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Abstract

In this paper we pursue the study of the problem of controlling the maxi-
mal singular integral T ∗f by the singular integral Tf . Here T is a smooth
homogeneous Calderón-Zygmund singular integral of convolution type. We
consider two forms of control, namely, in the L2(Rn) norm and via pointwise
estimates of T ∗f by M(Tf) or M2(Tf) , where M is the Hardy-Littlewood
maximal operator and M2 = M ◦M its iteration. It is known that the parity
of the kernel plays an essential role in this question. In a previous article
we considered the case of even kernels and here we deal with the odd case.
Along the way, the question of estimating composition operators of the type
T ?◦T arises. It turns out that, again, there is a remarkable difference between
even and odd kernels. For even kernels we obtain, quite unexpectedly, weak
(1, 1) estimates, which are no longer true for odd kernels. For odd kernels we
obtain sharp weaker inequalities involving a weak L1 estimate for functions
in L LogL.

1 Introduction: the model examples

In this paper we prove new estimates for the maximal singular integral associated
with a singular integral of Calderón-Zygmund type. We start by considering two
model examples, the Hilbert transform and the Beurling transform. The Hilbert
transform is the linear operator defined for almost every x ∈ R by the principal
value integral

Hf(x) = p.v.

∫
R

f(y)

y − x
dy ,

where f is a function in some Lp(R) , 1 ≤ p <∞ , and the maximal Hilbert transform
is

H∗f(x) = sup
ε>0

∣∣∣∣∫
|y−x|>ε

f(y)

y − x
dy

∣∣∣∣ , x ∈ R .

The Beurling transform is the one complex variable analog of the Hilbert trans-
form, that is,

Bf(z) = p.v.

∫
C

f(ω)

(ω − z)2
dω ,
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where f is in some Lp(C) , 1 ≤ p <∞ , and the maximal Beurling transform is

B∗f(z) = sup
ε>0

∣∣∣∣∫
|ω−z|>ε

f(ω)

(ω − z)2
dω

∣∣∣∣ , z ∈ C .

Our motivation comes from classical Cotlar’s pointwise estimate

T ∗(f)(x) ≤ C (M(Tf)(x) +M(f)(x)) (1)

where T is any Calderón-Zygmund singular operator, not necessarily of convolution
type, and M is the standard Hardy-Littlewood maximal function. (See the original
result in [Cot] and the modern treatment in [GrMF, p. 185]). It has been shown in
[MV] that it is possible, in some cases, to improve this estimate by removing M(f)
in the right hand side of (1). For example, for the Beurling transform one gets

B∗(f) ≤ CM(Bf) . (2)

It follows from the same paper that the analogous estimate for the Hilbert transform

H∗(f) ≤ CM(Hf) (3)

does not hold. In this paper we show that the right substitute for the inequality
above is

H∗(f) ≤ CM2(Hf) (4)

where M2 = M ◦M is the iterated Hardy-Littlewood maximal operator.
The crucial property to derive (2) is the even character of the kernel defining

B. For further developments in this direction see [MOV], where one characterizes
those even smooth homogeneous Calderón-Zygmund kernels for which the pointwise
estimate (2) holds with B replaced by the convolution operator T associated with
the kernel. One characterizing condition is the L2 estimate,

‖T ∗f‖2 ≤ C‖Tf‖2 , f ∈ L2(Rn) , (5)

an apparently weaker condition. Another description is expressed in terms of a
purely algebraic condition involving the spherical harmonics expansion of the kernel.
In particular, even higher order Riesz transforms T do satisfy (2), with B replaced
by T .

The first purpose of this paper is to pursue this point of view in the case of odd
smooth kernels, for which the model example provided by the Hilbert transform
points towards pointwise inequalities of the type (4). The main result is given in
Theorem 1 (see Section 2 below) where the pointwise inequality (4), with H replaced
by T , is shown to be equivalent to the L2 estimate (5) and, as in the even case, to
a purely algebraic condition in terms of the spherical harmonics expansion of the
kernel.

2



The second purpose of this paper is to gain a better understanding of why (3)
fails and to provide appropriate sharp substitutes. The failure of (3) is related to
the endpoint boundedness properties of the composition of the maximal singular
integral operator and the singular integral operator itself. For instance, for the
Hilbert transform we are referring to the operator of the form

f → (H∗ ◦H)(f) = H∗(Hf). (6)

We show in Section 9 that, indeed, this operator is not of weak type (1, 1) and, as
a consequence, (3) cannot hold. On the other hand, we show that H∗ ◦H satisfies
an “L logL” type estimate, namely, that there is a constant C such that∣∣{x ∈ R : H∗(Hf)(x) > t}

∣∣ ≤ C

∫
R

Φ

(
|f(x)|
t

)
dx, t > 0 (7)

where Φ(t) = t log(e + t). This estimate seems to be the right replacement for (3),
because of the presence of M2 in (4) and because it is well known (see [P2]) that∣∣{x ∈ Rn : M2f(x) > t}

∣∣ ≤ C

∫
Rn

Φ

(
|f(x)|
t

)
dx . (8)

We remark that, since ‖M2‖L1,∞ =∞ , the preceding inequality is sharp.
In fact, we show that the above “L logL” phenomenon holds for arbitrary Calderón-

Zygmund singular integral operators, not necessarily of convolution type. Specif-
ically, if T1 and T2 are such operators, then T ∗1 ◦ T2 and even T ∗1 ◦ T ∗2 satisfy
inequalities similar to (7) (see Theorem 2 in Section 2 below). However, there are
special situations, always associated to even kernels, in which one gets a weak type
(1, 1) inequality. For example, for the Beurling transform B one has∣∣{z ∈ C : B∗(Bf)(z) > t}

∣∣ ≤ C

t

∫
C
|f(z)| dA(z), t > 0 ,

dA being two dimensional Lebesgue measure. The explanation is that even operators
enjoy an extra cancellation property smoothing out the composition.

2 Main results

2.1 The pointwise estimate for odd kernels

Let T be a smooth homogeneous Calderón-Zygmund singular integral operator on
Rn with kernel

K(x) =
Ω(x)

|x|n
, x ∈ Rn \ {0}, (9)

where Ω is a (real valued) homogeneous function of degree 0 whose restriction to
the unit sphere Sn−1 is of class C∞(Sn−1) and satisfies the cancellation property∫

|x|=1

Ω(x) dσ(x) = 0,
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σ being the normalized surface measure on Sn−1. Recall that Tf is the principal
value convolution operator

Tf(x) = p.v.

∫
f(x− y)K(y) dy ≡ lim

ε→0
T εf(x), (10)

where T ε is the truncation at level ε defined by

T εf(x) =

∫
|y−x|>ε

f(x− y)K(y) dy .

It is well known that the limit in (10) exists for almost all x for f in Lp(Rn), 1 ≤
p <∞.

The operator T is said to be odd (or even) if the kernel is odd (or even), that is,
if Ω(−x) = −Ω(x), x ∈ Rn \ {0} (or Ω(−x) = Ω(x), x ∈ Rn \ {0}).

Let T ∗ be the maximal singular integral

T ∗f(x) = sup
ε>0
|T εf(x)|, x ∈ Rn.

Consider the problem of controlling T ∗f by Tf . The most basic form of control
one may think of is the L2 estimate

‖T ∗f‖2 ≤ C‖Tf‖2 , f ∈ L2(Rn) . (11)

Another way of saying that T ∗f is dominated by Tf , much stronger, is provided by
the pointwise inequality

T ∗f(x) ≤ CM(Tf)(x), x ∈ Rn , (12)

where M denotes the Hardy-Littlewood maximal operator. A third form of control,
weaker than (12), but which still implies the L2 inequality (11), is given by the
condition

T ∗f(x) ≤ CM2(Tf)(x), x ∈ Rn , (13)

where M2 = M ◦M is the iterated Hardy-Littlewood maximal operator. It was
shown in [MV] that the Hilbert transform does not satisfy (12), but does satisfy a
pointwise inequality slightly weaker than (13) (see [MV, p.959]).

In this paper we prove that if T is an odd higher order Riesz transform, then
(13) holds. In [MOV] it was shown that even higher order Riesz transforms satisfy
the stronger inequality (12). Recall that T is a higher order Riesz transform if its
kernel is given by a function Ω of the form

Ω(x) =
P (x)

|x|d
, x ∈ Rn \ {0},

with P a homogeneous harmonic polynomial of degree d ≥ 1. If P (x) = xj, then
one obtains the j-th Riesz transform Rj. If the homogeneous polynomial P is not
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required to be harmonic, but has still zero integral on the unit sphere, then we call
T a polynomial operator.

Condition (13) clearly implies the Lp inequality

‖T ∗f‖p ≤ C‖Tf‖p , f ∈ Lp(Rn) 1 < p ≤ ∞ .

As we said before, the Hilbert Transform does not satisfy (12). Therefore the pres-
ence of the iterated Hardy-Littlewood maximal operator in the case of odd kernels
is in the nature of the problem.

Our main result states that for odd operators inequalities (11) and (13) are equiv-
alent to an algebraic condition involving the expansion of Ω in spherical harmonics.
This condition may be very easily checked in practice and so, in particular, we can
produce extremely simple examples of odd polynomial operators for which (11) and
(13) fail. For these operators no alternative way of controlling T ∗f by Tf is known.
To state our main result we need to introduce a piece of notation.

Recall that Ω has an expansion in spherical harmonics, that is,

Ω(x) =
∞∑
j=1

Pj(x), x ∈ Sn−1, (14)

where Pj is a homogeneous harmonic polynomial of degree j. If Ω is odd, then only
the Pj of odd degree j may be non-zero.

An important role in this paper will be played by the algebra A consisting of the
bounded operators on L2(Rn) of the form

λI + S,

where λ is a real number and S a smooth homogeneous Calderón-Zygmund operator.
Our main result reads as follows.

Theorem 1. Let T be an odd smooth homogeneous Calderón-Zygmund operator
with kernel (9) and assume that Ω has the expansion (14). Then the following are
equivalent.

(i)
T ∗f(x) ≤ CM2(Tf)(x) , x ∈ Rn .

(ii)
‖T ∗f‖2 ≤ C‖Tf‖2 , f ∈ L2(Rn) .

(iii) The operator T can be factorized as T = R ◦U , where U is an invertible oper-
ator in the algebra A and R is an odd higher order Riesz transform associated
to a harmonic homogeneous polynomial P which divides each Pj in the ring of
polynomials in n variables with real coefficients .
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Two remarks are in order.
Remark 1. As in [MOV], (iii) can be reformulated in a more concrete fashion

as follows. Assume that the expansion of Ω in spherical harmonics is

Ω(x) =
∞∑
j=jo

P2j+1(x) , P2j0+1 6= 0 .

Then (iii) is equivalent to the following
(iv) For each j there exists a homogeneous polynomial Q2j−2j0 of degree 2j− 2j0

such that P2j+1 = P2j0+1Q2j−2j0 and
∑∞

j=jo
γ2j+1 Q2j−2j0(ξ) 6= 0 , ξ ∈ Sn−1.

Here for a positive integer j we have set

γj = i−j π
n
2

Γ( j
2
)

Γ(n+j
2

)
. (15)

The quantities γj appear in the computation of the Fourier multiplier of the higher
order Riesz transform R with kernel given by a homogeneous harmonic polynomial
P of degree j. One has (see [St, p.73])

R̂f(ξ) = γj
P (ξ)

|ξ|j
f̂(ξ), f ∈ L2(Rn) .

Throughout this paper the Fourier transform of f is f̂(ξ) =
∫
f(x)e−ix·ξdx , ξ ∈ Rn .

The proof that (iii) and (iv) are equivalent is exactly as in [MOV].
Remark 2. Condition (iii) is rather easy to check in practice. For instance,

consider the polynomial of third degree

P (x) = x1 + (n+ 1)
(
x3

1 − 3x1x
2
2

)
, x ∈ Sn−1 ,

The polynomial operator associated with P does not satisfy (i) nor (ii), because the
definition of P above is also the spherical harmonics expansion of P and, although
x1 divides the two terms, a calculation shows that γ1 +γ3 (n+ 1) (ξ2

1−3 ξ2
2) vanishes

on the sphere. On the other hand, if −1 < λ < 1 the polynomial operator associated
with the polynomial

P (x) = x1 + λ (n+ 1)
(
x3

1 − 3x1x
2
2

)
, x ∈ Sn−1 ,

does satisfy (i) and (ii). Thus, as in the even case, we conclude that the condition
on Ω so that T satisfies (i) or (ii) is rather subtle.

For the proofs we will rely heavily on [MOV] and the reader will be assumed
to have some familiarity with that paper. The strategy for the proof is essentially
the same as in [MOV], but two main differences arise, which require some new
ideas. In the even case, in the proof of “(iii) implies (i)” (“the sufficient condition”)
for polynomial operators associated with a homogeneous polynomial of degree 2N ,
the differential operator ∆N plays an essential role. In the odd case the natural
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substitute for ∆N is a pseudo-differential operator, which is non local. Thus one loses
the support of certain functions. This is a new difficulty which must be overcome.
A second difference is that one cannot hope to have the subtle L∞ estimates of
[MOV], which have to be replaced by BMO estimates. This is, in some sense,
favorable, because proofs are simpler at some points, just because an L∞ estimate
is not possible and must be replaced by a straight BMO estimate.

We devote Sections 4, 5 and 6 to the proof of the sufficient condition ((iii) implies
(i)). In Section 4 we prove that the odd higher order Riesz transforms satisfy (i).
Section 5 is devoted to the proof of the sufficient condition for polynomial operators.
The drawback of the argument used is that we lose control on the dependence of the
constants on the degree of the polynomial. The main difficulty we have to overcome
in Section 6 to complete the proof of the sufficient condition in the general case, is
to find a second approach to the polynomial case which gives some estimates with
constants independent of the degree of the polynomial. This allows the use of a
compactness argument to finish the proof. As in the even case, the approach in
Section 4 cannot be dispensed with, because it provides certain properties which are
vital for the final argument and do not follow otherwise.

In Section 7 we prove the necessary condition, that is, (ii) implies (iii). First
we deal with the polynomial case. Analysing the inequality (ii) via Plancherel at
the frequency side we obtain various inclusion relations among zero sets of certain
polynomials. This requires a considerable computational effort, as in the even case.
In a second step we solve the division problem which leads us to (iii) by a recurrent
argument with some algebraic geometry ingredients . The question of independence
on the degree of the polynomial appears again, this time related to the coefficients
of certain expansions. Section 8 is devoted to the proof of the combinatorial lemmas
used in the previous sections.

