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Abstract

Multivariate lifetime data frequently arise so it is important to consider different multivariate distributions
that could be used to model aging concepts. The generalization of univariate versions has two main problems.
One of them is the concept of the multivariate quantile and the other one is that the survival function valued
at a multivariate quantile depends on the underlying distributions. For this reason, a new multivariate aging
concept based on the upper corrected orthant is developed. This new multivariate aging is a generalization of
the New Better than Used in Expectation univariate version and a characterization by using the multivariate
excess wealth function is provided. Finally, data from the Comprehensive Cohort Study performed by the
German Breast Cancer Study Group are analysed in order to estimate the parameters in a non-deterministic
model which describes the tumor growth and to realize how this new multivariate ageing notion influences
in the final results.
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1. Introduction

Roughly speaking, reliability theory is concerned with determining the probability that a system, possibly
consisting of many components, will work. Therefore, the problem of determining the reliability of a system
is essentially the problem of determining the life distribution of the system. To do this, the usual statistical
method is to fit a life distribution function based on a set of the observed lifetime data. On the other
hand, because of the aging effect, most systems degenerate or improve overtime so that they may have life
distributions with some aging property. Multivariate lifetime data frequently arise, and in these situations it
is important to consider different multivariate distributions that could be used to model such aging concept.
Some multivariate versions of aging have widely been studied in the literature (see Block and Savits, 1981,
Johnson and Kotz, 1975 and Marshall and Shaked, 1986 among others). Shaked and Shanthikumar (1991)
provided new extensions, not just technical but from a dynamic point of view. In this paper, our starting
point is different in this topic since the classical concept of quadrant is not used to give a new notion of
aging.

The organization of the paper is as follows. In Section 2 the multivariate excess wealth concept and some
important properties obtained of this concept are developed. In Section 3, the multivariate New Better than
Used in Expectation (NBUE) concept is defined and characterized throughout the excess wealth function.
The model of tumor growth and an application to real data set is shown in Section 4.

Some notation is given here which will be used throughout the paper. Fundamentally, random vectors will
be dealt with which take on values in R. The space Rn is endowed with the usual componentwise partial
order, which is defined as follows. Let x = (x1, · · · , xn) and y = (y1, · · · , yn) be two vectors in Rn; and
therefore x ≤ y if xi ≤ yi for i = 1, · · · , n. Throughout the paper “increasing” means “non-decreasing” and
“decreasing” means “non-increasing”. Particularly, a function ϕ : Rn −→ Rn is said to be an increasing
function when ϕ(x) ≤ ϕ(y) for x ≤ y. The notation ∼st stands for equality in law. The vector of ones
will be denoted by 1, i.e. 1 = (1, · · · , 1) and the corresponding of zeros by 0. And the dimension of 1
will be clear from the expression in which it appears. The multiple integral

∫
A
F (t1, . . . , tn)dt1 . . . dtn will

be denoted as
∫
A
F (t)dt. The dimension of a random vector is clear from the context and unless otherwise

stated it is assumed that it is n.

2. The multivariate excess wealth concept

Let X be a random vector in Rn with distribution function (cdf) F (·). Let un = (u1, . . . , un) be a vector in

[0, 1]n, the multivariate u-quantile or the regression representation for X, denoted by
∧
x (un), is defined as

x̂1(u1) = F−
X1

(u1), x̂2(u2) = F−
X2|X1=x̂1(u1)

(u2), · · · , x̂n(un) = F−
Xn|Xn−1=x̂(un−1)

(un),

where F−(u) = inf{x : F (x) ≥ u}, ui = (u1, . . . , ui) and Xi = (X1, . . . , Xi) for all i = 1, . . . , n.

The interest in such representation is in simulation theory as well as in queue theory and other areas.
In particular, O‘Brien (1975) studied a comparison method for stochastic processes by using the regression
representation and Arjas and Lehtonen (1978) used it to approximate many server queues by means of single
server queues. Later, Rüschendorf (1981) ordered distributions in stochastic sense using the multivariate
u-quantile.

More recently, Fernández-Ponce and Suárez-LLoréns (2003) also defined several concepts for a multivari-

ate random vector. The first concept is the multivariate x-rate vector, denoted by
⋆
x(x) and defined as

⋆
x(x1) = P (X1 ≤ x1), . . . ,

⋆
x(xn) = P (Xn ≤ xn|

∩n−1
j=1 Xj = xj). The second concept is the right-upper
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orthant at a point z, defined as C(z) = {x ∈ Rn : z ≤ x}. At the end, the upper-corrected orthant at a
point z for the random variable X, denoted as RX(z), is defined as

RX(z) = {x ∈ Rn : x1 ≥ F−
X1

(
⋆
x1(z1)), . . . , xn ≥ F−

Xn|
∩n−1

j=1 Xj=xj
(
⋆
xn(zn))}.

In fact, Fernández-Ponce and Suárez-LLoréns (2003) did not consider vectors of non-negative variables
having limited supports on the right. Since vectors of lifetimes with limited supports will also be considered
in this paper, a slight modification of this notion must be defined as a generalization of the previous
one. By taking into account that the support of a random vector X is defined as Supp(X) = {x ∈ Rn :
P [X ∈ Bx(ε)] > 0 for all ε > 0} where Bx(ε) is the centered ball at x with radius ε, then the following
definition can be given.

