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Abstract 1 

The fruit maturation stage is considered the optimal phenological stage 2 

for implementing water deficit in jujube (Zizyphus jujuba Mill.), since a low, 3 

moderate or severe water deficit at this time has no effect on yield, fruit volume 4 

or eating quality. However, no information exists at fruit water relations level on 5 

the mechanisms developed by Z. jujuba to confront drought. The purpose of the 6 

present study was to increase our understanding of the relationship between 7 

leaf and fruit water relations of jujube plants under different irrigation conditions 8 

during fruit maturation, paying special attention to analysing whether fruit size 9 

depends on fruit turgor. For this, adult jujube trees (cv. Grande de Albatera) 10 

were subjected to five irrigation treatments. Control plants (T0) were irrigated 11 

daily above their crop water requirements in order to attain non-limiting soil 12 

water conditions in 2012 and 2013. T1 plants were subjected to deficit irrigation 13 

throughout the 2012 season, according to the criteria frequently used by the 14 

growers in the area. T2 (2012), T3 and T4 (2013) were irrigated as T0 except 15 

during fruit maturation, in which irrigation was withheld for 32, 17 and 24 days, 16 

respectively. The results indicated that the jujube fruit maturation period was 17 

clearly sensitive to water deficit. During most of this stage water could enter the 18 

fruits via the phloem rather than via the xylem. From the beginning of water 19 

withholding to when maximum water stress levels were achieved, fruit and leaf 20 

turgor were maintained in plants under water deficit. However, a direct relation 21 

between turgor and fruit size was not found in jujube fruits, which could be due 22 

to an enhancement of a cell elasticity mechanism (elastic adjustment) which 23 

maintains fruit turgor by reducing fruit cells size or to the fact that jujube fruit 24 



3 
 

growth depends on the fruit growth-effective turgor rather than just turgor 1 

pressure. 2 

  3 

 Keywords: Deficit irrigation; Gas exchange; Plant water relations; Zizyphus 4 

jujuba 5 

 6 

1. Introduction 7 

Jujube tree (Zizyphus jujuba Mill), is native to temperate Asia and is mostly 8 

cultivated in China, India, Central Asia and southwest Asia (Williams 2006b). 9 

Although considered as a multipurpose plant, its fruits are the major focus of 10 

interest (Bowe, 2006). Z. jujuba is considered a minor crop, but is an integral 11 

part of the culture and way of life for millions of Asians and has also become so 12 

for large regions of Africa (Williams, 2006a). This growing interest on jujube fruit 13 

is due to its presumed health-promoting effects, and it is now considered a 14 

functional food, since it has nutritional as well as medicinal uses (Heo et al., 15 

2003; Huang et al., 2007; Li et al., 2007; Zhao et al., 2008; Mahajan and 16 

Chopda, 2009; Choi et al., 2011; Collado-González et al., 2013, 2014). For all 17 

this, the International Centre for Underutilized Crops has identified Z. jujuba as 18 

a crop with substantial growth potential (Williams et al., 2006).  19 

Jujube tree is admired for its multiple uses, easy management, early 20 

bearing and wide adaptations to environmental conditions. In this sense, it is 21 

tolerant to saline irrigation water, low winter temperatures during dormancy and 22 

severe drought during the growing season (Dahiya et al., 1981; Ming and Sun, 23 

1986; Jain and Dass, 1988). In this last respect, Cruz et al.  (2012) showed that 24 

Z. jujuba is able to withstand severe water deficits, while maintaining leaf turgor, 25 
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which allows good gas exchange rates and, as a consequence, good leaf 1 

productivity. This leaf turgor maintenance was mainly due to two simultaneous 2 

and complementary mechanisms: decreased leaf conductance and a shorter 3 

period of maximum stomatal opening in order to control water loss via 4 

transpiration (stress avoidance mechanisms). The gradual recovery of leaf 5 

conductance after rewatering can also be considered as a mechanism for 6 

promoting leaf rehydration. In addition, from the beginning of the stress period, 7 

active osmotic adjustment operated, which can contribute to the maintenance of 8 

leaf turgor (stress tolerance mechanism). The high relative apoplastic water 9 

content levels and the possibility of increasing the accumulation of water in the 10 

apoplasm in response to water stress, supporting a steeper gradient in water 11 

potential between the leaf and the soil, which can be considered another 12 

drought tolerance characteristic in pear-jujube leaves. 13 

According to Cui et al. (2008), the phenological periods of jujube tree can 14 

be divided into bud burst to leafing (stage I, early April - early May), flowering to 15 

fruit set (stage II, mid May - late June), fruit growth (stage III, late June - late 16 