2.2 Composing maximal singular integrals with singular in-
tegrals

In the previous section we discussed several estimates for operators of the form
H∗ ◦ H or B∗ ◦ B. We now extend these results by considering general Calderón-
Zygmund singular integral operators. Our point of view is strongly motivated by
a celebrated result of R. Coifman and C. Fefferman from the seventies, Theorem 6
below. We recall that A∞ is the class of weights ∪p≥1Ap.

Theorem 2. Let T1 and T2 be two the Calderón-Zygmund singular integral opera-
tors.

a) If 0 < p <∞ and w ∈ A∞, then there is a constant C depending on the A∞
constant of w such that∫

Rn

(T ∗1 ◦ T2)(f)(x)pw(x)dx ≤ C

∫
Rn

(M2(f)(x))pw(x)dx, (16)
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and

sup
t>0

1

Φ(1
t
)
w({x ∈ Rn : (T ∗1 ◦T2)(f)(x) > t}) ≤ C sup

t>0

1

Φ(1
t
)
w({x ∈ Rn : M2(f)(x) > t})

(17)
where Φ(t) = t log(e+ t) and f is a function for which the left hand side is finite.

b) The estimates (16) and (17) hold with T ∗1 ◦ T2 replaced by T ∗1 ◦ T ∗2 in the left
hand side.

Corollary 1. Let T1 and T2 as above and let w ∈ A1. Then there is a constant C
depending on the A1 constant of w such that

w({x ∈ R : T ∗1 ◦ T2(f)(x) > t}) ≤ C

∫
R

Φ

(
|f(x)|
t

)
w(x)dx, t > 0 (18)

where Φ(t) = t log(e+ t).
The estimate (18) holds with T ∗1 ◦ T2 replaced by T ∗1 ◦ T ∗2 in the left hand side.

As we mentioned before, for general Calderón-Zygmund singular integral oper-
ators T1 and T2 their composition T1 ◦ T2 is not of weak type (1, 1). This should
be compared with the case of Fourier multipliers Tm when the multiplier m satisfies
the classical Mihlin condition. Indeed, by classical well known results, if Tm1 and
Tm2 are two multipliers the composition operators Tm1 ◦Tm2 = Tm1m2 is also of weak
type (1, 1) , and hence is an algebra [GrCF, 2.5.5]. Indeed, suppose that Tm1 and
Tm2 are two multiplier operators such that each multiplier mj, j = 1, 2, is bounded,
belongs to C [ n

2
]+1 in the complement of the origin and satisfies the classical Mihlin

condition,

(∂αmj)(ξ) ≤
c

|ξ|α
ξ 6= 0

for any α such that |α| ≤ [n
2
] + 1. Now consider as above the composition operator

Tm1 ◦ Tm2 , which is another multiplier operator with multiplier m1m2. Then since
m1m2 satisfies again Mihlin’s condition by the Leibnitz rule, then Tm1 ◦ Tm2 is of
weak type (1, 1). We recall here that in either the case of the Hilbert transform
(Theorem 7) or the Riesz transform ([MV]) , where the multipliers are smooth, Tm1

cannot be replaced by T ∗m1
in the above result.

The Beurling transform, being an even smooth Calderón-Zygmund operator,
should enjoy an extra cancellation property that allows for an improvement of The-
orem 2. This can be readily verified for the operator B∗ ◦ B, where B denotes
the operator whose kernel is the complex conjugate of the kernel of the Beurling
transform. Since B is precisely the inverse of B, the pointwise inequality (2) implies
immediately that B∗ ◦B is of weak type (1, 1).

It turns out that the operator B∗ ◦ B is also of weak type (1, 1), in striking
contrast with the fact that H∗ ◦H is not. This is more difficult to prove and follows
from the pointwise inequality

B∗(B(f))(z) ≤ C
(
(B2)∗(f)(z) +M(f)(z)

)
, z ∈ C , (19)
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because B2 = B ◦B is again a smooth Calderón-Zygmund singular integral operator
and hence its maximal operator is of weak type (1, 1). This will be shown in Section
10. Indeed, we prove there a more general result which reads as follows.

Theorem 3. Let R be an even higher order Riesz transform and let T be an even
smooth homogeneous Calderón-Zygmund operator. Then there exists a smooth ho-
mogeneous Calderón-Zygmund operator S such that

R∗(T (f))(x) ≤ C(S∗(f)(x) +M(f)(x)) x ∈ Rn.

The operator S is defined by the identity R ◦T = S+ cI, where c is an appropriate
constant.

In particular, the operator R∗ ◦ T is of weak type (1, 1) .

3 Some preliminaries

3.1 Sharp maximal operators

For δ > 0, let Mδ be the maximal function

Mδf(x) = M(|f |δ)1/δ(x) =

(
sup
Q3x

1

|Q|

∫
Q

|f(y)|δ dy
)1/δ

.

Also, let M# be the usual sharp maximal function of Fefferman and Stein [FS],

M#(f)(x) = sup
Q3x

inf
c

1

|Q|

∫
Q

|f(y)− c| dy ≈ sup
Q3x

1

|Q|

∫
Q

|f(y)− fQ| dy,

where as usual fQ = 1
|Q|

∫
Q
f(y) dy denotes the average of f over Q.

We also consider the following useful variant of the above sharp maximal operator

M#
δ f(x) = M#(|f |δ)(x)1/δ.

The main inequality between these operators to be used is a version of the
classical one due to C. Fefferman and E. Stein (see [Jo] for a proof simpler than the
original, or [GrMF, p. 148]).

Theorem 4. Let w be an A∞ weight and let δ > 0.
a) Let 0 < p < ∞ . Then there exists a positive constant C depending on the A∞
condition of w and p such that∫

Rn

(Mδf(x))pw(x)dx ≤ C

∫
Rn

(M#
δ f(x))pw(x)dx,

for every function f such that the left hand side is finite.
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b) Let ϕ : (0,∞) → (0,∞) satisfy the doubling condition . Then, there exists a
constant C depending upon the A∞ condition of w and the doubling condition of ϕ
such that

sup
t>0

ϕ(t)w
(
{y ∈ Rn : Mδf(y) > t}

)
≤ C sup

t>0
ϕ(t)w

(
{y ∈ Rn : M#

δ f(y) > t}
)

for every function such that the left hand side is finite.

3.2 Orlicz spaces and normalized measures

We need some few facts from the theory of Orlicz spaces that we will state without
proof. For more information about these spaces the reader may consult the recent
book by Wilson [W] or [GrMF, p. 158]. Let Φ : [0,∞)→ [0,∞) be a Young function.
The Φ-average of a function f over a cube Q is defined to be the LΦ(µ) norm of f
with µ the normalized measure of the cube Q and it is denoted by ‖f‖Φ,Q. That is,

‖f‖Φ,Q = inf{λ > 0 :
1

|Q|

∫
Q

Φ

(
|f(x)|
λ

)
dx ≤ 1}.

In this paper we will consider the Young functions Φ(t) = t (1+log+ t) ≈ t log(e+t)
and Ψ(t) = et − 1. The corresponding averages will be denoted by ‖ · ‖Φ,Q =
‖ · ‖L(logL),Q and ‖ · ‖Ψ,Q = ‖ · ‖expL,Q respectively. We will use the following well
known generalized Hölder’s inequality

1

|Q|

∫
Q

|f(x) g(x)| dx ≤ C ‖f‖expL,Q ‖g‖L(logL),Q. (20)

In particular, we obtain the following inequality, which will be used later on in this
article,

1

|Q|

∫
Q

|b(y)− bQ| f(y) dy ≤ C‖b‖BMO‖f‖L(logL),Q. (21)

for any function b ∈ BMO and any non negative function f . This inequality follows
from (20) combined with the classical John-Nirenberg inequality [JN] for BMO
functions: there is a dimensional constant c such that

1

|Q|

∫
Q

exp(
|b(y)− bQ|
c‖b‖BMO

) dy ≤ 2

which easily implies that

‖b− bQ‖expL,Q ≤ c ‖b‖BMO.

In view of this result and its applications it is natural to define as in [P2] a
maximal operator

ML(logL)f(x) = sup
Q3x
‖f‖L(logL),Q,
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where the supremum is taken over all the cubes containing x. (Other equivalent
definitions can be found in the literature.) We will also use the pointwise equivalence

ML(logL)f(x) ≈M2f(x). (22)

This equivalence was obtained in [P1] (see [CGMP] for a different argument) and it
relationship with commutators of singular integrals and BMO functions was studied
in [P2] and [P3]. The sharp endpoint modular inequality for M2, already mentioned
in (8), will play an important role.

Finally, we will employ several times the following simple Kolmogorov inequality.
Let 0 < p < q <∞, then there is a constant C = Cp,q such that for any measurable
function f

‖f‖Lp(Q, dx
|Q| )
≤ C ‖f‖Lq,∞(Q, dx

|Q| )
.

3.3 Cotlar’s pointwise inequality for Calderón-Zygmund op-
erators

By a Calderón-Zygmund operator we mean a continuous linear operator
T : C∞0 (Rn) → D′(Rn) that extends to a bounded operator on L2(Rn), and whose
distributional kernel K coincides, away from the diagonal, with a function K satis-
fying the size estimate

|K(x, y)| ≤ c

|x− y|n

and the regularity condition

|K(x, y)−K(z, y)|+ |K(y, x)−K(y, z)| ≤ c
|x− z|ε

|x− y|n+ε
,

for some ε > 0 and whenever 2|x− z| < |x− y| . The kernel of T is K in the sense
that

Tf(x) =

∫
Rn

K(x, y)f(y)dy,

whenever f ∈ C∞0 (Rn) and x 6∈ supp(f). Let T ∗ be the maximal singular integral

T ∗f(x) = sup
ε>0
|T εf(x)|, x ∈ Rn.

where T ε is the truncation at level ε defined by

T εf(x) =

∫
|y−x|>ε

K(x, y)f(y)dy,

We refer to [GrMF, p. 175] for a complete account on these operators. In the same
reference, p. 185, it can be found an improvement of Cotlar’s inequality (1) that
will be useful for our estimates. It reads as follows.
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Theorem 5. Let T and T ∗ as before and let 0 < δ < 1. Then there is a positive
constant C = Cδ such that

T ∗(f)(x) ≤ CMδ(Tf)(x) + CMf(x), x ∈ Rn. (23)

Observe that by Jensen’s inequality, (23) is an improvement of (1). Also, it
should be mentioned that A. Lerner has improved this estimate in [Le2].

The ideas leading to Cotlar estimate (23) were crucial to derive the good-λ
inequality relating T ∗ and M found by R. Coifman and C. Fefferman in [CoF]. In
particular we will use in Section 10 the following result.

Theorem 6. Let T be any Calderón-Zygmund operator. Then
a) If 0 < p <∞ and w ∈ A∞, then there exists a positive constant C depending

upon the A∞ condition of w such that∫
Rn

|T ∗f(x)|pw(x) dx ≤ C

∫
Rn

Mf(x)pw(x) dx. (24)

b) Let ϕ : (0,∞) → (0,∞) doubling. Then, there exists a positive constant C
depending upon the A∞ condition of w and the doubling condition of ϕ such that

sup
t>0

ϕ(t)w({y ∈ Rn : |T ∗f(x)| > t}) ≤ C sup
t>0

ϕ(t)w({y ∈ Rn : Mf(x) > t})

Also we will use a local versión of (24) in the proof of (26) in Lemma 2 below:
if 0 < p < ∞, w ∈ A∞, and Q is an arbitrary cube, then there exists a constant C
depending upon the A∞ condition of w such that∫

2Q

|T ∗f(x)|pw(x) dx ≤ C

∫
2Q

Mf(x)pw(x) dx, (25)

for any function f supported in Q. The proof of this estimate is an adaptation of
the proof in [CoF] by considering everything at local level. However, it should be
mentioned that a different approach to the above theorem, which may be found in
[AP], yields the local version. It is based on the combination of the well known
good-λ inequality of Fefferman-Stein Theorem 4, which is much simpler, and the
pointwise estimate (27) from next lemma which will be used in the paper. This
procedure has been applied in [LOPTT] into the context of multilinear Calderón-
Zygmund singular integral operators to derive sharp results.

Lemma 2. If T is a Calderón-Zygmund singular operator, then

M#(Tf)(x) ≤ CM2(f)(x) , (26)

and, for 0 < δ < 1 ,
M#

δ (Tf)(x) ≤ CδMf(x) . (27)

It is well known that inequality (26) holds with the right hand side replaced by
the larger operator Mp(f) with p > 1 (see, for instance, [GrMF, p. 153]). However,
this is not sharp enough for many purposes and an excellent alternative is given by
(27) which can be found in [AP]. We sketch the proof of inequality (26) in Section
10.
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4 Odd higher order Riesz transforms

In this section we prove that if T is an odd higher order Riesz transform, then

T ∗f(x) ≤ CM2(Tf)(x), x ∈ Rn , (28)

By translating and dilating one reduces the proof of (28) to

|T 1f(0)| ≤ CM2(Tf)(0) ,

where

T 1f(0) = −
∫
|y|>1

f(y)K(y) dy

is the truncated integral at level 1. Recall that the kernel of our singular integral is

K(x) =
Ω(x)

|x|n
=

P (x)

|x|n+d
,

where P is an odd homogeneous harmonic polynomial of degree d ≥ 1. The argu-
ment proceeds along the lines of the even case, but, as we said above, two important
differences arise. The first is that, for odd d, (−∆)d/2 is not a differential operator
and this complicates the situation. We will work with the pseudo-differential oper-
ator (−∆)1/2∆N , where d = 2N + 1. The definition of (−∆)1/2 on test functions Ψ
is (−∆)1/2Ψ =

∑n
j=1Rj(∂jΨ), where the Rj are the Riesz transforms normalized so

that R̂jΨ(ξ) = −iξj/|ξ|Ψ(ξ) . The kernel of Rj is then ρ xj|x|−n−1 , where ρ is a con-
stant which depends only on the dimension n and whose concrete value is irrelevant

in this paper. On the Fourier transform side we then have ̂(−∆)1/2Ψ(ξ) = |ξ|Ψ̂(ξ).
The idea is to obtain an identity of the form

K(x)χRn\B(x) = T (b)(x) , (29)

where B is the open ball of radius 1 centered at the origin and b is a certain function.
To this end, consider a fundamental solution of (−∆)1/2∆N , that is, a function E
such that (−∆)1/2∆NE = δ, where δ is the Dirac delta at the origin. One can
take E as a solution of ∆NE = cn/|x|n−1, where the constant cn is chosen so that

̂cn/|x|n−1(ξ) = 1/|ξ|. The formula cn =
Γ(n−1

2
)

2πn/2Γ(1
2
)

wil be used in Section 8. Notice

that E can always be taken to be radial (see Section 8 for a precise expression).
Consider the function

ϕ(x) = E(x)χRn\B(x) + (A0 + A1 |x|2 + ...+ A2N |x|4N)χB(x) , (30)

where the constants A0, A1, ..., A2N are chosen so that the derivatives of ϕ up to
order 2N extend continuously to the boundary of B. Then, in computing the dis-
tributional derivatives of ϕ, one can apply 2N + 1 times Green-Stokes’ Theorem

13



and the boundary terms will vanish. This is most conveniently done by applying
N times Corollary 1 and one time Lemma 1 in [MOV]. The conclusion is that, for
some constants αj and βk,

(−∆)1/2∆Nϕ = (−∆)1/2

(
cn
|x|n−1

χBc(x) + (α0 + α1|x|2 + · · ·+ αN |x|2N)χB(x)

)
=

n∑
j=1

Rj

(
cn (1− n)

xj
|x|n+1

χBc(x) + (β1xj + β2xj|x|2 + · · ·+ βNxj|x|2N−2)χB(x)

)
:= b(x),

(31)

where the last identity is a definition of b. Since

ϕ = E ∗ (−∆)1/24N ϕ ,

taking derivatives of both sides we obtain

P (∂)ϕ = P (∂)E ∗ (−∆)1/24N ϕ .

