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A deformed version of the vibron model for diatomic molecules is constructed. Both the O(4) and

U(3) dynamical symmetries of the model are rewritten, using the concept of complementary subalgebras,
in a more convenient form, which is subsequently deformed. The present model unifies the so far in-

dependent successful quantum-algebraic approaches to rotational and to vibrational spectra of diatomic
molecules. In addition, the method can be used for the construction of deformed versions of the U(5)
and O(6) limits of the interacting boson model of nuclear structure.

PACS number(s): 33.10.Cs, 31.15.+q, 02.20.Sv

I. INTRODUCTION

The mathematical structure of quantum algebras
(quantum groups) [1—4] has recently been attracting
much attention. They are deformed versions of the usual
Lie algebras, to which they reduce when the deformation
parameter q is set equal to 1. In parallel, applications of
quantum algebras in physics have begun to develop in
particular in cases in which Lie algebras are known to de-
scribe approximately the symmetries of a physical sys-
tem. The quantum algebra su (2) has been successfully
used for describing rotational spectra of diatomic mole-
cules [5—7], deformed nuclei [8—10], and superdeformed
nuclei [11]. Vibrational spectra of diatomic molecules
have been described in terms of deformed oscillators
[12—16], as well as in terms of an SU (1,1) symmetry
[17,18]. Potentials giving spectra equivalent to those of
the deformed oscillators just mentioned have been con-
structed [19,20] and found to be deformed versions of the
modified Poschl- Teller potential or, equivalently, the
Morse potential.

On the other hand, the vibron model [21—23], having
an overall U(4} symmetry, is known to provide a unified
description of molecular rotations and vibrations through
the use of algebraic techniques, in a way similar to the
description of collective nuclei in terms of the interacting
boson model (IBM) [24]. The O(4} limiting symmetry of
the vibron model has been found to be appropriate for di-
atomic molecules, while the U(3) limiting symmetry has
been used for the description of clustering effects in nu-
clei, as well as for the quasimolecular description of
heavy-ion resonances (see [25] for lists of references).

The question is therefore created if a deformed version
of the vibron model can accommodate in a unified frame-
work the improved descriptions of rotational and vibra-
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tional molecular spectra obtained so far in terms of
separate quantum algebras. The problem of constructing
the deformed version of the vibron model (or of the IBM)
is not a simple one since the construction of the reduction
chains of Ue(4) and U (6) has not been achieved yet. It
suffices to be mentioned that the reduction frotn SU (3)
to SO (3) has been carried out only for fully symmetric
irreducible representations (irreps} of SU (3) [26]. How-
ever, a few efforts towards constructing deformed ver-
sions of the vibron model [27,28] and the IBM [29,30] al-

ready exist.
In this paper a deformed version of both the O(4) and

U(3) dynamical symmetries of the U(4) vibron model will

be constructed, taking advantage of the techniques of
complementary algebras, introduced by Quesne and co-
workers [31—33], which bypass the difficulties in the con-
struction of reduction chains of quantum algebras. In ad-
dition to unifying the existing independent quantum-
algebraic descriptions of rotational and of vibrational
molecular spectra, the present approach allows, in a sim-

ple way, for the introduction of cross terms describing
the coupling between these two excitation mechanisms.

A brief account of the vibron model for diatomic mole-
cules will be given in Sec. II, while in Sec. III the model
will be formulated in another way, using the techniques
of complementary algebras. In Sec. IV the q-deformed
version of the complementary analogs of both the O(4)
and U(3) dynamical symmetries of the vibron model will

be given. Section V will contain discussion of the present
results and plans for further work.

II. THK VIBRON MODEL
FOR DIATOMIC MOLKCULES

In this section the briefest possible account of the vib-
ron model [21—23] is given in its usual form. In the vib-
ron model the rotations and vibrations of a diatomic mol-
ecule are described in terms of four bosons: a scalar bo-
son of positive parity and angular momentum 1=0,
denoted by s+, and the three components of a vector bo-
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[T 'T '] '= g (k, uk~ u3~k3 u3)T„'T„',
Q)Q2

(2.1)

one observes that the 16 possible bilinear quantities
[bi+eh&. ] generate the algebra U(4), which is, therefore,
the overall symmetry of the vibron model.

