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Heisenberg uniqueness pairs and the Klein-Gordon
equation

Håkan Hedenmalm and Alfonso Montes-Rodríguez

Abstract. A Heisenberg uniqueness pair (HUP) is a pair (Γ,Λ), where Γ is a curve in the plane
andΛ is a set in the plane, with the following property: any bounded Borel measureµ in the plane
supported on Γ, which is absolutely continuous with respect to arc length, and whose Fourier
transform µ̂ vanishes onΛ, must automatically be the zero measure. We prove that when Γ is the
hyperbola x1x2 = 1, and Λ is the lattice-cross

Λ = (αZ × {0}) ∪ ({0} × βZ),

where α, β are positive reals, then (Γ,Λ) is an HUP if and only if αβ ≤ 1; in this situation, the
Fourier transform µ̂ of the measure solves the one-dimensional Klein-Gordon equation. Phrased
differently, we show that

eπiαnt, eπiβn/t, n ∈ Z,
span a weak-star dense subspace in L∞(R) if and only if αβ ≤ 1. In order to prove this theorem,
some elements of linear fractional theory and ergodic theory are needed, such as the Birkhoff
Ergodic Theorem. An idea parallel to the one exploited by Makarov and Poltoratski (in the
context of model subspaces) is also needed. As a consequence, we solve a problem on the density
of algebras generated by two inner functions raised by Matheson and Stessin.

1. Introduction

Heisenberg uniqueness pairs. Let µ be a finite complex-valued Borel measure in the plane R2,
and associate to it the Fourier transform

µ̂(ξ) =

∫

R2

eπi〈x,ξ〉dµ(x),

where x = (x1, x2) and ξ = (ξ1, ξ2), with inner product

〈x, ξ〉 = x1ξ1 + x2ξ2.

The Heisenberg uncertainty principle states that both µ and µ̂ cannot both be too concentrated
to a point (see [6] for the original paper of Heisenberg, and [5] for a more general treatment);
in particular, they cannot both have compact support. Here, we shall study a variation on that
theme. Let Γ be a smooth curve in R2, or, more generally, a finite disjoint union of smooth curves.
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2 Hedenmalm and Montes

Suppose that suppµ ⊂ Γ, and that µ is absolutely continuous with respect to arc length measure
on Γ. Which sets Λ ⊂ R2 have the property that

µ̂|Λ = 0 =⇒ µ = 0?

If this is the case, we say that (Γ,Λ) is a Heisenberg uniqueness pair. A dual formulation is that (Γ,Λ)
is a Heisenberg uniqueness pair if and only if the functions

eξ(x) = eπi〈x,ξ〉, ξ ∈ Λ,
span a weak-star dense subspace in L∞(Γ). This concept of Heisenberg uniqueness pairs has many
features in common with the notion of (weakly) mutually annihilating pairs of Borel measurable
sets having positive area measure, which appears, for instance, in the book by Havin and Jöricke
[5].

The properties of the Fourier transform with respect to translation and multiplication by
complex exponentials show that for all points x∗, ξ∗ ∈ R2, we have

(inv-1) (Γ + {x∗},Λ+ {ξ∗}) is an HUP ⇐⇒ (Γ,Λ) is an HUP,

where HUP is short for “Heisenberg uniqueness pair”. Likewise, it is also straightforward to see
that if T : R2 → R2 is an invertible linear transformation with adjoint T∗, then

(inv-2) (T−1(Γ),T∗(Λ)) is an HUP ⇐⇒ (Γ,Λ) is an HUP.

Algebraic curves and partial differential equations. Algebraic curves Γ are of particular interest,
because of their connection to partial differential equations. That connection follows from the
observation that for polynomials p of two variables,

p
(
∂1

πi
,
∂2

πi

)
µ̂(ξ) =

∫

R2

eπi〈x,ξ〉 p(x1, x2) dµ(x),

so that if p is real-valued and Γ is the locus of the equation

p(x1, x2) = 0,

then

p(x1, x2) dµ(x1, x2) = 0

identically. Therefore µ̂ solves the PDE

(1.1) p
(
∂1

πi
,
∂2

πi

)
µ̂(ξ) = 0

in the plane. In fact, the equation (1.1) encodes the requirement that suppµ ⊂ Γ.
Conic sections. We shall consider the case when Γ is a conic section, that is, the locus of a quadratic
equation

ax2
1 + bx2

2 + cx1x2 + dx1 + ex2 + f = 0,

where a, b, c, d, e, f are real constants. As we only consider the case when Γ is a curve, this leaves us
with the following cases: a straight line, two parallel straight lines, a cross, an ellipse, a parabola,
or a hyperbola.

The line. Let us look at the line first, as a model example. By the invariance properties (inv-1) and
(inv-2), we may assume that Γ = R × {0}, the x1-axis. In this case, µ̂(ξ) depends only on ξ1, and
it is easy to see that (Γ,Λ) is a Heisenberg uniqueness pair if and only if π1(Λ), the orthogonal
projection of Λ to the ξ1-axis, is dense.

Two parallel lines. If Γ is the union of two parallel lines, we may without loss of generality assume
that

Γ = R × {0, 1}.



Heisenberg uniqueness pairs and the Klein-Gordon equation 3

In this case, we see from the example of the line that it is necessary for (Γ,Λ) to be a Heisenberg
uniqueness pair that π1(Λ) be dense. But something more is needed. An absolutely continuous
measure µ on Γmay be written in the form

dµ(x) = f (x1)dx1dδ0(x2) + g(x1)dx1dδ1(x2),

where f , g ∈ L1(R) (δy denotes the unit point mass at the point y), so that

µ̂(ξ) = f̂ (ξ1) + eπiξ2 ĝ(ξ1).