To compute P (∂)E we take the Fourier transform

P̂ (∂)E(ξ) = P (iξ) Ê(ξ) = i
P (ξ)

|ξ|d
.

On the other hand, as it is well known ([St, p. 73]),

̂
p.v.

P (x)

|x|n+d
(ξ) = γd

P (ξ)

|ξ|d
.

See (15) for the precise value of γd, which is not important now. We conclude that,
for some constant ad depending on d,

P (∂)E = ad p.v.
P (x)

|x|n+d
.

Thus

P (∂)ϕ = ad p.v.
P (x)

|x|n+d
∗ (−∆)1/24N ϕ = ad T (b) .

The only thing left is the computation of P (∂)ϕ. We have, by Corollary 1 in [MOV],

P (∂)ϕ = ad K(x)χRn\B + P (∂)(A0 + A1 |x|2 + ...+ Ad−1 |x|2d−2)(x)χB(x)

= ad K(x)χRn\B ,

where the last identity follows from the fact that, since P is harmonic,

P (∂)(|x|2j) = 0 , 1 ≤ j ≤ d− 1. (32)

14



The identity (32) is a special case of a formula of Lyons and Zumbrun [LZ] which
will be discussed in the next section (see Lemma 2).

Once (29) is at our disposition we get, for f in some Lp(Rn) , 1 ≤ p <∞ ,

T 1f(0) = −
∫
χRn\B(y)K(y) f(y) dy

= −
∫
T (b)(y) f(y) dy

=

∫
b(y)Tf(y) dy

=

∫
2B

Tf(y)b(y)dy +

∫
Rn\2B

Tf(y)b(y)dy

=

∫
2B

Tf(y)(b(y)− b2B)dy + b2B

∫
2B

Tf(y)dy +

∫
Rn\2B

Tf(y)b(y)dy

= I + II + III.

Notice that b2B is a dimensional constant, because of the definition of b. In partic-
ular, it is independent of f . Hence

|II| ≤ CM(Tf)(0)

To estimate the local term I we remark that b ∈ BMO(Rn) . This follows from
the fact that b is a sum on j of the j-th Riesz transform of a bounded function
(depending on j). Hence we can apply (21) to get

|I| ≤ C‖b‖BMO‖Tf‖L(logL),2B

≤ C ‖Tf‖L(logL),2B

≤ CM2(Tf)(0),

where we have used (22) in the last inequality.
To estimate the term III we first prove the decay estimate

|b(x)| ≤ C

|x|n+1
, |x| > 2. (33)

¿From the decay of b we obtain

III ≤ C

∫
|x|>2

|Tf(x)| 1

|x|n+1
dx ≤ CM(Tf)(0),

using a standard argument which consists in estimating the integral on the annuli
{2k ≤ |x| < 2k+1}. Let us prove (33). From the definition of b we see that b = b1+b2,
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where

b1 = cn(1− n)
n∑
j=1

Rj

(
xj
|x|n+1

χBc(x)

)
and

b2 =
n∑
j=1

Rj(aj)

each aj being a bounded function supported on B with zero integral (indeed, aj is
odd).

If |x| > 2, then, since the kernel of Rj is ρ xj|x|−n−1 , for some numerical constant
ρ depending on n,

Rj(aj)(x) = ρ

∫
|y|<1

xj − yj
|x− y|n+1

aj(y) dy

= ρ

∫
|y|<1

(
xj − yj
|x− y|n+1

− xj
|x|n+1

) aj(y) dy .

(34)

Thus

|Rj(aj)(x)| ≤ C

|x|n+1
, |x| > 2 ,

and hence b2 satisfies the decay estimate (33) with b replaced by b2. That this is also
the case for b1 was shown in [MV]. We repeat the argument here for completeness.
One has

n∑
j=1

Rj(
ρ yj
|y|n+1

χRn\B (y)) =
n∑
j=1

Rj ∗Rj −
n∑
j=1

Rj(
ρ yj
|y|n+1

χB (y))

= δ0 −
n∑
j=1

Rj(
ρ yj
|y|n+1

χB (y)) ,

where δ0 is the Dirac delta at the origin. If |x| > 2, then

Rj(
yj
|y|n+1

χB (y))(x) = ρ lim
ε→0

∫
ε<|y|<1

xj − yj
|x− y|n+1

yj
|y|n+1

dy

= ρ lim
ε→0

∫
ε<|y|<1

(
xj − yj
|x− y|n+1

− xj
|x|n+1

)
yj
|y|n+1

dy .

Hence

|Rj(
yj
|y|n+1

χB (y))(x)| ≤ C

|x|n+1

∫
|y|<1

dy

|y|n−1
≤ C

|x|n+1
,

which completes the proof of (33).
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5 Proof of the sufficient condition: the polyno-

mial case

This section does not differ substantially from its analogue for the even case. Nev-
ertheless, we will present the argument in detail for the reader’s sake, because it is
technically sophisticated and we would like to describe clearly the changes that have
to be made.

Let us assume that T is an odd polynomial operator. This amounts to say that
for some odd integer 2N + 1 , N ≥ 0 , the function |x|2N+1 Ω(x) is a homogeneous
polynomial of degree 2N + 1 . Such a polynomial may be written as [St, p.69]

|x|2N+1 Ω(x) = P1(x)|x|2N + ...+ P2j+1(x)|x|2N−2j + ...+ P2N+1(x) ,

where P2j+1 is a homogeneous harmonic polynomial of degree 2j + 1 , 0 ≤ j ≤ N .
In other words, the expansion of Ω(x) in spherical harmonics is

Ω(x) = P1(x) + P3(x) + ...+ P2N+1(x), |x| = 1 .

As in the previous section, we want to obtain an expression for the kernel K(x)
off the unit ball B. For this we need the differential operator Q(∂) defined by the
polynomial

Q(x) = γ1 P1(x)|x|2N + ...+ γ2j+1 P2j+1(x)|x|2N−2j + ...+ γ2N+1 P2N+1(x) .

If E is the standard fundamental solution of (−∆)1/2∆N , then

Q(∂)E = i p.v. K(x) ,

which may be easily verified by taking the Fourier transform of both sides (K is the
kernel of T ).

Take now the function ϕ of the previous section. We have ϕ = E ∗ (−∆)1/24N ϕ
and thus

Q(∂)ϕ = Q(∂)E ∗ (−∆)1/24N ϕ = p.v. K(x) ∗ b = T (b) ,

where b is defined as i (−∆)1/24N ϕ. On the other hand, by Corollary 2 of [MOV]

Q(∂)ϕ = iK(x)χRn\B +Q(∂)(A0 + A1 |x|2 + ...+ A2N |x|4N)(x)χB(x) . (35)

Contrary to what happened in the previous section, the term

S(x) := −Q(∂)(A0 + A1 |x|2 + ...+ A2N |x|4N)(x)

does not necessarily vanish, the reason being that now Q does not need to be har-
monic.

Our goal is to find a function β ∈ BMO(Rn), satisfying the decay estimate

|β(x)| ≤ C

|x|n+1
, |x| ≥ 2 , (36)
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and
S(x)χB(x) = T (β)(x) . (37)

By (35), the definition of S(x) and (37), we then get

i K(x)χRn\B(x) = T (b)(x) + T (β)(x) = T (γ)(x) , (38)

where γ = b + β belongs to BMO and satisfies the decay estimate (36) with β
replaced by γ. Once this is achieved the proof of (i) is just the argument presented
in Section 4.

To construct β satisfying (36) and (37) we resort to our hypothesis, condition
(iii) in the Theorem, which says that T = R ◦ U , where U is an invertible operator
in the algebra A, R is a higher order Riesz transform and the polynomial P which
determines R divides P2j+1 , 0 ≤ j ≤ N , in the ring of polynomials in n variables
with real coefficients. The construction of β is performed in two steps.

The first step consists in proving that there exists a function β1 in BMO , sat-
isfying some additional properties, such that

S(x)χB(x) = R(β1)(x) . (39)

It will become clear later what these additional properties are and how they are
used. To prove (39) we need an explicit formula for S(x) and for that we will make
use of the following formula of Lyons and Zumbrun [LZ].

Lemma 3. Let L be a homogeneous polynomial of degree l and let f be a smooth
function of one variable. Then

L(∂)f(r) =
∑
ν≥0

1

2ν ν!
∆νL(x)

(
1

r

∂

∂r

)l−ν
f(r) , r = |x| .

An immediate consequence of Lemma 1 is

Lemma 4. Let P2j+1 a homogeneous harmonic polynomial of degree 2j + 1 and let
k be a non-negative integer. Then

P2j+1(∂)(|x|2k) = 22j+1 k!

(k − 2j − 1)!
P2j+1(x) |x|2(k−2j−1) if 2j + 1 ≤ k ,

and
P2j+1(∂)(|x|2k) = 0 , k < 2j + 1 .

On the other hand, a routine computation gives

4j(|x|2k) = 4j
j! k!

(k − j)!

(
n
2

+ k − 1

j

)
|x|2(k−j) , j ≤ k , (40)

and
4j(|x|2k) = 0 , k < j . (41)
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By Lemma 2, (40) and (41) we get that for some constants ck,j one has, in view of
the definitions of Q(x) and S(x),

S(x) =
N−1∑
j=0

N−1−j∑
k=0

ck,j P2j+1(x) |x|2k . (42)

Therefore it suffices to prove (39) with S(x) replaced by P2j+1(x) |x|2k , for 0 ≤ j ≤
N − 1 and each non-negative integer k ≤ N − 1 − j. The idea is to look for an
appropriate function ψ such that

P (∂)ψ(x) = P2j+1(x) |x|2k χB(x) . (43)

Let 2d + 1 be the degree of P . Assume for the moment that (43) holds and ψ is
good enough. Then

ψ = E ∗ (−∆)1/2∆dψ ,

where E is the fundamental solution of (−∆)1/24d. Hence

P (∂)ψ = P (∂)E ∗ (−∆)1/2∆dψ = c p.v.
P (x)

|x|n+2d+1
∗ (−∆)1/2∆dψ = R(β1) ,

where β1 is defined as c (−∆)1/2∆dψ = c
n∑
i=1

Ri∂i(∆
dψ) . The conclusion is that we

have to solve (43) in such a way that ∂i∆
dψ is a bounded function supported on B

with zero integral, 1 ≤ i ≤ n. If this is the case, then β1 is in BMO and satisfies
the decay estimate |β1(x)| ≤ C|x|−n−1 if |x| > 2, as we proved before (see (34)).

Taking Fourier transforms in (43) we get

i(−1)dP (ξ) ψ̂(ξ) = i(−1)j+k P2j+1(∂)4k (χ̂B(ξ)) . (44)

Recall that for m = n/2 one has [GrCF, B.5]

χ̂B(ξ) = (2π)m
Jm(|ξ|)
|ξ|m

, ξ ∈ Rn ,

where Jm is the Bessel function of order m. Set

Gλ(ξ) =
Jλ(|ξ|)
|ξ|λ

, ξ ∈ Rn , λ > 0 .

In computing the right hand side of (44) we apply Lemma 3 to L(x) = P2j+1(x) |x|2k
and f(r) = Gm(r) and we get

P (ξ) ψ̂(ξ) = (2π)m(−1)j+k+d
∑
ν≥0

(−1)ν+1

2ν ν!
4ν
(
P2j+1(ξ) |ξ|2k

)
Gm+2j+1+2k−ν(|ξ|) ,
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owing to the well known formula (e.g. [GrCF, B.2])

1

r

d

dr
Gλ(r) = −Gλ+1(r) , r > 0 , λ > 0 .

Since P2j+1(ξ) is homogeneous of degree 2j + 1 , ∇P2j+1(ξ) · ξ = (2j + 1)P2j+1(ξ) ,
and hence one may readily show by an inductive argument that

4ν
(
P2j+1(ξ) |ξ|2k

)
= ajkν P2j+1(ξ) |ξ|2(k−ν) ,

for some constants ajkν . Thus, for some other constants ajkν , we get

P (ξ) ψ̂(ξ) =
∑
ν≥0

ajkν P2j+1(ξ) |ξ|2(k−ν) Gm+2j+1+2k−ν(ξ) . (45)

By hypothesis P divides P2j+1 in the ring of polynomials in n variables and so

P2j+1(ξ) = P (ξ)Q2j−2d(ξ) ,

for some homogeneous polynomial Q2j−2d of degree 2j − 2d . Cancelling out the
factor P (ξ) in (45) we conclude that

ψ̂(ξ) = Q2j−2d(ξ)
k∑
ν=0

ajkν |ξ|2(k−ν)Gm+2j+1+2k−ν(|ξ|) .