There are two chains of subalgebras of u(4) containing
the angular-momentum algebra so(3) as a subalgebra.
These are

I: u(4) Do(4) Dso(3) Dso(2),

II: u(4) Ou(3) Dso(3) Dso(2) .

(2.2)

(2.3)

In the case of chain I the basis has the form ~N ELM ),
where the various quantum numbers are defined as fol-
lows.

(i) N is the total number of bosons. It characterizes the
irreps of U(4), which are fully symmetric, since we are
dealing with a system of bosons.

(ii) co is the seniority quantum number, characterizing
the irreps of O(4) and obtaining the values
co=N, N —2, . . . , 1 or 0.

(iii) L is the angular momentum quantum number, la-
beling the irreps of SO(3) and taking the values
L =a), co —1, . . . , 1,0.

(iv) M denotes the z component of the angular momen-
tum, labeling the irreps of SO(2) and having the values—L +M+L.

When the Hamiltonian is characterized by the dynami-
cal symmetry of chain I, it can be written in terms of the
Casimir operators of the algebras appearing in this chain:

Ht =ep+ eC~ (u(4) )+63C3(U(4) )

+ ACz(o(4) )+BC'(so(3)), (2.4)

where N and N are related to the first- and second-order
Casimir operators of u(4). The eigenvalues of the Hamil-
tonian in the basis given above are then

E(N, co,L)=ep+e)N+e3N(N+3)

+ Ace(co+2)+BL (L +1}. (2.5)

Usually the vibrational quantum number

N —co

2
(2.6)

is introduced, and the energy eigenvalues are rewritten as

E(N, u, L)=op+ e',N +e~N 4A (N +2)(u + —,
—' }

+4A (u+ ,'} +BL(L+1), —(2.7)

where E'(), E'), Ep are related to E'0 E'~ 6'p A. It should be no-
ticed that the fourth and fifth terms on the right-hand

son of negative parity and 1 = 1, denoted by p „+,

p =0,+1. The corresponding annihilation operators
transforming as spherical tensors are s =s and
P„=(—1)' "p „. Denoting these bosons by b&+„, I =0, 1

and —1&p & I, and bI „=(—1)' "b~ „,and de6ning the
tensor product of two operators T„and T„as

1 2

+aC3(u(3))+pC, (so(3)) . (2.8)

The eigenvalues of the Hamiltonian in the basis given
above are

E(N, n&, L)=Fp+F.,N+ezN(N+3)

+en +an (n +2)+PL(L+1) .

III. ALTERNATIVE FORMULATION
OF THE VIBRON MODEL

(2.9)

An alternative formulation of the vibron model can be
achieved in terms of complementary algebras. The no-
tion of complementary algebras was introduced by
Moshinsky, Quesne, and co-workers [31—33]. It is espe-
cially fruitful in the case of multidimensional harmonic
oscillators or many-particle systems of few kinds of bo-
sons. In the present case of four kinds of bosons (s+,p„+,
@=0,+1) the host algebra is sp(S,E). Two chains of
subalgebras are

sp(8, E)Du(4) Do(4) Dso(3) Dso(2),

sp(S, E)Dsp(2, R)Du(1) .

(3.1)

(3.2)

The quantum numbers N, p3, L,M, labeling the irreps of
the subalgebras of the first chain, have been described in
Sec. II. sp(2, R) is isomorphic to su(1, 1). The irreps of
su(1, 1) and u(1) are labeled by the quantum numbers j
and m, respectively. Two subalgebras A& and Az of a
larger algebra A are complementary within a definite ir-
rep of A if there is a one-to-one correspondence between
all the irreps of A& and of Az contained in this irrep of A

[31]. In the example given above, the only irreps of the
host algebra sp(S,E}that can be realized in a Fock boson
space are the even irrep [0], including the vectors
~NcoLM ) with N even, and the odd irrep [1],including
the vectors with N odd. It can then be proved that o(4}
and sp(2,E) [and thus also o(4) and su(1, 1)] are comple-
mentary. The same holds for u(4) and u(1).