Next, we split

π1(Λ) = πa
1(Λ) ∪ πb

1(Λ),

where the two sets are disjoint: t ∈ πa
1
(Λ) if there are two lifted points ξ = (ξ1, ξ2) and η = (η1, η2)

inΛ, with ξ1 = η1 = t and ξ2−η2 < 2Z, whereas t ∈ πb
1
(Λ) if the latter does not happen. We quickly

find that

(1.2) f̂ (t) = ĝ(t) = 0, t ∈ πa
1(Λ).

On the other hand, for t ∈ πb
1
(Λ), the expression eπiξ2 is a well-defined function of ξ1 = t, where ξ2

stands for any of the points with (ξ1, ξ2) ∈ Λ; we write χ(t) for this unimodular function. If E is a
closed subset of R and t0 ∈ E, we say that a function ϕ : E→ C is locally the Fourier transform of an
L1(R) function around t0 provided that there exists a small open interval I around t0 and a function
ψwhich is the Fourier transform of an L1(R) function, such thatψ = ϕ on E∩ I. Let πc

1
(Λ) consist of

those points t0 ∈ πb
1
(Λ) where χ : πb

1
(Λ)→ C is locally the Fourier transform of an L1(R) function

around t0.

Theorem 1.1. (Γ,Λ) is a Heisenberg uniqueness pair if and only if πa
1
(Λ)∪ (πb

1
(Λ) \πc

1
(Λ)) is dense inR.

Proof. We observe that

(1.3) f̂ (t) = −χ(t)ĝ(t), t ∈ πb
1(Λ).

If t ∈ πb
1
(Λ) \ πc

1
(Λ), this is only possible if ĝ(t) = 0, so that

(1.4) f̂ (t) = ĝ(t) = 0, t ∈ πb
1(Λ) \ πc

1(Λ).

A combination of (1.2) and (1.4) shows that f = g = 0 (so that µ = 0) if the setπa
1
(Λ)∪(πb

1
(Λ)\πc

1
(Λ))

is dense in R.
As for the other direction, suppose that π1(Λ) is dense in R, while πa

1
(Λ) ∪ (πb

1
(Λ) \ πc

1
(Λ))

fails to be dense inR. We then pick a point t0 ∈ R such that an open interval J around it has empty
intersection with

πa
1(Λ) ∪ (πb

1(Λ) \ πc
1(Λ)).

But then πc
1
(Λ)∩ J is dense in J, and χ is locally the Fourier transform of an L1(R) function around

t0. We thus find a function χ1 which coincides with χ on some open interval I ⊂ J with t0 ∈ I,
while χ1 is the Fourier transform of an L1(R) function. Next, we pick g ∈ L1(R) with ĝ(t0) , 0, such

that supp ĝ ⋐ I, and define f ∈ L1(R) via f̂ = −χ1 ĝ, so that (1.3) holds. This gives us a nontrivial
measure µwith the required properties, and so (Γ,Λ) cannot be a Heisenberg uniqueness pair. �

The cross. If Γ is a cross, the PDE (1.1) expresses the wave equation. By the invariance properties
(inv-1) and (inv-2), we may restrict our attention to the case when

Γ = (R × {0}) ∪ ({0} ×R)

is the union of the two axes. Here, it appears that the characterization of uniqueness pairs (Γ,Λ)
may get quite complicated. Obviously, it is a necessary condition that π1(Λ) and π2(Λ) be dense
(π2(Λ) is the orthogonal projection to the ξ2-axis). This is far from sufficient, because if Λ is
contained in a smooth graph, we may run into trouble. For instance, if Λ is contained in the
diagonal ξ1 = ξ2, then we may choose

dµ(x1, x2) = f (x1) dx1dδ0(x2) − f (x2) dx2dδ0(x1),
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where f ∈ L1(R), which is supported on Γ and nontrivial generically, while µ̂(ξ1, ξ2) = 0 for ξ1 = ξ2.

The ellipse. If Γ is an ellipse, the invariance of (inv-1) and (inv-2) allows us to focus on the circle

Γ = {x = (x1, x2) ∈ R2 : x2
1 + x2

2 = 1}.
The corresponding PDE (1.1) is the eigenvalue equation for the Laplacian. Here, the fact that Γ is
compact entails that µ̂(ξ) extends to an entire function of exponential type in C2. It would seem
that reasonable criteria on Λmay be found that are at least close to being necessary and sufficient
for (Γ,Λ) to be a Heisenberg uniqueness pair.

The parabola. If Γ is a parabola, the invariance of (inv-1) and (inv-2) allows us to focus on the
parabola

Γ = {x = (x1, x2) ∈ R2 : x2 = x2
1}.

The corresponding PDE (1.1) is the one-dimensional Schrödinger equation without potential. Here,
the problem of characterizing the Heisenberg uniqueness pairs (Γ,Λ) appears quite challenging.

The hyperbola. We shall focus most of our attention to the case when Γ is a hyperbola. The
corresponding PDE (1.1) is the one-dimensional Klein-Gordon equation. We will see that the
situation with Heisenberg uniqueness pairs is dramatically different from that of the cross. By the
invariance (inv-1) and (inv-2), we may assume that the hyperbola is given by

x1x2 = 1.

Theorem 1.2. Suppose Γ is the hyperbola x1x2 = 1 and that Λ is the lattice-cross

Λ = (αZ × {0}) ∪ ({0} × βZ),

where α, β are positive reals. Then (Γ,Λ) is a Heisenberg uniqueness pair if and only if αβ ≤ 1.

The remainder of this work is devoted to proving this assertion. But before we turn to the
proof, let us consider a generalization which is more or less immediate.

