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Abstract

Let Ω be a domain in the N -dimensional real space, L be an elliptic
differential operator, and (Tn) be a sequence whose members belong
to a certain class of operators defined on the space of L-analytic func-
tions on Ω. It is proved in this paper the existence of a dense linear
manifold of L-analytic functions all of whose nonzero members have
maximal cluster sets under the action of every Tn along any curve
ending at the boundary of Ω such that its ω-limit does not contain
any component of the boundary. The above class contains all partial
differentiation operators ∂α, hence the statement extends earlier re-
sults due to Boivin, Gauthier and Paramonov, and to the first, third
and fourth authors.
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1 Introduction

The behavior of the complex-valued functions near the boundary of the
domain where they are defined has attracted the attention of many math-
ematicians. Such a behavior can be considered either globally or restricted
to certain subsets (mainly, adequate curves) near the boundary, and is de-
fined by the so-called cluster sets, see below. For background about classical
results on cluster sets, we refer to [5] and [9]. Next, we fix some standard
notation that will be used throughout this paper.

The symbols R, C, N, N0 will stand for the real line, the complex plane,
the set of positive integers, and the set N ∪ {0}, respectively. If N ∈ N
then RN is the N -dimensional real space; specially, C = R2. If A ⊂ RN

then A0 (∂A, resp.) represents its interior (its boundary, resp.) in RN .
In addition, we set Ac := RN \ A, as usual. The open ball with center
a ∈ RN and radius r > 0 –with respect to the euclidean distance d on RN–
is B(a, r). By Ω we denote a domain in RN , that is, a nonempty connected
open subset of RN . Moreover, Ω∗ will denote the one-point compactification
of Ω. A Jordan domain is a domain Ω ⊂ C whose boundary in C∗ is a
topological image of the unit circle {z ∈ C : |z| = 1}. If A ⊂ RN and f is
a complex-valued function defined on A then ‖f‖A := supA |f |. For a multi-
index α = (α1, . . . , αN) ∈ NN

0 , we let |α| = α1 + · · · + αN , α! = α1! · · ·αN !,
xα = xα1

1 · · ·xαN
N for x = (x1, . . . , xN) ∈ RN and ∂α = ( ∂

∂x1
)α1 · · · ( ∂

∂xN
)αN .

Let r,N ∈ N with N ≥ 2 and let L(ξ) =
∑

|α|=r aαξα (ξ ∈ RN) be a fixed
homogeneous polynomial of degree r with complex constant coefficients and
which satisfies the ellipticity condition L(ξ) 6= 0 (ξ ∈ RN \{0}). We associate
to L the homogeneous elliptic operator of order r given by

L = L(∂) =
∑

|α|=r

aα∂α.

The symbol LN
r stands for the class of all homogeneous elliptic operators of

order r in RN with constant complex coefficients.

If Ω ⊂ RN is a domain and f : Ω → C is a C∞-function, then f is called
L-analytic (or L-holomorphic) on Ω if it satisfies the equation

L(∂)f = 0 on Ω.

We denote by L(Ω) the linear space of L-holomorphic functions on Ω endowed
with the compact-open topology. For instance, if N = 2 then the space of
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∂-holomorphic functions is the space H(Ω) of holomorphic functions in the
usual sense, and for arbitrary N , ∆-holomorphic is the same as harmonic
in RN if ∆ denotes the Laplace operator. In general, L(Ω) turns out to
be a Fréchet space (see [12]), which is separable because it is a subspace of
C(Ω), the space of complex continuous functions on Ω, also endowed with
the compact-open topology. By an operator on L(Ω) we mean a continuous
linear selfmapping T : L(Ω) → L(Ω).

Let Ω be a domain in RN , N ≥ 2, Ω 6= RN and γ : [0, 1) → Ω be a curve
in Ω tending to ∂Ω, that is, γ is continuous and, given a compact set K ⊂ Ω,
there is t0 = t0(K) ∈ (0, 1) for which K ∩ γ([t0, 1)) = ∅. Then the ω-limit
(or oscillation set) of γ is the set Osc (γ) of points in ∂Ω which are in the
closure of γ([0, 1)). Let b ∈ ∂Ω. Following [3, Section 6], we shall say that
a continuous path γ : [0, 1] → RN is admissible for Ω with end point b if
γ([0, 1)) ⊂ Ω and γ(1) = b. Note that, in particular, if ∂Ω has no connected
component consisting of a single point then for any admissible path γ we
have that Osc (γ) contains no component of ∂Ω. By abuse of language, we
sometimes identify γ = γ([0, 1)).