For convenience let us denote the four kinds of bosons
introduced in Sec. II by b, v=1,2, 3,4, corresponding to
p+&,p „po,s, respectively. To each kind v of bosons
corresponds an algebra sp"(2, E},generated by

K+ = ,'bP„, K' = ,'b b„,—ECp=—,'(N, + ——,'), (3.3)

side correspond to the spectrum of the Morse potential
[34].

In the case of chain II the basis is ~Nn LM ), where N
is again the total number of bosons, while the other quan-
tum numbers are defined as follows.

(i) n is the number of p bosons labeling the irreps of
U(3) and obtaining the values n =0, 1, . . . , N

(ii) L is labeling the irreps of SO(3}, obtaining the
values L =n, n —2, . . . , 1 or 0.

(iii) M is labeling the irreps of SO(2), with values
—L +M+L.

When the Hamiltonian is characterized by the dynami-
cal symmetry of chain II, it can be written in terms of the
Casimir operators of the algebras appearing in it:

H„=ep+ e, C, (u(4) )+ezCz(u(4) )+eC, (u(3) )
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where N„=bP . These generators satisfy the commuta-
tion relations

[K(),K+ ]=+K~, [K+,K" ]= 2—K() . (3.4)

The sp(2, E}=su( 1, 1 } algebra, mentioned above, is real-
ized in the space of four kinds of bosons. Therefore we
are going to use for it the symbol
sp" '(2, E)=su" '(l, l ). This algebra is generated by

=
—,
' gbP„, K =

—,
' gb„b„, K =

—,'(N+2),

~NcoLM) the quantum numbers Nco by the quantum
numbers jm of the complementary subalgebras. Further-
more, in the Hamiltonian of Eq. (2.4) one is entitled to re-
place the second-order Casimir operator of o(4) by the
second-order Casimir operator of su" '(l, l) and the
first- and second-order Casimir operators of u(4) [N and
N(N +3) ] by the first- and second-order Casimir opera-
tors of u(1) (Ko and Ko ).

In the case of chain II, the u(3) subalgebra of u(4) in-

volves only the p bosons. The host algebra is then
sp(6,E), having the two chains of subalgebras

(3.5)

where N=g„b„b, The. se generators satisfy the com-
mutation relations

sp(6, E)Du(3) Dso(3) Dso(2),

sp(6, E)Dsu" '(l, l) Du(1),

(3.15)

(3.16)

[Kp,K~]=+K~, [K+,K ]=—2K() .

The Casimir operator is

Cz(sp" '(2, E))= —K+K +K()(K()—1),

(3.6)

(3.7)

1 n —4
J — N+

2 2
(3.8)

with eigenvalue j(j+1). It is known that when o(n) and
su(1, 1) are complementary, the quantum numbers co and j
characterizing their irreps are connected by [35]

where the superscript (123) means that only the bosons
b „bz, b 3 are involved in the formation of
su" '(1, 1}=sp" '(2, E). Further details on these chains
are given below [see Eqs. (3.26)—(3.28}].

The building up of the bases related to the two limiting
symmetries of the vibron model can then be achieved as
follows. To each kind of boson b„, an sp"(2, E) algebra
corresponds, as already mentioned, generated by the
operators given in Eq. (3.3). The states with N„even cor-
respond to the irrep D, while the states with N„odd
correspond to the irrep D ' . Thus to each boson state

co N —
UJ=2=

4
(3.9)

In the present case su" '(l, l) is complementary to o(4),
so that

1
lN)NzN, N4) =

QN)!Nz!N3!N4!

X(bi) '(bz) '(bz) '(b4) '0) (3.17)

Cz(A) )=c)cz(Az)+cz .

In the case of o(n) and su(1, 1}this relation is

(3.10)

It is also known that the Casimir operators of two alge-
bras complementary to each other are connected by a
simple, usually linear, relation of the type

one can correspond a set of four noncompact "angular
momenta" j„=—

—,
' or —

—,', v=1,2, 3,4, the value of each

angular momentum j depending on the parity of the
corresponding boson number N .

