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Chapter 1

Introduction

During the past twenty five years, following the massive use of internet and the EU single Market, Euro-
pean manufacturing companies struggle in a more competitive market, where firms from different countries
must fight for common customers. As a consequence, prices of the products have decreased and the effi-
ciency in the production processes of the companies have become more and more important. Nowadays,
this fact is also increasing due to the competition from companies in developing countries whose labor
cost is substantially lower. Therefore, production management is a key element for companies to survive.
Production management involves decision making over several issues such as master scheduling, material
requirements planning, capacity planning, manufacturing scheduling, ... Among these decisions, manu-
facturing scheduling plays an essential role on resource productivity and customer service. Its role is also
increasing in many service industries as transportation, computer and communications industries, which
are moving towards manufacture-to-order and virtual environments.

Manufacturing scheduling deals with the determination of the jobs which are processed for each re-
source in each instant of time, i.e. establishes the schedules of the resources along the horizon under
consideration. In order to determine the best schedule for the shop floor, both the specific constraints and
the goal of the shop have to be considered. In these environments, the difficulty of the scheduling problem
increases and becomes NP-hard even for the most simple scheduling problems, being extremely complex
for real manufacturing scenarios. Additionally, scheduling decisions should be made in short time intervals
requiring a rapid response time, due to several aspects such as the lifetime of a schedule, the delay in
the suppliers, arrivals of new jobs to be processed, rescheduling due to failures while processing a job, ....
All these issues strongly stress the need to find fast and efficient solution procedures (i.e. heuristics and
metaheuristics) for solving manufacturing scheduling problems.

In practice, several processing layouts have been adopted by companies to manufacture their products.

9



10 CHAPTER 1. INTRODUCTION

Among them, the Permutation Flowshop Scheduling Problem (PFSP in the following), which is the
problem addressed in this Thesis, stands out as the most relevant, being one of the most studied problems
in Operations Research. There are several reasons for this fact: On the one hand, the flow shop layout
is the common configuration in many real manufacturing scenarios, as it presents several advantages over
more general job shop configuration, and, in addition, many job shops are indeed a flow shop for most of
the jobs. On the other hand, many models and solution procedures for different constraints and layouts
have their origins in the flowshop scheduling problem, which increases the importance to find efficient
algorithms for this scheduling problem.

Despite the huge number of research conducted on the PFSP, we believe that there is room for

improving the current state of the art in the topic by

1. deepening the understanding of the problem with respect to their input parameters,
2. devising new approximate solution procedures for the common employed objectives, and

3. addressing problem extensions to capture more realistic situations.

1.1 Objectives and outline of the Thesis

As stated in the previous section, the goal of this Thesis tries to provide further insights into the PFSP,
both deeply analysing the influence of the different input parameters and developing new efficient tech-
niques to solve the problem as well as some problem extensions. To carry out this goal, the following

general research objectives are identified:

GO1. To review the PFSP literature for the most common objectives, i.e. makespan, total completion

time and due-date-based objectives (total tardiness, and total earliness and tardiness).
GO2. To analyse the influence of the processing times and due dates of the jobs on the PFSP.

GO3. To provide schedulers with faster and more efficient heuristics and metaheuristics to solve the PFSP

for makespan, total completion time, total tardiness, and total earliness and tardiness minimisation.
GO4. To demonstrate the efficiency and good performance of the solution procedures developed in GO3.

GO5. To extend the proposals in Goal 3 to some constrained PFSP based on real manufacturing envi-

ronments.

To achieve these objectives, the Thesis have been structured in five parts as follows:



1.1.

OBJECTIVES AND OUTLINE OF THE THESIS 11

e Part I is divided into two chapters. In Chapter 1.1, we introduce this Thesis and discuss its main

contributions. In Chapter 2, the problem under consideration is stated. The measures to compare
approximated algorithms are discussed in Chapter 3. There, the benchmarks used to evaluated
the algorithms are introduced and an alternative indicator is proposed to overcome some problems

detected using the traditional ones.

In Part II, we analyse the problem in detail along three chapters. Dealing with Objective GO1, the
main contributions in the literature are review for the most-common objective functions in Chapter
4. Additionally, in Chapter 5, we extensively study the behaviour of the problem depending on the

configuration of the shops, i.e. processing times and due dates of the jobs (see GO2).