Given a continuous function f : Ω → C and a curve γ in Ω tending
to its boundary, we denote by Cγ(f) the cluster set of f along γ, that is,
Cγ(f) = {w ∈ C∗ : there exists a sequence {tn} ⊂ [0, 1) such that tn →
1 and f(γ(tn)) → w as n →∞}.

In [3, Theorem 5], Boivin, Gauthier and Paramonov proved that if L ∈ LN
r

and Ω ⊂ RN is a domain with Ω 6= RN such that ∂Ω has no component
consisting of a single point, then there is at least one function g ∈ L(Ω) with
the property that for each b ∈ ∂Ω, each admissible path γ ending at b and
each α ∈ NN

0 , one has Cγ(∂
αg) = C∗, that is, each such cluster set is maximal.

On the other hand, in [1, Theorem 2.1] it is shown that if Ω is a Jordan domain
in C then there is a dense linear manifold D ⊂ H(Ω) all of whose nonzero
members f satisfy that the cluster set of f along γ is maximal for every curve
γ in Ω tending to the boundary with Osc (γ) 6= ∂Ω. In this paper, we state a
theorem (see Section 4) that unifies and extends largely both results above;
our theorem will be valid for a large class of operators on L(Ω) which will
be introduced in Section 2. Section 3 is devoted to present some additional
terminology together with a preparatory result about approximation.
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2 A new class of operators

We collect in the following definition the adequate class of operators to be
used later.

Definition 2.1. Let r,N ∈ N with N ≥ 2 and Ω ⊂ RN be a domain. Assume
that L ∈ LN

r and that T is an operator on L(Ω). We say that T is internally
controlled if given ε > 0 and a pair of compact sets F, G ⊂ Ω with F ⊂ G0,
there exists δ = δ(ε, F, G) > 0 such that

[f ∈ L(Ω) and ‖f‖G < δ] implies ‖Tf‖F < ε.

Note that the notion of “internal control” is stronger than the mere con-
tinuity. In fact, the former requires in particular the continuity of every
mapping T1,2 : X1 → X2, where Xi (i = 1, 2) is the normed space consisting
of all functions of L(Ω) under the respective norms ‖ · ‖F , ‖ · ‖G and (F, G)
is any pair of compact subsets of Ω with F ⊂ G0, while the continuity of T
only requires to fix a compact subset F and find some compact set G in Ω
such that the corresponding mapping T1,2 is continuous.

Another property to be imposed in Section 3 on an operator T on L(Ω)
will be that ran T (:= T (L(Ω))) contains the constant functions. Of course,
this is equivalent to 1 ∈ ran T .

Let us provide some examples of “classical” operators that satisfy some
of the above conditions.

Examples 2.2. 1. If L ∈ LN
r and Ω is a domain in RN then from known

estimations about the norms of the solutions of a homogeneous elliptic partial
differential equation (see for instance [10, pages 188–189, Lemma 1]) it is
deduced that each operator ∂α is internally controlled on L(Ω). On the
other hand, in [3, Lemma 3] it is proved that 1 ∈ ran L.

2. In particular, by Example 1 –or by using Cauchy’s integral formula for
derivatives– we obtain for N = 2 and L = ∂ that each derivative operator
Dn (n ∈ N0) is internally controlled on H(Ω). Here D0f = f and Dn+1f =
(Dnf)′ for every n ∈ N0 and every f ∈ H(Ω). More, if Φ(z) =

∑∞
n=0 anzn

is an entire function of subexponential type (that is, given ε > 0 there is
a constant A ∈ (0, +∞) such that |Φ(z)| ≤ A exp(ε|z|) for all z ∈ C),
then its associated (in general, infinite order) differential operator Φ(D) =∑∞

n=0 anD
n is well defined and internally controlled on H(Ω). This is easy to

see just by taking into account that Φ is of subexponential type if and only if
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limn→∞(n|an|1/n) = 0 (see for instance [2]). Moreover, 1 ∈ ran Φ(D) as soon
as Φ 6≡ 0. Indeed, let m = min{n ∈ N0 : Φ(n)(0) 6= 0}; then Φ(D)(h) = 1 if
h(z) := zm/Φ(m)(0).

