subindexes j such that P_{j} has order k_{0} in \mathcal{D}. We suppose that the result holds when $d-1 \leq k_{0}<m$. Let $F=\sigma(P)$, with $P=\sum_{i=1}^{n} P_{i} \delta_{i}$ and $k_{0}=m$. There are two possibilities:

1. $F=\sigma(P)=\sum_{i \in K} \sigma\left(P_{i}\right) \sigma_{i} \in \operatorname{Gr}_{F} \bullet(\mathcal{D})\left(\sigma_{1}, \cdots, \sigma_{n}\right)$, as we wanted to prove.
2. $\sum_{i \in K} \sigma\left(P_{i}\right) \sigma_{i}=0$.

In this last case, as $\left\{\sigma_{1}, \cdots, \sigma_{n}\right\}$ is a $\operatorname{Gr}_{F} \bullet(\mathcal{D})$-regular sequence, if we call F_{i} the symbol $\sigma\left(P_{i}\right)$ in the case that $i \in K$ and 0 otherwise, we have:

$$
\left(F_{1}, \cdots, F_{n}\right)=\sum_{i<j} F_{i j}\left(0, \cdots, 0, \stackrel{i}{\sigma_{j}}, 0, \cdots, 0, \stackrel{\stackrel{j}{-\sigma}}{i}, 0, \cdots, 0\right),
$$

with $F_{i j} \in \operatorname{Gr}_{F} \bullet(\mathcal{D})$ homogeneous polynomials of order $m-1$. We choose, for $1 \leq i<j \leq n$, operators $Q_{i j}$, of order $m-1$ in \mathcal{D}, such that $\sigma\left(Q_{i j}\right)=F_{i j}$, and define:
where $\underline{\alpha}_{i j}$ are the vectors with n coordinates in \mathcal{O} defined by the relations:

$$
\left[\delta_{i}, \delta_{j}\right]=\sum_{k=1}^{n} a_{i j}^{k} \delta_{k}=\underline{\alpha}_{i j} \bullet \underline{\delta},
$$

with $\underline{\delta}=\left(\delta_{1}, \cdots, \delta_{n}\right)$. These Q_{i}, of order m in \mathcal{D}, verify

$$
\begin{gathered}
\left(\sigma_{m}\left(Q_{1}\right), \cdots, \sigma_{m}\left(Q_{n}\right)\right)= \\
\left(F_{1}, \cdots, F_{n}\right)-\sum_{i<j} F_{i j}\left(0, \cdots, 0, \stackrel{i}{\sigma_{j}}, 0, \cdots, 0, \stackrel{\stackrel{j}{-}}{-\sigma_{i}}, 0, \cdots, 0\right)=0
\end{gathered}
$$

So, Q_{i} has order $m-1$ in \mathcal{D}. Moreover,

$$
\sum_{i=1}^{n} Q_{i} \delta_{i}=\sum_{i=1}^{n} P_{i} \delta_{i}-\sum_{i<j} Q_{i j}\left(\delta_{i} \delta_{j}-\delta_{j} \delta_{i}-\left[\delta_{i}, \delta_{j}\right]\right)=\sum_{i=1}^{n} P_{i} \delta_{i}=P .
$$

We apply the induction hypothesis to $F=\sigma(P)$, with $P=\sum_{i=1}^{n} Q_{i} \delta_{i}$, and obtain:

$$
\sigma(P) \in \operatorname{Gr}_{F} \bullet(\mathcal{D})\left(\sigma_{1}, \cdots, \sigma_{n}\right)
$$

Proposition 4.0.6.- Let $\left\{\delta_{1}, \cdots, \delta_{n}\right\}$ be a basis of $\operatorname{Der}(\log f)$. If the sequence $\sigma\left(\delta_{1}\right), \cdots, \sigma\left(\delta_{n}\right)$ is a $\operatorname{Gr}_{F} \bullet(\mathcal{D})$-regular sequence in $\operatorname{Gr}_{F} \cdot(\mathcal{D})$, the complex $\mathcal{D} \otimes_{\mathcal{V}_{0}^{f}(\mathcal{D})}$ $\mathcal{S} p^{\bullet}(\log f)$ is a resolution of the quotient module $\frac{\mathcal{D}}{\mathcal{D}\left(\delta_{1}, \cdots, \delta_{n}\right)}$.