In Part ITI, we propose new novelties efficient algorithms to solve the PFSP under several objectives.
The procedures, constructive and improvement heuristics and metaheuristics, exploit the specific
structure of the problem to both reduce the computational times of them and improve the quality
of the solutions. Additionally, they are validated in extensive computational evaluations, comparing
them with the state-of-the-art algorithms under the same conditions. More specifically, this part is
divided in four chapters and addresses the general research objectives GO3 and GO4. Firstly, a new
tie-breaking mechanism to minimise makespan, which can be incorporated in the two most efficient
algorithms for the problem, is proposed in Chapter 6. In Chapter 7, two efficient constructive
heuristics are proposed to minimise total flowtime. Several tie-breaking mechanisms are proposed
and compared to minimise total tardiness in Chapter 8. Finally, four procedures to minimise total

earliness and tardiness are proposed in Chapter 9.

In Part IV, focused in more real manufacturing environment. New constraints are added to the
traditional problem as well as different consideration and interaction between factories are taken
into account. The proposed environments are solved using efficient approximate methods taken into
consideration ideas of the traditional PFSP. More specifically, an iterated non-population algorithm
to minimise makespan subject to a maximum tardiness is proposed in Chapter 10. In the Chapter 11,
we add the blocking constraints to the traditional PFSP. These constraints take into consideration
limited buffers between the machines. This problem, of permutation nature, is solved by means of
an efficient beam-search-based constructive heuristic trying to minimise the total completion time.
In the Chapter 12, we consider the parallel flowshop scheduling problem also denoted as distributed
PFSP where several identical flowshop or even flowshop factories are available in parallel to assign

the jobs. The problem is solved using a bounded-search iterated greedy algorithm
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e Finally, in Part V, the conclusions of this research and future research lines are discussed.



Chapter 2

Problem statement

2.1 Problem description and notation

The problem under consideration is the permutation flowshop scheduling problem to minimise a certain
objective function. The problem consists of the determination of the sequence of n jobs which achieves
the minimal objective function value when all jobs are processed (in the order indicated by the sequence)

on the m machines of a shop. The following additional hypotheses are usually assumed for the PFSP:

e Processing times are known and deterministic.

e No preemption is allowed.

e Release times are set to 0.

e Sequence-dependent set-up times are considered insignificant.

e Sequence-independent setup times are considered as non-anticipatory and therefore, can be added

to the processing time of the jobs on the machines.
e Transportation times can be considered either insignificant or constant.
e Each job can be processed by at most one machine at the same time.
e Each machine can process only one job at the same time.
e Unlimited in-process inventory is considered.

e All machines are available on the whole scheduling horizon.

13



14 CHAPTER 2. PROBLEM STATEMENT

The notation of the problem can be stated as follows: on each machine 7, each job j has a processing
time denoted as ¢;;. Given a sequence of jobs II := (m1,... m,), let us denote p;;(II) the processing time
of job m; on machine 4, i.e. p;;(II) = tir,. Whenever it does not lead to confusion, this notation is
abbreviated to p;;. Analogously, Cir, (II) (abbreviated to C;; whenever it does not lead to confusion)
denotes the completion time of job 7; on machine i, whereas Cy[;) indicates the completion time of the

job scheduled in position j on machine i. C’,;Wj can be calculated in the following recursive manner:

Ciﬂ'j = max{c’iflJl'j Y C’L‘,ﬂ'jfl} + tiﬂ‘j (2'1)

where Co,rj =C;=0.

Then, the completion time of job 7; on the last machine of the shop, i.e. Cp,r,, is denoted as Cr, for
simplicity. Analogously, the makespan or maximum completion time, Cy,r,, can be denoted as Chqz-

Let d,; be the due date of job m;, and i, = ZZL tir; the sum of the processing times of job
m; across all machines. The tardiness (earliness) of job 7; is defined as T, = ma:v{C’m,rj — d,rj,O}
(Er, = max{dy, —Cir,;,0}) and the maximum tardiness (earliness) as Tinae = maxj=1.. n{Tx,} (Emac =
max;—1,.. n{fx;})-

Different criteria have been considered in the literature for the described scheduling problem (see
e.g. the reviews by [49, 199, 137]). Without any hesitation, the most common ones are the maximum
completion time among the jobs or makespan, the total flowtime (sum of completion times of all jobs),
the total tardiness (sum of the tardiness of each job), and total earliness and tardiness.

Makespan and total completion time are related to the fast processing of the products and to a balanced
use of resources, both issues being of great importance in make-to-stock manufacturing scenarios. The
minimization of makespan, Cpax, (also denoted as maximum completion time or maximum flowtime) has
been commonly chosen by researchers as the objective to optimize in the PFSP (e.g. see [95], [197], [117],
[45] or [188] for other objectives in the PFSP). Regarding the minimisation of the sum of the completion
times of the jobs (or equivalently mean completion time), it has been consistently pointed out both as
relevant and meaningful for today’s dynamic production environment [108]. Under the assumption of a
zero release time for the jobs, the minimization of total (average) completion time is equivalent to total
(average) flowtime minimisation, which leads to stable or even use of resources, a rapid turn-around of
jobs and the minimisation of in-process inventory [152].