We can now proceed to the vector coupling of the first

two angular momenta j, and jz, using the SU(1,1)
Clebsch-Gordan coefficients [36,37]

Cz(su(1, 1))= —,
' Cz(o(n ) ) + n (n —4)

(3.11) lj)jzj)zm)z&= g &J(m)jzmzlj(zmiz}sU(), ))

which in the present case of o(4} reduces to

C,(su"""(1,1)) =-,'C, (o(4) ) . (3.12)

1 nm= —X+—
2 2

(3.13)

which in the present special case of u(4) and u(1) reduces
to

m =
—,'(N+2) . (3.14)

The chain of Eq. (3.1) already studied is of interest in
the case of the chain I of the vibron model. It implies
that in studying chain I, one can replace in the basis

The u(1) subalgebra of su" '( l, l) is generated by the
operator Eo alone, the eigenvalues of which we label by
m. In the general case of the complementary algebras
u( n ) and u(l), the quantum numbers N and m character-
izing their irreps are connected by [35]

m&m&

X~j)m))~jzmz) . (3.18)

with p=0, +1. The host algebra of this space of two
kinds of bosons is sp(4, E}. The following two chains of
subalgebras exist:

sp(4, E)&u(2) Dso(2),

sp(4, E)Dsu' )( l, l ) DU(1),

(3.20}

(3.21)

where the irreps of u(2) are labeled by the total number of
bosons N, z =N, +Nz, while the irreps of so(2) are labeled

by M =N, Nz. SO(2) is —complementary to
su" '( 1, 1 )=sp" '(2, E), the irreps of which are labeled by

j,z
=

—,'(M —1), (3.22}

This means that the intermediate su" '(l, l } algebra has
been introduced, generated by

(3.19)
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m(z =—'(N(z+1), (3.23)

according to Eq. (3.13).
The next step along this line is to couple j12 with j3.

In this case three kinds of bosons are involved, so that the
host algebra is sp(6,R). The relevant chains for this case
have been given in Eqs. (3.15) and (3.16), so(3) being com-
plementary to su" '(1, 1},which is generated by

g 123 g 12 +~3 (3.24}

with p=0, +1. The resulting eigenvectors are

I Jl jz{4 lz V3'J123m 123 &

{j (2 m lzj3m 3 IJ 123m 123 & SU(1, ( )

m12m3

x
Ij(jz.j(zm &z ) I j3m 3 ) (3.25)

The Casimir operators of so(3} and su" '(l, l) are con-
nected by

according to Eq. (3.8), while u(2) is complementary to
u(1), the irreps of which are labeled by

The host algebra in this case is sp(8,R), the relevant
chains having been given in Eqs. (3.31) and (3.32). The
basis vectors, denoted by Ij,jz(j,z)j3(j,z3)j4..jm ), or by

Ij(zj3(j(z3 )j4.jm ) in the case in which the shortened ver-
sion of Eq. (3.30) is used for the vectors with angular
momentum j12, correspond to the irreps of the
sp' (2,R)=su' (l, l) algebra, generated by

g 1234 g 123 +g 4 (3.32)
I

with @=0,+1. Here K are the generators of the
su (1,1) algebra, associated with the s-bosons. The total
noncompact angular momentum j, characterizing the ir-
reps of su" 4'(l, l), is connected to the seniority quan-
tum number (0, characterizing the irreps of o(4), by Eq.
(3.8), while the Casimir operators of these two comple-
mentary algebras are connected by Eq. (3.12).

Given the above, it is clear that for the chain I of the
vibron model, instead of the basis INcoLM), the basis

Ij,zjz{j,z3)j4.jm ) can be used. Furthermore, in the case
of chain II, instead of the basis INn~LM), the basis

Ij,zj3:j,z, m, z, ) I j4m4 ) can be used. It is clear that the
connection between the two new bases for the dynamical
symmetries of the vibron model is

Cz(so(3) ) =4Cz(su" "(1,1)) +—', , {3.26)
I j(zjz(j]z3V4:Jm &

according to Eq. (3.11), while the quantum numbers la-
beling their irreps, L and j123, respectively, are connected
by

m &23 m4

& j(z3m(z3j4m4ljm &sU((, (i

j(z3 = I'(L (3.27)
x

Ij(zj3 j(z3m]z3 & I j4m4 & (3.33)

according to Eq. (3.8). The eigenvalues of
Cz(su" '(l, l)) in the above-mentioned basis are given

by j,z3(j,z3+1). Furthermore, in the chains of Eqs.
(3.15) and (3.16), u(3) and u(1) are complementary, the
quantum numbers n~ and m, 23 labeling, respectively,
their irreps being connected by

