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1 Introduction

In Supervised Classification, [16,17,27], we are given a set of objects Ω par-
titioned into classes and the aim is to build a procedure for classifying new
objects. In its simplest form, each object i ∈ Ω has associated a pair (xi, yi),
where the predictor vector xi takes values on a set X ⊆ Rd and yi ∈ {−1,+1}
is the class membership of object i. See [2–4,10,14,15,19,20] for successful
applications of Supervised Classification.

Support Vector Machines (SVM), [12,24,25], have proved to be one of
the state-of-the-art methods for Supervised Classification. The SVM aims at
separating both classes by means of a hyperplane, ω>x + b = 0, found by
solving the following optimization problem:

min
ω∈Rd, b∈R

ω>ω/2 +
C

n

n∑
i=1

g((1− yi(ω>xi + b))+),

where n is the size of the sample used to build the classifier, (1 − yi(ω>xi +
b))+ = max{1−yi(ω>xi+b), 0}, C is a nonnegative parameter, and g a nonde-
creasing function in R+, the so-called loss function. The most popular choices
for g, namely the hinge loss, g(t) = t, and the squared hinge loss, g(t) = t2, are
convex functions. These convex loss functions yield smooth convex optimiza-
tion problems, in fact, convex quadratic, which have been addressed in the
literature by a collection of competitive algorithms. See [8] for a recent review
on Mathematical Optimization and the SVMs. More challenging optimization
problems arise when solving the SVM with non-convex loss functions, see e.g.,
[11,22,23,28].

In this technical note, we are interested in the SVM with the so-called ramp
loss function, g(t) = (min{t, 2})+, [11,23]. From the computational perspec-
tive, a first attempt to study the SVM with the ramp loss is presented in [18],
where the problem is formulated as a Mixed Integer Nonlinear Programming
(MINLP) problem, and datasets with up to n = 100 objects are solved with
a commercial software package. The state-of-the-art algorithm is given in [6],
where the ramp loss model, (RLM), is formulated as the following MINLP
problem

min
ω,b,ξ,z

ω>ω/2 +
C

n

(
n∑
i=1

ξi + 2

n∑
i=1

zi

)
s.t. (RLM)

yi(ω
>xi + b) ≥ 1− ξi −Mzi ∀i = 1, . . . , n

0 ≤ ξi ≤ 2 ∀i = 1, . . . , n

z ∈ {0, 1}n (1)
ω ∈ Rd

b ∈ R,

with M a big enough constant. See [6] for further details on this formulation,
called there the SVMIP1(ramp), and [13,26] for related models. This MINLP
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formulation has a quadratic term of dimension d and n binary variables, and
is therefore challenging from the computational point of view. In [6], datasets
with up to 500 objects are solved to optimality. In this technical note, we
propose two heuristics for the RLM that can handle datasets of larger size,
and compare them to the state-of-the-art algorithm. The first one is based on
the continuous relaxation of the RLM, therefore, it is a cheap heuristic (its
computation time is comparable to training an SVM). The second heuristic
is based on training an SVM on a reduced dataset identified by an integer
linear problem. At the expense of higher running times, and as our computa-
tional results will illustrate, this procedure behaves much better in terms of
classification accuracy than the other two.

The remainder of the note is organized as follows. In Section 2, the two
heuristics and the state-of-the-art algorithm for the RLM are described in more
detail. In Section 3, we report our computational results using both synthetic
and real-life datasets. We end this note in Section 4 with some conclusions and
topics for future research.

2 Heuristic Approaches

In this section, we describe three heuristics, Heuristics 1, 2, 3, whose descrip-
tions can be found in Figures 2–4, respectively. Heuristics 1 and 2 are our
proposals while Heuristic 3 is the state-of-the-art algorithm with a time limit
[6]. Before describing the heuristics, we present in Figure 1 a procedure that
exploits the nature of the RLM formulation to build feasible solutions starting
from a partial solution (ω, b). In short, the RLM can be written as a two-stage
problem, in which we first choose the classifier, defined by ω and b, and then
fill in the variables ξ and z.

Therefore, in the rest of this section, when describing the three heuristics,
we will concentrate on explaining how to obtain the partial solution (ω, b)
defining the classifier. The corresponding ξ and z will be derived using the
fill-in procedure in Figure 1.