In contrast, total tardiness and total earliness and tardiness focus on the satisfaction of customers
and it is therefore better suited for make-to-order manufacturing scenarios as due dates play a key role

[142, 89]. Particularly, the total tardiness highlights a critical concern for manufacturing systems (see e.g.
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[156, 141]), since delays may lead to an increase in costs such as penalty clauses in a contract, loss of
customers and/or bad reputation for other customers [180]. Regarding the just-in-time based-on objective,
i.e. the minimisation of total earliness and tardiness, it aims to reduce the complexity of detailed material
planning, the need for shop-floor control, the work-in-process and final inventories, and the transactions
associated with shop-floor and purchasing systems, since both the excess of inventory in the shop and the
delays on the due dates should be avoided( [202]).

In this Thesis, we focus on these objectives to solve the PFSP. They can be defined as:

e Minimisation of makespan: min C, ;.

e Minimisation of total flowtime: min Zvj' C; or, equivalently, min ) Cj.

e Minimisation of total tardiness: min 7T; = min Z\fj T;.

e Minimisation of total earliness and tardiness » ; E;j + > y; T} or, equivalently, min ) E; + Tj.

Regarding the notation for the PFSP analysed in this Thesis, we adopt the well-known classification
based on the triplet a/3/~ (see e.g. a detailed description of this classification in [47]). In this classifi-
cation, a indicates the machines layout (e.g. 1 for single machine, Pm for m identical parallel machines,
Fm for a flow shop with m machines, Jm for job shops,...), 5 shows the constraints of the problem (e.g.
prmu for permutation problems, prec for precedence relationships,...), and finally v defines the objective

function. Thereby, the problems under study are denoted along this Thesis as:
e PFSP to minimise makespan: Fm|prmu|Cnax (see [58]).
o PFSP to minimise total flowtime: Fm|prmul|)_ C; (see [58]).
e PFSP to minimise total tardiness: Fm|prmu| ) T} (see [146])

e PFSP to minimise total earliness and tardiness: Fm|prmul| )" E; + ) Tj (see [146])

2.2 Taillard’s accelerations

Taillard [189] proposed a very fast mechanism (denoted as Taillard’s accelerations) to evaluate sequences
in ingertion phases of the algorithms, which is explained in detail in this section. This mechanism,
originally proposed for the F'm|prmu|Cpax, is at the core of the excellent performance of the state-of-the-
art algorithms.

Firstly, let us assume that a partial schedule of & — 1 jobs has been constructed. An unscheduled job

r (whose processing time in machine i is denoted by ¢;.) is to be inserted in position I (I =1...k), thus
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obtaining k partial sequences of k jobs denoting 7(l) the sequence when the unscheduled job is inserted
in position [. Additionally, let us denote e;; the earliest completion time of job 7; in machine ¢ before

inserting the unscheduled job. e;; can be calculated as follows:

€ij = maI{6i7j_1,67;_17j} +p¢j,i =1.. .m,j =1...k—1 (2.2)

with eg; = 0, and e;o = 0. Similarly, g;; the duration between the starting time of job 7; on machine ¢
(before inserting the unscheduled job) and the end of all operations can be calculated according to the

following expression:

¢ij = max{qit1,j, Qi j+1} +pijri=m...1,j=k—1...1 (2.3)

with ¢m41,; =0, and ¢; , = 0.

One possibility to calculate the makespan of each of these k sequences is to use equation (2.1) for each
sequence, which results in a complexity O(n?m). [189] proposed a mechanism based on equations (2.2)
and (2.3) to reduce this complexity to O(nm): Since the earliest completion times of the jobs in 7 prior
to position [ have not changed, then f;; the completion time on machine i of job inserted in position [ can

be computed in the following manner:

fu =max{e;, 11, fic1u} +timi=1...m (2.4)

with fo; = 0. Therefore, Cq. (1) the completion time of sequence m(l) is:
Om,aa:(l) = 423Xm{f“ + qil} (25)

These accelerations can be used in each insertion phase of the heuristics and metaheuristics for the
Fm|prmu|Cpax. Although this mechanism was originally proposed for that problem, it can be extended

to some other related manufacturing scheduling problems (such as e.g. DF|prmu|Cqaz)-



Chapter 3

Evaluation of algorithms

3.1 Introduction

Since the PFSP has been proved to be NP-complete if the number of machines is higher than two for all
the objectives considered in this Thesis, most of the contributions have focused on providing approximate
methods yielding good (but nor necessarily optimal) solutions in reasonable time. Addressing the general
objective GO3, several approximate algorithms are also proposed in this Thesis in Parts III and IV. To
obtain conclusions about the efficiency of these approximated methods, they should always be compared
on large instances which consider several size of the problems. The benchmarks used to compare them
with the state-of-the-art algorithms are described in Section 3.2. Additionally, the value of the objective
function of the algorithms should be evaluated in instances with different size (i.e. with different values
of n and m). The indicators to evaluate the algorithms in each instance are described in Section 3.3.
Additionally, a new indicator is also introduced there in order to have non-instances-dependent indicators.
Finally, once the instances and the indicators are set, approximate methods should be compared under

the same conditions. In this Thesis, the procedure followed for it is explained in Section 3.4.