Definition 2.1. Let X be a random vector. The upper corrected orthant associated to X at z ∈ Supp(X)
is defined as

RX(z) = {x ∈ Supp(X) : x1 ≥ F−
X1

(
⋆
x1(z1)), . . . , xn ≥ F−

Xn|
∩n−1

j=1 Xj=xj
(
⋆
xn(zn))}.

It is easily shown that if X is a random vector with independent components then RX(z) = C(z)∩Supp(X).

Remark 2.1. Note that if t1 ≤ t2 is verified then it could not be held that RX(t2) ⊂ RX(t1). For example,
let X be a bivariate random vector with joint density function given by

fX(t) =

 2/3 if t ∈ T1;
4/3 if t ∈ T2;
0 otherwise

where T1 is in the triangle with vertices (0, 0), (0, 1) and (1, 1), and T2 is in the triangle with vertices
(0, 0), (1, 0) and (1, 1).

Let t1 = ( 12 ,
1
2 ) be a point in a border of T1. By straightforward computations, it is easily verified that

RX(t1) =

{
x ≥ 1

2
, y ≥ x+ 1

3

}
.

Now, by considering t2 = ( 23 ,
1
2 ), it is held that t1 ≤ t2, and t2 ∈ RX(t2). But, t2 ̸∈ RX(t1). Thus

RX(t2) * RX(t1).

From now on, throughout the paper, assume that the following regularity conditions (RC) are verified by
every cdf F .

1. F is a continuous function.
2. The function x̂ : u → x̂(u) is differentiable at each component.
3. The conditional distribution of Xi to X1, . . . , Xi−1 (Fi|1,...,i−1) is a continuous and strictly increasing

function for i = 1, . . . , n. For convenience F1|0 = F1.

4. F−
Xi|X1,...,Xi−1

(0) < ∞ for all i = 1, . . . , n.

It is easy to verify that under the regularity conditions above there is a one to one correspondence between
vectors un ∈ [0, 1)n and the points x ∈ Supp(X).

The next result is the main reason of interest in the notion of upper corrected orthant. The proof can be
seen in Proposition 2.1 in Fernández-Ponce and Suárez-Lloréns (2003).

Proposition 2.1. Let X be a random vector. Then

P{X ∈ RX[x̂(un)]} =

n∏
j=1

(1− uj) for all un ∈ [0, 1)n.
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This result means that the upper corrected orthant at the un−quantile accumulate the same probability
for two random vectors with distribution functions under the regularity conditions. By using this property,
Fernández-Ponce and Suárez-LLoréns (2003) defined a new dispersive ordering based on conditional quantiles
more widely separated.

Furthermore, let t = (t1, t2) be a point in Supp(X). Then it is easily shown that

P (X ∈ RX(t)) =

∫ +∞

t1

∫ +∞

F−
2|w1

(F2|t1 (t2))

f(w1, w2)dw2dw1

=

∫ +∞

t1

fX1(w1)

∫ +∞

F−
2|w1

(F2|t1 (t2))

fX2|X1=w1
(w2)dw2dw1.

Consequently, it is obtained that

P (X ∈ RX(t)) = P (X1 > t1)P (X2 > t2|X1 = t1). (1)

This equality can easily be generalized for the n−dimensional case by induction arguments.

Note that, in particular, from Proposition 2.1 easily follows that RX[x̂(0)] = Supp(X).

Now, the multivariate excess wealth function is defined by generalizing the univariate version. Recall that
the univariate excess wealth function of a random variable X, which was defined and widely studied by
Fernández-Ponce et al. (1996), is defined as

S+
X(u) = E[(X − F−

X (u))+] = E[max{X − F−
X (u), 0}] =

∫ ∞

F−
X (u)

F̄X(t)dt for u ∈ [0, 1].

Definition 2.2. Let X be a nonnegative random vector. The multivariate excess wealth function associated
to X, when it exists, is defined as

S+
X(u) =

∫
RX[

∧
x(u)]

P [X ∈ RX(t)] dt for all u ∈ [0, 1]n. (2)

Note that if U is a uniform [0, 1] random variable then F−
X (U) =st X. In multivariate settings, this

property is generalized by the regression representation (see Shaked and Shanthikumar, 2007, pag 267).
That is, x̂(U) =st X where U = (U1, . . . , Un) with U1, . . . , Un are independent uniform [0, 1] random
variables. Consequently, x̂(u) plays the same role in the multivariate case as F−

X (u) in the univariate case

and RX[
∧
x(u)] as (F−

X (u),+∞). This similarity justifies the integration domain in (2). As it can be seen
in Proposition 2.1, the corresponding probability in the upper corrected orthant associated to X at x̂(u)
is the multivariate version of the probability in the u-quantile upper orthant for univariate distributions,
being P[X ∈ RX(x̂(u))] = P[X ≥ F−

X (u)] = 1 − u in the univariate case. For this reason, it is used in the
integrand in (2).

Several interesting properties for the multivariate excess wealth function can be shown as in the univariate
case. For example, it is easily verified that S+

X(u) is a decreasing function in u and invariant with respect
to changes in a location parameter. Also, in a similar way to the univariate case, 0 ≤ S+

X(u) ≤ S+
X(0) for all

u in [0, 1]n holds. Furthermore, in the case of independent random variables, the multivariate excess-wealth
function can be decomposed as the product of the corresponding univariate excess-wealth functions.