Proof: We consider the complex $\mathcal{D} \otimes_{\mathcal{V}_{0}^{f}(\mathcal{D})} \mathcal{S} p^{\bullet}(\log f)$. We can augment this complex of \mathcal{D}-modules by another morphism:

$$
\varepsilon_{0}: \mathcal{D} \rightarrow \frac{\mathcal{D}}{\mathcal{D}\left(\delta_{1}, \cdots, \delta_{n}\right)}, \quad \varepsilon_{0}(P)=P+\mathcal{D}\left(\delta_{1}, \cdots, \delta_{n}\right)
$$

We denote by $\mathcal{D} \otimes_{\mathcal{V}_{0}^{f}(\mathcal{D})} \widetilde{\mathcal{S}} p^{\bullet}(\log f)$ the new complex. To prove that this new complex is exact, we define a discrete filtration G^{\bullet} such that the graded complex be exact (cf. [1, lemma 3.16]):

$$
\begin{gathered}
G^{k}\left(\mathcal{D} \otimes_{\mathcal{O}} \stackrel{p}{\wedge} \operatorname{Der}(\log f)\right)=F^{k-p}(\mathcal{D}) \otimes_{\mathcal{O}} \stackrel{p}{\wedge} \operatorname{Der}(\log f) \\
G^{k}\left(\frac{\mathcal{D}}{\mathcal{D}\left(\delta_{1}, \cdots, \delta_{n}\right)}\right)=\frac{F^{k}(\mathcal{D})+\mathcal{D} \cdot\left(\delta_{1}, \cdots, \delta_{n}\right)}{\mathcal{D}\left(\delta_{1}, \cdots, \delta_{n}\right)}
\end{gathered}
$$

Clairly the filtration is compatible with the differential of the complex. Moreover:

$$
\operatorname{Gr}_{G} \cdot\left(\mathcal{D} \otimes \wedge^{p} \operatorname{Der}(\log f)\right)=\operatorname{Gr}_{F} \cdot(\mathcal{D})[-p] \otimes \stackrel{p}{\wedge} \operatorname{Der}(\log f)
$$

and, by the previous proposition,

$$
\operatorname{Gr}_{G} \bullet\left(\frac{\mathcal{D}}{\mathcal{D}\left(\delta_{1}, \cdots, \delta_{n}\right)}\right)=\frac{\operatorname{Gr}_{F} \bullet(\mathcal{D})}{\sigma\left(\mathcal{D} \cdot\left(\delta_{1}, \cdots, \delta_{n}\right)\right)}=\frac{\operatorname{Gr}_{F} \bullet(\mathcal{D})}{\left.\operatorname{Gr}_{F \bullet} \bullet \mathcal{D}\right) \cdot\left(\sigma\left(\delta_{1}\right), \cdots, \sigma\left(\delta_{n}\right)\right)} .
$$

We consider the complex $\operatorname{Gr}_{G} \bullet\left(\mathcal{D} \otimes_{\mathcal{V}_{0}^{f}(\mathcal{D})} \tilde{\mathcal{S}} p^{\bullet}(\log f)\right)$:

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Gr}_{F} \bullet(\mathcal{D}) {[-n] \otimes_{\mathcal{O}} \stackrel{n}{\wedge} \operatorname{Der}(\log f) \xrightarrow{\psi_{-n}} \cdots \xrightarrow{\psi_{-2}} \operatorname{Gr}_{F} \cdot(\mathcal{D})[-1] \otimes_{\mathcal{O}} \stackrel{1}{\wedge} \operatorname{Der}(\log f) } \\
& \stackrel{\psi_{-1}}{\rightarrow} \operatorname{Gr}_{F} \bullet(\mathcal{D}) \xrightarrow{\psi_{0}} \frac{\operatorname{Gr}_{F}(\mathcal{D})}{\operatorname{Gr}_{F} \cdot(\mathcal{D}) \cdot\left(\sigma\left(\delta_{1}\right), \cdots, \sigma\left(\delta_{n}\right)\right)} \rightarrow 0,
\end{aligned}
$$

where the local expression of the differential is defined by:
$\psi_{-p}\left(G \otimes \delta_{j_{1}} \wedge \cdots \wedge \delta_{j_{p}}\right)=\sum_{i=1}^{p}(-1)^{i-1} G \sigma\left(\delta_{j_{i}}\right) \otimes \delta_{j_{1}} \wedge \cdots \wedge \widehat{\delta_{j_{i}}} \wedge \cdots \wedge \delta_{j_{p}}, \quad(2 \leq p \leq n)$,

$$
\begin{gathered}
\psi_{-1}\left(G \otimes \delta_{i}\right)=G \sigma\left(\delta_{i}\right) \\
\psi_{0}(G)=G+\operatorname{Gr}_{F} \cdot(\mathcal{D}) \cdot\left(\sigma\left(\delta_{1}\right), \cdots, \sigma\left(\delta_{n}\right)\right) .
\end{gathered}
$$