The Hamiltonian of chain I, given in Eq. (2.4), can be
rewritten using the complementarity relations described
in Eqs. (3.1), (3.2), (3.15), and (3.16},as

H) =ep+e(C((u(l))+ezCz(u(1))

+4ACz(su" '(1, 1))+4BCz(su" '(1, 1)) . (3.34)

m, z3= —,'(n +—', ), (3 28) The eigenvalues of this Hamiltonian are

Ij„m„&= (b$) '(bz) 'I0&,
QN (!Nz!

with

(3.30)

J(z 2 (N( Nz —1), m „=—,'(N, +N, +1), (3.31)

[which are in agreement with Eqs. (3.22) and (3.23)] are
eigenvectors of the Casimir operator Cz(su"z'(1, 1)), with
eigenv»ues j»(j»+1). In this way one can avoid the
couphng of j1 and j2 to j». The coupling of j» and j3
cannot be avoided however. The resulting vectors in this
case we denote by Ij,zj3:j,z3m (z3 ).

In the last step the coupling of j123 to j4 is performed.

according to Eq. (3.13).
The coupling of the two angular momenta j, and jz,

performed above, can be avoided by noticing that the
su" '(l, l) can be generated by

E'+ =b,bz, E' =b(bz, Ep =
—,'(N, +Nz+1) . (3.29)

The vectors

E(m, j j(z3)=Ep+eIm +ezm'+4Aj(j+1)
+4Bj123{j123+1). (3.35)

Hn &O+e1m +edam +e'm123+a'm 123

+4P'Cz{su" '(1, 1)), (3.36)

where on the right-hand side the second and third term
correspond to the first- and second-order Casimir opera-
tor of the u(1) algebra of the chain of Eq. (3.2), while the
fourth and fifth terms correspond to the first- and
second-order Casimir operators of the u(1) algebra ap-
pearing in the chain of Eq. (3.16). The eigenvalues of this

Using Eqs. (3.14), (3.9), and (3.27), which connect the
quantum numbers m, j,j,z3 to the previous ones (N, co,L ),
it is easily verified that Eq. (3.35) is an alternative way of
writing Eq. (2.5}.

Similarly the Hamiltonian of chain II, given in Eq.
(2.8), can be rewritten, taking into account the com-
plementarity relations given in Eqs. (3.1},(3.2), (3.15), and
(3.16), as
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Hamiltonian are

E(m, m, 23 J )23)= eP+ eIm+e2m +e m)23+a'm(23

one can prove that su" '(1, 1) is generated by [38—40]

K ' '=a"a K" '=a a K" '= —'(N, +N2+1),
+4&'J 123(j123+1) . (3.37)

Using Eqs. (3.14), (3.28), and (3.27), which connect
m, m, 23,j,23 to N, n~, L, it is easily verified that Eq. (3.37)
is an alternative way of writing Eq. (2.9).

In this section we have therefore rewritten the bases
and the Hamiltonians corresponding to the two dynami-
cal symmetries of the vibron model in terms of comple-
mentary subalgebras. This formulation is useful because
it can be q deformed in a very simple way.

IV. q DEFORMATION OF THE VIBRON MODEL

the relevant commutation relations being

[K(12) K(12) ) +K(12)
0 ~ + j — +

[K(12) K(12) ]= (2K()2) ]

The vectors

~j»m»), = (a)) '(a2) '~0),
V'[N(]q)[N2)q(

(4.10)

(4. 11)

The corresponding Hamiltonians were then written in
terms of the Casimir operators of the new reduction
chains. An evident possibility for q deforming these
Hamiltonians is to substitute the su(1, 1) algebras of Eq.
(4.1) by their q-deformed counterparts su (1,1) [38—40],

su" '(1, 1)Dsu" '(1, 1)Dsu" '(1, 1)ZU (1) . (4.2)