Particularly, it is interesting to obtain an expression easier to hand for the bivariate excess wealth function.
Let X = (X1, X2) be a bidimensional random vector with density function fX(x1, x2). Let (u1, u2) in [0, 1)2

and let x = (x1, x2) be a point in R2 such that x1 ≥ F−
X1

(u1) and x2 ≥ F−
X2|X1=x1

(u2) so that it is held

x ∈ RX(x̂(u1, u2)).
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By using (1) the bivariate excess wealth function can be expressed as

S+
X(u1, u2) =

∫ ∞

F−
X1

(u1)

F̄X1(t1) · S+
X2|X1=t1

(u2)dt1. (3)

Fernández-Ponce et al. (1996) showed that if X is a univariate random variable with support on [0,∞) and
finite mean µ then S+

X(0) = µ. It is interesting to study a possible generalization of this property. For this
reason, the following definition is given.

Definition 2.3. Let X be a nonnegative random vector. Then the multiple expectation associated to X,
when it exists, is defined as the real value

µX =

∫
Supp(X)

P [X ∈ RX(t)] dt.

If X is a univariate random variable with support on (a,+∞), where a is a nonnegative value, then it is
held that

∫ +∞

a

F̄ (t)dt = E(X)− a.

Obviously, this equality does not exist for the multivariate case. However, a similar condition can be
obtained. That is, if X = (X1, X2) is a bivariate random variable, then under straightforward calculations
is easily obtained by using (1) that

µ̄X =

∫ ∞

F−
X1

(0)

F 1(t)E[X2|X1 = t]dt−
∫ +∞

F−
X1(0)

F 1(t)F
−
X2|X1=t(0)dt. (4)

Particularly, if X represents a non-negative bivariate random lifetime with Supp(X) = [0,+∞)2, then
µ̄X =

∫∞
F−

X1
(0)

F 1(t)E[X2|X1 = t]dt is verified. For this reason, the corrected multiple expectation associated

to X is defined as

νX =

∫ ∞

F−
X1

(0)

F 1(t)E[X2|X1 = t]dt, (5)

when it exists.

Furthermore, if the components are independent random variables, then the multiple expectation coincides
with the product of the marginal expectations.

Also, it is interesting to note that in general it is held that

S+
X(0, 0) = µ̄X ≤ νX.

Remark 2.2. The corrected multiple expectation, νX, can be defined for higher dimension. An method to
compute µ̄X and νX for any dimensions is given in Appendix A.

3. The NBUE property: a new multivariate version

Different aging concepts have been defined and studied in reliability literature (see Barlow and Proschan,
1975, Fernández-Ponce et al., 1996, and Shaked and Shanthikumar, 2007, Gupta and Peng, 2009, among
others). In particular, the New Better than Used in Expectation (NBUE) notion has been defined to describe
the property satisfied by an item whose residual lifetime decrease in the expectation alon time. Formally,
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assume that X represents the lifetime of an item with absolutely continuous distribution FX(·), survival
function FX(t) = P[X > t] and mean residual life function µX(t) = E[X− t|X > t] =

∫ ∞
t

FX(u)du

FX(t)
, for t ≥ 0.

Then,
X is NBUE if µX(0) ≥ µX(t) for all t ≥ 0.

An exhaustive list of applications and properties of this notion may be found, for example, in Barlow and
Proschan (1975), Hollander and Proschan (1984) or Kochar and Wiens (1987). NBUE random variables
have been also characterized by mean of different stochastic orderings (see Shaked and Shanthikumar, 2007).

Now, a new multivariate version of the mean residual life function is given.

Definition 3.1. Let X be an n-dimensional random variable. The total expected residual life of X in x is
defined, when it exists, as the following real value:

µX(x) =
1

P{X ∈ RX(x)}

∫
RX(x)

P [X ∈ RX(t)] dt (6)

for all x ∈ Supp(X).

Note there exists a closed relationship between the total expected residual life function and the multivariate
excess wealth function. In fact, it is held that

S+
X(u) = µX(x̂(u))

n∏
i=1

(1− ui). (7)

By taking into account the last comments in the above section and the definition of the univariate NBUE
property, the following definition is given.

Definition 3.2. Let X be a non-negative random vector with finite translate total expectation νX. X is said
to have a Corrected Multivariate New [Worse] Better than Used in Expectation (X ∈ FCMNBUE[CMNWUE])
distribution if

νX ≥ [≤] µ̄X(x)

for all x = (x1, · · · , xi, · · · , xn) ∈ Supp(X).

Example 3.1. Let X = (X1, X2) be a bivariate vector with Supp(X) = A ∪B and a joint density function
given by

f(x1, x2) =


1
2 if (x1, x2) ∈ A,
1 if (x1, x2) ∈ B,
0 otherwise

where

A = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1} and B = {(x1, x2) ∈ R2 : 1 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2− x1}.

The total expected residual life of X is given by

µX(x) =

{
(x2−1)(2x2

1−8x1+7)
8(x1−2) if (x1, x2) ∈ A,

1
8 (x1 − 2)(x1 + x2 − 2) if (x1, x2) ∈ B.

In particular, νX = µX = 7/16. Moreover, the total expected residual life is decreasing in x. In fact, if
(x1, x2) ∈ A,

∂

∂x1
µX(x) =

(x2 − 1)(2x2
1 − 8x1 + 9)

8(x1 − 2)2
and

∂

∂x2
µX(x) =

2x2
1 − 8x1 + 7

8(x1 − 2)

6



which are negative for all (x1, x2) ∈ A and if (x1, x2) ∈ B,

∂

∂x1
µX(x) =

1

8
(2x1 + x2 − 4) and

∂

∂x2
µX(x) =

1

8
(x1 − 2)

which are also negative for all (x1, x2) ∈ B. Therefore, given that µX(x) is decreasing, for all x ≥ 0,
νX = µX ≥ µX(x), that is, X has a CMNBUE distribution.