3.2 Benchmarks

To perform the comparisons between the proposed and the state-of-the-art algorithms, several sets of
instances are generated in this Thesis. Note that, as established below in Section 4, there are different
set of instances in the literature for the problems under consideration. Without any hesitation, the set of
instances proposed by [190] are the most common ones for the F'm|prmu|Cmax and the Fm|prmu|)_ C;.

Recently, [198] propose a more extensive and exhaustive benchmark for the F'm|prmu|Cpax. Regarding

17



18 CHAPTER 3. EVALUATION OF ALGORITHMS

the due-dated-based scheduling problems addressed in this Thesis, i.e. the Fm|prmu|) T; and the
Fm|prmul| ) E; + 3T}, algorithms are tested typically on the set of instances proposed by [199]. These

three benchmarks are used along this Thesis and can be described as follows:

e Benchmark B; ([190]), which includes 120 instances with 12 different sizes of instance combining
the values n € [20, 50, 100, 200, 500] and m € [5, 10, 20]. For each instance size, 10 difficult instances

are constructed. Processing times are uniformly distributed from 1 to 99 in this testbed.

e Benchmark B; (large instances of [198], denoted there as VRF _hard large instances). This bench-
mark contains 240 instances for all the combinations of the parameters n € [100, 200, 300, 400, 500, 600, 700, 800]
and m € [20,40, 60]. Processing times are uniformly distributed from 1 to 99. For each combination

of n and m, 2,000 instances are generated and the hardest 10 are chosen to form this benchmark.

e Benchmark Bz ([199]). This benchmark is composed of a set of 540 instances and is the most ex-
tended benchmark for the PFSP with due dates. The benchmark is formed by 5 instances for each
combination of n = {50,150, 250, 350}, m = {10,30,50}, T = {0.2,0.4,0.6} and R = {0.2,0.6, 1.0},
where T' and R are parameters related to the mean and standard deviation of the due dates re-
spectively. These due dates are generated using the procedure described by [147], i.e. following a
uniform distribution between P - (1 —T — R/2) and P - (1 — T + R/2), where P is a lower bound
for the makespan. Processing times are generated using a uniform distribution [1, 99]. This set of

instances are available in http://soa.iti.es.

Additionally, in this Thesis, different sets of instances are presented to evaluate the algorithms and to
calibrate the parameters in order to avoid an over calibration of the parameters of the proposed algorithms.

The calibration sets are:

e Calibration benchmark B¢i. Five instances have been generated for several values of n and m,
n € {20,50,100,200,500} and m € {5,10,20}, where the processing times of each job in each

machine are uniformly distributed between 1 and 99.

e (Calibration benchmark Bego. It is composed of 340 instances generated following the procedure
described by [174]. This benchmark consists of 68 combinations of the parameters of n and m.
More specifically, n = {20, 50, 80, ...,410, 440,470,500} and m = {5,10,15,20}. Processing times
are uniformly distributed between 1 and 99, and 5 instances are generated for each combination of

n and m.

e Calibration benchmark Bes. It is generated according to the procedure by [197]. The number of
jobs and machines is set to n = {50, 150,250,350}, m = {10,30,50} and due dates are generated
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according to the procedure employed by [147] using an uniform distribution between P-(1—T —R/2)
and P-(1-T+R/2). Parameters T and P take the following values in the test: T'= {0.2,0.4,0.6} and
R =1{0.2,0.6,1.0}. Additionally, processing times are generated according to a uniform distribution
between 1 and 99. For each combination of parameters n, m, T' and R, two instances are generated

summing 216 instances.

3.3 Indicators

For approximate algorithms, there is a trade-off between the quality of the solutions and the time required
by the algorithm to obtain them. Therefore, both aspects should be weighted when selecting one algorithm
among the set of algorithms available for the problem. When facing an specific scheduling case, different
decision intervals may be required, and different quality of the solution can be accepted. Consequently,
in most cases there is no a priori knowledge of the precise trade-off required by the Decision Maker.
Then, the idea of representing the algorithms along the two important criteria (quality of solutions and
computational requirements) and excluding the dominated algorithms allows providing the Decision Maker
with the set of Pareto-efficient algorithms so he/she can select the most convenient for his/her specific
case.