Corollary 1.3. Suppose Γε is the hyperbola x1x2 = ε, where ε , 0 is real, and that Λ is the lattice-cross

Λ = (αZ × {0}) ∪ ({0} × βZ),

where α, β are positive reals. Then (Γε,Λ) is a Heisenberg uniqueness pair if and only if αβ ≤ 1/|ε|.

The eccentricity of the hyperbola Γε is
√

2 independently of ε. The condition of the corollary
(αβ ≤ 1/|ε|) gets weaker as |ε| decreases. However, in the limit situation ε = 0 – the cross – the
situation changes dramatically: ifΛ is contained in the dual cross (R× {0})∪ ({0} ×R), thenΛmust
actually be dense in the cross for (Γ0,Λ) to be a Heisenberg uniqueness pair.

Remark 1.4. Consider for a moment the sets

Λ
′
= ([θ,+∞[×]−∞, 0])∪ (] −∞, 0] × [0,+∞[)

and

Λ
′′
=

{
(ξ1, ξ2) ∈ R2 : a1ξ1 + a2ξ2 = 0

}
,

where θ, a1, a2 are all real parameters, subject to θ > 0 and a1a2 > 0. The set Λ′ is arguably more
massive than the lattice-cross Λ of Corollary 1.3. Nevertheless, if Γε is as in Corollary 1.3, with
ε positive, it can be shown that (Γε,Λ′) fails to be a Heisenberg uniqueness pair, no matter what
positive values ε and θ assume. Analogously, (Γε,Λ′′) also fails to be a Heisenberg uniqueness
pair, for all ε > 0 and a1a2 > 0 (but it can be shown that (Γε,Λ′ ∪ Λ′′) is a Heisenberg uniqueness
pair, however). This suggests that it is crucial that the points of the lattice-cross Λ of Corollary 1.3
are located along the characteristic directions for the Klein-Gordon equation (the two axes).

We need a result of algebraic nature.
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Lemma 1.5. Let z1, z2 ∈ C be two points such that

z1 − z2 = am ∈ aZ,
1

z1
− 1

z2
= bn ∈ bZ,

for some positive reals a, b. Then, unless z1 = z2, we have

z1 =
am
2

(
1 ±
√

1 − 4

abmn

)
, z2 = z1 − am.

The proof is a simple exercise, and therefore omitted.

Remark 1.6. Let us consider the singular measure µ = δu − δv, where

u = (u1, 1/u1) ∈ Γ, v = (v1, 1/v1) ∈ Γ.
Then

µ̂(ξ) = eπi(ξ1u1+ξ2/u1) − eπi(ξ1v1+ξ2/v1),

so that
µ̂(ξ1, 0) = eπiξ1u1 − eπiξ1v1 , µ̂(0, ξ2) = eπiξ2/u1 − eπiξ2/v1 .

Suppose we try to achieve that

(1.5) µ̂(α j, 0) = µ̂(0, βk) = 0, j, k ∈ Z,
for some positive reals α, β. We see that this amounts to

eπiαu1 = eπiαv1 , eπiβ/u1 = eπiβ/v1 ,

which we rewrite in the form

u1 − v1 ∈
2

α
Z,

1

u1
− 1

v1
∈ 2

β
Z.

In view of Lemma 1.5, there are plenty of such points u1, v1 ∈ R with u1 , v1, for any given α, β.
This shows that the requirement that the measure µ be absolutely continuous with respect to arc
length measure on Γ is essential; without it, Theorem 1.2 would simply not be true.

2. Dynamics of a Gauss-type map

A Gauss-type map. In order to prove our main theorem (Theorem 1.2), we will need to study the
invariant measures of a particular map. We shall consider a map on the interval ] − 1, 1], which
we think of as R/2Z (topologically as well). The map in question is defined by U(0) = 0 and

U(x) =
{
− 1

x

}

2

, x , 0,

where for real t, the expression {t}2 ∈] − 1, 1] is the unique number such that t − {t}2 ∈ 2Z. The
function U is locally strictly increasing and continuous, except for being interrupted by jumps.
The map U :] − 1, 1]→] − 1, 1] is associated with continued fractions with even partial quotients (see
[10], [11], [7], [3]). We see that, for j = ±1,±2,±3, . . .,

U(x) = −1

x
+ 2 j,

1

2 j + 1
< x ≤ 1

2 j − 1
,

and hence U maps the interval ] 1
2 j+1 ,

1
2 j−1 ] onto ] − 1, 1] in a one-to-one fashion. The derivative of

U is locally

U′(x) =
1

x2
, x ∈] − 1, 1] \ 1

2Z + 1
.

The point 1 is a fixed point for U, and U′(1−) = U′(−1+) = 1, which makes 1 is a weakly repelling
fixed point. This means that when we iterate U, once we are close to 1 (which is the same point as
−1 in R/2Z), the successive iterates will remain near 1 for a long time. If x ∈] − 1, 1] is rational,
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then after a finite number of steps, the U-iterate of x is either 0 or 1 (see, for instance [7]). This
illuminates why irrational numbers tend to spend a large portion of their U-orbits near 1.