Now, it is proved that if X1 and X2 have NBUE distributions and φ is a nonnegative function, the random
vector (X1, φ(X1) +X2) has a CMNBUE distribution.

Theorem 3.1. Let X1 and X2 be two independent and NBUE univariate distributions and let φ : R → R
be a nonnegative function. Hence Z = (Z1, Z2) = (X1, φ(X1) +X2) has a CMNBUE distribution.

Proof. Let F1 and F2 be the corresponding distribution functions of the random variables X1 and X2,
respectively. It is easily shown that

νZ =

∫ ∞

0

F 1(t)E(φ(X1) +X2|X1 = t)dt

=

∫ ∞

0

φ(t)F 1(t)dt+E(X1)E(X2). (8)

Obviously, it is held that Supp(Z) = {(z1, z2) ∈ R2 : z1 > 0, z2 − φ(z1) > 0}.
Then, using (6), if z = (z1, z2) ∈ Supp(Z), it is obtained that

µZ(z) =
1

F 1(z1)F 2(z2 − φ(z1))

∫ ∞

z1

F 1(t1)dt1

∫ ∞

z2−φ(z1)

F 2(t2)dt2

= E(X1 − z1|X1 > z1)E [X2 − (z2 − φ(z1))|X2 > (z2 − φ(z1))]

for all z2 > φ(z1). Furthermore, by using the fact that X1 and X2 have NBUE distributions, the following
inequality is verified

E(X1 − z1|X1 > z1)E [X2 − (z2 − φ(z1))|X2 > (z2 − φ(z1))] ≤ E(X1)E(X2).

Consequently, from (8) and using the fact that φ(·) is a nonnegative function, it is easily deduced that

νZ > E(X1)E(X2) ≥ µZ(z) for all z in Supp(Z).

Thus, the random vector Z = (X1, φ(X1) +X2) is CMNBUE by using Definition 3.2.

The following result gives a necessary and sufficient condition for the CMNBUE property of X, based on
the multivariate excess wealth function. It can be considered as a generalization of Corollary 3.1. (c) in
Fernández-Ponce et at. (1998).

Theorem 3.2. Let X be a random vector verifying the regularity conditions (RC). X is a CMNBUE
distribution if and only if

S+
X(u) ≤ νX

n∏
j=1

(1− uj) for all u ∈ [0, 1)n.

Proof. Firstly, assume that X has a CMNBUE distribution. By Definition 3.2, νX ≥ µX(x) is held for all
x ∈ Supp(X). From (RC) defined in Section 2, it is also known that for each x ∈ Supp(X), only one vector
u ∈ [0, 1)n exists such that x = x̂(u). Now, by using the equality (7) and the Proposition 2.1, the result is

held. Conversely, if S+
X(u) ≤ νX

n∏
j=1

(1− uj) for all u ∈ [0, 1)n, and X verifies the regularity conditions, then

it is easily seen that X has a CMNBUE distribution.
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4. An application to real dataset

4.1. The model

Albert et al. (1978a) and Albert et al. (1978b) studied the age and tumor size at detection. They assumed
that the models for tumor detectability can be synthesized by first modeling the behavior of tumor growth
over time and superimposing a model for detection probability as a function of tumor size. Hanin and
Boucher (1999) used this model to approach the problem of optimal cancer screening.

Let T be the age at tumor onset and W be the time of spontaneous detection of the tumor measured from
the onset of disease. Define a random variable S to represent tumor size (the number of cells in a tumor)
at spontaneous detection. Hanin and Boucher (1999) supposed that the law of tumor growth is described
by a deterministic function f : [0,∞) −→ [1,∞) with f(0) = 1, such that S = f(W ). It is assumed that:

(a) random variables T and W are absolutely continuous and independent.

(b) function f is differentiable and f
′
> 0.

(c) the hazard rate for spontaneous detection of the tumor is proportional to the current tumor size with
a non-negative coefficient. That is, rW (w) = αS(w) = αf(w), where α is a non-negative constant.

Sample values of the random vector Y = (S, T +W ) with components interpreted as tumor size at sponta-
neous detection and age, respectively, can be observed. In the particular case of exponential tumor growth,
the joint density function for the random variable Y is easily obtained (see Bartoszyński et al., 2001).

Under these considerations, we study estimations of the parameters in a non-deterministic model which
relates the variables S and W . Also, we analyze the unknown random variable T plus a unknown random
delay, which will be denoted by ∆.

For our model, the following hypothesis are considered.

C1. The unknown variables W and T have NBUE distributions. Note that this property is an intuitive
survival property for the random variable W , as well as for the random variable T . In fact, W has an
NBUE distribution if E(W ) ≥ E(W − w|W > w) is verified for all w in R. This inequality indicates
that the mean time of spontaneous detection of tumor measured from the onset of disease is greater
than or equal to the mean residual time of spontaneous tumor detection by assuming that this time
is greater than w. Similarly, if T has an NBUE distribution, then the mean time from the birth of
an individual to the appearance of the first tumor cell is greater than, or equal to, the mean residual
time to the appearance of the first tumor cell by assuming that this time is greater than t.

C2. The distribution of tumor size S is unknown but it is assumed that the logarithm of S has an NBUE
distribution.

C3. A non-deterministic exponential tumor growth is assumed. So, the relationship between S and W can
be modeled as

W = α+ β lnS +∆ (9)

where β > 0 and ∆ is a random delay which is independent of S.