Since [GrCF, B.5]
̂((1− |x|2)λ χB(x))(ξ) = cλGm+λ(|ξ|) ,

we finally obtain

ψ(x) = Q2j−2d(∂)
k∑
ν=0

ajkν4k−ν ((1− |x|2)2j+1+2k−ν χB(x)
)
,

for other constants ajkν . Observe that ψ restricted to B is a polynomial which
vanishes on ∂B up to order 2d + 1 and ψ is zero off B. Therefore, ∂i4dψ has zero
integral, is supported on B and its restriction to B is a polynomial, 1 ≤ i ≤ n. This
completes the first step of the construction of β.

The second step proceeds as follows. Since by hypothesis T = R ◦ U , with U
invertible in the algebra A, we have

R(β1) = R ◦ U(U−1β1) = T (U−1β1) .

Setting
β = U−1β1 , (46)

we are only left with the task of showing that

β ∈ BMO(Rn)
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and that, for some positive constant C ,

|β(x)| ≤ C

|x|n+1
, |x| ≥ 2 . (47)

Since U−1 ∈ A , for some real number λ and some smooth homogeneous Calderón-
Zygmund operator V ,

U−1 = λ I + V .

Thus
β = λβ1 + V (β1) .

By construction, β1 =
n∑
i=1

Riai, where each ai is a bounded function supported

on B with zero integral. By (34) β1 satisfies (47) with β replaced by β1 . Clearly,
β ∈ BMO and so we only have to get the decay estimate (47) with V (β1) in place
of β. In fact,

V (β1) =
n∑
i=1

V Riai =
n∑
i=1

λiai +
n∑
i=1

Viai,

because each V Ri ∈ A and thus V Ri = λiI + Vi for some real number λi and some
smooth homogeneous Calderón-Zygmund operator Vi. Following the argument we
used in (34) with Vi in place of Ri we finally get (47).

6 Proof of the sufficient condition: the general

case

In [MOV] several facts about the convergence of the expansion (14) of Ω in spherical
harmonics were established. In particular, since Ω is infinitely differentiable on the
unit sphere and has the spherical harmonics expansion

Ω(x) =
∞∑
j≥0

P2j+1(x) . (48)

one has that, for each positive integer M ,∑
j≥1

(2j + 1)M ‖P2j+1‖∞ <∞ ,

where the supremum norm is taken on Sn−1.
By hypothesis there is a homogeneous harmonic polynomial P of degree 2d + 1

such that P2j+1 = P Q2j−2d, where Q2j−2d is a homogeneous polynomial of degree
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2j − 2d. As in [MOV], one shows that the series
∑

j Q2j−2d(x) is convergent in

C∞(Sn−1), that is, that for each positive integer M∑
j≥d

jM ‖Q2j−2d‖∞ <∞ . (49)

The scheme for the proof of the sufficient condition in the general case is as in
[MOV]. Nevertheless, we will have to overcome several new difficulties, which are
not substantial but still require significant work.

Taking a large partial sum of the series (48) we pass to a polynomial operator TN
(associated to a polynomial of degree 2N+1), which still satisfies the hypothesis (iii)
of the Theorem. Then we may apply the construction of Section 5 to TN and get
functions bN and βN . Unfortunately what was done in Section 5 does not give
any uniform estimate in N , which is precisely what we need to try a compactness
argument. The rest of the section is devoted to get the appropriate uniform estimates
and to describe the final compactness argument.

By hypothesis, T = R◦U , where R is the higher order Riesz transform associated
to the harmonic polynomial P of degree 2d + 1 that divides all P2j+1, and U is
invertible in the algebra A. The Fourier multiplier of T is

∞∑
j=d

γ2j+1
P2j+1(ξ)

|ξ|2j+1
= γ2d+1

P (ξ)

|ξ|2d+1

∑
j≥d

γ2j+1

γ2d+1

Q2j−2d(ξ)

|ξ|2j−2d
, ξ ∈ Rn \ {0} .

Therefore the Fourier multiplier of U is

µ(ξ) = γ−1
2d+1

∑
j≥d

γ2j+1
Q2j−2d(ξ)

|ξ|2j−2d
, (50)

and the series is convergent in C∞(Sn−1) because γ2j+1 ' (2j+ 1)−n/2 [SW, p. 226].
Set, for N ≥ d,

µN(ξ) = γ−1
2d+1

N∑
j=d

γ2j+1
Q2j−2d(ξ)

|ξ|2j−2d
, ξ ∈ Rn \ {0} .

If

KN(x) =
N∑
j=d

P2j+1(x)

|x|2j+1+n
, x ∈ Rn \ {0} ,

and TN is the polynomial operator with kernel KN , then TN = R ◦UN , where UN is
the operator in the algebra A with Fourier multiplier µN(ξ). From now on N is
assumed to be big enough so that µN(ξ) does not vanish on Sn−1. In fact, we will
need later on the inequality

|∂αµ−1
N (ξ)| ≤ C, |ξ| = 1, 0 ≤ |α| ≤ 2(n+ 3) , (51)
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which may be taken for granted owing to the convergence in C∞(Sn−1) of the se-
ries (50). In (51) C is a positive constant depending only on the dimension n and
on µ.

Notice that TN satisfies condition (iii) in the Theorem (with T replaced by TN),
because µN(ξ) 6= 0, |ξ| = 1, and so we can apply the results of Section 5. In
particular,

ı KN(x)χRn\B(x) = TN(bN)(x) + TN(βN)(x) ,

where bN and βN are respectively the functions b and β appearing in (38). It is
important to remark that bN does not depend on T . As (31) shows, the function bN
depends on N only through the fundamental solution of the operator (−∆)1/24N .
The uniform estimate we need on bN is given by part (i) of the next lemma. The
polynomial estimates in N of (ii) and (iii) are also central for the compactness
argument we are looking for, and they were not present in the corresponding lemma
for the even case (Lemma 8 in [MOV]).

Lemma 5. There exist a constant C depending only on n such that

(i)

|b̂N(ξ)| ≤ C, ξ ∈ Rn ,

(ii)
‖bN‖BMO ≤ C (2N + 1)2n ,

and

(iii)
‖bN‖2 ≤ C (2N + 1)2n ,

where ‖·‖BMO and ‖·‖2 denote respectively the BMO and L2 norms on Rn.

Proof. We first prove (i). Let h1, . . . , hd be an orthonormal basis of the subspace of
L2(dσ) consisting of all homogeneous harmonic polynomials of degree 2N + 1. As
in the proof of Lemma 6 in [MOV] we have h2

1 + · · ·+ h2
d = d, on Sn−1. Set

Hj(x) =
1

γ2N+1

√
d
hj(x), x ∈ Rn ,

and let Sj be the higher order Riesz transform with kernel Kj(x) = Hj(x)/|x|2N+1+n.
The Fourier multiplier of S2

j is

1

d

hj(ξ)
2

|ξ|4N+2
, 0 6= ξ ∈ Rn ,

and thus
d∑
j=1

S2
j = I .
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By (29), we get

Kj(x)χRn\B(x) = Sj(bN)(x), x ∈ Rn, 1 ≤ j ≤ d ,

and so

bN =
d∑
j=1

Sj

(
Kj(x)χRn\B(x)

)
. (52)

We now appeal to a lemma of Calderón and Zygmund ([CZ]) and we readily get (i)
(see [MOV]).

We now turn to the proof of (ii) in Lemma 5. In view of the expression (52)
for bN , we obtain, by the standard L∞ −BMO estimate,

‖bN‖BMO ≤ C d max
1≤j≤d

‖Kj‖CZ ‖Kj‖L∞(Rn\B) .

Recall that the constant of the kernel K(x) = Ω(x)/|x|n of the smooth homogeneous
Calderón-Zygmund operator T is

‖T‖CZ ≡ ‖K‖CZ = ‖Ω‖∞ + ‖|x| ∇Ω(x)‖∞ .

As it is well known, d ' (2N + 1)n−2 [SW, p. 140]. On the other hand

‖Kj‖CZ ≤ ‖Hj‖∞ + ‖∇Hj‖∞ ,

where the supremum norms are taken on Sn−1. Clearly

‖Hj‖∞ =
1

γ2N+1

‖ hj√
d
‖∞ ≤

1

γ2N+1

' (2N + 1)n/2 .

For the estimate of the gradient of Hj we use the inequality [St, p. 276]

‖∇Hj‖∞ ≤ C (2N + 1)n/2+1 ‖Hj‖2 ,

where the L2 norm is taken with respect to dσ. Since the hj are an orthonormal
system,

‖Hj‖2 =
1√

d γ2N+1

' (2N + 1)n/2

(2N + 1)(n−2)/2
' 2N + 1 .

Gathering the above inequalities we get

‖Kj‖CZ ≤ C (2N + 1)n/2+2 .

On the other hand, ‖Kj‖L∞(Rn\B) ≤ (2N + 1)n/2 and therefore

‖bN‖BMO ≤ C (2N + 1)n−2 (2N + 1)n/2+2 (2N + 1)n/2 = C (2N + 1)2n .

The estimate (iii) in Lemma 5 follows from ‖bN‖2 ≤ C d max1≤j≤d ‖Kj‖CZ ‖Kj‖L2(Rn\B),
‖Kj‖L2(Rn\B) ≤ C ‖Hj‖∞ and the previous inequalities.
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Our goal is now to show that under condition (iii) of the Theorem we can find
a function γ in BMO(Rn) such that

ı K(x)χRn\B(x) = T (γ)(x), x ∈ Rn , (53)

and having a decay as in (36) with β replaced by γ. If T is a polynomial operator
this was proven in the preceding section for a γ of the form b + β (see (38)). The
plan is to produce a different approach to this result, which has the advantage that,
when applied to TN , gives a uniform BMO bound on γN = bN + βN .

Since Ω has the expansion (48) in spherical harmonics, we have

K(x)χRn\B(x) =
∑
j≥0

P2j+1(x)

|x|2j+1+n
χRn\B(x)

=
∑
j≥0

Tj(bj)(x) ,

where Tj is the higher order Riesz transform with kernel P2j+1(x)/|x|2j+1+n and bj
is the function constructed in Section 4 (see (29) and (31)). The Fourier multiplier
of Tj is

γ2j+1
P2j+1(ξ)

|ξ|2j+1
= γ2d+1

P (ξ)

|ξ|2d+1

γ2j+1

γ2d+1

Q2j−2d(ξ)

|ξ|2j−2d
, ξ ∈ Rn \ {0} .

Let Sj be the operator whose Fourier multiplier is

γ2j+1

γ2d+1

Q2j−2d(ξ)

|ξ|2j−2d
, ξ ∈ Rn \ {0} , (54)

so that Tj = R ◦ Sj. Then

K(x)χRn\B(x) =
∑
j≥d

(R ◦ Sj)(bj)

=
∑
j≥d

T
(
(U−1 ◦ Sj)(bj)

)

= T

(∑
j≥d

(U−1 ◦ Sj)(bj)

)
.

The latest identity is justified by the absolute convergence of the series∑
j≥d(U

−1 ◦ Sj)(bj) in L2(Rn), which follows, using (iii) in Lemma 5, from the
estimate ∑

j≥d

‖(U−1 ◦ Sj)(bj)‖2 ≤ C
∑
j≥d

‖Q2j−2d‖∞ ‖bj‖L2(Rn)

≤ C
∑
j≥d

‖Q2j−2d‖∞ (2j + 1)2n <∞ .
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We claim now that the series
∑

j≥d(U
−1 ◦Sj)(bj) converges in BMO(Rn) to a func-

tion −ı γ, which will prove (53) . Observe that the operator U−1 ◦ Sj ∈ A is not
necessarily a Calderón-Zygmund operator because the integral on the sphere of its
multiplier does not need to vanish. However it can be written as U−1◦Sj = cjI+Vj,
where

cj =
γ2j

γ2d

∫
Sn−1

µ(ξ)−1Q2j−2d(ξ) dσ(ξ)

and Vj is the Calderón-Zygmund operator with multiplier

µ(ξ)−1 γ2j

γ2d

Q2j−2d(ξ)

|ξ|2j−2d
− cj . (55)

Now ∑
j≥d

(U−1 ◦ Sj)(bj) =
∑
j≥d

cj bj +
∑
j≥d

Vj(bj)

and the first series offers no difficulties because, by Lemma 5 (ii) and (49)∑
j≥d

|cj| ‖bj‖BMO ≤ C
∑
j≥d

(2j + 1)−n/2(2j + 1)2n‖Q2j−2d‖∞ <∞ .

The second series is more difficult to treat. By Lemma 5 and Lemma 5 (ii) and (iii),

‖Vj(bj)‖BMO ≤ C ‖Vj‖CZ ‖bj‖BMO

≤ C (2j + 1)2n ‖Vj‖CZ .

Estimating the Calderón-Zygmund constant of the kernel of the operator Vj is not
an easy task, because we do not have an explicit expression for the kernel. We do
know, however, the multiplier (55) of Vj. We need a way of estimating the constant
of the kernel in terms of the multiplier and this is what Lemma 9 of [MOV] achieves.
The final outcome is

‖Vj‖CZ ≤ C jM ‖P2j+1‖2 ,

for some positive integer M depending only on n and the polynomial P. Thus

‖Vj(bj)‖BMO ≤ C jM ‖P2j+1‖2 ,

where again M = M(n, P ) is a positive integer. Hence the series
∑

j≥d(U
−1 ◦Sj)(bj)

converges in BMO(Rn) and the proof of (53) is complete.
We are now ready for the discussion of the final compactness argument that will

complete the proof of the sufficient condition. We know from Section 5 (see (38))
that

ı KN(x)χRn\B(x) = TN(bN)(x) + TN(βN)(x) . (56)

On the other hand, by the construction of the function γ we have just described, we
also have

ı KN(x)χRn\B(x) = TN(γN)(x), γN =
N∑
j≥d

(U−1
N ◦ Sj)(bj) . (57)
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Notice that (51) guaranties that Lemma 9 of [MOV] may be applied to the operator
TN and so the estimate of the BMO norm of γN is uniform in N . Since TN is
injective, (56) and (57) imply

bN + βN = γN (58)

and, in particular, we conclude that the functions bN + βN are uniformly bounded
in BMO(Rn), a fact that cannot be derived from the work done in Section 5. On
the other hand, Section 5 tells us that γN satisfies the decay estimate (36) with β
replaced by γN , which we cannot infer from the preceding construction of γ. The
advantages of both approaches will be combined now to get both the boundedness
in BMO and the decay property for γ.