Note that, for a given algorithm, different measures can be devised both for its quality of the solutions
and for its computational requirements. However, these are mostly measured by the Average Relative
Percentage Deviation (ARPD1 or ARPD?2) and by the average CPU time in seconds, respectively. The
ARPD1 (ARPD2) of algorithm h (out of a total of H algorithm) is obtained by averaging RPD1;,

(RPD2;) the Relative Percentage Deviation of algorithm h in instance i over all instances a testbed:

Oih — minlShSH Oih

ih ming<p<p Oih ( )
ih UB )

where O™ is the objective function obtained by algorithm h when applied to instance i and UB is the
upper bound (best solution known) for that instance.
However, the usual indicator of the quality of algorithm A with respect to total tardiness when applied

to a given instance 7 is the so-called Relative Deviation Index (RDI), which is defined as follows:

sumTy;, — Best;

RDILj = —————— -
h Worst; — Best;

100
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where sumT;y, is the total tardiness obtained by algorithm h when applied to instance :. Worst; and
Best; are the worst and best known total tardiness for instance j. RDI is usually employed for tardiness
instead of the average relative deviation (most used indicator for makespan or flowtime objectives) since
tardiness may yield 0 for some instances and therefore the value of the average relative deviation would
be distorted (see [199, 88, 90]).

Regarding a indicator to measure the computational effort, it is commonly evaluated by the researcher
using the average CPU time (denoted as ACPU, Expression (3.3)), which obtained by averaging the CPU

times required by algorithm A for all instances.

I
ACPU, =Y " Tin/T (3.3)
=1

where T;j, is the computation time of algorithm h when applied to instance ¢, and I the number of

instances of the testbed.

Using the indicators of the quality of the solutions (ARPD1, ARPD2 and ARDI) and the average
CPU times (ACPU) in the Pareto set presents a number of issues. ARPD1, ARPD2 and ARDI are
dimensionless indicators that are normalised with respect to the best result obtained for each instance,
therefore the influence of the instance (and thus the instance size) is somewhat smoothed. In contrast,
CPU times are heavily instance and instance-size dependent. Moreover, given the problem sizes of the most
typical benchmarks (see e.g. [190] and [198]), average CPU times of a algorithm are heavily compromised

by the CPU times obtained for the biggest 10 instances (those of size 500 x 20).

To illustrate this shortcoming, let us consider the N EH. This algorithm is known to have a complexity
of O(n3-m) for the problem under consideration, therefore for the smallest problem size of e.g. Taillard’s
testbed (20 x 5) its complexity is O(10?), whereas it is O(1.6-108) for size 200 x 20 and O(2.5-10?) for size
500 x 20. This enormous differences in computation times imply that, using the CPU time data in [137],
the average CPU time for the last 20 instances of Taillard’s testbed is 0.36 seconds, while the average for
all 120 instances is 0.37 seconds. As a consequence, more than 80% of the testbed (the first 100 instances

out of a total of 120) contributes with 0.01 seconds (less than 5%) to the indicator.

Besides, the most used testbed for the problem (Taillard’s testbed) is not orthogonal with respect to
the number of machines and the number of jobs. More specifically, n ranges from 20 to 500, and m ranges
from 5 to 20. Therefore, the CPU times required for one (hypothetical) heuristic with complexity O(n*m)
would grow in this testbed much faster than that of another (hypothetical) heuristic with complexity
O(n?m?). This could compromise the average results, thus masking the efficiency —or inefficiency— of

some algorithms.
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In order to overcome these shortcomings, we propose an alternative measure to evaluate the efficiency of
algorithms. More specifically, we propose the Average Relative Percentage computation Time (ARPT1},).
ARPT1,, is defined as follows:

1

ARPT1), = ; RPIT“‘ (3.4)
where
and

H
ACT; =) Tin/H
h=1

where RPTj;, is the relative percentage computation time obtained by heuristic h for instance i, H
is the number of algorithms considered, and ACT; is the average (among all algorithms considered)
computational times for the instance 7.

Additionally, let ARPT?2;, represent also the relative percentage computation time where 1 is added
to the RPT};, to avoid negative numbers.

I
ARPT?2;, = Z

i=1

RPT;
7 U (3.5)

3.4 Experimental conditions

In this Thesis a total of 17 approximated methods are proposed and compared with more than hundred
algorithms. In order to have a fair comparison between the methods, all selected algorithms of this Thesis
(i.e. the state-of-the-art algorithms and the proposed ones) are again fully re-coded in C# and tested

under the same conditions which means:

e Using the same computer. This means same processor speed, bus speed, memory speed and size,

etc.