Invariant measures. If ϕ is a continuous function on R/2Z and ν is a bounded complex Borel
measure on ] − 1, 1], then the integral

(2.1)

∫

]−1,1]

ϕ(x) dν(x)

is well-defined. However, the integral (2.1) makes sense under weaker assumptions onϕ. Suppose
E is an open subset of ] − 1, 1] such that the complement ] − 1, 1] \ E is countable, and that ϕ is
bounded on ] − 1, 1] and continuous on E. Then (2.1) makes sense for ϕ, and we call the function
ϕ pseudo-continuous. We recall the familiar notion that a bounded complex Borel measure ν on
] − 1, 1] is U-invariant provided that

(2.2)

∫

]−1,1]

ϕ(U(x)) dν(x) =

∫

]−1,1]

ϕ(x) dν(x)

holds for all pseudo-continuous test functions ϕ; it is easy to see that ϕ ◦U is pseudo-continuous
if ϕ is pseudo-continuous, so that (2.2) makes sense. We shall reformulate this criterion in more
concrete terms. First, we note that

∫

]−1,1]\{0}
ϕ(U(x)) dν(x) =

∑

j∈Z∗

∫

] 1
2 j+1 ,

1
2 j−1 ]

ϕ(U(x)) dν(x) =
∑

j∈Z∗

∫

] 1
2 j+1 ,

1
2 j−1 ]

ϕ
(
− 1

x
+ 2 j
)

dν(x),

whereZ∗ = Z \ {0}, and that
∫

] 1
2 j+1 ,

1
2 j−1 ]

ϕ
(
− 1

x
+ 2 j
)

dν(x) =

∫

]−1,1]

ϕ(t) dν j(t),

where

(2.3) dν j(t) = dν
(

1

2 j − t

)
, −1 < t ≤ 1,

so that we have ∫

]−1,1]\{0}
ϕ(U(x)) dν(x) =

∑

j∈Z∗

∫

]−1,1]

ϕ(t) dν j(t).

It follows that ν is U-invariant if and only if

(2.4) ν = ν({0})δ0 +

∑

j∈Z∗
ν j.

More generally, given λ ∈ C, we want to talk about (U, λ)-invariant measures, defined by the
requirement that

(2.5)

∫

]−1,1]

ϕ(U(x)) dν(x) = λ

∫

]−1,1]

ϕ(x) dν(x)

hold for all test functions ϕ; specifically, this means that

(2.6) λν = ν({0})δ0 +

∑

j∈Z∗
ν j.

It is easy to see that for |λ| > 1, there are no (U, λ)-invariant measures except for the zero measure.

Proposition 2.1. Suppose ν is a bounded (U, λ)-invariant measure on ] − 1, 1], and write ν = νa + νs,
where νa is absolutely continuous, while νs is singular. Then νa and νs are also (U, λ)-invariant. Moreover,
if |λ| = 1, then |ν|, |νa|, and |νs| are all U-invariant measures.
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Proof. The relation (2.6) splits:

(2.7) νa = λ
∑

j∈Z∗
(ν j)a, νs = λ

(
ν({0})δ0 +

∑

j∈Z∗
(ν j)s

)
,

where the subscripts a and s indicate the absolutely continuous and singular parts, respectively, of
the measure in question. We easily realize that (ν j)a = (νa) j and (ν j)s = (νs) j, so that (2.7) expresses
that νa and νs are both U-invariant.

Next, we suppose |λ| = 1, and turn to the assertion that |ν| is U-invariant. Taking absolute
values, we have

(2.8) |dν(t)| ≤ |ν({0})|dδ0(t) +
∑

j∈Z∗
|dν j(t)|,

and so
∫

]−1,1]

|dν(t)| ≤
∑

j∈Z∗

∫

]−1,1]

|dν j(t)| = |ν({0})|+
∑

j∈Z∗

∫

] 1
2 j+1 ,

1
2 j−1 ]

|dν(t)|

= |ν({0})|+
∫

]−1,1]\{0}
|dν(t)| =

∫

]−1,1]

|dν(t)|.

This is only possible if we have in fact equality in (2.8):

|dν(t)| = |ν({0})|dδ0(t) +
∑

j∈Z∗
|dν j(t)|.

This relation expresses that |ν| is U-invariant; that |νa| and |νs| are U-invariant is a simple conse-
quence of this fact. �

An unbounded smooth invariant measure. We now consider the positive unbounded smooth
measure

dω(x) =
dx

1 − x2
.

The criterion (2.6) makes sense although ω is unbounded. The following assertion was essentially
found by Schweiger [10].

Proposition 2.2. The measure ω is U-invariant.

We supply the simple proof.

Proof. We check that

dω j(t) = dω
(

1

2 j − t

)
=

dt
(2 j − t)2 − 1

,

and since
∑

j∈Z∗

1

(2 j − t)2 − 1
=

1

2

∑

j∈Z∗

(
1

2 j − t − 1
− 1

2 j − t + 1

)
=

1

2

(
1

1 + t
+

1

1 − t

)
=

1

1 − t2
,

we find from (2.6) that ω is U-invariant. �

Schweiger [10] actually focused on the related map |U| : [0, 1]→ [0, 1] given by |U|(x) = |U(x)|.
He obtained the following basic result.

Proposition 2.3. The measure ω is invariant also with respect to |U|. Moreover, |U| is ergodic, that is, if
E ⊂ [0, 1] is a |U|-invariant set, then either ω(E) = 0 or ω([0, 1] \ E) = 0.
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Consequences of Ergodic Theory. The Birkhoff Ergodic Theorem – in this setting of an unbounded
invariant ergodic measure [1] – states that if ϕ is Borel measurable and even with

∫ 1

−1

|ϕ(t)|
1 − t2

dt < +∞,

then

1

N

N−1∑

k=0

ϕ(U〈k〉(t))→ 0 as N → +∞

almost everywhere on ] − 1, 1]. Here, U〈k〉 stands for the k-th iterate of U. We observe that we do
not need to know whether U is ergodic, just that |U| is, if we use that |U(−x)| = |U(x)|. We pick
ϕ(t) = 1 − t2, and get:

(2.9)
1

N

N−1∑

k=0

(
1 − |U〈k〉(t)|2

)
→ 0 as N → +∞

almost everywhere on ]−1, 1]. Suppose ν is a positive, bounded, and absolutely continuous U-invariant
measure on ] − 1, 1]. By the U-invariance, we have

(2.10)

∫

]−1,1]

(
1 − |U〈k〉(t)|2

)
dν(t) =

∫

]−1,1]

(1 − t2) dν(t),

and so ∫

]−1,1]

1

N

N−1∑

k=0

(
1 − |U〈k〉(t)|2

)
dν(t) =

∫

]−1,1]

(1 − t2) dν(t).