In view of (57) and the expressions of the multipliers of UN and Sj (see (54)),

γ̂N(ξ) =
N∑
j=d

1

µN(ξ)

γ2j+1

γ2d+1

Q2j−2d(ξ)

|ξ|2j−2d
b̂j(ξ) ,

which yields, by Lemma 5 (i) and (49) for M = 0,

‖γ̂N‖L∞(Rn) ≤ C
N∑
j=d

‖Q2j−2d‖∞

≤ C
∞∑
j=d

‖Q2j−2d‖∞

≤ C ,

where C does not depend on N . Recall that, from (46) in Section 5, we have

βN = U−1
N (β1,N) ,

with β1,N =
n∑
i=1

Ri∂i(fN), where fN is a C1 function supported on B. Since

β̂1,N = µN β̂N = µN (γ̂N − b̂N) ,

we have, again by Lemma 5 (i),

‖β̂1,N‖L∞(Rn) ≤ C .

Therefore, passing to a subsequence, we may assume that, as N goes to ∞,

b̂N −→ a0 and β̂1,N −→ a1 , (59)

weak ∗ in L∞(Rn). Hence

bN −→ Φ0 = F−1a0 and β1,N −→ Φ1 = F−1a1 ,
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in the weak ∗ topology of tempered distributions, F−1 being the inverse Fourier
transform.

We would like now to understand the convergence properties of the sequence of
the βN ’s . Since

β̂N(ξ) = µ−1
N (ξ) β̂1,N(ξ) ,

and we have pointwise bounded convergence of µ−1
N (ξ) towards µ−1(ξ) on Rn \ {0},

we get that β̂N → µ−1 a1, in the weak ∗ topology of L∞(Rn). Thus βN → U−1(Φ1)
in the weak ∗ topology of tempered distributions. Letting N →∞ in (58) we obtain

γ = Φ0 + U−1(Φ1)

= Φ0 + λΦ1 + V (Φ1) ,

where λ is a real number and V a smooth homogeneous Calderón-Zygmund operator.
We come now to the last delicate point of the proof, namely, that one has the

decay estimate

|γ(x)| ≤ C

|x|n+1
, |x| ≥ 2 . (60)

We claim that, as tempered distributions,

Φ0 =
n∑
i=1

Ri∂i(S0) + cδ0 and Φ1 =
n∑
i=1

Ri∂i(S1) , (61)

where S0 and S1 are distributions supported on B and c is a constant depending

only on n. Recall that β1,N =
n∑
i=1

Ri∂i(fN), where fN is a C1 function supported

on B, and, by (31),

bN =
n∑
i=1

Ri∂i

(
cn
|x|n−1

χBc + PNχB

)
,

where PN is a polynomial. Set

αN =
cn
|x|n−1

χBc + PNχB.

Hence
β̂1,N(ξ) = |ξ| f̂N(ξ) and b̂N(ξ) = |ξ| α̂N(ξ).

By (59), since a0, a1 ∈ L∞ and
1

|ξ|
is locally integrable in Rn (because we may

assume n ≥ 2),

α̂N −→
a0

|ξ|
and f̂N −→

a1

|ξ|
,
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in the weak ∗ topology of tempered distributions. Hence

αN −→ α := F−1

(
a0

|ξ|

)
and fN −→ S1 := F−1

(
a1

|ξ|

)
,

in the weak ∗ topology of tempered distributions. Since each fN is supported on
B we get that S1 is also supported on B and we obtain (61) for Φ1. On the other
hand, observe that

PNχB = αN −
cn
|x|n−1

χBc −→ α− cn
|x|n−1

χBc := α′ ,

with α′ a tempered distribution supported on B. Set

S0 = α′ − cn
|x|n−1

χB.

The claim now follows from the chain of identities

Φ0 =
n∑
i=1

Ri∂i(α)

=
n∑
i=1

Ri∂i

(
α′ +

cn
|x|n−1

χBc

)
=

n∑
i=1

Ri∂i

(
α′ − cn

|x|n−1
χB

)
+

n∑
i=1

Ri∂i

(
cn
|x|n−1

)
=

n∑
i=1

Ri∂i(S0) + c
n∑
i=1

Ri ∗Ri

=
n∑
i=1

Ri∂i(S0) + cδ0 .

Therefore,

γ =
n∑
i=1

Ri∂i(S0) + cδ0 + λ
n∑
i=1

Ri∂i(S1) + V

(
n∑
i=1

Ri∂i(S1)

)
.

Write, for each i, V ◦Ri = λi I+Vi for some real number λi and some homogeneous
smooth Calderón-Zygmund operator Vi. Thus to get (60) it is enough to show that

|V (∂iS)(x)| ≤ C

|x|n+1
, |x| ≥ 2 ,

where V is a homogeneous smooth Calderón-Zygmund operator and S a distribution
supported on B. Regularizing S one checks that, for a fixed x with |x| ≥ 2,

V (∂iS)(x) = 〈∂iS, L(x− y)〉

= −〈S, ∂

∂yi
L(x− y)〉 ,

(62)
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Since S is a distribution supported on B there exists a positive integer ν and a
constant C such that

|〈S, ϕ〉| ≤ C sup
|α|≤ν

sup
|y|≤3/2

|∂αϕ(y)| , (63)

for each infinitely differentiable function ϕ on Rn. The kernel L satisfies

| ∂
α

∂yα
∂

∂yi
L(x− y)| ≤ Cα

|x|n+1+|α| , |y| ≤ 3/2 ,

and hence, by (62) and (63),

|V (∂iS)(x)| ≤ C

|x|n+1
, |x| ≥ 2 ,

which proves (60) and then completes the proof of the sufficient condition in the
general case.

7 Proof of the necessary condition

The proof of the necessary condition is completely analogue to the even case. We
will just start the argument to help the reader in capturing the context.

We first assume that T is a polynomial operator with kernel

K(x) =
Ω(x)

|x|n
=
P1(x)

|x|1+n
+
P3(x)

|x|3+n
+ ...+

P2N+1(x)

|x|2N+1+n
, x 6= 0 ,

where P2j+1 is a homogeneous harmonic polynomial of degree 2j + 1 . Let Q be the
homogeneous polynomial of degree 2N + 1 defined by

Q(x) =
(
γ1 P1(x)|x|2N + ...+ γ2j+1 P2j+1(x)|x|2N−2j + ...+ γ2N+1 P2N+1(x)

)
.

Then

p̂.v.K(ξ) =
Q(ξ)

|ξ|2N+1
.

Our assumption is now the L2(Rn) control of T ∗f by Tf (i.e., (ii) in the statement
of the Theorem). Since the truncated operator T 1 at level 1 is obviously dominated
by T ∗, we have∫

(T 1f)2(x) dx ≤
∫

(T ∗f)2(x) dx ≤ C

∫
(Tf)2(x) dx .

The kernel of T 1 is (see (35))

K(x)χRn\B(x) = T (b)(x) + S(x)χB(x) . (64)
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where b is given in equation (31) and

−S(x) = Q(∂)(A0 + A1 |x|2 + ...+ A2N−1 |x|4N)(x) , x ∈ Rn .

The reader may consult the beginning of Section 5 to review the context of the
definition of S . In view of (64) we have, for each f ∈ L2(Rn),

‖S χB ∗ f‖2 ≤ C ‖T 1f‖2 + ‖b ∗ Tf‖2

≤ C (‖Tf‖2 + ‖b̂‖∞‖Tf‖2)

= C ‖Tf‖2 .

By Plancherel, the above L2 inequality translates into a pointwise inequality between
the Fourier multipliers, namely,

|Ŝ χB(ξ)| ≤ C |p̂.v.K(ξ)| = C
|Q(ξ)|
|ξ|2N+1

. (65)

Notice that Q has plenty of zeros because it has zero integral on the sphere. Our
next aim is to use (65) to show that P2j+1 vanishes where Q does. For each function
f on Rn set Z(f) = {x ∈ Rn : f(x) = 0} .

Lemma (Zero Sets Lemma).

Z(Q) ⊂ Z(P2j+1) , 0 ≤ j ≤ N .

Proof. We know that S has an expression of the form (see (42))

S(x) =
2N∑

L=N+1

L−N−1∑
j=0

cL,j P2j+1(x) |x|2(L−N−j−1) .

Since χ̂B = Gm(2π)m , m = n/2, Lemma 3 yields

Ŝ χB(ξ) = S(ı ∂) χ̂B(ξ)

= ı(2π)n/2
2N∑

L=N+1

L−N−1∑
j=0

cL,j (−1)L−N P2j+1(∂) 4L−N−j−1Gn
2
(ξ)

= (2π)n/2
2N∑

L=N+1

L−N−1∑
j=0

L−N−j−1∑
k=0

cL, j, k P2j+1(ξ) |ξ|2(L−N−j−1−k)Gn
2

+2(L−N)−1−k(ξ) .

(66)

The function Gp(ξ) is, for each p ≥ 0 , a radial function which is the restriction to the
real positive axis of an entire function [GrCF, B.6]. Set ξ = r ξ0 , |ξ0| = 1 , r ≥ 0 .
Then

(2π)−n/2ŜχB(rξ0) =
∞∑
p=0

a2p+1(ξ0) r2p+1 , (67)
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and the power series has infinite radius of convergence for each ξ0. Assume now that
Q(ξ0) = 0. Then, by (65), ŜχB(rξ0) = 0 for each r ≥ 0 , and hence a2p+1(ξ0) = 0 , for
each p ≥ 0 . For p = 0 one has a1(ξ0) = P1(ξ0)C1 , where

C1 =
2N∑

L=N+1

cL, 0, L−N−1Gn
2

+L−N(0) .

It will be shown later that C1 6= 0 , and then we get P1(ξ0) = 0 . Let us make
the inductive hypothesis that P1(ξ0) = ... = P2j−1(ξ0) = 0 . Then we obtain, if
j ≤ N − 1 , a2j+1(ξ0) = P2j+1(ξ0)C2j+1 , where

C2j+1 =
2N∑

L=N+1+j

cL, j, L−N−j−1Gn
2

+L−N+j(0) . (68)

Since we will show that C2j+1 6= 0 , P2j+1(ξ0) = 0 , 0 ≤ j ≤ N − 1 . We have

0 = Q(ξ0) =
N∑
j=0

γ2j+1 P2j+1(ξ0) ,

and so we also get P2N+1(ξ0) = 0 . Therefore the zero sets Lemma is completely
proved provided we have at our disposition the following formula, which in particular
shows that C2j+1 6= 0 , 0 ≤ j ≤ N − 1 .

Lemma 6.

C2j+1 =
1

2
n
2

(−1)j

4j(2j + 1)Γ(n
2

+ 2j + 1)
, 0 ≤ j ≤ N − 1 .

The proof of Lemma 6 is lengthy and rather complicated from the computational
point of view, and so we postpone it to Section 8 .

Notice that, although the constants C2j+1 are non-zero, they become rapidly
small as the index j increases and they oscillate around 0.

The reason why Lemma 6 is involved is that one has to trace back the exact
values of the constants C2j+1 from the very beginning of our proof of (64). This
forces us to take into account the exact values of various constants. For instance,
those which appear in the expression of the fundamental solution of (−∆)1/24N

and the constants A0, A1, ..., A2N in formula (30) . Finally, we need to prove some
new identities involving a triple sum of combinatorial numbers, in the spirit of those
that can be found in the book of R. Graham D. Knuth and O. Patashnik [GKP] .

The remaining of the proof of the necessary condition is basically a plain trans-
lation of what was done in the even case. One first completes the proof of the
polynomial case by an appropriate division process. Then the general case must
be faced. We reduce to the polynomial case by truncating the spherical harmonics
expansion of Ω. Denoting by SN the analogue of S at the truncated level we set

32



ξ = r ξ0 , with |ξ0| = 1 and r > 0 . Rewrite (67) with S replaced by SN and a2p+1

by aN2p+1 :

(2π)−n/2ŜNχB(rξ0) =
∞∑
p=0

aN2p+1(ξ0) r2p+1 .

As in the even case, it is a remarkable key fact that for a fixed p the sequence of
the aN2p+1 stabilizes for N large. This fact depends on a laborious computation of
various constants and will be proved in Section 8 in the following form.

Lemma 7. If p+ 1 ≤ N , then aN2p+1 = ap+1
2p+1 .

If p ≥ 0 and p+1 ≤ N we set a2p+1 = aN2p+1 . We need an estimate for the aN2p+1 ,
which will be proved as well in Section 8.

Lemma 8. We have, for a constant C depending only on n ,

|a2p+1| ≤
C

p! 4p

p∑
j=0

‖P2j+1‖∞ , 0 ≤ p ≤ N − 1 , (69)

and

|aN2p+1| ≤
C

4p

(
N+ n

2
− 1

2
N

)(
N− 1

2
N

) N−1∑
j=0

‖P2j+1‖∞ , 1 < N ≤ p . (70)

8 Proof of the combinatorial Lemmata

This section will be devoted to prove lemmas 6, 7 and 8 stated and used in the
preceding sections. The arguments are parallel to those of the even case, but many
different computations have to be performed . Owing to the intricate combinatorics
involved we prefer to write carefully down all calculations.

For the proof of Lemma 6 (see Section 7) we need to have explicit expressions
for the constants C2j+1 and for this we need to carefully trace back the path that
led us to them. To begin with we need a formula for the coefficients AL in (30) and
for that it is essential to have the expression for a fundamental solution EN = En

N

of (−∆)1/24N . Recall that 4N(EN)(x) = cn|x|1−n in Rn, where the normalization

constant cn is chosen so that ̂cn/|x|n−1(ξ) = 1/|ξ|. One has

EN(x) = cn|x|2N+1−n(α(n,N) + β(n,N) log |x|2) ,

where α and β are constants that depend on n and N .To write in close form α and

β we consider different cases. Write m =
n− 1

2
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Case 1: n is even. Then

α(n,N) =

(
N−1∏
j=0

(2N + 1− n− 2j) (2N + 1− 2(j + 1))

)−1

=

((
N −m
N

)
(2N)!

)−1

and

β(n;N) = 0.

Case 2: n is odd and 2N + 1− n < 0. Then

α(n,N) =

(
N−1∏
j=0

(2N + 1− n− 2j) (2N + 1− 2(j + 1))

)−1

=

(
(−2)N(m− 1)!

(m−N − 1)!

)−1
2N−1(N − 1)!

(2N − 1)!
=

(−1)N(m−N − 1)!(N − 1)!

2(m− 1)!(2N − 1)!

and

β(n;N) = 0.