Using the same programming language (C# under Visual Studio 2013) and compiler.

Using the same operating system.

Using the same libraries and common functions.

Using the same stopping criteria for the metaheuristics.
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e Using the same set of instances in each comparison.

Additionally, to better fit the computational time of each heuristic, 5 runs are carried out for each
instance and the average values of the indicators, for both computational effort and quality of the solutions,

are collected.
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Chapter 4

State of the art

4.1 Introduction

Literally hundreds of heuristics and metaheuristics in the last decades have proposed exact and approx-
imate algorithms for the PFSP to find the best sequence of jobs according several criteria. Note that
the division between heuristics and metaheuristics is ambiguous and different classifications have been
proposed in the literature (see e.g. [223], [212]). Along this Thesis, we use the same division as in [172],
where heuristics and metaheuristics are analysed separately. There, heuristics naturally stop when the
procedure is finished whereas metaheuristics typically stop after a given number of iterations or elapsed
CPU time. Regarding heuristics, they can also be divided into constructive heuristics and improvement
heuristics ([172]). Constructive heuristics obtain the final sequence by appending jobs —usually in an it-
erative manner— to an incomplete sequence. Improvement heuristics are usually composed of two phases:
a construction phase where a complete sequence is formed, and an improvement phase where the solution
is improved by means of some method typically using specific knowledge of the problem.

Among the numerous algorithms in the literature, most research has focused in the minimisation of
makespan and total flowtime (see e.g. the reviews by [43], [172] and [137]), although other objectives have
been also considered (see e.g. [95] and [52] for the homogeneity of the completion times; [197] for total
tardiness; [117] and [179] for total tardiness and earliness; or [188] and [45] for several objectives). In this
section, we perform a comprehensive literature review for the problem (see Objective GO1). We focus in

the following objectives:
e Minimisation of makespan

e Minimisation of total flowtime
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e Minimisation of total tardiness
o Minimisation of total earliness and tardiness

The reviewed works —of computational /experimental nature— show that the PFSP is empirically hard,
in the sense that the optimal or quasi-optimal sequences statistically represent a very small fraction
of the space of feasible solutions, and that there are big differences among the corresponding objective
function values. The rest of the chapter is organised as follows: In Section 4.2, we review heuristics and
metaheuristics for the Fm|prmu|Crax. The Fm|prmu| ) C; is reviewed in Section 4.3. Finally, regarding

due-dates-based objectives, algorithms are reviewed in Section 4.4.

4.2 Makespan

The permutation flowshop scheduling problem with makespan objective (F'm|prmu|Cpax) involves the
determination of the order of processing of n jobs on m machines while all jobs have the same machine
sequence. This problem is, without doubt, one of the most studied problems in Operations Research (see
in this regard the reviews by [43, 160, 172]). Aside to the practical relevance of the problem, since the
early work by [80], contributions on the F'm|prmu|Cpax problem have pioneered the research in scheduling
with different objectives and layouts.

The NP-hard nature of the problem for m > 3 (see [166]) has led the vast majority of research
towards the proposal of approximate solutions (usually classified either as heuristics or metaheuristics).
Traditionally divided into constructive and improvement types, heuristics have been extensively developed
for the Fm|prmu|Cpax either to yield a good solution in less CPU time or to find a seed sequence for
metaheuristics. Since the publication of the work by [172], more than 100 new algorithms have been
proposed in the literature over the last 10 years. Some of these methods —such as the iterated greedy
(IG) of [174]- have improved the best existing algorithms in [172]. However, the new state-of-the-art
algorithms remains unclear due to the lack of a homogeneous framework to conduct the comparison

among algorithms. More specifically, the following problems can be detected:

e Many algorithms are compared under different conditions:
— Tested under different computer conditions (different programming languages and/or different
computers, operating systems, etc.).
— Comparison of algorithms with different CPU time usages.

— Use of different benchmarks (see Section 4.2).
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e Many algorithms are compared in a non-conclusive way:

— Lack of comparison against the state-of-the-art (e.g. without comparing with the iterated greedy
proposed by [174]).
— Among the several runs performed in each instance to increase the power of the results, the

best runs are used instead of the average for some algorithms.
e New advances in the evaluation of the algorithms:

— A more extensive benchmark of instances has been recently proposed by [198] (see Section3.2).
This testbed can be used to establish statistical differences among algorithms in a sound way,
differently from what can be done with older benchmarks (such as those by [190], [10], [158],

[206], [30], [71]).