July), fruit maturation (stage IV, early August - early September) and dormancy 17 

(stage V, this October - next March) stages. Also, these authors indicated that 18 

the fruit maturation stage is the optimal stage for implementing water deficit in 19 

jujube, because low, moderate and severe water deficits have no effect on the 20 

fruit weight and volume, the fruits taste sweeter and eating quality is improved. 21 

In addition, the fruit maturation period is shortened, raising the market price of 22 

the fruit, fruit firmness is enhanced and the percentage of rotten fruit after 23 

storage is reduced. Despite the importance of the maturation period on jujube 24 

fruit quality, to the best of our knowledge no information exists on jujube fruit 25 
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water relations. For these reasons, the aim of this study was to increase our 1 

understanding of the relationship between leaf and fruit water relations of jujube 2 

plants under different irrigation conditions during fruit maturation, paying special 3 

attention to analysing whether fruit size depends on fruit turgor.  4 

 5 

2. Materials and methods  6 

2.1. Plant material, experimental conditions, and treatments 7 

Two different but complementary experiments were performed with the 8 

common goal of investigating if jujube fruit maturation period was clearly 9 

sensitive to water deficit. In the first experiment (2012) control plants were 10 

compared with plants subjected to moderate water deficit and with plants under 11 

severe water deficit. In order to verify the results obtained in the first 12 

experiment, in the second experiment (2013) control plants were compared with 13 

other plants subjected to different water stress conditions. 14 

Both experiments were carried out at a farm near the city of Albatera 15 

(Alicante, Spain) (38º 12’ N, 0º 51’ W). The plant material consisted of 8-year-16 

old jujube trees (Zizyphus jujuba Mill), cv. Grande de Albatera), planted at 2 m x 17 

6 m. The soil of the orchard is a Torrifluvent with a sandy loam texture, very low 18 

electrical conductivity (109 µS/cm, 1:10 w:v), high lime content (570 g/kg), very 19 

low organic matter content (3 g/kg), low exchangeable potassium (40 mg/kg) 20 

and available phosphorus (20 mg/kg) levels. The irrigation water had an 21 

electrical conductivity of between 1.7 and 2.2 dS/m and a Cl− concentration 22 

ranging from 36 to 48 mg l−1. Pest control and fertilization practices were those 23 

usually used by the growers, and no weeds were allowed to develop within the 24 

orchard.  25 
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Jujube plants were drip-irrigated every night, using one lateral pipe 1 

parallel to the tree row and 2 emitters per tree, each delivering 8 l h−1. In-line 2 

water meters were used to measure the water supplied to each experimental 3 

unit. 4 

 5 

Experiment 1 (2012) 6 

During the 2012 experimental period (DOY 93-230), control plants 7 

(treatment T0) were irrigated in order to guarantee non-limiting soil water 8 

conditions (41 % daily crop reference evapotranspiration (ETo) during bud burst 9 

and leafing (DOY 93-121), 52 % ETo during flowering and fruit set (stage I, 10 

DOY 122-167), 69 % ETo during fruit growth (stage II, DOY 168-197) and 106 11 

% ETo during fruit maturation (stage III, DOY 198-230). Such percentages were 12 

applied according to the water needs obtained in previous results. T1 plants 13 

were subjected to deficit irrigation throughout the season, according to the 14 

criteria frequently used by the growers in the area (23 % ETo during bud burst 15 

and leafing (DOY 93-121), 30 % ETo during flowering and fruit set (stage I, 16 

DOY 122-167), 40 % ETo during fruit growth (stage II, DOY 168-197) and 61 % 17 

ETo during fruit maturation (stage III, DOY 198-230). T2 treatment was irrigated 18 