Case 3: n is odd and 2N + 1− n ≥ 0. Then

β(n,N) =

(
(−1)m+12(m− 1)! (N −m)!

(2N − 1)!

(N − 1)!

)−1

and α(n,N) is a constant which we don’t need to precise.
Recall that the constants the constants A0, A1, ..., A2N are chosen so that the

function (see (30))

ϕ(x) = E(x)χRn\B(x) + (A0 + A1 |x|2 + ...+ A2N |x|4N)χB(x) ,

and all its partial derivatives of order not greater than 2N extend continuously up
to ∂B.

Lemma 9. For L = N + 1, . . . , 2N we have

AL = cn
(−1)L+N

(
L+m−N−1

L−N

)(
N+m
2N−L

)
(2N)!

(
L
N

)
Proof. Let m = (n− 1)/2 and set t = |x|2 , so that

En
N(x) ≡ E(t) = tN−m(α + β log(t)) (71)

Let P (t) be the polynomial
∑2N

L=0 ALt
L. By Corollary 2 in Section 2 we need

that
P k)(1) = Ek)(1) , 0 ≤ k ≤ 2N .
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By Taylor’s expansion we have that P (t) =
∑2N

i=0
Ei)(1)
i!

(t−1)i, and hence, by the
binomial formula applied to (t− 1)i ,

AL =
2N∑
i=L

Ei)(1)

i!
(−1)i−L

(
i

L

)
, 0 ≤ L ≤ 2N .

Now we want to compute Ei)(1) . Clearly(
d

dt

)i
(tN−m) = (N −m) · · · (N −m− i+ 1)tN−m−i

and it is zero when m is integer and i > N −m. Notice that the logarithmic term
in (71) only appears when the dimension n is odd (then m is integer) and N ≥ m.
In this case, for each i ≥ N + 1(

d

dt

)i
(tN−m log t) = (N −m)!(−1)i−N+m−1(i−N +m− 1)! t−i+N−m .

Hence, for i ≥ N + 1 , we obtain

Ei)(1)

cn
= α(n,N)(N−m) · · · (n−m−i+1)+β(n,N)(N−m)!(−1)i−N+m−1(i−N+m−1)!

Consequently,

AL
cn

= (−1)Lα(n,N)
2N∑
i=L

(N −m) · · · (N −m− i+ 1)
(−1)i

i!

(
i

L

)
+

(−1)L−N+m−1β(n,N)(N −m)!
2N∑
i=L

(i−N +m− 1)!

(
i
L

)
i!
.

(72)

Let’s remark that for the case n odd and N ≥ m the first term in (72) is zero,
while for the cases n even or n odd and N < m the second term is zero because
β(n,N) = 0. This explains why we compute below the two terms separately.

For the first term we show that
2N∑
i=L

(N −m) · · · (N −m− i+ 1)
(−1)i

i!

(
i

L

)
= (−1)L

(
N −m
L

)(
m+N

2N − L

)
(73)

Indeed, the left hand side of (73) is, setting k = i− L,

1

L!

2N−L∑
k=0

(N −m) · · · (N −m− L− k + 1)
(−1)L+k

k!

= (−1)L
(
N −m
L

) 2N−L∑
k=0

(
m+ L−N + k − 1

k

)
= (−1)L

(
N −m
L

)(
N +m

2N − L

)
,
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where the last identity comes from ([GKP, (5.9),p.159]) .
To compute the second term we first show that

2N∑
i=L

(i−N +m− 1)!
1

i!

(
i

L

)
=

(L−N +m− 1)!

L!

(
N +m

2N − L

)
. (74)

As before, setting k = i − L and applying [GKP, (5.9),p.159], we see that the left
hand side of (74) is

1

L!

2N−L∑
k=0

(L+ k −N +m− 1)!
1

k!

=(L−N +m− 1)!
2N−L∑
k=0

(
m+ L−N + k − 1

k

)
=

(L−N +m− 1)!

L!

(
N +m

2N − L

)
.

We are now ready to complete the proof of the lemma distinguishing 3 cases.

Case 1: n even.
Since β(n,N) = 0, replacing in (72) α(n,N) by its value and using (73) we get,

by elementary arithmetics,

AL
cn

=(−1)L
(−1)L

(
N−m
L

)(
N+m
2N−L

)
2N
(
N−m
N

)
(2N − 1)!

=(−1)L+N

(
L+m−N−1

L−N

)(
N+m
2N−L

)
(2N)!

(
L
N

) .

Case 2: n is odd and 2N + 1− n < 0.
As in case 1 β(n,N) = 0, and we proceed similarly using (73) to obtain

AL
cn

=

(
N −m
L

)(
N +m

2N − L

)
(−1)N(m−N − 1)!(N − 1)!

2(m− 1)!(2N − 1)!

=(−1)L+N

(
L+m−N−1

L−N

)(
N+m
2N−L

)
(2N)!

(
L
N

) .

Case 3: n is odd and 2N + 1− n ≥ 0.

36



Replacing in (72) α(n,N) and β(n,N) by their values and using (74) we get, by
elementary arithmetics,

AL
cn

=(−1)L−N+m−1β(n,N)(N −m)!
(L−N +m− 1)!

L!

(
N +m

2N − L

)
=

(−1)N+L(N − 1)!(L−N +m− 1)!

2(m− 1)!(2N − 1)!L!

(
N +m

2N − L

)

=(−1)L+N

(
L+m−N−1

L−N

)(
N+m
2N−L

)
(2N)!

(
L
N

)

Proof of Lemma 6. Recall that (see (68))

C2j =
2N∑

L=N+1+j

cL, j, L−N−j−1Gn
2

+L−N+j(0) .

Thus, we have to compute the constants cL,j,k appearing in the expression (66) for

Ŝ χB(ξ) . For that we need the constants cL,j appearing in the formula (42) for S(x) .
We start by computing P2j+1(∂)∆N−j(|x|2L) . Using (40) and Lemma 4 one gets

P2j+1(∂)∆N−j(|x|2L) =
22N+1L!(N − j)!
(L−N − j − 1)!

(
L− 1 + n

2

N − j

)
P2j+1(x)|x|2(L−N−j−1)

if L−N − j − 1 ≥ 0 (and = 0 if L−N − j − 1 < 0) .
As in (45) (Section 3), we express P2j+1(∂)∆L−N−j−1Gn

2
(ξ) using Lemma 3 ap-

plied to f(r) = Gn
2
(r) and the homogeneous polynomial L(x) = P2j+1(x) |x|2(L−N−j−1) .

We obtain

P2j+1(∂)∆L−N−j−1Gn
2
(ξ) =

∑
k≥0

1

2kk!
∆k(P2j+1(x)|x|2(L−N−j−1)

(
1

r

∂

∂r

)2(L−N)−1−k

Gn
2
(ξ)

=
∑
k≥0

(−1)k+1

2kk!
∆k(P2j+1(x)|x|2(L−N−j−1)Gn

2
+2(L−N)−1−k(ξ)

=

L−N−j−1∑
k=0

(−1)k+1

2kk!
4k

(L−N − j − 1)!

(L−N − j − 1− k)!
k!

(
n
2

+ j + L−N − 1

k

)
× P2j+1(ξ)|ξ|2(L−N−j−1−k) Gn

2
+2(L−N)−1−k(ξ).
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In view of the definitions of Q(x) and S(x),

S(x) = −Q(∂)

(
2N∑
L=0

AL|x|2L
)

= −
2N∑
L=0

AL

N∑
j=0

γ2j+1P2j+1(∂)∆N−j(|x|2L)

= −
2N∑

L=N+1

L−N−1∑
j=0

ALγ2j+1
22N+1L!(N − j)!
(L−N − j − 1)!

(
L− 1 + n

2

N − j

)
P2j+1(x)|x|2(L−N−j−1)

=
2N∑

L=N+1

L−N−1∑
j=0

cL,jP2j+1(x)|x|2(L−N−j−1) ,

where the last identity defines the cL,j . In Section 5 (66) we set

Ŝ χB(ξ) = S(ı ∂) χ̂B(ξ)

= ı(2π)n/2
2N∑

L=N+1

L−N−1∑
j=0

cL,j (−1)L−N P2j+1(∂) 4L−N−j−1Gn
2
(ξ)

= (2π)n/2
2N∑

L=N+1

L−N−1∑
j=0

L−N−j−1∑
k=0

cL, j, k P2j+1(ξ) |ξ|2(L−N−j−1−k)Gn
2

+2(L−N)−1−k(ξ) .

Consequently,

cL,j,k = ıcL,j(−1)L−N
(−1)k+1

2k
4k

(L−N − j − 1)!

(L−N − j − 1− k)!

(
n
2

+ j + L−N − 1

k

)
= ı(−1)L+k+NALγ2j+1

22N+1L!(N − j)!
(L−N − j − 1− k)!

(
L− 1 + n

2

N − j

)
2k
(
n
2

+ j + L−N − 1

k

)
.

Replacing AL by the formula given in lemma 9 and performing some easy arithmetics
we get

cL,j,k = ı(−1)kcnγ2j+1

22N+1L!(N − j)!
(
L−1+ n

2
N−j

)
2k
(n

2
+j+L−N−1

k

)
(L−N − j − 1− k)!

(
L+m−N−1

L−N

)(
N+m
2N−L

)
(2N)!

(
L
N

)
= ı(−1)kcnγ2j+1

2k(N − j)!(n− 1)
(
L−1+ n

2
N−j

)(n
2

+j+L−N−1

k

)(
N+ n

2
− 1

2
N

)
(2N − L)!(L−N + n

2
− 1

2
)(L−N − j − 1− k)!

(
N− 1

2
N

) .
(75)

The final computation of the C2j+1 is as follows.
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C2j+1 =
2N∑

L=N+1+j

cL, j, L−N−j−1Gn
2

+L−N+j(0)

= [by the explicit value of Gp(0) given in (77) below]

=
2N∑

L=N+1+j

cL, j, L−N−j−1
1

2
n
2

+L−N+jΓ(n
2

+ L−N + j + 1)

= [by (75)]

= −ıcn
2N∑

L=N+1+j

(−1)L−N−jγ2j+12L−N−j−1(N − j)!(n− 1)
(
L−1+ n

2
N−j

)(n
2

+j+L−N−1

L−N−j−1

)(
N+ n

2
−1/2

N

)
(L−N + n

2
− 1

2
)(2N − L)!

(
N−1/2
N

)
2

n
2

+L−N+jΓ(n
2

+ L−N + j + 1)

= −
ıcnγ2j+1(N − j)!(n− 1)

(
N+ n

2
−1/2

N

)
2

n
2

+2j+1
(
N−1/2
N

)
2N∑

L=N+1+j

(−1)L+N+j
(
L−1+ n

2
N−j

)(n
2

+j+L−N−1

L−N−j−1

)
(L−N + n

2
− 1

2
)(2N − L)!Γ(n

2
+ L−N + j + 1)

= [setting L = i+N + j + 1]
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=
ı cnγ2j+1(N − j)!(n− 1)

(
N+ n

2
−1/2

N

)
2

n
2

+2j+1
(
N−1/2
N

)
N−j−1∑
i=0

(−1)i
(
N + i+ j + n

2

N − j

)(
n
2

+ 2j + i

i

)
(i+ j + n

2
+ 1

2
)(N − j − i− 1)!Γ(n

2
+ i+ 2j + 2)

= [because Γ(
n

2
+ i+ 2j + 2) = Γ(

n

2
+ 2j)

i+1∏
k=0

(
n

2
+ 2j + k)]

=
ı cnγ2j+1(N − j)!(n− 1)

(
N+ n

2
−1/2

N

)
2

n
2

+2j+1
(
N−1/2
N

)
Γ(n

2
+ 2j)

N−j−1∑
i=0

(−1)i
(
N + i+ j + n

2

N − j

)(
n
2

+ 2j + i

i

)
(i+ j + n

2
+ 1

2
)(N − j − i− 1)!

∏i+1
k=0(n

2
+ 2j + k)

= [using Lemma 10 below ]

=
ı cnγ2j+1(N − j)!(n− 1)

(
N+ n

2
−1/2

N

)
2

n
2

+2j+1
(
N−1/2
N

)
Γ(n

2
+ 2j)

2
(
N+1/2
N−j

)
(2N + 1)(2j + n

2
)

Γ(n
2

+ j + 1/2)

Γ(n
2

+N + 1/2)

= [substituting the value given in (15) in γ2j+1]

= cn

(π
2

)n
2 (n− 1)Γ(1

2
)

Γ(n
2

+ 1
2
)

(−1)j

4j(2j + 1)Γ(n
2

+ 2j + 1)

= [recalling the exact value of cn]

=
1

2
n
2

(−1)j

4j(2j + 1)Γ(n
2

+ 2j + 1)
.

Lemma 10. For each j = 0, . . . , N − 1

N−j−1∑
i=0

(−1)i
(
N + i+ j + n

2

N − j

)(
n
2

+ 2j + i

i

)
(i+ j + n

2
+ 1

2
)(N − j − i− 1)!

∏i+1
k=0(n

2
+ 2j + k)

=
2
(
N+1/2
N−j

)
(2N + 1)(2j + n

2
)

Γ(n
2

+ j + 1
2
)

Γ(n
2

+N + 1
2
)

Proof. Denote the left hand side by S. Using the identity Γ(A) = Γ(A− k)
(
A−1
k

)
k!,

for any non-negative integer k, and elementary arithmetics one gets

Γ(n
2

+N + 1
2
)

(
N + i+ j + n

2

N − j

)(
n
2

+ 2j + i

i

)
Γ(n

2
+ j + 1

2
)(i+ j + n

2
+ 1

2
)
∏i+1

k=0(n
2

+ 2j + k)
=

=

(
N + i+ j + n

2

N − j − 1

)(
N + n

2
− 1

N − i− j − 1

)(
n
2

+ i+ j − 1

i

)
(N − i− j − 1)!