By the Lebesgue dominated convergence theorem, it follows from (2.9) that

∫

]−1,1]

1

N

N−1∑

k=0

(
1 − |U〈k〉(t)|2

)
dν(t)→ 0, as N → +∞,

which combined with the (2.10) leads to∫

]−1,1]

(1 − t2) dν(t) = 0.

This is only possible if ν = 0.
We formalize this in a proposition.

Proposition 2.4. Suppose λ ∈ C has |λ| = 1, and that ν is an absolutely continuous bounded complex
(U, λ)-invariant Borel measure on ] − 1, 1]. Then ν = 0.

Proof. By Proposition 2.1, |ν| is a U-invariant measure. By the above argument, |ν| = 0, and so
ν = 0. �

3. Extension of the trigonometric system

The trigonometric system. The trigonometric system {en(x)}n∈Z, with en(x) = eπinx, is very suc-
cessful in describing 2-periodic functions on the line. Harald Bohr – the brother of Niels Bohr,
the physicist – developed over a number of years in the 1920s and 1930s the theory of almost
periodic functions based on more general real frequencies rather than the integer frequencies of
the trigonometric system.

An extension of the trigonometric system. Here, we consider another extension of the trigonomet-
ric system, connected with the theory of composition operators. Let β be a positive real parameter.
We introduce, for integers n,

e〈β〉n (x) = en

(β
x

)
= eπiβn/x,
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and note that these functions are bounded on the real line.
After a dilation of the line, Theorem 1.2 is equivalent to the following statement.

Theorem 3.1. As n ranges over the integers, the functions en(x) and e〈β〉n (x) form a weak-star-spanning
system in L∞(R) if and only if 0 < β ≤ 1.

Ifµ is a positive bounded absolutely continuous Borel measure onR, then a bounded function
in L∞(R) is automatically in Lp(R, µ) for 1 < p < +∞, and the weak-star closure of a subspace in
L∞(R) is contained in the norm closure in Lp(R, µ). We then have the following consequence of
Theorem 3.1. The necessity part just requires mimicking the corresponding argument involving
harmonic extensions in Section 4 below.

Corollary 3.2. Suppose 1 < p < +∞, and that dµ(x) = M(x)dx, where M(x) ≥ 0 is Borel measurable,
with

0 <

∫
+∞

−∞
M(x) dx < +∞.

Then, as n ranges over the integers, the functions en(x) and e〈β〉n (x) form a spanning system in Lp(R, µ)
provided that 0 < β ≤ 1. If, in addition,

∫
+∞

−∞

dx

(1 + x2)p/(p−1)M(x)1/(p−1)
< +∞,

the condition 0 < β ≤ 1 is also necessary in order to have a spanning system.

4. Necessity of the condition 0 < β ≤ 1

Harmonic extension. We extend the functions en harmonically and boundedly to the upper half
plane C+ = {z ∈ C : Im z > 0}:

en(z) = eπinz, Im z ≥ 0, n ≥ 0,

while

en(z) = eπinz̄, Im z ≥ 0, n < 0.

Likewise, the harmonic extension of e〈β〉n is

e〈β〉n (z) = eπiβn/z̄, Im z ≥ 0, n ≥ 0,

and

e〈β〉n (z) = eπiβn/z, Im z ≥ 0, n < 0.

Point separation. A general L∞(R) function is extended harmonically and boundedly to C+ via
the Poisson kernel; for each z0 = x0 + iy0 ∈ C+, the point evaluation functional f 7→ f (z0) is given
by

f (z0) =
1

π

∫
+∞

−∞
P(t, z0) f (t) dt, P(t, z0) =

y0

(x0 − t)2 + y2
0

,

where t 7→ P(t, z0) is in L1(R), and the functional is therefore weak-star continuous on L∞(R). As
we harmonically extend all the functions in L∞(R), we get the space of all bounded harmonic
functions in C+. The bounded harmonic functions in C+ separate the points of C+, so if we can
find two points z1, z2 ∈ C+ with z1 , z2, such that

(4.1) en(z1) = en(z2), e〈β〉n (z1) = e〈β〉n (z2),

for all n ∈ Z, then the linear span of en, e
〈β〉
n , cannot be weak-star dense in L∞(R). The condition

(4.1) boils down to

z1 − z2 ∈ 2Z,
1

z1
− 1

z2
∈ 2

β
Z,
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where we may apply Lemma 1.5, with m = n = 1, a = 2, and b = 2/β. Assuming that 1 < β < +∞,
we get that

z1 = 1 + i
√
β2 − 1, z2 = −1 + i

√
β2 − 1,

are points in C+ satisfying (4.1). It follows that the requirement 0 < β ≤ 1 is necessary in Theorem
3.1.

5. Periodic and inverted-periodic functions

Periodic and inverted-periodic functions. The weak-star closure in L∞(R) of the linear span of
the functions en(x) = eπinx, n ∈ Z, equals L∞

2
(R), the subspace of 2-periodic functions. Similarly, the

weak-star closure of the linear span of the functions e〈β〉(x) = en(β/x), n ∈ Z, equals the subspace
L∞〈β〉(R) of all functions f ∈ L∞(R) with x 7→ f (β/x) being 2-periodic. Let us tacitly extend all

functions in L∞(R) harmonically to C+ using the Poisson kernel.

The intersection space. Let us, for a moment, consider the intersection

L∞2 (R) ∩ L∞〈β〉(R).