Step 1. Let a classifier be defined by ω and b.
Step 2. For each i, fill in variables ξi and zi as follows:

Case I. If yi(ω
>xi + b) > 1, then set ξi = 0, zi = 0.

Case II. If −1 ≤ yi(ω>xi + b) ≤ 1, then set
ξi = 1− yi(ω>xi + b), zi = 0.

Case III. If yi(ω
>xi + b) < −1, then set ξi = 0, zi = 1.

Step 3. (ω, b, ξ, z) is a feasible solution for the RLM.

Fig. 1: Fill-in Procedure for the RLM
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We now describe Heuristic 1, see Figure 2. In Heuristic 1, we first construct
the continuous relaxation of the RLM, where the integrality constraints (1) are
replaced by z ∈ [0, 1]n, and return as (partial) solution (ω, b) to the RLM the
optimal classifier of this relaxation. This is a cheap and naïve heuristic, which
consists of solving a convex quadratic problem with linear constraints, and our
computational results show that it performs well in the datasets tested.

Step 1. Solve the continuous relaxation of the RLM, yielding a
(partial) solution (ω, b).

Step 2. Fill in (ω, b) as described in Figure 1.

Fig. 2: Description of Heuristic 1

Heuristic 2 is based on the optimization of an integer linear problem, easier
to solve than the RLM since neither the quadratic term ω>ω/2 nor the vari-
ables ξ are present. Let us consider the Linear Separability Problem (LSP),
which aims to find the minimum number of objects to be taken off to make
the sets {xi, yi = 1} and {xi, yi = −1} linearly separable. For each object i,
let us define the binary variable αi taking the value 1 if object i is removed,
and 0 otherwise. Now, the LSP can be formulated as:

min
ω,b,α

n∑
i=1

αi

s.t. (LSP)

yi(ω
>xi + b) ≥ 1−Mαi ∀i = 1, . . . , n

α ∈ {0, 1}n

ω ∈ Rd

b ∈ R,

where M is a big enough constant.
Heuristic 2 works as shown in Figure 3. First, a solution to the LSP is

used to define a reduced set, in which only objects with αi = 0 are considered.
Second, an SVM is trained on the reduced set, yielding a (partial) solution
(ω, b) to the RLM. Third, (ω, b) is used as initial solution in a branch and
bound (B&B) procedure for the RLM, which is truncated by a time limit.

To end, we describe Heuristic 3, see Figure 4. This heuristic is based on
solving the RLM by a B&B procedure, enhanced with an initial solution, and
possibly at each node with a heuristic procedure. In [6], two initial solutions
are proposed, the so-called zero solution (iniω=0) and the so-called zero error
solution (iniz=0). (Please note that there is a third heuristic solution in [6].
Since it is computationally very expensive, and therefore, impractical for large
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Run for tlim2 seconds:

Step 1. Solve the LSP and let (ω′, b′, α′) be the solution vector
obtained.

Step 2. The solution to the LSP is used to define a reduced
set, in which only objects with α′i = 0 are considered.

Step 3. An SVM is trained on the reduced set, yielding a
(partial) solution (ω, b) to the RLM.

Step 4. Fill in (ω, b) as described in Figure 1.
Step 5. (ω, b, ξ, z) is used as initial solution in a B&B

procedure.

Fig. 3: Description of Heuristic 2

datasets, it is not considered in our tests.) The zero solution is derived by
setting ω = 0, and b = 1 if card{i, yi = 1} > card{i, yi = −1} and b = −1
otherwise. The zero error solution involves solving a quadratic problem con-
sisting of the RLM with zi = 0 ∀i = 1, . . . , n. In [6], a heuristic procedure is
applied at each node aiming at improving the best upper bound. This node
improvement consists of constructing a feasible solution to the RLM by apply-
ing the fill-in procedure in Figure 1 to the classifier returned by the continuous
relaxation. If the objective value of this new solution improves the best up-
per bound, this bound will be updated. Note that our Heuristic 1 is a cheap
heuristic where such a fill-in procedure is only applied at the root node. As
for Heuristic 2, Heuristic 3 is run until a time limit is reached. Note that the
three heuristics are matheuristics, [21], since their procedures require solving
nontrivial optimization problems.