as T0 except during 32 days before harvest, in which irrigation was withheld 19 

(from day of the year (DOY) 198 to 230). Total seasonal water amounts applied 20 

were 440, 252 and 274 mm for T0, T1 and T2 treatments, respectively.  21 

 22 

Experiment 2 (2013) 23 

During the 2013 experimental period (DOY 101-242), control plants 24 

(treatment T0) were irrigated with a similar criterion to that used in 2012 (42 % 25 
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ETo during bud burst and leafing (DOY 101-126), 53 % ETo during flowering 1 

and fruit set (stage I, DOY 127-169), 76 % ETo during fruit growth (stage II, 2 

DOY 170-198) and 110 % ETo during fruit maturation (stage III, DOY 199-242).  3 

T3 and T4 plants were irrigated as T0 except during the last 17 and 24 days 4 

before harvest in which irrigation was withheld (from day of the year (DOY) 225 5 

(T3) and 218 (T4) to 242), respectively. Total seasonal water amounts applied 6 

were 441, 360 and 322 mm for T0, T3 and T4 treatments, respectively.  7 

 8 

2.2. Measurements 9 

Meteorological data, namely air relative humidity, air temperature, solar 10 

radiation, rainfall and wind speed 2 m above the soil surface, were collected by 11 

an automatic weather station located near the experimental site. Mean daily air 12 

vapour pressure deficit (VPDm) and daily crop reference evapotranspiration 13 

(ETo) were calculated according to Allen et al. (1998).  14 

The water relations of the leaves and fruits were measured at midday (12 15 

h solar time). Fruits and fully expanded leaves from the south facing side and 16 

middle third of the tree of four trees per treatment were selected for 17 

measurements. Leaf conductance (gleaf) was measured with a porometer (Delta 18 

T AP4, Delta-T Devices, Cambridge, UK) on the abaxial surface of two leaves 19 

per tree. Leaf water potential (Ψleaf), and stem water potential (Ψstem) were 20 

measured in a similar number and type of leaves as used for gleaf using a 21 

pressure chamber (PMS 600-EXP, PMS Instruments Company, Albany, USA) 22 

(Greenspan et al., 1994; Nobel and de la Barrera, 2000). Leaves for Ψstem 23 

measurements were enclosed in a small black plastic bag covered with 24 

aluminium foil for at least 2 h before measurements. Fruit water potential (Ψfruit) 25 
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was measured with the pressure chamber (PMS 600-EXP, PMS Instruments 1 

Company, Albany, USA) in two fruits per tree as described by McFadyen et al. 2 

(1996) and Gelly et al. (2004).  3 

 Midday leaf (Ψπ leaf) and fruit (Ψπ fruit) osmotic potentials were determined 4 

in the same leaves and fruits as used for Ψleaf and Ψfruit measurements, 5 

respectively. Leaves and fruits were covered with aluminium foil and 6 

immediately frozen in liquid nitrogen and stored at -80 ºC. The osmotic potential 7 

was measured after thawing the samples and expressing the sap, using a 8 

vapour pressure osmometer (Wescor 5600, Logan, USA). Estimated midday 9 

leaf (Ψp leaf) and fruit (Ψp fruit) turgor potentials were derived as the difference 10 

between osmotic and water potentials (Milad and Shackel, 1992; Mills et al., 11 

1997; Yamada et al., 2004; Galindo et al., 2014).  12 

Marketable jujube fruits were harvested on 18 August 2012 (DOY 230) 13 

and 30 August 2013 (DOY 242). The mean weight of jujube fruit was 14 

determined according to the weight and number of fruits per box in randomly 15 

selected boxes per replicate.  16 

 17 

2.3. Statistical design and analysis 18 

The design of the experiment was completely randomized with four 19 

replications, each replication consisting of three adjacent tree rows, each with 20 

eleven trees. Measurements were taken on the inner tree of the central row of 21 

each replicate, which were very similar in appearance (leaf area, trunk cross 22 

sectional area, height, ground shaded area, etc.), while the other trees served 23 

as border trees. Statistical analysis was performed by an analysis of variance 24 

using the general linear model (GLM) of SPSS v. 12.0 (SPSS Inc., 2002).   25 
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To check the regression model hypothesis (linearity, homoscedasticity, 1 