We introduceG(β) as the group of Möbius transformations preserving C+ generated by the trans-
lation z 7→ z+2 and the mapping z 7→ βz/(β−2z); then the elements of L∞

2
(R)∩L∞〈β〉(R) are precisely

the functions in L∞(R) that are invariant under f 7→ f ◦γ, forγ ∈ G(β). This situation is investigated
in §11.4 of Beardon’s book [2]. For 0 < β ≤ 1, the group G(β) is discrete and free (see, e. g., Gilman
and Maskit [4]), and the fundamental domain (hyperbolic polygon) associated with C+/G(β) is
given by

(5.1) D(β) =
{
z ∈ C+ : |Re z| < 1,

∣∣∣∣∣z −
β

2

∣∣∣∣∣ >
β

2
,

∣∣∣∣∣z +
β

2

∣∣∣∣∣ >
β

2

}
.

The domain D(β) has a cusp at infinity and at the origin. In addition, it has cusp(s) at ±1 for
β = 1. For 0 < β < 1, the fundamental domain has two boundary line segments ] − 1,−β[ and
]β, 1[, which is enough for C+/G(β) to carry plenty of bounded harmonic (holomorphic as well)
functions. A cusp is a removable singularity for a bounded harmonic function on C+/G(β) (it is
just an isolated removed point on the Riemann surface), which means that only constants are
bounded and harmonic on C+/G(β) for β = 1. For 1 < β < +∞, the group G(β) is discrete if and
only if

(5.2) β =
1

cos2(pπ/(2q))

for some coprime positive integers p, q with p < q and p ∈ {1, 2}. In case p = 1, the fundamental
domain is still given by (5.1), while for p = 2 it is smaller, but retains two of the cusps. Anyway,
under (5.2), only cusps (two or three) occur in C+/G(β), and all bounded harmonic functions are
constant. In the remaining case, when (5.2) fails, the group G(β) is non-discrete, and then every
harmonic function which is invariant under G(β) is necessarily constant.

We gather some of the above observations in a proposition.

Proposition 5.1. We have
L∞2 (R) ∩ L∞〈β〉(R) = {constants}

if and only if 1 ≤ β < +∞. Moreover, for 0 < β < 1, L∞
2

(R) ∩ L∞〈β〉(R) is infinite-dimensional.

The sum space. Next, we turn to the study of the sum space. In order to obtain Theorem 3.1, we
are to show that

L∞2 (R) + L∞〈β〉(R)

is weak-star dense in L∞(R) if and only if 0 < β ≤ 1. In Section 4, we saw that the sum fails to be be
weak-star dense for 1 < β < +∞. In the sequel, we therefore assume that 0 < β ≤ 1. We now make



Heisenberg uniqueness pairs and the Klein-Gordon equation 11

a basic observation. Functions in L∞2 (R) may be prescribed freely on ] − 1, 1], but then they are
uniquely determined everywhere else, due to periodicity. Likewise, functions in L∞〈β〉(R) are free

on R\] − β, β], and extend by “periodicity” everywhere else. This allows us to define operators S,
Tβ as follows. The first operator,

S : L∞(] − 1, 1])→ L∞(R\] − 1, 1])

is obtained by extending the function to be 2-periodic on R and then restricting the extended
function to R\] − 1, 1]. The second operator,

Tβ : L∞(R\] − β, β])→ L∞(] − β, β])

is the analogous extension associated with the “periodicity” in L∞〈β〉(R); in symbols, we may express

it as

Tβ[ f ] = (S[ f ◦ Iβ]) ◦ Iβ,

where Iβ(x) = −β/x.
Next, we agree on a useful convention. For a Lebesgue measurable subset X of the real

line of positive linear measure, we identify L∞(X) with a weak-star closed subspace of L∞(R) by
extending the functions to vanish on the complement R \ X.

Lemma 5.2. If I is the identity operator. and if the operator

I−TβS : L∞(] − 1, 1])→ L∞(] − 1, 1])

has weak-star dense range, then the sum space L∞
2

(R) + L∞〈β〉(R) is weak-star dense in L∞(R).

Proof. We write R for the range of the operator I−TβS. Pick an arbitrary F2 ∈ L∞(R\] − 1, 1]), and
ask of F1 ∈ L∞(] − 1, 1]) that F1 = Tβ[F2] + R, where R ∈ R. The set of all sums F = F1 + F2 ∈ L∞(R)
we obtain in this fashion is denoted by F . The following straightforward argument shows that F
is weak-star dense in L∞(R). Suppose K ∈ L1(R) has

〈F,K〉R = 0

for all F ∈ F . We decompose K = K1 + K2 ∈ L1(R), where

K1 ∈ L1(] − 1, 1]) and K2 ∈ L1(R\] − 1, 1]).

Then
0 = 〈F,K〉R = 〈F1,K1〉R + 〈F2,K2〉R = 〈Tβ[F2],K1〉R + 〈R,K1〉R + 〈F2,K2〉R.

We rewrite this in the form

〈R,K1〉R = −〈F2,K2〉R − 〈Tβ[F2],K1〉R.
Only the left hand side depends on R ∈ R; by linearity, the only way this is possible is if 〈R,K1〉R = 0
for all R ∈ R. But as R is dense we get that K1 = 0. The remaining relationship now reads

〈F2,K2〉R = 0.

As F2 was arbitrary, we conclude that K2 = 0 as well.
To finish the proof, we show that

F ⊂ L∞2 (R) + L∞〈β〉(R).

For F = F1 + F2 ∈ F as above, the fact that F1 − Tβ[F2] = R ∈ R means that there exists a
g ∈ L∞(] − 1, 1]) such that

(5.3) g − TβS[g] = (I−TβS)[g] = F1 − Tβ[F2].