Run for tlim3 seconds:

Step 1. Let NI ∈ {0, 1}.
Step 2. Let (ω, b) be an initial (partial) solution.
Step 3. Fill in (ω, b) as described in Figure 1.
Step 4. (ω, b, z, ξ) is used as initial solution in a B&B

procedure, where if NI=1, Heuristic 1 is applied in
each node with the aim of improving the current best
feasible solution.

Fig. 4: Description of Heuristic 3
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3 Computational Results

This section is aimed to illustrate the performance of our heuristics, Heuristics
1 and 2, with respect to Heuristic 3. The rest of this section is structured as
follows. The datasets used to compare these heuristics are described in Section
3.1. The tuning procedure used to choose the tradeoff parameter C is given in
Section 3.2. Finally, the computational results are presented in Section 3.3.

Our experiments have been conducted on a PC with an Intel R© CoreTM i7
processor, 16 Gb of RAM. We use the optimization engine CPLEX v12.3, [1],
for solving all optimization problems.

3.1 Datasets

To illustrate the capacity of our heuristics to handle larger dataset sizes than
Heuristic 3, we use both synthetic and real-life datasets. In [6], Heuristic 3 was
tested on two synthetic datasets obtained using the so-called TypeA and TypeB

generators, and 11 real-life datasets from the UCI repository [5]. We use both
the TypeA and TypeB generators (for d equal to 2, 5 and 10), as well as the
dataset adult, the only real-life one tested in [6] with a size larger than 5000
objects. In addition, we also report results on three other large UCI datasets,
see [5,9].

A description of these datasets can be found in Table 1, whose first three
columns give the dataset name, number of attributes (d) and total size of the
dataset (|Ω|). As customary in the literature of Supervised Classification, [8],
each dataset is partitioned into the so-called, training, testing and validation
sets. Large sizes are used for the training set, see the fourth column of Table 1,
and the remaining records are equally split between the testing and validation
sets. The fifth column of Table 1 reports the class split in the training sample.
Finally, the last column reports the mean accuracy for the SVM (with the hinge
loss), following the procedure described in the next section for the selection of
the tradeoff parameter C.

3.2 Parameters Setting

As customary in Supervised Learning, the RLM contains parameter C in its
formulation, which needs to be tuned. Following the usual approach, [8], C
is tuned by inspecting a grid of 26 values of the form C = 2k, such that
2−13 ≤ C

n ≤ 213. The tuning for a given heuristic works as follows. The dataset
is split into three sets, called training, testing and validation set. For each value
of C the heuristic is run on the training set, yielding the classifier given by
(ωC , bC). The different classifiers built in this way are compared according
to their accuracy on the testing set. The parameter C∗ for which (ωC∗ , bC∗)
yields the highest accuracy on the testing set is chosen. In the tables below,
the accuracy on the validation set of the heuristic for (ωC∗ , bC∗) is reported.
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Table 1 Datasets

Name d |Ω| n Class split SVM
TypeA 2 15000 5000 50/50 51.62
TypeA 5 15000 5000 50/50 49.21
TypeA 10 15000 5000 50/50 48.22
TypeB 2 15000 5000 50/50 56.95
TypeB 5 15000 5000 50/50 51.73
TypeB 10 15000 5000 50/50 50.55
gamma 10 19020 10000 32/68 79.28
adult 123 30956 15000 24/76 84.88
cod-rna 8 59535 20000 33/67 93.87
ijcnn1 22 35000 20000 9/91 91.36

In order to make a fair comparison, overall time limits for both Heuristics 2
and 3 should be the same. Heuristic 2 involves solving one LSP plus 26 RLMs,
which are aborted when a time limit is exceeded. In our experiments we choose
tlimLSP = 300 seconds for the LSP, and for each RLM tlim2 is chosen as the

closest integer to
d+ n

100

5
. Heuristic 3 involves solving 26 RLMs, which are

aborted after tlim3 = tlim2 +
tlimLSP

26 .

3.3 Accuracy Results

To obtain sharp estimates for the accuracy of the different heuristics, repeated
random subsampling validation is used, where ten instances are run for each
dataset. For the synthetic datasets, the ten instances differ in the seed used
to generate random data, whereas for the real ones, the seed is used to shuffle
the set and then obtain different training, testing and validation sets. For each
dataset and for each heuristic, Tables 2 and 3 report the mean validation
accuracy across the ten instances, as well as the standard deviation and the
median.