3. Again in the classical holomorphic case, if α ∈ H(Ω) then its associated
multiplication operator Mα : f 7→ αf is always internally controlled on
H(Ω). And 1 ∈ ran Mα if and only if α has no zeros in Ω. On the contrary,
if ϕ : Ω → Ω is a holomorphic selfmapping, then the composition operator
Cϕ : f ∈ H(Ω) 7→ f ◦ ϕ ∈ H(Ω) is internally controlled only if ϕ is the
identity. We have that 1 ∈ ran Cϕ for any holomorphic selfmapping ϕ.

4. We know that internal control implies continuity. In fact, the former
property is strictly stronger. For instance, the Volterra operator V on H(C)
given as (V f)(z) =

∫ z

0
f(t) dt is easily seen to be not internally controlled.

Observe that, in addition, 1 6∈ ran V because (V f)(0) = 0 for every f ∈
H(C).

5. The family of internally controlled operators is a vector algebra in the
space of all operators on L(Ω), that is, if α, β are scalars and T, S are
internally controlled operators on L(Ω), then the operators αT + βS and
T ◦ S are internally controlled too. Indeed, this is evident for αT + βS. As
for the composition T ◦ S, fix a pair (F,G) = (F1, F2) of compact sets as
well as a number ε > 0 as in Definition 2.1. Then choose a compact set
F3 with F1 ⊂ F 0

3 ⊂ F3 ⊂ F 0
2 , for instance, F3 :=

⋃
x∈F1

B(x, α/2), where
α = d(F1, F

c
2 ). Now apply that T is internally controlled to the pair (F3, F2)

and, finally, apply that S is internally controlled to (F1, F3).

3 Some auxiliary statements

Following [4], a relatively closed subset F in Ω will be called a Roth-
Keldysh-Lavrentiev set, or more simply an Ω-RKL set, if Ω∗ \F is connected
and locally connected. The following lemma (see [3] and [6]) will reveal useful
in the proof of our main result. Note that Arakelian’s theorem (see [7]) covers
the assertion for N = 2 in the holomorphic case.

Lemma 3.1. Let Ω be a domain in RN , N ≥ 2 and F be a Ω-RKL set.
Assume that f be L-analytic in some neighbourhood of F in Ω. Then, for
each ε > 0, there exists g ∈ L(Ω) such that

‖f − g‖F < ε.
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In order to simplify the notation, we denote by O the family of domains
Ω ⊂ RN such that Ω 6= RN and the boundary of Ω in (RN)∗ has no connected
components that consist of a single point. Moreover, for each domain Ω as
before, we denote by Γ(Ω) the family of curves γ ⊂ Ω tending to the boundary
whose ω-limit does not contain any component of the boundary. Then, we
establish the following technical lemma.

Lemma 3.2. Assume that Ω ∈ O. Then there are three sequences (Kj),
(Gj), (Fj) of compact subsets of Ω satisfying the following properties:

(i) Ω =
⋃∞

j=1 Kj and Kj ⊂ K0
j+1 (j ∈ N).

(ii) The Gj’s are pairwise disjoint and Gj ⊂ Kj for all j ∈ N.

(iii) For every j ∈ N one has that Kj ∩ Gj+1 = ∅ and Kj ∪ Gj+1 is an
RKL-set.

(iv) Fj ⊂ G0
j (j ∈ N) and every γ ∈ Γ(Ω) intersects all sets Fj’s except

possibly finitely many of them.

The content of the last lemma is essentially proved in [3, Proof of Theorem
5], so we omit a detailed proof. Suffice it to say that (i), (iii) and the first
part of (ii) and of (iv) are obtained in the cited proof, in which each Gj is
constructed as a thin (closed) neighborhood of Fj, which in turn is a subset
of Kj. In order to obtain the contention Gj ⊂ Kj of (ii), it suffices to replace

each Kj by a set K̃j slightly larger. The sets Kj, Gj, Fj in [3] are closed,
but in addition they are constructed by using the level sets of an adequate
real analytic function Ψ that satisfies an inequality [3, inequality (6) on page
960], which produces that the above closed sets are bounded; hence they are
compact. Finally, the last part of (iv) is shown in [3] for admissible curves,
but the same holds for every γ ∈ Γ(Ω) just by using the same argument of
[3, page 962].