This complex is the Koszul complex of the ring $\operatorname{Gr}_{F} \bullet(\mathcal{D})$ with respect to the sequence $\sigma\left(\delta_{1}\right), \cdots, \sigma\left(\delta_{n}\right)$. So we deduce that, if the sequence $\sigma\left(\delta_{1}\right), \cdots, \sigma\left(\delta_{n}\right)$ is $\operatorname{Gr}_{F} \bullet(\mathcal{D})$-regular in $\operatorname{Gr}_{F} \bullet(\mathcal{D})$, the complex

$$
\operatorname{Gr}_{G} \cdot\left(\mathcal{D} \otimes_{\mathcal{V}_{0}^{f}(\mathcal{D})} \tilde{\mathcal{S}} p^{\bullet}(\log f)\right)
$$

is exact. So, the complex $\mathcal{D} \otimes_{\mathcal{V}_{0}^{f}(\mathcal{D})} \widetilde{\mathcal{S}} p^{\bullet}(\log f)$ is exact too, and $\mathcal{D} \otimes_{\mathcal{V}_{0}^{f}(\mathcal{D})} \mathcal{S} p^{\bullet}(\log f)$ is a resolution of $\frac{\mathcal{D}}{\mathcal{D}\left(\delta_{1}, \cdots, \delta_{n}\right)}$.

Corollary 4.0.7.- Let Y be a free divisor. With the conditions of the previous proposition (for each point x of Y, there exists a basis $\left\{\delta_{1}, \cdots, \delta_{n}\right\}$ of $\operatorname{Der}(\log f)$ such that the sequence $\sigma\left(\delta_{1}\right), \cdots, \sigma\left(\delta_{n}\right)$ is a $\operatorname{Gr}_{F} \bullet(\mathcal{D})$-regular sequence), the sheaf $\Omega_{X}^{\bullet}(\log Y)$ is a perverse sheaf.

Proof: With the same conditions of the previous proposition, the homology of the complex $\mathcal{D}_{X} \otimes_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)} \mathcal{S} p^{\bullet}(\log Y)$ is concentrated in degree 0 . All its homology groups are zero except the group in degree 0 , which verifies:

$$
h^{0}\left(\mathcal{D}_{X} \otimes_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)} \mathcal{S} p^{\bullet}(\log Y)\right)=\frac{\mathcal{D}_{X}}{\mathcal{D}_{X} \cdot \operatorname{Der}(\log Y)}=\frac{\mathcal{D}_{X}}{\mathcal{D}_{X} \cdot\left(\delta_{1}, \cdots, \delta_{n}\right)}=\mathcal{E}
$$

where $\left\{\delta_{1}, \cdots, \delta_{n}\right\}$ is a local basis of $\mathcal{D e r}(\log Y)$. But \mathcal{E} is a holonomic \mathcal{D}_{X}-module because:

$$
\mathcal{G} \mathrm{r}_{F}(\mathcal{E})=\frac{\mathcal{G r}_{F} \bullet\left(\mathcal{D}_{X}\right)}{\left(\sigma\left(\delta_{1}\right), \cdots, \sigma\left(\delta_{n}\right)\right)}
$$

has dimension n (using the fact that $\sigma\left(\delta_{1}\right), \cdots, \sigma\left(\delta_{n}\right)$ is a $\mathcal{G r}_{F} \bullet\left(\mathcal{D}_{X}\right)$-regular sequence). So (using remark 3.2.3 for the first equality and teorema 3.1.2 for the last equality)):

$$
\begin{gathered}
\Omega_{X}^{\bullet}(\log Y)=\mathbf{R} \mathcal{H o m}_{\mathcal{D}_{X}}\left(\mathcal{D}_{X} \otimes_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)}^{\mathbf{L}} \mathcal{O}_{X}, \mathcal{O}_{X}\right)= \\
\mathbf{R} \mathcal{H o m}_{\mathcal{D}_{X}}\left(\mathcal{D}_{X} \otimes_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)} \mathcal{S} p^{\bullet}(\log Y), \mathcal{O}_{X}\right)=\mathbf{R} \mathcal{H o m}_{\mathcal{D}_{X}}\left(\frac{\mathcal{D}_{X}}{\mathcal{D}_{X}\left(\delta_{1}, \cdots, \delta_{n}\right)}, \mathcal{O}_{X}\right)
\end{gathered}
$$

is a perverse sheaf (as solution of a holonomic \mathcal{D}_{X}-module, cf. [11]).

Corollary 4.0.8.- Let Y be any divisor in X, with $\operatorname{dim}_{\mathbb{C}} X=2$. Then $\Omega_{X}^{\bullet}(\log$ $Y)$ is a perverse sheaf.