normality and independency) Kolmogorov–Smirnov with the Liliefors correction 2 

was used. Normality and homoscedasticity on the typified residuals were 3 

evaluated using Shapiro–Wilk and Levene tests, respectively. Linearity was 4 

observed in the graphics and independency was assumed due to the way data 5 

were obtained. 6 

All the measurements were taken on the same tree in each replicate. 7 

Values for each replicate were averaged before the mean and the standard 8 

error of each treatment were calculated. 9 

 10 

3. Results 11 

3.1. Meteorological conditions and leaf and fruit water relations 12 

During the 2012 and 2013 experimental periods, meteorological conditions were 13 

very similar. In this sense, average daily maximum and minimum air 14 

temperatures were 29.7 and 15.1 ºC and 29.2 and 14.9 ºC, respectively. VPDm 15 

ranged from 0.39 to 2.35 kPa in 2012 and from 0.22 to 2.27 kPa in 2013, and 16 

accumulated ETo were 654 mm and 643 mm in 2012 and 2013, respectively 17 

(Fig. 1). In the 2012 and 2013 experimental periods total rainfall were 30 and 63 18 

mm, respectively, which took place mainly on DOY 95 (18 mm) and 103 (9 mm) 19 

in 2012 season and on DOY 115 (15 mm), DOY 117 (5 mm), DOY 118 (23 20 

mm), DOY 240 (8 mm) and DOY 241 (9 mm) in 2013 season (Fig. 1).   21 

The Ψleaf and Ψstem values in T0 plants were high and almost constant 22 

throughout both experimental periods (Figs. 2A-D). During 2012 season, Ψleaf 23 

values in T1 plants showed lower values but a similar seasonal course to those 24 

in T0 plants (Fig. 2A). Ψstem values in T0 and T1 plants showed a similar 25 



10 
 

seasonal course until DOY 198, from which time Ψstem values in T1 plants were 1 

lower than in T0 plants (2012 season, Fig. 2C). Ψleaf and Ψstem values in T2, T3 2 

and T4 plants decreased from the beginning of the water withholding periods, 3 

reaching minimum values of -3.69 and -2.91 MPa, -3.15 and -2.85 MPa and -4 

3.30 and -3.90 MPa, respectively, on DOY 229 (T2) and 239 (T3 and T4) (Figs. 5 

2A-D).  6 

The values of Ψfruit in T0 plants were significantly higher than those 7 

observed in T1, T2, T3 and T4 plants, which decreased reaching minimum 8 

values at the end of both experimental periods (Fig. 2E and F). gleaf values in T0 9 

plants were nearly constant and higher than those in the other treatments (Figs. 10 

2G and H). gleaf values in T1 plants were also nearly constant and relatively high 11 

and throughout the measurement period of the 2012 season (Fig. 2G). In 12 

contrast, gleaf values in water withheld plants (T2, T3 and T4) decreased during 13 

the stress period, reaching minimum values of 81.22, 326.50 and 196.75 mmol 14 

m−2 s−1, respectively, at the end of the measurement periods (Figs. 2G and H). 15 

The differences between Ψleaf and Ψfruit (∆Ψ) values in all treatments 16 

were negative during both experimental periods (Figs. 3A and B). Significant 17 

differences between treatments were found on DOY 208, 211 and 229 (2012 18 

season) (Fig. 3A) and on DOY 232 and 239 (2013 season) (Fig. 3B). 19 

Ψπ leaf values in T0 plants were nearly constant during both measurement 20 

periods (Figs. 4A and B). Ψπ leaf values in T1 plants were also nearly constant 21 

but lower than those found in T0 plants (Fig. 4A). Ψπ leaf values in water withheld 22 

plants (T2, T3 and T4) tended to be lower than in T0 during the water 23 

withholding periods (Figs. 4A and B). Ψp leaf values in T0 plants were nearly 24 

constant throughout both measurement periods (Figs. 4C and D), being very 25 
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similar to those in T1 plants except on DOY 222 (Fig. 4C). Ψp leaf values in T2, 1 