C4. It is assumed that T +∆ has an NBUE distribution.

Consequently, we have a random sample of size n from a homogeneous population:

yi = (si, vi) i = 1, · · · , n with vi = ti + wi and wi = α+ β ln si + δi

and where si and vi represent the tumor size and the age at detection for the i−th patient, respectively.
Note that the values of ti and wi are completely unknown.

8



From the relationship vi = ti + α+ β ln si + δi for all i, it follows that

ti + δi = vi − α− β ln si for i. (10)

For simplicity, the value ti + δi will be denoted by ηi for i = 1, . . . , n, as sample values of the variable
η = T +∆, where T is the time at onset and ∆ is the nonnegative random time in (9).

It is easy to show, by using Theorem 3.1 and taking X1 = lnS, X2 = T + α +∆ and ϕ(x) = βx, that the
random vector (lnS, V ) = (lnS, T + α + β lnS + ∆) has a CMNBUE distribution. That means that the
multiple expectation associated to the vector with component logarithm of tumor size and age at detections
is greater than or equal to the total expected residual life of this vector in any particular value of the vector
(lnS, V ). This property enables a condition to be established in the problem of estimating the parameters
α and β in the model given in (9).

Therefore, from a conservative point of view, to estimate the above parameters is equivalent to estimating
α and β such that the sum

∑n
i=1 ηi is minimized under the constraints ηi ≥ 0 for all i and (lnS, T + α +

β lnS +∆) ∈ FCMNBUE . This problem can be formulated as

min

n∑
i=1

ηi

s.t.

ηi ≥ 0 for all i, (11)

(lnS, T + α+ β lnS +∆) ∈ FCMNBUE. (12)

In order to break down the model more easily, the restriction (12) must be expressed in a different way. In
Appendix B, it is shown that, by using Theorem 3.2, it is verified that

(lnS, T + α+ β lnS +∆) ∈ FCMNBUE if, and only if,

S+
lnS(u1)

E(lnS)(1− u1)
·

S+
T+∆(u2)

E(T +∆)(1− u2)
≤ 1 +

α

E(T +∆)
+ β

E(ln2 S)

E(lnS)E(T +∆)
(13)

for all (u1, u2) ∈ [0, 1)2.

In particular, the inequality (13) is obtained for (0, 0). Moreover, by assumption, the variables lnS and
T + ∆ have NBUE distributions, so their corresponding univariate excess wealth functions S+

lnS(u1) and
S+
T+∆(u2) are decreasing for all u1 and u2. Moreover, it is verified that (see Fernández-Ponce et al., 1998)

S+
lnS(u1) ≤ E(lnS)(1− u1) and S+

lnS(0) = E(lnS) for all u1 ∈ [0, 1),

S+
T+∆(u2) ≤ E(T +∆)(1− u2) and S+

T+∆(0) = E(T +∆) for all u2 ∈ [0, 1).

Therefore, by taking into account that E(T +∆) > 0, the inequality (13) is equivalent to

0 ≤ α+ β
E(ln2 S)

E(lnS)
.

Thus, the problem for estimating α and β is the following linear programming problem:

min
n∑

i=1

ηi

s.t. ηi ≥ 0 for all i,

0 ≤ α+ β
E(ln2 S)

E(lnS)
.
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Given that the distribution of lnS is unknown, the values E(ln2 S) and E(lnS) are also unknown but finite.

Considering that Tn =
∑n

i=1 ln2 si∑n
i=1 ln si

converges almost sure to E(ln2 S)
E(lnS) , this problem can be solved by replacing

the last constraint with the following inequality

0 ≤ α+ βTn. (14)

Note that our model is not exactly a parametric regression model since the ‘residual’ random variable is
non-negative. Neither a non-regular regression can be used (see Smith, 1994), because of the hypothesis
on the tail of the distribution function for the errors, which cannot be verified for NBUE distributions in
general. Consequently, this problem must be solved by using a different tool. In particular, the quantile
regression model is used. For more details about quantile regression and the iterative algorithm which must
be used to estimate the parameters see Koenker and Basset (1978) and Koenker and D’Orey (1987).

Now, note that the values of α and β that minimize the sum of ηi for all ηi ≥ 0 can be obtained by solving
the problem of the smallest regression quantile when the values ηi = vi − α − β ln si for i = 1, . . . , n are
considered as the values of the residual variable.

Thus, it can be concluded that, from a conservative point of view, estimating the parameters in our model
is equivalent to solving a particular problem of quantile regression. Moreover, it is possible to analyse the
unknown variable T +∆ by means of the residuals obtained in this quantile regression.

4.2. Dataset analysis

4.2.1. Materials and Methods

From July 1984 to December 1989, the German Breast Cancer Study Group initially recruited 720 patients
with primary node positive breast cancer into the Comprehensive Cohort Study (Schmoor et al., 1996).
Some of the variables considered for each patient were: date of diagnosis, patient’s age at diagnosis, tumor
size (tumor diameter in mm), tumor grade and number of nodes involved. The study itself which was
realized by this group is not of interest for the present purpose. Our attention is focused on two variables:
age at detection and tumor size. The 686 patients who completed the data for the standard factors of age
and tumor size are analysed in this study.