In this section we shall explain how this can be achieved,
after giving a brief account of the necessary mathematical
details.

q numbers are de6ned as

(4.3)

For q real (q = e ' with r real), they can be written as

sinhrx

sinh~
(4.4)

while in the case of q being a phase (q =e" with r real),
they obtain the form

sinrx
q sin7-

(4.5)

In the limiting q~ 1(v~0), q numbers reduce to usual
numbers.

q-deformed oscillators [41,42] are introduced through
the relations

aalu —
q

—'a 'a =q, [N, a ]=a, [N, a]= —a, (4.6)

where a and a are the q-deformed boson creation and
annihilation operators and N the relevant number opera-
tor. Using Eq. (4.6) one can easily show that

a a=[N]~, aa =[N+1]~ . (4.7)

q-deformed algebras can be expressed in terms of q-
deformed bosons. Introducing a, as the q-deformed ana-
logs of b; (i =1,2, 3,4), with the properties

[at, a„"]=[a,a„]=[a„,a„]=0, vip, (4.8)

In the preceding section the subalgebra chains of the
vibron model were reduced to equivalent chains of com-
plementary subalgebras

su" '(1 1)~su" '(1 1)~su" '(1 1)~u(1) . (4.1)

with j,2, m)2 still given by Eq. (3.31), are eigenvectors of
the deformed Casimir operator

C (su" '(1 1))= K" 'K—' '+[K" '] [K" ' —1]

(4.12)

(4. 13)

where N is the number of v bosons. These generators
satisfy the commutation relations

[K(),K+ ]=+K+ [K+ K ]= [2K() ] 2 . (4.14)

We are not going to use the su'(l, l) and su (1,1) alge-
bras explicitly in couplings, since for the su" '( l, l) alge-

bra we already have the form given in Eq. (4.9), which
avoids the direct coupling. In order to be able to couple
su (1,1) and su (1, 1) to su" '(l, l), it is useful to have

the same deformation parameter in all of these algebras,
i.e., it is useful to have the same deformation parameter
in the commutation relations of Eqs. (4.10) and (4.14). In
order to achieve that, we replace in Eqs. (4.13) and (4.14)

q by q. As a result, for v=3, 4, Eq. (4.6) is meant from
now on with q replaced by &q. Then one also has

a~„=[N,]&—, a,,a„"=[N,+ I]&- . (4.15)

Equation (4.12), giving the Casimir operator, is therefore
valid in this case with the usual q numbers.

The su" '(1, 1) algebra is generated by the operators

g3 g(12)
+(123) +(12) o+~ 3 o

+ q +

~(123) ~(12) +~30 0

(4.16)

112+
i.e., it is a standard coproduct of the irreps D and

D ' of the su (1,1) algebra. Therefore the basis vec-

tors, in analogy to Eq. (3.25), are of the form

with eigenvalues [j)2]~[j)2+1]».
For the su'(1, 1) algebras one has the boson realization

[38]

K' = a a, K" = aa, K() = '(N +-'),—1 1
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I j)2j3:j)23m)23 &q

while the vectors analogous to Eq. (3.33) are

Ij)2J3(J123 }J4:Jm &

& j)23m)23j4m4IJm &sU, )1, 1)
m123 m4

x
I j)2j3.j)23m]23 &ql j4m4&, . (4.19)

These vectors are the q analogs of the eigenvectors of the
dynamical symmetry I of the vibron model. Similarly the
vectors

IJ,2J3.j)23m)23 &, I j4m4 &, (4.20)

= g &j)2m)2J3m3IJ)23m)23&SU (), ))
m 12m 3

X Ij)2m )2 &, Ij3m3 &, , (4.17)

&j,m, j,m, I jm &s„„„are Clebsch-Gordan

coefficients for the tensor product of two su (1,1) irreps.
Explicit analytical formulas for these coefficients, as well
as for the relevant su (2) coefficients, can be found in
[43—47].