T3 and T4 plants decreased during the irrigation withholding periods, reaching 2 

minimum values of 0.18 MPa on DOY 229, 1.08 MPa on DOY 232 and 1.03 3 

MPa on DOY 232, respectively (Figs. 4C and D).  4 

Ψπ fruit values in T0 plants fell slightly during the 2012 measurement 5 

period, but were near constant during the 2013 measurement period (Figs. 5A 6 

and B). Ψπ fruit values in T1 were very similar to those in T0, showing significant 7 

differences between treatments only on DOY 205, 219 and 247 (Fig. 5A). In 8 

contrast, Ψπ fruit values in T2, T3 and T4 plants progressively decreased 9 

achieving lower values than T0 and T1 plants (Figs. 5A and B). Ψp fruit values in 10 

T0 plants were almost constant throughout both measurement periods whereas 11 

Ψp fruit values in T1, T2, T3 and T4 plants decreased below those in T0  reaching 12 

very low values, which frequently were slightly above the turgor loss point 13 

(values below zero) (Figs. 5C and D). 14 

The effect of a reduction in Ψ fruit on Ψπ fruit and Ψp fruit values is shown in 15 

Fig. 6. Ψπ fruit showed a close and linear dependence of Ψ fruit values (Fig. 6A), 16 

whereas the relation between Ψ fruit and Ψp fruit values showed a very low 17 

determination coefficient, which indicated that changes in Ψ fruit values only 18 

explained a 3 % of changes in Ψp fruit values (Fig. 6B). 19 

 20 

3.2. Yield and fruit characteristics 21 

Both seasons, the irrigation treatments produced a significant effect in 22 

the quantity and quality of the total marketable fruit yield (Table 1). Total jujube 23 

yield was reduced significantly for the water restriction effect (Table 1). T1 24 

plants showed a 25 % fruit yield reduction, whereas yield decrease in T2, T3 25 
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and T4 plants was 69 %, 39 % and 42 %, respectively (Table 1). The decrease 1 

in T1 fruit yield seemed to be due to the lower number of fruits, because the 2 

average fruit weight was similar to that in T0 plants (Table 1). The yield 3 

decrease in the treatments in which irrigation was withheld was mainly due to a 4 

significant decrease in both the average fruit weight and the number of fruits per 5 

tree (Table 1).  6 

 7 

4. Discussion 8 

The fact that Ψleaf, Ψstem and gleaf values in T0 plants were high and 9 

almost constant during both measurement periods (Fig. 2) suggested that the 10 

irrigation applied to this treatment was sufficient to avoid any water deficit during 11 

the measurement period. The differences in Ψleaf, Ψstem and gleaf values between 12 

T0 and T1 plants clearly indicated a water deficit situation in T1 plants. 13 

However, the fact that at maximum stress the decrease in Ψleaf and Ψstem values 14 

in T1 plants with respect to T0 plants was only 0.65 and 0.63 MPa, respectively, 15 

together with the fact that gleaf values in T1 plants, in spite of being lower than 16 

those in T0, were very high and nearly constant, indicated that water deficit in 17 

T1 can be considered as moderate. In this sense, the high gleaf values under 18 

moderate water deficit could be a consequence of the leaf turgor maintenance 19 

(Fig. 4) due to the active osmotic adjustment developed under these conditions 20 

(Cruz et al., 2012).   21 

Moreover, the water relations of transpiring leaves in water withheld 22 

plants (T2, T3 and T4) indicated severe water deficit situations due to the very 23 

low minimum Ψleaf values (-3.69, -2.91 and -3.15 MPa, respectively) and the 24 

important stomatal regulation respect to gleaf values in T0 plants (81.22, 326.50 25 
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and 196.75 mmol m−2 s−1, respectively) (Fig. 2A, B, G and H)). These water 1 

stress levels were more severe in T2 plants and less severe in T3 plants. 2 

The maintenance of leaf turgor potential values in T1, T2, T3 and T4 3 

plants above zero (Figs. 4C and D) even at maximum water stress levels, 4 

agrees with the results obtained in a previous paper by Cruz et al. (2012). 5 

These authors indicated that jujube plants are able to maintain leaf turgor under 6 

severe water deficit, essentially by developing two complementary mechanisms, 7 

leaf active osmoregulation and controlling water loss via transpiration, but 8 

allowing substantial gas exchange rates and, as a consequence, good leaf 9 

productivity. 10 

The substantially higher Ψfruit values than Ψleaf values during both jujube 11 

fruit maturation periods studied (Figs. 2A, B, E and F and 3A and B) has been 12 

observed in other crops, such as Asian pear (Behboudian et al., 1994), apple 13 

(Lang, 1990; Mills et al., 1997; Ward and Marini, 1999), avocado (Blanke and 14 

Whiley, 1995), citrus (Syvertsen and Albrigo, 1980), cotton (Trolinder et al., 15 