Tumor size, initially given in mm, was transformed into the number of tumor cells per cm3. For this, it
is assumed the tumor is a symmetric ball in R3 and it is considered that approximately 1012 tumor cells
exist per cm3, (see Spanish Society of Medical website, http://www.seom.org/). A descriptive analysis was
realized for tumor size as well as patient’s age at detection. The NBUE property for both variables was
confirmed by using a statistical test given by Fernández-Ponce et al. (1996). The plots of their univariate
excess-wealth functions were also used to recognize this property.

The parameters in the model that relate the variables sojourn time (W ) and tumor size (S) were estimated
by using the model proposed in the above section. The residuals of this regression are considered as the
estimation of the age at tumor onset plus a random delay for each patient.

All statistical analyses were performed using R software. In particular, the quantreg package was used to
solve the problems of quantile regression (see http://cran.r-project.org/ and Appendix A in Koenker, 2005.

4.2.2. Results

A descriptive analysis for the variables age, tumor size and the logarithm of tumor size is given in Table 1.
The p-values for the Shapiro-Wilk normality test was 0.00 for both cases, therefore the normality hypothesis
is rejected for both variables.

The plots of the empirical excess-wealth (ew) functions of the age and logarithm of tumor size are given in
Figure 1. It can be observed that the empirical ew function of the age variable is under the line from the
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Table 1: A descriptive analysis for the age, tumor size and the logarithm of tumor size .

Mean Median Interquartile Standard
interval deviation

Age 53 53.2 46− 61 10.12
Tumor size 2.53 · 1016 8.18 · 1012 4.18 · 1015 − 22.4 · 1015 5.96 · 1016
Logarithm of
tumor size 29.89 29.732 20.06− 30.74 1.37

Figure 1: (a) Empirical ew function of age (blue line) and empirical ew function for exponential with parameter equal to the
inverse of mean age; (b) Empirical ew function of logarithm tumor size (blue line) and empirical ew function for exponential
with parameter equal to the inverse of mean logarithm tumor size; (c) Empirical ew function of tumor size (blue line) and
empirical ew function for exponential with parameter equal to the inverse of mean tumor size.

point (1, 0) to point (0, µV ), where µV is the sample mean age. Note that this line corresponds to the ew
function of an exponential distribution with parameter λ = µ−1

V . Similarly, this fact occurs for the logarithm
of tumor size. From a theoretical viewpoint, this property is always verified for all variables having an NBUE
distribution. Moreover, the NBUE property of age and the logarithm of tumor size were checked by means
of the test for NBUE alternatives given by the Fernández-Ponce et al. (1996). The statistic for this test,
Ψ(Fn(t)), is based on the empirical ew function and it has really interesting asymptotic properties. For
patient’s age is obtained that Ψ(Fn(t)) = 0.4741 and, for the logarithm of tumor size, the corresponding
statistic is obtained with a value Ψ(Fn(t)) = 0.4942. Therefore, for both random variables we can assume
the NBUE property (see critical values for NBUE alternatives in Table 2). In contrast with these variables,
the tumor size variable S does not have this ageing property, but it has the dual property NWUE (New
Worst than Used in Expectation). In Figure 1 c), it can be seen that the empirical ew function is on the
line from the point (1,0) to point (0, µS), where µS is the sample mean of tumor size. When the constraint
(lnS, T + α + β lnS +∆) ∈ FCMNBUE was not included in the quantile regression problem, the estimates

intercept and slope of the smallest quantile regression line were α̂ = −36.04 and β̂ = 2.02, respectively. It
should be added that the smallest regression quantile is obtained for θ = 0.0001 (since for values of θ upper
than 0.0001 some residuals are negative and then they would not verify the constraint (11), and for values
of θ lower than 0.0001, it is obtained the same residuals and the same quantile regression line).

The mean and the standard deviation for the residuals obtained from the quantile regression were 28.56
and 10.47, respectively. A 95 percent confidence interval for this mean was (27.78; 29.35) and the standard
error was 0.40. Recall that, from a conservative point of view, the ith residual in the quantile regression
is considered as the estimation of the value ti + δi . Therefore, it would be said that the mean age at
appearance of the first tumor cell plus a random delay was approximately 28.56 years, when the CMNBUE

Table 2: Critical value for NBUE alternative with different significance levels and sample size.

n α
0.1 0.05 0.01

400 0.0549 0.0732 0.0925
450 0.0544 0.0715 0.0910
475 0.0543 0.0661 0.0876
500 0.0532 0.0654 0.0818
600 0.0434 0.0570 0.0737
650 0.0425 0.0535 0.0736
700 0.0401 0.0532 0.0721
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Table 3: Quantiles of the estimated variable T + ∆ when the CMNBUE property of vector (lnS, T + α + β lnS + ∆) is not
considered (case 1) and is considered (case 2) as a constraint in the quantile regression problem.

Q(0.05) Q(0.25) Q(0.5) Q(0.75) Q(0.95)

Case 1 10.81 20.89 28.54 36.90 45.00
Case 2 11.96 21.85 29.38 37.56 45.35

Table 4: Approximate age at detection for different values of tumor size.

Tumor size V̂ V̂l V̂u Tumor size V̂ V̂l V̂u

(mm) (mm)
3 42.63 41.86 43.41 16 50.61 49.84 51.39
4 44.00 43.23 44.78 18 51.17 50.40 51.95
5 45.07 44.29 45.84 20 51.67 50.90 52.45
6 45.94 45.16 46.71 25 52.74 51.96 53.51
7 46.81 46.03 47.58 30 53.61 52.83 54.38
8 47.31 46.53 48.08 40 54.98 54.20 55.75
9 47.87 47.09 48.64 50 56.04 55.27 56.82
10 48.37 47.60 49.15 60 56.91 56.14 57.69
12 49.24 48.46 50.01 70 57.64 56.87 58.42
14 49.98 49.21 50.76 80 58.28 57.51 59.06

constraint is not considered. It was also proved that the variable T + ∆ has an NBUE distribution, given
that the value of statistic for the test for NBUE alternatives was Ψ(Fn(t)) = 0.4305.