Also, let h ∈ L∞(R\] − 1, 1]) be given by

(5.4) h = F2 − S[g].

Then, by (5.4),

(5.5) F2 = h + S[g],
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so that

Tβ[F2] = Tβ[h] + TβS[g],

and if we combine this with (5.3), we get

(5.6) F1 = Tβ[F2] + g − TβS[g] = Tβ[h] + TβS[g] + g − TβS[g] = g + Tβ[h].

It follows from (5.5) and (5.6) that

F = F1 + F2 = (g + Tβ[h]) + (h + S[g]) = (g + S[g]) + (h + Tβ[h]) ∈ L∞2 (R) + L∞〈β〉(R).

The proof is complete. �

The operator TβS. For x ∈ R, let {x}2 denote the number with −1 < {x}2 ≤ 1 and x− {x} ∈ 2Z. Then
since, for ϕ ∈ L∞(] − 1, 1]),

S[ϕ](x) = ϕ({x}2) 1R\]−1,1](x), x ∈ R,
where 1E denotes the characteristic function of the set E ⊂ R, we find that for ψ ∈ L∞(R\] − β, β]),

Tβ[ψ](x) = ψ
( β

{β/x}2

)
1]−β,β](x), x ∈ R.

It follows that

(5.7) TβS[ϕ](x) = ϕ
({ β

{β/x}2

}

2

)
1Eβ(x), x ∈ R,

where

Eβ =
{
x ∈] − β, β] \ {0} :

β

{β/x}2
∈ R\] − 1, 1]

}
.

6. Analysis of a related composition operator

The Gauss-type map. Let Uβ be the mapping

Uβ(x) = {−β/x}2, x , 0,

with Uβ(0) = 0. We consider the associated compressed composition operator

Cβ : L∞(] − 1, 1])→ L∞(] − 1, 1])

given by

Cβ[ f ](x) = f (Uβ(x)) 1]−β,β](x).

We quickly realize from (5.7) that

TβS = C2
β,

and turn to analyzing Cβ. The identity

I−TβS = I−C2
β = (I+Cβ)(I−Cβ)

shows that if I+Cβ and I−Cβ both have weak-star dense range, then I−C2
β has weak-star dense

range as well. By elementary Functional Analysis, the operators I+Cβ and I−Cβ both have weak-
star dense range if and only if for λ = ±1, the (predual) adjoint

λ I−C∗β : L1(] − 1, 1])→ L1(] − 1, 1])

has null kernel, that is, if the points ±1 both fail to be eigenvalues of C∗β. The following result

shows that this is the case for 0 < β ≤ 1, making I−TβS have weak-star dense range, and in view
of Lemma 5.2, then,

L∞2 (R) + L∞〈β〉(R)

is weak-star dense in L∞(R). Given that we have verified the necessity of the condition 0 < β ≤ 1
in the context of Theorem 3.1, the rest of the assertion of Theorem 3.1 follows.
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Proposition 6.1. For 0 < β ≤ 1, the point spectrum σp(C∗β) of C∗β : L1(]−1, 1])→ L1(]−1, 1]) is contained
in the open unit diskD. In particular, ±1 are not eigenvalues of C∗β.

Proof. It is clear that

σp(C∗β) ⊂ σ(C∗β) ⊂ D̄,
where D̄ is the closed unit disk, so we just need to show that λ ∈ C with |λ| = 1 cannot be
eigenvalues.

The treatment of the cases β = 1 and 0 < β < 1 will be different.

The case β = 1. For β = 1, Uβ = U1 = U, the map we studied back in Section 2, and C1 is

C1[ f ](x) = f (U(x)) 1]−1,1](x).

The defining relation for the (predual) adjoint C∗
1

: L1(] − 1, 1])→ L1(] − 1, 1]) is
∫

]−1,1]

f (x) C∗1[g](x) dx = 〈C∗1[g], f 〉R = 〈g,C1[ f ]〉R =
∫

]−1,1]

f (U(x)) g(x) dx.

If g is a nontrivial eigenfunction for C∗
1

with eigenvalue λ, then C∗
1
[g] = λg, and so

λ

∫

]−1,1]

f (x) g(x) dx =

∫

]−1,1]

f (U(x)) g(x) dx;

this expresses that the absolutely continuous bounded measure dν(x) = g(x)dx is a (U, λ)-invariant
measure. By Proposition 2.4, there are no bounded (U, λ)-invariant measures except the null
measure, for |λ| = 1. Consequently, λ ∈ C is not an eigenvalue of C∗

1
for |λ| = 1.

The case 0 < β < 1. The same analysis reduces the problem to studying the bounded absolutely
continuous measures ν on ] − 1, 1] with

(6.1) λ

∫

]−1,1]

f (t) dν(t) =

∫

]−1,1]

Cβ[ f ](t) dν(t) =

∫

]−β,β]

f (Uβ(t)) dν(t)

for all f ∈ L∞(] − 1, 1]), where λ ∈ C is fixed with |λ| = 1. In more concrete terms, this amounts to

λdν(t) =
∑

j∈Z∗
dν j(t), t ∈] − 1, 1],

where

dν j(t) = dν
( β

2 j − t

)
, t ∈] − 1, 1].

Taking absolute values, we have, for |λ| = 1,

|dν(t)| ≤
∑

j∈Z∗
|dν j(t)|, t ∈] − 1, 1].

Integrating over ] − 1, 1], we find that
∫

]−1,1]

|dν(t)| ≤
∑

j∈Z∗

∫

]−1,1]

|dν j(t)| =
∫

[−β,β]

|dν(t)|, t ∈] − 1, 1],

which is only possible if we have the equality

|dν(t)| =
∑

j∈Z∗
|dν j(t)|, t ∈] − 1, 1],

as well as

dν(t) = 0, t ∈] − 1, 1] \ [−β, β].