Proof: We know that, if $\operatorname{dim}_{\mathbb{C}} X=2$, any divisor Y in X is free [14]. So, we have only to check that the other hypothesis of the previous corollary
holds. We consider the symbols $\left\{\sigma_{1}, \sigma_{2}\right\}$ of a basis $\left\{\delta_{1}, \delta_{2}\right\}$ of $\operatorname{Der}(\log f)$, where f is a reduced equation of Y. We have to see that they form a $\operatorname{Gr}_{F} \bullet(\mathcal{D})$-regular sequence. If they do not, they have a common factor $g \in \mathcal{O}$, because they are symbols of operators of order 1 . If g is a unit, we divide one of them by g and eliminate the common factor. If g is not a unit, it would be in contradiction with Saito's Criterion, because the determinant of the coefficients of the basis $\left\{\delta_{1}, \delta_{2}\right\}$ would have as factor g^{2}, with g not invertible, and this determinant has to be equal to f multiplied by a unit.

Remark 4.0.9.- The regularity of the sequence of the symbols of a basis of $\operatorname{Der}(\log f)$ in $\operatorname{Gr}_{F} \bullet(\mathcal{D})$ is not necessary for the perversity of the logarithmic de Rham complex. For example, if $X=\mathbb{C}^{3}$ and $Y \equiv\{f=0\}$, with $f=x y(x+$ $y)(y+t x), f$ is a free divisor such that the graded complex

$$
\mathcal{G r}_{G} \cdot\left(\mathcal{D}_{X} \otimes_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)} \mathcal{S} p^{\bullet}(\log Y)\right)=K\left(\sigma\left(\delta_{1}\right), \sigma\left(\delta_{1}\right), \sigma\left(\delta_{3}\right) ; \mathcal{G r}_{F} \cdot\left(\mathcal{D}_{X}\right)\right)
$$

is not concentrated in degree 0 , but the complex

$$
\mathcal{D}_{X} \otimes_{\mathcal{V}_{0}^{Y}\left(\mathcal{D}_{X}\right)} \mathcal{S} p^{\bullet}(\log Y)
$$

is. Moreover, in this case the dimension of $\frac{\mathcal{D}_{X}}{\mathcal{D}_{X} \cdot\left(\delta_{1}, \delta_{2}, \delta_{3}\right)}$ is 3 and so, $\Omega_{X}^{\bullet}(\log Y)$ is a perverse sheaf.

References

[1] J.E. Björk. Rings of Differential Operators, North Holland, Amsterdam, 1979.
[2] N. Bourbaki. Algèbre Commutative, Chapitres 3 et 4, volume 1293 of Actualités Scientifiques et Industrielles, Hermann, Paris, 1967.
[3] C. Bănică and O. Stănăsilă. Algebraic methods in the global theory of complex spaces, John Wiley, New York, 1976.
[4] F.J. Calderón-Moreno. Quelques propriétés de la V-filtration relative à un diviseur libre. Comptes Rendus Acad. Sci. Paris, t. 323, Série I:377-381, 1996.
[5] F.J. Castro-Jiménez, D. Mond and L. Narváez-Macarro. Cohomology of the complement of a free divisor. Transactions of the A.M.S., 348:3037-3049, 1996.
[6] P. Deligne. Equations Différentielles à Points Singuliers Réguliers, volume 163 of Lect. Notes in Math., Springer-Verlag, Berlin-Heidelberg, 1970.
[7] H. Esnault and E. Viehweg. Logarithmic De Rham complexes and vanishing theorems. Invent. Math., 86:161-194, 1986.
[8] C. Godbillon. Géométrie Différentielle et Mécanique Analytique. Collection Méthodes, Hermann, Paris, 1969.
[9] M. Kashiwara. Vanishing cycle sheaves and holonomic systems of differential equations. Lect. Notes in Math., 1012:134-142, 1983.
[10] B. Malgrange. Le polynôme de Bernstein-Sato et cohomologie évanescente. Astérisque, 101-102:233-267, 1983.
[11] Z. Mebkhout. Le formalisme des six opérations de Grothendieck pour les $\mathcal{D}_{X}-$ modules cohérents, volume 35 of Travaux en cours, Hermann, Paris, 1989.
[12] F. Pham. Singularités des systèmes de Gauss-Manin, volume 2 of Progress in Math., Birkhäuser, Boston, 1979.
[13] G.S. Rinehart. Differential forms on general commutative algebras. Trans. A.M.S., 108:195-222, 1963.
[14] K. Saito. Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo, 27:265-291, 1980.

[^0]: *Supported by DGICYT PB94-1435