The su" 234'(1, 1) algebra is generated by the operators

~4 g (123)
~ (1234) ~ (123) o+~4 o (4.18)

have been used. Using Eq. (2.6), Eq. (4.23) can be written
as

E (N, v, L)=6p+ E') [N +2]~—+e2[N +2]~—

+A v —— v —1 ——
2 2

+B'[L]~ [L —+ 1]~—, (4.26)

which reduces to Eq. (2.7) in the limit q~l, up to a
redefinition of E'0

In the case of the dynamical symmetry II the Hamil-
tonian can be written as

H)) =~P+~) [m]q+~2[m]q'+~[m)23)q

+a[m)23]q+PC2(suq) '( l, l)), (4.27)

which is the q analog of Eq. (3.36) (with the primes of the
coefficients dropped). The eigenvalues of this Hamiltoni-
an are

E(m, m)23 L)=Ep+E')[m]q+e2[m]q+E'[m)23]q

+a[m)23], +P[j)23]q[j)23+1]q . (4.28)

In the limit q ~1, Eq. (3.37) is obtained. Assuming that
m, m, 23,j,23 are connected to N, n~, L through Eqs. (3.14),
(3.28), and (3.27), Eq. (4.28) can be rewritten in a way
resembling its classical counterpart, Eq. (2.9), as

are the q analogs of the eigenvectors of the dynamical
symmetry II of the vibron model. Therefore Eq. (4.19)
connects the eigenvectors of the two dynamical sym-
metries, as Eq. (3.33) does in the classical case.

In the case of dynamical symmetry I the Hamiltonian
reads

E (N, n&, L ) =Ep+ E,[N +2]&- +ez[N +2]&—

+e'[n +—', ]g- +a'[n~+ —', ]g-,

+P'[L]~ [L + l]g- . (4.29}

H) =6p+ 6)[m]q +'e2[m ]q +4AC2(suq '( 1, 1 ) )

+4BC2(su"2 '(1, 1)), (4.21)

The results obtained in this section call for the follow-
ing comments.

(i) Rotational-vibrational spectra of diatomic molecules
are described empirically by the Dunharn expansion [48]

which is the q analog of Eq. (3.34) (with the primes of the
coefficients dropped). The eigenvalues of this Hamiltoni-
an are

E(u, L)=g Yk(u+ —,')'[L(L+1)]",
ik

(4.30)

E(m, j,j)23)=op+@)[m],+e2[m] +4A [j] [j+1]
+ [»»)q[»»+ )q (422}

In the limit q~ 1, Eq. (3.35) is obtained. Assuming that
m, j,j123 are still connected to quantum numbers N, co,L
through Eqs. (3.14}, (3.9), and (3.27}, Eq. (4.22) can be
rewritten in a way resembling its classical counterpart,
Eq. (2.5), as

E(N, a),L)=ep+eI [N+2]~—+e2[N+2]~—

+ A'[co)~—[p)+2]~—+B'[L]~ [L +1]~— . —

(4.23)

In producing Eq. (4.23), identities such as

H) =a)+DC2(su" '(1 1))C2(su" '(1 1)) (4.31)

Then Eq. (4.26} is modified as

where v is the vibrational quantum number, L the angu-
lar momentum, and Y;k the Dunham coeScients, fitted to
experiment. It is clear that the Dunham expansion con-
tains powers of (v+ —,'), powers of L (L +1), as well as

cross terms. Equations (4.23) and (4.29) contain no cross
terms. This is due to the fact that in the Hamiltonians of
Eqs. (4.21) and (4.27), only terms up to quadratic in the
generators are included, as in the case of the classical vib-
ron model. Cross terms can be taken into account in the
dynamical symmetry I, for example, by modifying Eq.
(4.21) as follows:

q

—
[ ] ( 1/2+ —1/2) —1 (4.24) E'(N, v, L)=E(N, u, L)+D' v —— N

v —1——
q

2
q

2 )q [L +—']q = [L]q [L + 1]q [—,
'

]q [—', ]q (4.25) X [L]~ [L + 1]~——(4.32)
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(ii) Rotational spectra in both dynamical symmetries
[Eqs. (4.26) and (4.29)] are described by the term
[L]& [L—+I]&—. This is known to be the Casimir

operator of su&—(2). The su (2) model has been exten-
q

sively used for the description of rotational spectra of di-

atomic molecules [5—7] and deformed [8—10] and super-
deformed [11]nuclei. It has been found [9] that this term
is equivalent to an expansion in terms of powers of
L (L +1),