4 The main result

Once the basic terminology and background have been established, we are
ready to present our main assertion.

Theorem 4.1. Let Ω ∈ O. Assume that Tn : L(Ω) → L(Ω) (n ∈ N) is a
sequence of operators satisfying the following conditions:
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(a) Each Tn is internally controlled.

(b) For each n ∈ N, ran Tn contains the constants.

Then there exists a dense linear manifold D in L(Ω) such that for every
g ∈ D \ {0}, every n ∈ N, and every curve γ ∈ Γ(Ω), we have

Cγ(Tn g) = C∗.

Proof. From Lemma 3.2, we can choose sequences (Kj), (Fj), (Gj) satisfying
properties (i) to (iv) in such lemma. For every pair (k, j) ∈ N2, we set the
disjoint union Mk,j := Kk+j−1∪Gk+j, which is an RKL-set by (iii). Moreover,
we can fix sequences {qj : j ∈ N}, {Qk : k ∈ N} which are dense in C and
L(Ω), respectively.

Let us pick countably many pairwise disjoint infinite sets J(k) (k ∈ N)
such that J(k) ⊂ {j ∈ N : j > k} for all k ∈ N and, in addition, the sets
J(k)−k := {j−k : j ∈ J(k)} (k ∈ N) are also mutually disjoint. This can be
made in many ways; for instance, we may choose J(k) = {3ν − k2 : ν > k}.
We set N :=

⋃
k∈N(J(k) − k). In turn, we divide each J(k) into infinitely

many strictly increasing sequences I(k, n) = {p(k, n, l) : l ∈ N} (n ∈ N).
Then we have the disjoint union N :=

⋃
k,n∈N(I(k, n) − k). For every pair

(k, n) ∈ N2, the mapping ϕ(k, n, ·) : j 7→ l –where l is the unique positive
integer with k+j = p(k, n, l)– is a strictly increasing bijection from I(k, n)−k
onto N. Therefore, trivially, the set {qϕ(k,n,j) : j ∈ I(k, n)− k} is dense in C.

Given j ∈ N , there exist a unique k = k(j) ∈ N and also a unique
n = n(j) ∈ N such that j ∈ I(k, n)− k ⊂ J(k)− k. From (a), there is δj > 0
such that

‖Tn h‖Fk+j
<

1

2j
for all h ∈ L(Ω) with ‖h‖Gk+j

< δj. (1)

With no loss of generality, we may assume that the sequence (δj) is strictly
decreasing and tends to zero. Then we can define τj := δj− δj+1 > 0 (j ≥ 1).
On the other hand, thanks to (b), there exists a sequence (Φn) ⊂ L(Ω)
satisfying

Tn Φn = 1 for all n ∈ N. (2)

Fix now a number k ∈ N. Inspired by the approach of [11] (see also [8]),
we define gk,0 := Qk and fk,1 : Mk,1 → C as

fk,1(x) =





gk,0(x) for every x ∈ Kk

qlΦn(x) for every x ∈ Gk+1 if k + 1 = p(k, n, l) ∈ J(k)
0 for every x ∈ Gk+1 if 1 /∈ J(k)− k.
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Notice that fk,1 is well defined because if 1 ∈ J(k)− k then there is a unique
n ∈ N with 1 ∈ I(k, n)− k; so k + 1 = p(k, n, l) for a unique l ∈ N, namely,
l = ϕ(k, n, 1). Observe also that fk,1 is L-analytic in some neighborhood of
Mk,1. By Lemma 3.1, there is a function gk,1 ∈ L(Ω) such that

‖gk,1 − fk,1‖Mk,1
<

τ1

2k
.