— A new indicator has been proposed in Chapter 3.3 to measure the CPU requirements of the
algorithms in relative terms. This indicator improves the deficiencies of the most common

indicator (i.e. average CPU time) for the evaluation of efficient heuristics.

Among the constructive heuristics, which have been proposed in the literature, most of them are

variants of the NEH heuristic by [127]. This heuristic consists of two phases:
1. First, jobs are ordered according to an initial order (decreasing sum of processing times).

2. The first job is removed from the initial order and placed in a partial sequence, initially without
any job. Next, following this order, each job is removed and tried to be inserted in each possible
position of the partial sequence. The position which minimizes the makespan is chosen for the job.

The procedure is repeated n-1 times until all jobs are placed in the partial sequence.

Note that the complexity of the main heuristic for the problem, i.e. the NEH, is O(n®m), as the

evaluation of an m-machine makespan can be accomplished in O(nm) and the evaluation of the k sub-
sequences resulting in step & can be completed in O(n?m). However, due to the Taillard’s accelerations
explained in Section 2.2, the evaluation of the k subsequences can be done in O(nm) thus reducing the
overall complexity of the heuristic to O(n?m).

If we consider the NEH heuristic as a particular case of a family of heuristics, there are several elements

(options) within this family. These are:
e Starting order, i.e. how to obtain an initial order in which the jobs are arranged in the first phase.

e Sequence generation, i.e. how the candidate (sub)sequences are generated from the initial starting

order.
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e Tie-breaking mechanism, i.e. how ties are treated in the evaluation of the candidate (sub)sequences.

The starting order determines which job is to be picked for insertion in the current (sub)sequence. The
original proposal by [127] is to arrange the jobs in descending order of the sum of their processing times.
[42] conducted an extensive study with different initial orders and showed that there were significant
differences among them and that, the original order remained the best for the makespan objective. These
results were later confirmed by [83]. [125] proposed a different starting order based on an estimation of
an idle time of the jobs. Although the authors claimed that their proposal outperforms the original NEH,
an extensive simulation study carried out by [84] showed that this seems to be true only for m < 6 and
that the resulting differences were not statistically significant. The latter authors also proposed an initial
starting order which they claim to outperform the original one. [35] proposed a modification of the NEH
heuristic in which a specific mechanism for tie-breaking is applied in addition to a starting order based on
the mean and the variance of the processing times of the jobs and finally, [85] proposed a new modification
of the classical. Although this last modification outperforms the original NEH (and the modification of
the NEH proposed by [84] and [35], see [86]) in an extended test bed proposed by [85], it was not proved
that the proposed starting order was superior to the original in the benchmark set of [190] where the

starting order proposed by [35] presents the best results.

With respect to sequence generation, the original proposal is to insert the job in the k possible slots
of the current sequence. However, it is clear that different strategies could be adopted, either by reducing
the number of candidates (by e.g. evaluating just a fraction of the k possible slots), or by exploring more
candidates. With respect to the former strategies, [151] limited the insertion to positions |k/2] to k with
good results, while different strategies have been proposed for exploring more candidate solutions by [150]
(note that other strategies have been explored for the total flowtime by [207] and by [44], but there is no
proof that they are efficient with respect to makespan). In all these contributions, the gains (losses) in
the quality of the solutions are compensated by the increase (decrease) in CPU time requirements.

Finally, with respect to the tie-breaking mechanism, modifications with respect to the original tie-
breaking mechanism have been suggested by several authors. Note that, in general, tie-breaking mech-
anisms may refer either to the starting order (i.e. how to rank jobs with the same indicator value in
the initial ordering sequence), or to the sequence generation phase (i.e. how to choose among different
subsequences with the same best partial makespan). In this chapter we focus on the second type —labelled
insertion tie-breaking in the following- so existing contributions will be discussed in detail in Section 6.2.

With or without the aforementioned modifications, NEH has turned out to be the most efficient

heuristic found for the problem, and nowadays it remains the cornerstone of subsequent heuristics that
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have been proposed for the problem and that can be seen as refinements and/or enhancements of NEH.
The reason for this efficiency probably lies in the procedure employed for inserting and evaluating —using
Taillard’s acceleration— the non-scheduled jobs, a mechanism also present in the Iterated Greedy Algorithm
(denoted as IG_RSps in the following) proposed by [174] and considered among the best heuristics for
the problem (see [174, 138]).

In this section, we propose a classification to unify the numerous variants of the NEH heuristic pub-
lished in the literature. The classification use the following notation formed by 3 fields: NEH (a|b|c)

where the fields a, b and ¢ are defined by:
e q: Initial order used by the NEH. The following sorting criteria have been considered in the literature:

— rand: Jobs are randomly ordered. This order is used by [162] in RAER and RAER-di heuristics

as comparison heuristics.