(2j + n
2
)(N − j)

,
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and so

S =
Γ(n

2
+ j + 1

2
)

Γ(n
2

+N + 1
2
)(2j + n

2
)(N − j)

N−1−j∑
i=0

(−1)i
(
N + i+ j + n

2

N − j − 1

)(
N + n

2
− 1

N − i− j − 1

)(
n
2

+ i+ j − 1
2

i

)

=

[
because

(
a+ i

i

)
= (−1)i

(
−a− 1

i

)]
=

Γ(n
2

+ j + 1
2
)

Γ(n
2

+N + 1
2
)(2j + n

2
)(N − j)

N−1−j∑
i=0

(−1)i
(
N + i+ j + n

2

N − j − 1

)(
N + n

2
− 1

N − i− j − 1

)(
−n

2
− j − 1

2

i

)
= [by the triple-binomial identity (5.28) of ([GKP], p. 171), see (76) below]

=
Γ(n

2
+ j + 1

2
)

Γ(n
2

+N + 1
2
)(2j + n

2
)(N − j)

(
N + n

2
+ j

0

)(
N − 1

2

N − j − 1

)

=
Γ(n

2
+ j + 1

2
)

Γ(n
2

+N + 1
2
)(2j + n

2
)

(
N + 1

2

N − j

)
2

2N + 1
.

For the reader’s convenience and later reference we state the triple-binomial identity
(5.28) of [GKP] :

n∑
k=0

(
m− r + s

k

)(
n+ r − s
n− k

)(
r + k

m+ n

)
=

(
r

m

)(
s

n

)
m,n ≥ 0 integers. (76)

Our next task is to prove Lemma 7 and Lemma 8. Setting ξ = r ξ0 in (66) we
obtain
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ŜN χB(rξ0)

(2π)n/2
=

2N∑
L=N+1

L−N−1∑
j=0

L−N−j−1∑
k=0

cL, j, k P2j+1(rξ0) |rξ0|2(L−N−j−1−k)Gn
2

+2(L−N)−1−k(rξ0)

[ make the change of indexes L = N + s and |ξ0| = 1]

=
N∑
s=1

s−1∑
j=0

s−j−1∑
k=0

cN+s, j, k P2j+1(ξ0) r2(s−k)−1Gn
2

+2s−1−k(r)

=
N−1∑
j=0

N∑
s=j+1

s−j−1∑
k=0

cN+s, j, k P2j+1(ξ0) r2(s−k)−1Gn
2

+2s−1−k(r)

:=
∞∑
p=0

aN2p+1(ξ0)r2p+1.

In order to compute the coefficients aN2p+1(ξ0) we substitute the power series expan-
sion of Gq(r) [GrCF, B.2], namely,

Gq(r) =
∞∑
i=0

(−1)i

i! Γ(q + i+ 1)

r2i

22i+q
, (77)

in the last triple sum above.

Proof of Lemma 7. We are assuming that 0 ≤ p ≤ N − 1 . It is crucial to remark
that, for this range of p, after introducing (77) in the triple sum above, only the
values of the index j satisfying 0 ≤ j ≤ p are involved in the expression for aN2p+1.
Once (77) has been introduced in the triple sum one should sum, in principle, on
the four indexes i, j, s and k . But since we are looking at the coefficient of r2p+1 we
have the relation 2(s − k) − 1 + 2i = 2p + 1 , which actually leaves us with three
indexes. The range of each of these indexes is easy to determine and one gets

aN2p+1 =

p∑
j=0

P2j+1(ξ0)

p−j∑
i=0

N∑
s=p−i+1

cN+s, j, s−(p−i)−1×coefficient of r2i from Gn
2

+s+p−i(r) .

In view of (77)
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aN2p+1 =

p∑
j=0

P2j+1(ξ0)

p−j∑
i=0

N∑
s=p−i+1

cN+s, j, s−(p−i)−1
(−1)i

i!2i+
n
2

+s+pΓ(n
2

+ s+ p+ 1)

= [by the expression (75) for cL,j,k ]

= ı cn

p∑
j=0

P2j+1(ξ0)

p−j∑
i=0

N∑
s=p−i+1

(−1)i(−1)s−(p−i)−1γ2j+1

i!2i+
n
2

+s+pΓ(n
2

+ s+ p+ 1)

2s−(p−i)−1(N − j)!(n− 1)

(
N + s− 1 + n

2

N − j

)(
n
2

+ j + s− 1

s− (p− i)− 1

)(
N + n

2
− 1

2

N

)
(s+ n

2
− 1

2
)(N − s)!(p− i− j)!

(
N− 1

2
N

)
= (−1)p+1cn

(
N+ n

2
− 1

2
N

)(
N− 1

2
N

) p∑
j=0

P2j+1(ξ0)
(−1)jπ

n
2 Γ(j + 1

2
)(N − j)!

Γ(n
2

+ j + 1
2
)2

n
2

+2p+1

p−j∑
i=0

1

i!(p− i− j)!

N∑
s=p−i+1

(−1)s
(
N + s− 1 + n

2

N − j

)(
n
2

+ j + s− 1

s− (p− i)− 1

)
(s+ n

2
− 1

2
)(N − s)!Γ(n

2
+ s+ p+ 1)

In Lemma 11 below we give a useful compact form for the last sum. Using it we
obtain

aN2p+1

cn
= (−1)p+1

(
N+ n

2
− 1

2
N

)(
N− 1

2
N

) p∑
j=0

P2j+1(ξ0)
(−1)jπ

n
2 Γ(j + 1

2
)(N − j)!

Γ(n
2

+ j + 1
2
)2

n
2

+2p+1

p−j∑
i=0

1

i!(p− i− j)!

(−1)p+1−i(N − p− 1)!(p+ 1− j)!Γ(p+ n
2
− i+ 1

2
)

(N − j)!Γ(N + n
2

+ 1
2
)Γ(n

2
+ 2p+ 2− i)

(
N − 1

2

N − p− 1

)(
n
2

+ 2p− i+ 1

p+ 1− j

)
Easy arithmetics with binomial coefficients gives(

N+ n
2
− 1

2
N

)
(N − p− 1)!

(
N− 1

2
N−p−1

)(
N− 1

2
N

)
Γ(N + n

2
+ 1

2
)

=
Γ(1

2
)

Γ(n
2

+ 1
2
)Γ(p+ 3

2
)

We finally get the extremely surprising identity

aN2p+1

cn
=

Γ(1
2
)(π

2
)

n
2

22p+1Γ(n
2

+ 1
2
)Γ(p+ 3

2
)

p∑
j=0

(−1)jΓ(j + 1
2
)P2j+1(ξ0)

Γ(n
2

+ j + 1
2
)

p−j∑
i=0

(−1)iΓ(n
2

+ p− i+ 1
2
)

i!(p− i− j)!Γ(n
2

+ p− i+ j + 1)
,

(78)

in which N has miraculously disappeared. Thus Lemma 7 is proved.
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Proof of Lemma 8. We start by proving the inequality (69), so that 0 ≤ p ≤ N −1 .
We roughly estimate a2p+1 = aN2p+1 by putting the absolute value inside the sums in
(78). The absolute value of each term in the innermost sum in (78) is obviously not
greater than 1 and there are at most p+ 1 terms. The factor in front of P2j+1(ξ0) is
again not greater than 1 in absolute value. Denoting by C the terms that depend
only on n we obtain the desired inequality (69) .

We turn now to the proof of inequality (70) . Recall that

ŜN χB(rξ0)

(2π)n/2
=
∞∑
p=0

aN2p+1(ξ0)r2p+1

=
N−1∑
j=0

N∑
s=j+1

s−j−1∑
k=0

cN+s, j, k P2j+1(ξ0) r2(s−k)−1Gn
2

+2s−1−k(r) .

Replacing Gn
2

+2s−1−k(r) by the expression given by (77) we obtain, as before, a sum
with four indexes. Now we eliminate the index i of (77) using s − k + i = p + 1 .
Hence

aN2p+1 =
N−1∑
j=0

P2j+1(ξ0)
N∑

s=j+1

s−j−1∑
k=0

cN+s, j, k × coefficient of r2(p+1−s+k) from Gn
2

+2s−1−k(r)

=
N−1∑
j=0

P2j+1(ξ0)
N∑

s=j+1

s−j−1∑
k=0

cN+s, j, k
(−1)p+1−s+k

(p+ 1− s+ k)!Γ(n
2

+ p+ s+ 1)22p+1+ n
2

+k

=
N−1∑
j=0

P2j+1(ξ0)

N−1−j∑
k=0

N∑
s=j+k+1

cN+s, j, k
(−1)p+1−s+k

(p+ 1− s+ k)!Γ(n
2

+ p+ s+ 1)22p+1+ n
2

+k

= cn(−1)p+1

(
N+ n

2
− 1

2
N

)
π

n
2 (n− 1)

4p
(
N− 1

2
N

)
2

n
2

+1

N−1∑
j=0

(−1)jΓ(j + 1
2
)

Γ(n
2

+ j + 1
2
)
P2j+1(ξ0)

N−1−j∑
k=0

N∑
s=j+k+1

(−1)s(N − j)!
(
N + s− 1 + n

2

N − j

)(
n
2

+ j + s− 1

k

)
(p+ 1− s+ k)!Γ(n

2
+ p+ s+ 1)(s+ n

2
− 1

2
)(N − s)!(s− j − 1− k)!

The second identity is just (77) . The third is a change of the order of summa-
tion and the latest follows from the formula (75) for the constants cl,j,k and some
simplifications.

In view of the elementary fact that

(N − j)!
(
N + s− 1 + n

2

N − j

)(
n
2

+ j + s− 1

k

)
=

Γ(s+ n
2

+N)

k!Γ(s+ n
2

+ j − k)

we get
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∣∣∣∣∣∣∣∣
N−1−j∑
k=0

N∑
s=j+k+1

(−1)s(N − j)!
(
N + s− 1 + n

2

N − j

)(
n
2

+ j + s− 1

k

)
(p+ 1− s+ k)!Γ(n

2
+ p+ s+ 1)(s+ n

2
− 1

2
)(N − s)!(s− j − 1− k)!

∣∣∣∣∣∣∣∣ ≤
≤

N−1−j∑
k=0

1

k!

N∑
s=j+k+1

1

Γ(s+ n
2

+ j − k)(p+ 1− s+ k)!(n
2

+ p+ s)(s+ n
2
− 1

2
)(N − s)!(s− j − 1− k)!

≤
N−1−j∑
k=0

1

k!

N∑
s=j+k+1

1

(s− j − 1− k)!
≤ e2 ,

where in the first inequality we used that, since N ≤ p ,

Γ(s+ n
2

+N)

Γ(n
2

+ p+ s+ 1)
≤ 1

n
2

+ p+ s
.

The proof of (70) is complete.

Lemma 11. Let N−1 ≥ p ≥ j+i ≥ 0 be non-negative integers and set m = p+1−i.
Then

N−m∑
s=0

(−1)s
(
n
2

+N +m+ s− 1

N − j

)(
n
2

+ j +m+ s− 1

s

)
(m+ s+ n

2
− 1

2
)(N −m− s)!Γ(n

2
+ 2m+ i+ s)

=
(N −m− i)! (m+ i− j)! Γ(m+ n

2
− 1

2
)

(N − j)! Γ(n
2

+ 2m+ i) Γ(N + n
2

+ 1
2
)

(
N − 1

2

N −m− i

)(
n
2

+ 2m+ i− 1

m+ i− j

)
.

Proof. Denote the left hand side by S. Using repeatedly the identity Γ(x + 1) =
xΓ(x) and arithmetics with binomial coefficients we have(

n
2

+N +m+ s− 1

N − j

)(
n
2

+ j +m+ s− 1

s

)
Γ(n

2
+ 2m+ i+ s)

=
(N −m− i)! (m+ i− j)!
(N − j)! s! Γ(n

2
+ 2m+ i)

(
n
2

+N +m+ s− 1

N −m− i

)(
n
2

+ 2m+ i− 1

m+ i− j

)
Then

S =
(N −m− i)! (m+ i− j)!
(N − j)! Γ(n

2
+ 2m+ i)

(
n
2

+ 2m+ i− 1

m+ i− j

)N−m∑
s=0

(−1)s
(n

2
+N+m+s−1

N−m−i

)
s!(N −m− s)!(m+ s+ n

2
− 1

2
)

=
(N −m− i)! (m+ i− j)!
(N − j)! Γ(n

2
+ 2m+ i)

(
n
2

+ 2m+ i− 1

m+ i− j

)
D(m, i) ,
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where the last identity defines D(m, i) . The only task left is the computation of the
sum D(m, i). The identity

1

m+ s+ n
2
− 1

2

=
1

m+ n
2
− 1

2

(
1− s

m+ s+ n
2
− 1

2

)
,

yields the expression

D(m, i) =
1

(m+ n
2
− 1

2
)(N −m)!

N−m∑
s=0

(−1)s
(
N −m
s

)(
n
2

+N +m+ s− 1

N −m− i

)

−
N−m∑
s=1

(−1)s
(
n
2

+N +m+ s− 1

N −m− i

)
s!(N −m− s)!

s

(m+ n
2
− 1

2
)(m+ s+ n

2
− 1

2
)
.

The first sum in the above expression for D(m, i) turns out to vanish for i ≥ 1. This
is because

N−m∑
s=0

(−1)s
(
N −m
s

)(
n
2

+N +m+ s− 1

N −m− i

)
= (−1)N−m

(
N +m+ n

2
− 1

−i

)
= 0 ,

where the first identity follows from [GKP, (5.24), p.169] and the second from the
fact that

(
m
n

)
= 0 if n is a negative integer. Hence, setting r = s− 1,

D(m, i) = −
N−m∑
s=1

(−1)s
(
n
2

+N +m+ s− 1

N −m− i

)
s!(N −m− s)!

s

(m+ n
2
− 1

2
)(m+ s+ n

2
− 1

2
)

=
1

(m+ n
2
− 1

2
)

N−(m+1)∑
r=0

(−1)r
(
n
2

+N + (m+ 1) + r − 1

N − (m+ 1)− (i− 1)

)
r!(N − (m+ 1)− r)!((m+ 1) + r + n

2
− 1

2
)

=
1

(m+ n
2
− 1

2
)
D(m+ 1, i− 1) .

Repeating the above argument i times we obtain that

D(m, i) =
1

(m+ n
2
− 1

2
)(m+ n

2
+ 1

2
) · · · (m+ n

2
+ i− 3

2
)
D(m+ i, 0).