We have a whole array of variants of Heuristic 3 depending on the initial
solution chosen and whether the node improvement procedure is applied. We
can see that the simplest implementation of Heuristic 3, where we start with
the zero solution and no node improvement is applied, dominates the rest of
the variants in terms of mean and median accuracy, except for TypeA (d = 2)
and gamma. In any case, Heuristic 2 outperforms any variant of Heuristic 3.
Therefore, and unless stated, when referring to Heuristic 3 we will use the
results mentioned above.

The following conclusions can be drawn from our computational results.
In TypeA, Heuristic 2 outperforms Heuristic 3, while Heuristic 3 outperforms
Heuristic 1. The increase in mean accuracy shown by Heuristic 2 compared
to Heuristic 3 is more pronounced for larger values of d, being equal to 19.68
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percentage points for d = 10. A similar behaviour is observed for the median
accuracy. In TypeB, Heuristics 1 and 2 outperform Heuristic 3. Heuristic 2
outperforms Heuristic 1 in terms of median accuracy, where in terms of mean
accuracy the same holds for d = 2, 10, while for d = 5 the mean accuracies are
comparable. A closer look reveals that for larger d, any variant of Heuristic 3
has a median accuracy of 50%, the one given by the zero solution. Heuristics
1 and 2 have a similar accuracy in the real-life datasets, and they clearly
outperform Heuristic 3 in three of the datasets. For the gamma dataset, the
best mean accuracy of Heuristic 3 is achieved by giving the best among the
zero solution and the zero error solution at the root node, as well as applying
the node improvement procedure. For the gamma dataset, the increase in mean
accuracy (in percentage points) from Heuristic 2 to Heuristic 3 is then equal
to 4.62. For the datasets adult and codrna, the increase in mean accuracy
is equal to 5.41 and 12.67, respectively. Similar dominance is observed when
using the median accuracy. For the last real-life dataset, ijcnn1, the behaviour
in terms of accuracy of the three heuristics is similar. Taking a closer look at
this dataset, one can observe that classes are highly unbalanced, see Table
1, and therefore the accuracy of the three is very similar to that of the zero
solution. A finer analysis, taking into account not only the overall accuracy,
but also the sensitivity and specificity, reveals significant differences between
the heuristics. Indeed, as shown in Table 4, while Heuristic 3 misclassifies
all records in Class +1 (the class in minority), our procedures are slightly
better for such class. If, instead of the overall average accuracy, we measure
the (weighted) geometric mean of the accuracy in both classes, we see that
our procedures clearly outperform Heuristic 3.

This shows that our heuristics can address, for a given time limit, larger
datasets than Heuristic 3.

4 Conclusions

In this note we show that a quick heuristic, based on solving the continuous
relaxation of the RLM, is competitive against the state-of-the-art algorithm for
the SVM with the ramp loss, the RLM. Much better results are obtained with
our so-called Heuristic 2, which involves solving an integer linear problem and
a convex quadratic problem to obtain a good starting solution for the branch
and bound procedure.

In order to solve problems of larger size, valid cuts strengthening the for-
mulation would be extremely helpful. In this sense, [6] proposes the so-called
geometric cuts, but also mentions that these cuts are only of interest in the
trivial case of two-dimensional data. As done in [6], these cuts have not been
employed in experiments. New and helpful cuts deserve further study. As done
in [6], the algorithms proposed here can be extended to models which use the
so-called kernels [8,12]. In [6], two kernels are tested on small datasets. An
extension to large datasets requires a careful analysis due to the dramatic in-
crease in computational burden caused by the choice of the kernel parameters,
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[7]. Focusing our analysis on the linear kernel has allowed us to measure the
performance of our heuristics avoiding the side-effects caused by the kernel
choice.
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Table 4 Validation sample accuracy in % for ijcnn1

Heuristic Sensitivity Specificity
mean std med mean std med

1 18.81 2.29 18.22 99.25 0.17 99.24
2 29.66 5.11 29.80 98.71 0.55 98.92

iniω=0 0.00 0.00 0.00 100.00 0.00 100.00
3,NI = 0 iniz=0 0.00 0.00 0.00 100.00 0.00 100.00

iniω=0 & iniz=0 0.00 0.00 0.00 100.00 0.00 100.00
iniω=0 0.00 0.00 0.00 100.00 0.00 100.00