[L]q[L+1] = (jp(r)L(L+1) rj i(v'){L(L+1)j + ~r j2(r)jL(L+1)]3l

jjp«)]'
——', r j (r) jL (L +1)] + ,', r j ~—(r)jL (L +1)] — . ), (4.33)

where j„(r) are the spherical Bessel functions of the first
kind and q=e". This expansion is similar to the one
contained in the Dunham expansion. In the case of
su (2), however, all the expansion coefficients are related
to powers of ~, thus resulting in economy of parameters.
Notice that the decreasing of the coefficients of increasing
powers of L (L +1), as well as the alternating signs of the
terms, facts that are known empirically to hold, occur in
Eq. (4.33) automatically, since r is known [5—11] to ob-
tain small positive values. Furthermore, it has been
proved [9] that the su~(2) model is equivalent to the vari-

I

able moment of inertia (VMI) model, which describes ro-
tational stretching effects. The q parameter has been
found [9] to correspond to the softness parameter of the
VMI model. The implications of the su (2) model on the
electromagnetic transition probabilities connecting the
rotational levels of nuclei have been considered [10].

(iii) The fourth term in Eq. (4.26) corresponds to the
Casimir operator of su (1,1), already used [17] for the
description of vibrational spectra of diatomic molecules.
It has been proved [17] that this term, for q =e", can be
expanded as

N
U

2
u

—1 —— =
j —,'(cos(r) —cosjr(N+2)]) —rsinjr(N+2)](u+ —,')

sin(r)

+Hcosjr(N+2) j(v+ —,') +—2r sinjr(N+2)}(u+ —,')
—

—,
'r cosjr(N+2)](v+ —,') + (4.34)

We remark that a series of powers of (v + —,
'

) is obtained,
similar to the one contained in the Dunham expansion.
In the present case, however, the expansion coeScients
are all related to r (and N, which in the vibron model is a
constant for a given molecule), thus resulting in economy
in parameters.

(iv) The anharmonicity constant (i.e., the ratio
Y2p / Yip ) in the classical case [Eq. (2.7)] is fixed to
—1/(N+2). In the deformed case of Eq. (4.26), howev-
er, it is equal to —r/tan[r(N+2)], as it is easily seen
from the expansion of Eq. (4.34). The extra freedom
gained this way has been found [17] to improve the fits of
vibrational molecular spectra.

(v) Since N is fixed for a given molecule (related to the
maximum number of bound states below the dissociation
limit), the first three terms in Eqs. (4.26) and (4.29) have
no inhuence on the spectrum.

(vi) In Eq. (4.26) it is clear that the deformation param-
eter for the vibrational part of the spectrum is ~, while
for the rotational part it is v/2. Therefore a relation is
implied between the rotational stretching and the anhar-
monicity corrections. Careful empirical fits are needed in
order to decide if this is a restriction or an advantage of
the present model. There is no a priori reason, however,
that these two physically different mechanisms be de-
scribed by the same parameter. A more general version

of the model, allowing for these two deformation parame-
ters to be independent of each other, might give better re-
sults.

V. DISCUSSION

In this paper a deformed version of the O(4) and U(3)
dynamical symmetries of the vibron model for diatomic
molecules has been constructed. This has been achieved

by first rewriting, through the use of the concept of com-
plementary subalgebras, the model in a more convenient
form, which is subsequently deformed. The present ap-
proach unifies into a common framework the so far
separate algebraic approaches to rotational and to vibra-
tional spectra of diatomic molecules.

For the O(4) limit of the present model, fittings to ex-
perimental data for diatomic molecules are required. Its
U(3) limit can be used for the description of clustering
phenomena in nuclei [49], as well as for the quasimolecu-
lar description of heavy-ion resonances [50]. The present
work can be extended to the study of triatomic molecules
[23]. The method of complementary subalgebras can also
be used in constructing [30] the deformed versions of the
U(5) and O(6) dynamical symmetries of the interacting
boson model [24] of nuclear structure.
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