On the other hand, if the property (lnS, T +α+ β lnS +∆) ∈ FCMNBUE is included as a constraint in the

quantile regression problem, the estimated intercept and slope are α̂ = −23.80 and β̂ = 1.59, respectively.
The mean and the standard deviation for the residual variable obtained from the quantile regression were
29.30 and 10.33, respectively. A 95 percent confidence interval for this mean was (28.53; 30.08) and the
standard error was 0.39. Therefore, if the multivariate aging property is considered, it could be concluded
that the mean age at the first tumor cell appearance plus a random delay is approximately 29.30 years.

Table 3 shows different estimated quantiles for the variable T + ∆ when the CMNBUE property is and is
not considered in the quantile regression problem.

Considering the estimations of the parameters α and β when it is included the multivariate aging property
in the linear program problem, the patients’s age at detection is approximated for different tumor sizes by
using the relationship V̂ = α̂ + β̂ lnS + T +∆, where T +∆ is the estimation of the mean of the variable
T + ∆ obtained as the mean of the residuals in the quantile regression. Table 4 shows the results. In the
third and forth columns, the age at detection is also given when the variable T +∆ is estimated by the lower
and upper values of the confidence interval for T +∆, respectively.

4.2.3. Conclusions

Data from the Comprehensive Cohort Study performed by the German Breast Cancer Study Group are
analysed in order to estimate the parameters in the non-deterministic model which describes the tumor
growth when the patient’age at detection and the tumor size are known. Several descriptive statistics of the
time onset variable plus a random delay were also obtained. For this propose, the model studied in Section
4.2 has been applied. In order to realize how the multivariate aging CMNBUE property influences in our
results, the linear programming problem is solved in two different cases. In the first case the CMNBUE
property is not included as a constraint in the problem whereas it is included in the second case.

The hypothesis of the model are actually confirmed. The initially assumed NBUE property of the detection
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age and the logarithm of tumor size are checked as well as the NBUE property of the estimated variable
T +∆.

Under a non-deterministic exponential tumor growth, and from a conservative point of view, the estimations
of parameters in the model (9) were α̂ = −36.04 and β̂ = 2.02 when the multivariate property was not

included as a constraint and α̂ = −23.80 and β̂ = 1.59 when this property was included. Estimations of
the values ti + δi, defined as in (10), were obtained as the residuals of the smallest quantile regression of
the response variable V and the independent variable lnS. A paired t-test is applied for these residuals
(with and without the inequality (14)) obtaining a p-value < 2.2 × 10−16. Consequently, the residuals are
significatively different.

Given that the CMNBUE property appears as an inherent property of the vector (lnS, V ), attention was fo-
cused on the approximate age at detection, when this constraint is considered. Some interesting conclusions
about the age at detection can be obtained from Table 4. Mammography is a well-known test commonly
used in breast cancer screening. The main advantage of mammography is that it can find tumors that are
too small to palpated and allows an early diagnosis to be obtained. However, the mammography has some
disadvantages. False-negatives test results frequently occur in young women because, in this group, the
breast tissue is more dense. The same occurs with the false-positives. They are more common in younger
women, women with a family history of breast cancer or women who have had previous breast biopsies.
In addition, mammography exposes the breast to radiation which is considered as a risk factor for breast
cancer. For women younger that 50 years of age, the risks from a radiation exposure or a false-positive
test result may be greater that the benefits provided by annual mammogram screening. In light of these
disadvantages of mammography in breast cancer screening, the test is recommended every two years in
women between the ages of 50 and 74 years. (See, for example, the National Cancer Institute (USA) web-
site http://www.cancer.gov, and the Spanish Society of Medical Oncology website http://www.seom.org/).
However, the results in Table 4 show that tumors of a smaller size (tumor diameter between 3 mm and 14
mm) are detected at ages of less than 50 years. It is worth noting that the 40 percent of women in this
study were younger than 50 years of age. Clear evidence is shown for the need to consider breast cancer
screening in women younger than 50 years of age. However, given the disadvantages presented by mammog-
raphy, other tests should be considered for younger women. This fact would justify the time and capital
investment needed in research for new techniques to detect breast cancer and to consider younger women
for breast cancer screening.
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Appendix A. A method to compute µX and νX

Let X = (X1, . . . , Xn) be a random vector in Rn. A recursive method to compute µX and νX is developed.
Let ti = (t1, · · · , ti) be a point in Ri and Xi = (X1, . . . , Xi) be a random vector in Ri, for i = 1, . . . , n− 1.

Algorithm.

1. By using (4) and (5), it is obtained that

µ̄(Xn−1,Xn)|Xn−2=tn−2
= ν(Xn−1,Xn)|Xn−2=tn−2

−∫ ∞

F−
Xn−1|Xn−2=tn−2

(0)

F̄Xn−1|Xn−2=t(w)F
−
Xn|(Xn−2=tn−2,Xn−1=w)(0)dw.

and

ν(Xn−1,Xn)|Xn−2=tn−2
=∫ ∞

F−
Xn−1|Xn−2=tn−2

(0)

F̄Xn−1|Xn−2=t(w)E[Xn|Xn−2 = t, Xn−1 = w]dw.