From this step, we proceed by induction. Define for j ≥ 2 the function
fk,j : Mk,j → C by

fk,j(x) =





gk,j−1(x) for every x ∈ Kk+j−1

qlΦn(x) for every x ∈ Gk+j if k + j = p(k, n, l) ∈ J(k)
0 for every x ∈ Gk+j if j /∈ J(k)− k.

Again, fk,j is L-analytic in some neighborhood of the RKL-set Mk,j. Hence
Lemma 3.1 guarantees the existence of a function gk,j ∈ L(Ω) such that

‖gk,j − fk,j‖Mk,j
<

τj

2k
. (3)

Let us consider the series

gk,0 +
∞∑

j=1

(gk,j − gk,j−1). (4)

For a prescribed compact subset K ⊂ Ω, there is m ∈ N such that K ⊂
Kk+m−1. Then for j ≥ m one has that

‖gk,j − gk,j−1‖K ≤ ‖gk,j − fk,j‖Kk+j−1
≤ ‖gk,j − fk,j‖Mk,j

< τj,

due to (3). But
∑

j≥1 τj = δ1 < ∞, therefore (4) converges uniformly on
compacta in Ω. Thus, its sum defines a function gk belonging to L(Ω).
Notice that, from the shape of (4), we have that

gk = lim
ν→∞

gk,ν = gk,j +
∞∑

ν=j+1

(gk,ν − gk,ν−1) for all j ∈ N. (5)

Finally, we define the desired linear submanifold D in L(Ω) as the linear
span

D = span {gk : k ∈ N}
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Let us fix a function h ∈ L(Ω), a compact set K ⊂ Ω and a number ε > 0.
Then by the exhaustion property (i) we get an m ∈ N with K ⊂ Km; so
Kk+j−1 ⊃ K for all k ≥ m and all j ∈ N. Therefore, due to (3), (4) and the
definition of fk,j, we obtain for k ≥ m that

‖gk −Qk‖K = ‖gk − gk,0‖K ≤
∞∑

j=1

‖gk,j − gk,j−1‖Kk+j−1

≤
∞∑

j=1

‖gk,j − fk,j‖Mk,j
<

∞∑
j=1

τj

2k
=

δ1

2k
.

Since {Qk : k ∈ N} is dense in L(Ω) there exists k ≥ m with 2k > 2δ1/ε and
‖Qk − h‖K < ε/2. Hence, by the triangle inequality, ‖gk − h‖K < ε. Thus,
the set {gk : k ∈ N} is dense in L(Ω). But D ⊃ {gk : k ∈ N}, so D is also
dense.

It remains to show that if a number n ∈ N, a function g ∈ D \ {0}
and a curve γ ∈ Γ(Ω) are prescribed, then Cγ(Tn g) = C∗. For this, fix
n, g, γ as before. We can write g = c1g1 + · · · + ckgk for certain k ∈ N and
c1, . . . , ck ∈ C with ck 6= 0. Moreover, by the property (iv) we can select
a number j0 ∈ N and points xj ∈ γ ∩ Fk+j (j ≥ j0). Observe that the
construction of the set I(k, n)−k guarantees that for any j ∈ I(k, n)−k the
corresponding k(j), n(j) for which (1) is satified are exactly our prescribed
indexes k, n. Consequently, from (2), (5) and the linearity of Tn, we obtain
for every j ∈ I(k, n)− k with j ≥ j0 that

|(Tn g)(xj)− ckqϕ(k,n,j)|

=

∣∣∣∣∣Tn

(
ckgk +

k−1∑
i=1

cigi

)
(xj)− ckqϕ(k,n,j)TnΦn(xj)

∣∣∣∣∣

=

∣∣∣∣∣ckTn(gk,j − qϕ(k,n,j)Φn)(xj) + ckTn

( ∞∑
ν=j+1

(gk,ν − gk,ν−1)

)
(xj)

+
k−1∑
i=1

ciTn(gi)(xj)

∣∣∣∣∣

≤
∥∥∥∥∥ckTn(gk,j − qϕ(k,n,j)Φn) + ckTn

( ∞∑
ν=j+1

(gk,ν − gk,ν−1)

)
+

k−1∑
i=1

ciTngi

∥∥∥∥∥
Fk+j
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≤ |ck|‖Tn(gk,j − qϕ(k,n,j)Φn)‖Fk+j
+ |ck|