1993; Inglese et al., 1994), platyopuntias (Nobel and de la Barrera, 2000), 16 

pomegranate (Galindo et al., 2014) or tomato (Ho et al., 1987) and could be 17 

partially due to a high resistance to water movement from fruit to the rest of the 18 

tree, resulting in the maintenance of Ψfruit values at levels above Ψleaf values 19 

(Mills et al., 1997). Moreover, according to Nobel and de la Barrera (2000), from 20 

the energetic point of view, water can not flow from leaves to the fruits, since 21 

the xylem is not the provider of water for the fruits (Nobel et al., 1994). So, in 22 

our experimental conditions, during jujube fruit maturation water might have 23 

entered the fruits via the phloem rather via the xylem. Nevertheless, other 24 

authors indicated that in fully irrigated prunes the relative importance of xylem 25 
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and phloem in the water flow to the fruit may be reversible (Matthews and 1 

Shackel, 2005). Greenspan et al. (1994, 1996) suggested that the bulk vascular 2 

water flow changes from xylem in pre-veraison to phloem in post-veraison in 3 

fully irrigated grape berry. Also, Dell’Amico et al. (2012) showed that water flow 4 

in the olive fruit during pit hardening in fully irrigated conditions is via both xylem 5 

and phloem. 6 

The fact that Ψπ fruit decreased by water deficit effect (Fig. 6A) could be 7 

related with previous results in which some authors showed that water deficit 8 

during jujube fruit maturation period induces important changes in most of fruit 9 

chemical characteristics which make up a more advanced degree of ripening 10 

(Collado-González et al., 2014). These chemical changes could be ascribed 11 

among others to a degradation of some of polymers (mucilage, proteins and 12 

starch) in order to enhance flesh sweetness during the final stages of fruit 13 

ripening (Ma et al., 2006; Cui et al., 2008; Collado-González et al., 2014).  14 

The fact that Ψp fruit values were near constant and always above zero 15 

turgor when Ψ fruit values decreased from -0.76 to -3.70 MPa indicated that 16 

jujube fruit turgor can be maintained in spite of very important changes in jujube 17 

fruit water status (Fig. 6B). To explain why fruit size was reduced in T2, T3 and 18 

T4 plants (Table 1) since fruit turgor was maintained (Ψp fruit > 0) at maximum 19 

water stress levels (Figs. 5C and D and 6B) several hypothesis, which cannot 20 

be substantiated by our data, could be considered. Okello et al. (2015) showed 21 

that fruit size is strongly related to cell size instead cell number. 22 

Complementarily, a hypothesis to explain fruit size reduction and maintained 23 

fruit turgor is that elastic adjustment (increased elasticity of fruit cell walls) 24 

occurred. This passive mechanism allows a decrease in cell volume with 25 
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dehydration, slowing the rate of turgor loss by decreasing Ψfruit. Other 1 

hypothesis is based in the idea that cell enlargement depends on the growth-2 

effective turgor (difference between turgor pressure and wall yield threshold) 3 

rather than just turgor pressure (Van Volkenburgh and Cleland, 1986; Hale and 4 

Orcutt, 1987). So, probably, Ψp fruit values in T2, T3 and T4 plants did not 5 

exceed the wall yield threshold. In addition, the fact that the levels of water 6 

deficit achieved in treated plants were able to affect yield and fruit size (Table 1) 7 

indicated that the jujube fruit maturation stage is a more critical period than 8 

indicated by Cui et al. (2008). 9 

In conclusion, this experiment clearly showed that the jujube fruit 10 

maturation period was sensitive to water deficit. During the jujube fruit 11 

maturation stage water could enter the fruits via phloem rather via xylem. In 12 

contrast with the axiom that expansive cell growth requires the presence of cell 13 

turgor, a direct relation between turgor and the rate of growth was not found in 14 

jujube fruits, which could be due to an enhancement of a cell elasticity 15 

mechanism (elastic adjustment) which maintains fruit turgor by reducing fruit 16 

cells size or to the fact that jujube fruit growth depends on the fruit growth-17 

effective turgor rather than just turgor pressure. 18 
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Table 1 – Effect of irrigation treatments on total 

marketable jujube yield (kg tree-1), number of fruits 

per tree (NF) and average fruit weight (FW, g), during 

the 2012 and 2013 seasons. Different letters indicate 

significant differences between treatments in the 

same year according to LSD0.05 test. 