2. The following steps are

µ̄(Xi,...,Xn)|Xi−1=ti−1
=∫ ∞

F−
Xi|Xi−1=ti−1

(0)

F̄Xi|Xi−1=ti−1
(w)µ̄(Xi+1,...,Xn)|(Xi−1=ti−1,Xi=w)dw.

for i = 2, . . . , n− 2.

3. The last computation is

µ̄X =

∫ ∞

F−
X1

(0)

F̄X1(w)µ̄(X2,...,Xn)|X1=wdw

and

νX = µ̄X +

∫
Supp(Xn−1)

P
(
Xn−1 ∈ RXn−1(tn−1)

)
F−
Xn|Xn−1=tn−1

(0)dtn−1.

Appendix B. Proof of the inequality (19)

Denote L = lnS, and consider H = (L,α+ βL+ T +∆). By Definition 2.2, it is obtained that

S+
H(u1, u2) =

∫ ∞

F−
L (u1)

F̄L(t1) · S+
α+βL+T+∆|L=t1

(u2)dt1, (B.1)

and we know that

S+
α+βL+T+∆|L=t1

(u2) =

∫ ∞

F−
α+βL+T+∆|L=t1

(u2)

F̄α+βL+T+∆|L=t1(t2)dt2. (B.2)

Then, by using the following trivial equality

F̄α+βL+T+∆|L=t1(t2) = F̄T+∆(t2 − α− βt1) (B.3)

and replacing (B.3) in (B.2), it follows that

14



S+
α+βL+T+∆|L=t1

(u2) =

∫ ∞

F−
α+βL+T+∆|L=t1

(u2)

F̄T+∆(t2 − α− βt1)dt2

=

∫ ∞

F−
T+∆(u2)+α+βt1

F̄T+∆(t2 − α− βt1)dt2

=

∫ ∞

F−
T+∆(u2)

F̄T+∆(r)dr

= S+
T+∆(u2). (B.4)

Thus, by replacing (B.4) in (B.1), it is held that

S+
H(u1, u2) =

∫ ∞

F−
L (u1)

F̄L(t1) · S+
T+∆(u2)dt1

= S+
L (u1)S

+
T+∆(u2).

Now, the value of νH is obtained. By (5), we have that

ν(L,α+βL+T+∆) =

∫ +∞

0

F̄L(t1)E[α+ βL+ T +∆|L = t1]dt1

= αE[L] + β

∫ +∞

0

F̄L(t1)t1dt1 +E[T +∆]E[L] (B.5)

where ∫ +∞

0

F̄L(t1)t1dt1 =

∫ +∞

0

∫ +∞

t1

t1dFL(y)dt1

=
1

2
E[L2]. (B.6)

Finally, if (B.6) is replaced in (B.5), it follows that

ν(L,α+βL+T+∆) = αE[L] + β
E[L2]

2
+E[T +∆]E[L]

= E[L]E[T +∆]

{
1 +

α

E[T +∆]
+ β

E[L2]

2E[L]E[T +∆]

}
.

Therefore, from Theorem 3.2,

H = (lnS, T + α+ β lnS +∆) is CMNBUE if and only if

S+
H(u1, u2) ≤ νH(1− u1)(1− u2) for all (u1, u2) ∈ (0, 1)2

or, equivalently, if

S+
lnS(u1)

(1− u1)E[lnS]

S+
T+∆(u2)

(1− u2)E[T +∆]
≤ 1 +

α

E[T +∆]
+ β

E[ln2 S]

E[lnS]E[T +∆]

for all (u1, u2) ∈ [0, 1)2, and the inequality (13) is obtained.

15



Acknowledgements

The authors thank the Associated Editor and two anonymous referees for valuable suggestions that helped
to improve our work.

Albert, A., Gertman, P.M. and Louis, T.A. (1978 a). Screening for the early detection of cancer. I. The temporal natural
history of a progressive disease state, Mathematical Biosciences, 40, 1–59.

Albert, A., Gertman, P.M., Louis, T.A. and Liu, S.I. (1978 b). Screening for the early detection of cancer. II. The impact of
the screening on the natural history of the disease, Mathematical Biosciences, 40, 61–109.

Arjas, E. and Lehtonen, T. (1978). Approximating many server queues by means of single server queues, Math. Oper. Res., 3,
205–223.

Barlow, R.E. and Proschan, F. (1975). Statistical Theory of Reliability and Life Testing: Probability Models, (Holt, Rinehart
and Winston.) NewYork.
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Rüschendorf, L. (1981). Stochastically ordered distributions and monotonicity of the OC-function of sequential probability
ratio tests.Mathematischen. Operationsforsch. Statist. 12,327–338.

Schmoor, C., Olschewski, M. and Schumacher, M. (1996). Randomized and non-randomized patients in clinical trials: experi-
ences with comprehensive cohort studies, Statistics in Medicine, 15, 3, 263–271.

Shaked, M. and Shanthikumar, J.G. (1991). Dynamic multivariate aging notions in reliability theory, Stochastic Process.
Appl., 38, 85–97.

16



Shaked, M. and Shanthikumar, J.G. (2007). Stochastic Orders. Springer Series in Statistics, Springer.

Smith, R. L. (1994). Non-regular regression. Biometrika, 81,1 173–183.

Spanish Society of Medical Oncology, http://www.seom.org/

The R Project for Statistical Computing , http://www.r-project.org/

17