∥∥∥∥∥Tn

( ∞∑
ν=j+1

(gk,ν − gk,ν−1)

)∥∥∥∥∥
Fk+j

+
k−1∑
i=1

|ci|‖Tngi‖Fk+j

First, we get from (3) that ‖gk,j − qϕ(k,n,j)Φn‖Gk+j
< τj (< δj). Hence by (1)

it is derived that

‖Tn(gk,j − qϕ(k,n,j)Φn)‖Fk+j
<

1

2j
. (6)

Second, since Gk+j ⊂ Kk+j ⊂ Kk+ν−1 for all ν ≥ j + 1 and gk,ν−1 = fk,ν

on Kk+ν−1, one deduces via (3) that ‖gk,ν − gk,ν−1‖Gk+j
< τν . Hence, by the

triangle inequality,

∥∥∥∥∥
∞∑

ν=j+1

(gk,ν − gk,ν−1)

∥∥∥∥∥
Fk+j

<

∞∑
ν=j+1

τν = δj+1 < δj.

Thus, again from (1), we obtain

∥∥∥∥∥Tn

( ∞∑
ν=j+1

(gk,ν − gk,ν−1)

)∥∥∥∥∥
Fk+j

<
1

2j
. (7)

Next, each quantity ‖Tngi‖Fk+j
(i = 1, . . . , k − 1) should be estimated. This

is a bit more involved. According to (5), we can expand gi as

gi = gi,k−i+j +
∞∑

ν=k−i+j+1

(gi,ν − gi,ν−1)

Analogously to the second estimation, observe that Gk+j ⊂ Kk+j ⊂ Ki+ν−1

for all ν ≥ k + j − i + 1, and gi,ν−1 = fi,ν on Ki+ν−1. Therefore, due to (3),
‖gi,ν − gi,ν−1‖Gk+j

< τν . Furthermore,

‖gi,k−i+j‖Gk+j
= ‖gi,k−i+j−fi,k−i+j‖Gi+k−i+j

< ‖gi,k−i+j−fi,k−i+j‖Mi,k−i+j
< τk−i+j.

This holds because of (3) and of the fact that fi,k−i+j = 0 on Gk+j, which in
turn is true because k + j ∈ J(k), so i + (k − i + j) = k + j /∈ J(i) (recall
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that the sets J(ν)’s are pairwise disjoint). The triangle inequality drives us
to

‖gi‖Gk+j
< τk−i+j +

∞∑

ν=k−i+j+1

τν = τk−i+j + δk−i+j+1 = δk−i+j < δj.

Once more, (3) tells us that

‖Tngi‖Fk+j
<

1

2j
(i = 1, . . . , k − 1). (8)

Putting (6), (7) and (8) together and setting M := 2
∑k

i=1 |ci| < ∞, we
finally get

|(Tn g)(xj)− ckqϕ(k,n,j)| < M

2j
→ 0 (j →∞). (9)

As a final step, let us fix c ∈ C and choose an increasing sequence {j(1) <
j(2) < · · · } ⊂ I(k, n) − k such that qϕ(k,n,j(s)) → c/ck as s → ∞. Observe
that xj(s) (∈ γ) tends to ∂Ω. By using (9) we get lims→∞(Tn g)(xj(s)) =
c. Consequently, c ∈ Cγ(Tn g) for all c ∈ C. Thus, Cγ(Tn g) = C?, as
desired.

Note that thanks to the Examples 2.2 our Theorem 4.1 contains and
strengthens both results [3, Theorem 5] and [1, Theorem 2.1] mentioned in
the Introduction. Indeed, for the first case take as (Tn) a sequence whose
members are all partial derivations ∂α, and for the second case take N = 2,
Ω = a Jordan domain, L = ∂, and Tn = the identity (n ∈ N).

As a final remark, we point out that, at least for L = ∆ in RN and
L = ∂ in R2, our theorem is close to being sharp. Indeed, it is shown in [3,
Proposition 4] that if Ω is a domain in RN such that its (RN)∗-boundary has
an isolated point b, then for each function f harmonic in Ω or (if N = 2)
for each function f holomorphic in Ω, there exists an admissible path γ ⊂ Ω
ending at b such that Cγ(f) is a single point in C∗.
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