Season Treatment Yield NF FW  
2012 T0 34.78a 1105.65a 31.46a 

 T1 26.09b 899.98b 28.99a 
 T2 10.89c 803.28b 13.54b 
     

2013 T0 30.78a 946.00a 32.55a 
 T3 18.91b 794.50b 23.81b 
 T4 17.73b 797.75b 22.21b 

 

 

 



 

 

 

 

 

 

 

 

Fig. 1. Daily mean air temperature (Tm, solid thick line), daily crop reference 

evapotranspiration (ETo, thin line), mean daily air vapour pressure deficit (VPDm) (dashed 

thick line) and daily rainfall (vertical bars) during both experimental periods 

 

 

 

 

 

 

 

 



 

Fig. 2. Leaf water potential (Ψleaf, A, B), stem water potential (Ψstem, C, D), fruit water 

potential (Ψfruit, E, F) and leaf conductance (gleaf, G, H) values (mean ± SE, not shown 

when smaller than symbols, n = 4) at midday for jujube plants in T0 (closed circles and 

solid line), T1 (open triangles up and dotted line), T2 (open squares and short dash 

line), T3 (closed diamonds in grey and dash dot line) and T4 (closed triangles down in 

grey and long dash line) treatments during the experimental periods (2012 and 2013). 



Asterisks indicate significant differences between treatments according to LSD0.05 test. 

 



 

 

 

 

 

 

 

 

 

Fig. 3. Differences between midday leaf water potential (Ψleaf) and fruit water potential (Ψfruit) 

values (mean ± SE, not shown when smaller than symbols, n = 4) for jujube plants in T0 

(closed circles and solid line), T1 (open triangles up and dotted line), T2 (open squares and 

short dash line), T3 (closed diamonds in grey and dash dot line) and T4 (closed triangles down 

in grey and long dash line) treatments during the experimental periods (2012 and 2013). 

Asterisks indicate significant differences between treatments according to LSD0.05 test. 



   

 

 

 

 

Fig. 4. Leaf osmotic potential (Ψπ leaf, A, B) and leaf turgor potential (Ψp leaf, C, D) 

values (mean ± SE, not shown when smaller than symbols, n = 4) at midday for 

jujube plants T0 (closed circles and solid line), T1 (open triangles up and dotted 

line), T2 (open squares and short dash line), T3 (closed diamonds in grey and 

dash dot line) and T4 (closed triangles down in grey and long dash line) 

treatments during the experimental periods (2012 and 2013). Asterisks indicate 

significant differences between treatments according to LSD0.05 test. 

 

 



 

 

 

 

 

 

Fig. 5. Fruit osmotic potential (Ψπ fruit, A, B) and fruit turgor potential (Ψp fruit, C, D) 

values (mean ± SE, not shown when smaller than symbols, n = 4) at midday for 

jujube plants in T0 (closed circles and solid line), T1 (open triangles up and dotted 

line), T2 (open squares and short dash line), T3 (closed diamonds in grey and 

dash dot line) and T4 (closed triangles down in grey and long dash line) 

treatments during the experimental periods (2012 and 2013). Asterisks indicate 

significant differences between treatments according to LSD0.05 test. 



 

 

 

 

 

Fig. 6. Relationships for jujube plants under T0 (closed circles), T1 (open triangles 

up), T2 (open squares), T3 (closed diamonds in grey) and T4 (closed triangles 

down in grey) conditions between midday fruit osmotic water potential (Ψπ fruit) and 

midday fruit turgor potential (Ψp fruit) and midday fruit water potential (Ψfruit) using 

all data pooled. 

 

 

 

 

 