If we iterate the relation (6.1), we get

(6.2) λn

∫

]−1,1]

f (t) dν(t) =

∫

]−1,1]

Cn
β[ f ](t) dν(t) =

∫

Eβ(n)

f (U〈n〉β (t)) dν(t),
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where set Eβ(n) is given by

Eβ(n) =
{
t ∈] − 1, 1] : U〈k〉β (t) ∈ [−β, β] for k = 0, . . . , n − 1

}
.

A repetition of the above argument involving U〈n〉β in place of Uβ shows that if |λ| = 1, then

dν(t) = 0, t ∈] − 1, 1] \ Eβ(n).

As n→ +∞, the set Eβ(n) shrinks down to

Eβ(∞) =
{
t ∈] − 1, 1] : U〈k〉β (t) ∈ [−β, β] for k = 0, 1, 2, 3, . . .

}
.

This final set Eβ(∞) is Uβ-invariant, and it is not hard to show that it must have zero length. But
the measure ν vanishes everywhere else, and being absolutely continuous, it must be the zero
measure. In particular, λ ∈ C with |λ| = 1 cannot be eigenvalues of C∗β. The proof is complete. �

A remark on model subspaces. Given an inner functionΘ in the upper half planeC+, one considers
the model subspaces KΘ(C+) = H2(C+)⊖ΘH2(C+). Uniqueness sets for model subspaces have been
studied recently by Makarov and Poltoratski [8], and the injectivity of the Toeplitz operator with
symbol Θ̄BΛ is equivalent to Λ ⊂ C+ being a uniqueness set. In our setting, we use mainly that
the operators λ I−C∗β are injective for λ = ±1, so apparently these operators are analogous to the

Toeplitz operators from the model subspace case.

7. Applications and open problems

An application to BMO. Let BMOA(C+) be the (weak-star closed) subspace of the space BMO(R)
consisting of functions whose Poisson extensions to C+ are holomorphic in C+. We recall that
BMO(R) denotes the space of functions with bounded mean oscillation. The Cauchy-Szegö (ana-
lytic) projection

P : L∞(R)→ BMOA(C+)

is bounded and surjective. We observe that if X is a linear subspace of L∞(R) which is weak-star
dense, then P(X) is dense in BMOA(C+). Moreover, let BMOA2(C+) be the subspace of BMOA(C+)
of functions invariant under z 7→ z + 2, and let BMOA〈β〉(C+) be the subspace of BMOA(C+) of
functions invariant under z 7→ βz/(β − 2z). We quickly check that P maps L∞2 (R) → BMOA2(C+)
and L∞〈β〉(R)→ BMOA〈β〉(C+).

In view of our main theorem (Theorem 3.1), we have the following.

Corollary 7.1. The sum BMOA2(C+) + BMOA〈β〉(C+) is weak-star dense in BMOA(C+) if and only if
0 < β ≤ 1. In other words, the functions

en(x) = eπinx, e〈β〉−n(x) = e−πβin/x, n = 0, 1, 2, 3, . . . ,

span a weak-star dense subspace of BMOA(C+) if and only if 0 < β ≤ 1.

By the Möbius invariance of BMO, we may transfer this result to the setting of the unit disk,
and answer Problem 2 of Matheson and Stessin [9] in the affirmative.

Four open problems. (a) Suppose in the context of Theorem 1.2 we consider a lattice-cross

Λ = ((αZ + {θ}) × {0}) ∪ ({0} × βZ),

where θ ∈ R is fixed. It seems that Theorem 1.2 should remain true with this new Λ, with only
moderate modifications in the proof. But what happens if the lattice-cross is less regular, that is, if
the two spacings α and β are allowed to fluctuate a bit along the cross?

(b) In the context of Corollary 3.2, as n ranges over the integers, do the functions en(x) and e〈β〉n (x)
form a spanning system in Lp(R, µ) for all 0 < β < +∞ provided that

∫
+∞

−∞

dx

(1 + x2)p/(p−1)M(x)1/(p−1)
= +∞?
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(c) Let H∞2 (C+) denote the (weak-star closed) subspace of L∞2 (R) consisting of those functions
whose Poisson extensions to the upper half plane C+ are analytic. Analogously, let H∞〈β〉(C+) be the

(weak-star closed) subspace of L∞〈β〉(R) consisting of those functions whose Poisson extensions to

the upper half plane C+ are analytic. Is the sum

H∞2 (C+) +H∞〈β〉(C+)

weak-star dense in H∞(C+) for 0 < β ≤ 1? This does not seem to follow from our Theorem 3.1,
and, if answered in the affirmative (for 0 < β < 1), would solve Problem 1 of [9].

(d) In the context of Corollary 1.3, let the bounded Borel measure µ be supported on the hyperbola
x1x2 = ε, and let Λ be the lattice-cross given by the positive parameters α, β. If µ is absolutely
continuous with respect to arc length measure on the hyperbola, an argument involving curvature
considerations shows that

µ̂(ξ)→ 0 as |ξ| → +∞,

and this in a sense expresses the absence of point masses in µ. Moreover, µ̂ solves the Klein-
Gordon equation ∂1∂2µ̂ + επ2µ̂ = 0. It would be desirable to remove to the extent possible the
Fourier analysis ingredient in Corollary 1.3. Let u be a bounded continuous complex-valued
function on R2 with u(ξ) → 0 as |ξ| → +∞. Suppose, in addition, that ∂1∂2u + επ2u = 0 holds in
the sense of distribution theory. The problem: is the lattice-cross Λ, with αβ ≤ 1/|ε|, a uniqueness
set for u (that is, u|Λ = 0 =⇒ u = 0)?
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