3,NI = 1 iniz=0 0.00 0.00 0.00 100.00 0.00 100.00
iniω=0 & iniz=0 0.00 0.00 0.00 100.00 0.00 100.00

References

1. IBM ILOG CPLEX (2012). Www-01.ibm.com/software/integration/optimization/cplex-
optimizer

2. Apte, C.: The big (data) dig. OR/MS Today p. 24 (2003)
3. Baesens, B., Setiono, R., Mues, C., Vanthienen, J.: Using neural network rule extraction

and decision tables for credit-risk evaluation. Management Science 49(3), 312–329
(2003)

4. Bertsimas, D., Bjarnadóttir, M., Kane, M., Kryder, J., Pandey, R., Vempala, S., Wang,
G.: Algorithmic prediction of health-care costs. Operations Research 56(6), 1382–1392
(2008)

5. Blake, C., Merz, C.: UCI Repository of Machine Learning Databases.
http://www.ics.uci.edu/∼mlearn/MLRepository.html (1998). University of Cali-
fornia, Irvine, Department of Information and Computer Sciences

6. Brooks, J.P.: Support vector machines with the ramp loss and the hard margin loss.
Operations Research 59(2), 467–479 (2011)

7. Carrizosa, E., Martín-Barragán, B., Romero Morales, D.: Variable neighborhood search
for parameter tuning in support vector machines. Tech. rep. (2012)

8. Carrizosa, E., Romero Morales, D.: Supervised classification and mathematical opti-
mization. Computers and Operations Research 40, 150–165 (2013)

9. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology 2, 1–27 (2011)

10. Chaovalitwongse, W.A., Fan, Y.J., Sachdeo, R.C.: Novel optimization models for ab-
normal brain activity classification. Operations Research 56(6), 1450–1460 (2008)

11. Collobert, R., Sinz, F., Weston, J., Bottou, L.: Trading convexity for scalability. In:
Proceedings of the 23rd International Conference on Machine Learning, ICML06, pp.
201–208. New York, USA (2006)

12. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and
Other Kernel-based Learning Methods. Cambridge University Press (2000)

13. Ertekin, S., Bottou, L., Giles, C.L.: Nonconvex online support vector machines. IEEE
Transactions on Pattern Analysis and Machine Intelligence 33(2), 368–381 (2011)

14. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification
using support vector machines. Machine Learning 46, 389–422 (2002)

15. Han, J., Altman, R., Kumar, V., Mannila, H., Pregibon, D.: Emerging scientific appli-
cations in data mining. Communications of the ACM 45(8), 54–58 (2002)

16. Hand, H., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press (2001)
17. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer,

New York (2001)
18. Liu, Y., Wu, Y.: Optimizing ψ-learning via mixed integer programming. Statistica

Sinica 16, 441–457 (2006)



Heuristic Approaches for the SVM with the Ramp Loss 13

19. Loveman, G.: Diamonds in the data mine 81(5), 109–113 (2003)
20. Mangasarian, O., Street, W., Wolberg, W.: Breast cancer diagnosis and prognosis via

linear programming. Operations Research 43(4), 570–577 (1995)
21. Maniezzo, V., Stützle, T., Voss, S. (eds.): Matheuristics: Hybridizing Metaheuristics and

Mathematical Programming, Annals of Information Systems, vol. 10. Springer (2009)
22. Orsenigo, C., Vercellis, C.: Multivariate classification trees based on minimum features

discrete support vector machines. IMA Journal of Management Mathematics 14(3),
221–234 (2003)

23. Shen, X., Tseng, G.C., Zhang, X., Wong, W.H.: On ψ-learning. Journal of the American
Statistical Association 98, 724–734 (2003)

24. Vapnik, V.: The Nature of Statistical Learning Theory. Springer-Verlag (1995)
25. Vapnik, V.: Statistical Learning Theory. Wiley (1998)
26. Wang, L., Jia, H., Li, J.: Training robust support vector machine with smooth ramp

loss in the primal space. Neurocomputing 71(13-15), 3020–3025 (2008)
27. Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan,

G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.H., Steinbach, M., Hand, D.J., Steinberg, D.:
Top 10 algorithms in data mining. Knowledge and Information Systems 14, 1–37 (2007)

28. Wu, Y., Liu, Y.: Robust truncated hinge loss support vector machines. Journal of the
American Statistical Association 102(479), 974–983 (2007)