To compute D(m+ i, 0) or D(p+ 1, 0) we use the elementary identity

Γ(N + n
2

+ 1
2
)

Γ(p+ n
2

+ 1
2
)s!(N − p− 1− s)!(p+ s+ n

2
+ 1

2
)

=

(
N + n

2
− 1

2

N − p− 1− s

)(
p+ s+ n

2
− 1

2

s

)
,
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from which we get

D(p+ 1, 0) =

N−p−1∑
s=0

(−1)s
(n

2
+N+p+s

N−p−1

)
s!(N − p− 1− s)!(p+ s+ n

2
+ 1

2
)

=
Γ(p+ n

2
+ 1

2
)

Γ(N + n
2

+ 1
2
)

N−p−1∑
s=0

(−1)s
(
n
2

+N + p+ s

N − p− 1

)(
N + n

2
− 1

2

N − p− 1− s

)(
p+ s+ n

2
− 1

2

s

)

=
Γ(p+ n

2
+ 1

2
)

Γ(N + n
2

+ 1
2
)

N−p−1∑
s=0

(
n
2

+N + p+ s

N − p− 1

)(
N + n

2
− 1

2

N − p− 1− s

)(
−p− n

2
− 1

2

s

)
=

Γ(p+ n
2

+ 1
2
)

Γ(N + n
2

+ 1
2
)

(
N − 1

2

N − p− 1

)
,

where in the third identity we applied [GKP, (5.14), p. 164] and the latest equality
is consequence of the triple-binomial identity (76) [GKP, (5.28), p.171] (for k = s,
n = N − p− 1, m = 0, r = N + p+ n

2
and s = N − 1

2
) . Consequently,

D(m, i) =
Γ(m+ n

2
+ i− 1

2
)

Γ(N + n
2

+ 1
2
)

(
N − 1

2

N −m− i

)
1

(m+ n
2
− 1

2
) · · · (m+ n

2
+ i− 3

2
)

=
Γ(m+ n

2
− 1

2
)

Γ(N + n
2

+ 1
2
)

(
N − 1

2

N −m− i

)
,

which completes the proof of the lemma .

9 Failure of the pointwise estimate (3)

In this section we give a proof that (3) is false, more direct than the one in [MV],
and we show the connection with the algebra of operators already mentioned.

Theorem 7. The following pointwise inequality is false for functions in L2(R):

H∗f(x) ≤ CM(Hf)(x) , x ∈ R . (79)

Remark. Notice that the Theorem implies that there is no good-lambda in-
equality between H∗(f) and H(f).

Replacing f by H(f) in (79) and recalling that H(Hf) = −f , f ∈ L2(R) , we
see that (79) is equivalent to saying that

H∗(H(f))(x) ≤ CM(f)(x) , x ∈ R ,

for any f ∈ L2(R) .

Lemma 12. The operator f → H∗(Hf) fails to be of weak type (1, 1).
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Proof. To prove the Lemma it is enough to show that if f = χ(0,1), then there are
positive constants m and C such that whenever x > m,

H∗(Hf)(x) ≥ C
log x

x
(80)

Indeed, choosing m > e if necessary, we have

sup
λ>0

λ |{x ∈ R : H∗(Hf)(x) > λ}| ≥ sup
λ>0

λ |{x > m :
log x

x
> C−1 λ}|

= C sup
λ>0

λ |{x > m :
log x

x
> λ}| ≥ C sup

λ>0
λ (ϕ−1(λ)−m),

where ϕ is the decreasing function ϕ : (e,∞) → (0, e−1), given by ϕ(x) = log x
x

. To
conclude observe that the right hand side of the estimate is unbounded as λ→ 0:

lim
λ→0

λϕ−1(λ) = lim
λ→∞

ϕ(λ)λ =∞.

To prove (80) we recall that for f = χ(0,1)

Hf(y) = log
|y|
|y − 1|

.

Let m > 1 big enough that will be chosen soon. Take x > m. Hence, by
definition,

H∗(Hf)(x) ≥
∣∣∣∣∫
|y−x|>m+x

1

y − x
log

|y|
|y − 1|

dy

∣∣∣∣
and splitting the integral in the obvious way∫ −m

−∞

1

y − x
log

−y
−y + 1

dy +

∫ ∞
2x+m

1

y − x
log

y

y − 1
dy

=

∫ ∞
m

1

x+ y
log

y + 1

y
dy +

∫ ∞
2x+m

1

y − x
log

y

y − 1
dy = A(x) +B(x),

where both A(x), B(x) are positive. Hence

H∗(Hf)(x) ≥ A(x).

Since

log(1 +
1

y
) ≈ 1

y

as y →∞, there is a constant m > 1 such that whenever y > m

1

2
<

log(1 + 1
y
)

1
y

<
3

2
.
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Hence, with this constant m we have

A(x) =

∫ ∞
m

1

x+ y
log

(
1 +

1

y

)
dy ≈

∫ ∞
m

1

x+ y

dy

y
=

1

x
log

y

x+ y

∣∣∣∞
m
≈ log x

x
,

which proves (80).
Notice that B is better behaved :

B(x) ≤
∫ ∞

2x+m

1

y − x
log

y

y − 1
dy ≤

∫ ∞
2x+m

2

y

dy

y
≤ 1

x
.

10 Composition of operators : positive results

We first discuss a proof of (26) in Lemma 2 using standard arguments except for a
point that will be supplied. We mention that in [Le1] there is a different argument.

Let x ∈ Rn and let Q = Q(x, r) be an arbitrary cube centered at x and sidelength
r. It is enough to show that there exists C > 0 such that for some constant c = cQ

1

|Q|

∫
Q

|Tf(y)− c| dy ≤ CMf(x). (81)

Let f = f1 + f2, where f1 = f χ2Q. If we pick c = (T (f2))Q , we can estimate
the left hand side of (81) by a multiple of

1

|Q|

∫
Q

|T (f1)(y)| dy +
1

|Q|

∫
Q

|T (f2)− (T (f2))Q| dy = I + II.

To take care of II we use the regularity of the kernel in a standard way as in [GrMF,
p. 153] . We omit the details. Hence we have

II ≤ CMf(x).

To control I we use (25). Hence, since the support of f1 is contained in 2Q we have

I ≤ C

|Q|

∫
4Q

|T (f1)(y)| dy ≤ C

|Q|

∫
4Q

M(f1)(y) dy ≤ C
C

|4Q|

∫
4Q

M(f)(y) dy ≤ CM2(f)(x).

Proof of Theorem 2. To prove a) we use part a) of Coifman-Fefferman’s Theorem 6
and part a) Fefferman-Stein’s Theorem 4:∫

Rn

(
T ∗1 ◦ T2(f)(x)

)p
w ≤

∫
Rn

(
M ◦ T2f(x)

)p
w(x)dx

≤ C

∫
Rn

(
M# ◦ T2f(x)

)p
w(x)dx ≤ C

∫
Rn

(M2f)pw

49



where in the last estimate we have used (26) in Lemma 2 . This yields (16) and
concludes the proof of the first part of the theorem.

To prove (17) we use similar arguments except that we use part b) of both
Theorems 6 and 4:

sup
t>0

1

Φ(1
t
)
w({y ∈ Rn : |T ∗1 ◦ T2f | > t}) ≤ sup

t>0

1

Φ(1
t
)
w({y ∈ Rn : M(T2f)(y) > t}).

≤ sup
t>0

1

Φ(1
t
)
w({y ∈ Rn : M#(T2f)(y) > t}) ≤ sup

t>0

1

Φ(1
t
)
w({y ∈ Rn : M2(f)(y) > t}).

To prove b) in Theorem 2 we use a similar argument. The main difference is
that we use first Cotlar’s improved estimate from Theorem 5. Indeed, this is used
after an application of Theorem 6 of Coifman and Fefferman:∫

Rn

(
T ∗1 ◦ T ∗2 (f)(x)

)p
w ≤

∫
Rn

(
M ◦ T ∗2 f(x)

)p
w(x)dx

≤
∫

Rn

(
M ◦Mδ ◦ T2f(x)

)p
w(x)dx+

∫
Rn

M2f(x)pw(x)dx = I + II.

We just need to control I. For this we remark that

M ◦Mδf ≤ cδMf(x). (82)

Hence by Fefferman-Stein’s theorem 4

I ≤ Cδ

∫
Rn

(
M ◦ T2f(x)

)p
w(x)dx ≤ Cδ

∫
Rn

(
M# ◦ T2f(x)

)p
w(x)dx

≤ C

∫
Rn

(
M2f(x)

)p
w(x)dx

where in the last estimate we have used (26) from Lemma 2.
We are left with the proof of (82). Let x ∈ Rn and let Q = Q(x, r) be an

arbitrary cube centered at x with sidelength r. We have to show that

1

|Q|

∫
Q

Mδf(y) dy ≤ CMf(x).

Let f = f1 +f2, where f1 = f χ2Q . We can estimate the left hand side by a multiple
of

1

|Q|

∫
Q

Mδf1(y) dy +
1

|Q|

∫
Q

Mδf2(y) dy = I + II.

To take care of II we use that it is roughly constant on Q by [GrMF, p. 299]. Hence
we have

II ≤ CMδf(x) ≤ CMf(x).
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To control I we use that δ < 1 and that the maximal operator is bounded on
L1/δ(Rn) . We obtain

I ≤ Cδ
|Q|

∫
2Q

|f(y)| dy ≤ CM(f)(x).

This concludes the proof of the first part of b) of Theorem 2. The proof of the
second part is similar to the proof of part a) , except for the fact that one uses the
method we have just described. We leave the details to the interested reader.

Proof of Corollary 1. By homogeneity it is enough to assume t = 1 and hence we
just need to prove

w({y ∈ Rn : |T ∗1 ◦ T2f(y)| > 1}) ≤ C

∫
Rn

Φ(|f(y)|)w(y)dy.

Now, Φ = t(log(e + t)) ≈ t(1 + log+ t) is submultiplicative, that is, Φ(ab) ≤
Φ(a) Φ(b), a, b ≥ 0. In particular, Φ is doubling. We have by Theorem 2 and (8)

w({y ∈ Rn : |T ∗1 ◦ T2f(y)| > 1}) ≤ C sup
t>0

1

Φ(1
t
)
w({y ∈ Rn : |T ∗1 ◦ T2f(y)| > t})

≤ C sup
t>0

1

Φ(1
t
)
w({y ∈ Rn : M2f(y) > t})

≤ C sup
t>0

1

Φ(1
t
)

∫
Rn

Φ(
|f(y)|
t

)w(y)dy

≤ C sup
t>0

1

Φ(1
t
)

∫
Rn

Φ(|f(y)|)Φ(
1

t
)w(y)dy

= C

∫
Rn

Φ(|f(y)|)w(y)dy ,

which completes the proof.

Proof of inequality (19). It is enough by translation invariance to consider z = 0 in
(19), that is,

B∗(B(f))(0) ≤ C (B2)∗(f)(0) + CM(f)(0).

Recall that
B∗f(z) = sup

ε>0
|Bεf(z)|, z ∈ C ,

with

Bεf(z) =

∫
|w−z|>ε

f(z − w)
1

w2
dw .
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To prove the inequality at 0 we use that (see [MV]) for any h

B∗(h) = M̃(Bh) ,

where

M̃(g)(z) = sup
ε>0

∣∣∣ 1

πε2

∫
D(z,ε)

g(w) dA(w)
∣∣∣.

Hence, it is enough to show that

M̃(B2f)(0) ≤ C (B2)∗(f)(0) + CM(f)(0).

By dilation invariance is enough to estimate the integral of B2f on the unit disc D .
Clearly ∫

D

B2f(w) dA(w) =

∫
f(w)B2(χD)(w) dA(w) ,

and so we need to compute B2(χD) . For this we use the basic property of B, namely

∂

∂z
ϕ = − 1

π
B(

∂ϕ

∂z
) ,

which holds for appropriate classes of functions ϕ .
Integrating the function χD(z) in z one gets the function

ϕ(z) = zχD(z) +
1

z
χDc(z) ,

and so

− 1

π
B(χD)(z) =

∂ϕ

∂z
= − 1

z2
χDc(z) .

Following the same strategy for the function − 1
z2
χDc(z) we get

− 1

π
B2(χD)(z) = (−2

z̄

z3
+

3

z4
)χDc

and so

− 1

π

∫
f(w)B2(χD)(w) dA(w) = −2

∫
Dc

f(w)
w̄

w3
dA(w) + 3

∫
Dc

f(w)
1

w4
dA(w).

Last term is bounded by a multiple of Mf(0) since, after putting the absolute
value inside the integral, one is convolving with a non-negative decreasing integrable
kernel. Alternatively one may just integrate in dyadic annuli centered at 0 . For the
first term we simply observe that the function −2 w̄

w3 is the kernel of B2 and hence

−2

∫
Dc

f(w)
w̄

w3
dA(w)

is the truncation at level 1 of B2f(0) (see the definition just after (10)) .
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Proof of Theorem 3. By dilating and translating it is enough to prove that

|R1(T (f))(0)| ≤ C(|S2f(0)|+Mf(0)),

where R1 and S2 are the truncations of R and S at levels 1 and 2 respectively (see
the definition just after (10)).

Denote by K0, K and K1 the kernels of R , T and S respectively. Let B be the
unit ball of Rn . It was shown in [MOV] that, because R is an even higher order
Riesz transform, its kernel off the unit ball is in the range of R. More precisely,
there exists a polynomial b such that

K0(y)χBc(y) = R(bχB)(y) , y ∈ Rn .

Thus, since R ◦ T = S + c I ,

R1(Tf(0)) =

∫
|y|≥1

K0(y)Tf(y)dy

=

∫
R(bχB)(y)Tf(y)dy

=

∫
b(y)χB(y)Sf(y)dy + c

∫
b(y)χB(y)f(y)dy

= I + II.

Clearly, II is bounded by C‖b‖L∞(B) (Mf)(0). On the other hand,

I =

∫
S(bχB)(y)f(y)dy

=

∫
2B

S(bχB)(y)f(y)dy +

∫
(2B)c

S(bχB)(y)f(y)dy

= III + IV.

Using Lemma 5 in [MOV] we get that III is bounded by

CMf(0)(‖b‖L∞(B) + ‖b‖Lip(1,B)) ,

where ‖b‖Lip(1,B) is the Lipschitz semi-norm of b on B . Since the kernel K1 of S is
smooth off the origin we have

S(bχB)(y) = K1(y)

∫
bχB + ‖b‖L∞(B) O(

1

|y|n+1
) , |y| > 2 .

Thus,

|IV | ≤ C‖b‖∞|
∫

(2B)c

K1(y)f(y)dy|+ C‖b‖∞
∫

(2B)c

|f(y)|
|y|n+1

dy

≤ C‖b‖∞(|S2f(0)|+Mf(0)) ,

which completes the proof.
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Universitat Autònoma de Barcelona
08193 Bellaterra, Barcelona, Catalonia
E-mail: jvm@mat.uab.cat

56