— SD: Non decreasing sum of processing times (original order of the NEH) jobs. This order is
used by the following heuristics: NEHR [162], NEHR-di[162], NEH [127], NEH-di [162], NEH1
[83] and NEH1-di [162].

— AV: sum of the mean and deviation of the processing times (proposed by [35]).
— NM: order proposed by [125] and used in NEMR and NEMR-di heuristics by [162].

— KK1: Sorting criterion proposed by [84]. This initial order is applied in NEHKKI [84] and

NEHKK1-di [162] heuristics.

— KK2: Sorting criterion proposed by [85] in NEHKK2 heuristic.

e b: Once a job is selected for insertion in all positions of a partial sequence, the same makespan can
be obtained for several positions causing ties in each iteration. These ties have a great influence
on the performance of the constructive heuristics (see [83]). In the original proposal, the first slot
(denoted as FS) for which the minimum makespan is achieved is kept as the best sequence. This
b field then defines the type of tie-breaking mechanism implemented in the NEH. The following

mechanisms have been considered in the literature:

— TBKKI1: mechanism based on the Johnson’s rule ([80]) proposed by [83].

TBKK2: tie-breaking mechanism based on the Johnson’s rule ([80]) proposed by [84].

— TBKK3: mechanism based on the Johnson’s rule ([80]) proposed by [85].

DHC: tie breaking mechanism based on a balance usage of machines proposed by [35].
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— RCT: idle-time-based tie breaking mechanism proposed by [162] increasing the complexity of

the NEH to max{n?-m? n® - m}.

e ¢: This field is associated with the reversibility property of the problem (see [162]). It establishes
that the makespan of the permutation II := (71,...,7,) in instance I (instance formed by n jobs
and m machines with processing times equal to p;;) is the same as the makespan of the reverse
permutation II' := (mn,...,m) in instance I (instance formed by n jobs and m machines with

processing times equals to p;j = Pm—j+1,:). Therefore, the following values can be adopted:

— d: This value is employed to denote a direct instance (i.e. the initial order II is applied to

instances I and I').

— 4: It is employed when the same initial order 7 is applied to the instance I . Accordingly, this
field contains the value di when the inverse instance is carried out after performing the direct

instance.

This notation has been employed to classify the different variants of the original NEH heuristic —which
can be denoted as NEH (SD|FS|d) in our notation— proposed in the literature. These are summarized
in Table 4.1.

Among the heuristics proposed, some of them —i.e. NEH1, NEHKK1, NEHKK2 and NEHD by [83],
[84] and [35] respectively — maintain the original complexity of O(n?m). Other variants with a greater
complexity have been proposed by [162], see Table 4.1.

Two different variants with a greater complexity have been proposed by [211] and are denoted as
CLwots and CLwrs. In CLwors, a new mechanism (denoted as the backward shift mechanism) is added
to the traditional insertion phase of the NEH. This mechanism increases the sequences to be evaluated
in each iteration by means of a movement of the jobs of the partial sequence. When the tie-breaking
mechanism of [162] is added to the CLwoTs, the heuristic is denoted as CLwrs

Furthermore, 10 heuristics which also modify the insertion phase of the NEH algorithm have been
proposed by [150]. These heuristics are denoted as: FRB1, FRB2, FRB3, FRB4,;, FRB44, FRB4g,
FRB4g, FRB41g, FRB415 and FRB5. Among them, the FRB1 heuristic is statistically outperformed by
several heuristics (e.g. FRB4; and FRB4,4) with shorter average CPU times. Finally, [201] proposed a
constructive NEH-based heuristic, NEHI, which also considers different interpretations for the ties in the
initial order of the NEH.

Regarding metaheuristics employed for the problem, a summary of them is shown in Tables 4.2 and

4.3. The first, second, third and fourth columns indicate the year of publication, the bibliographical
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Table 4.1: Summary of heuristics derived from NEH

Heuristic NEH Notation Paper
RAER NEH (rand|RCT)|d) 162
RAER-di NEH (rand|RCT|di) 162
KKER NEH(KK1|RCT|d) 162
KKER-di NEH(KK1|RCT)|dq) 162
NEHR NEH(SD|RCT|d) 162
NEHR-di NEH(SD|RCT|d&?) 162
NEMR NEH(NM|RCT|d) 162
NEMR-di NEH(NM|RCT|di) 162
NEH NEH(SD|FS|d) 127
NEH-di NEH(SD|FS|di) 162
NEH1 NEH(SD|TBKK1|d) [83]
NEH1-di NEH(SD|TBKK1|di) [162]
NEHKK1 NEH(KK1|TBKK2|d) [84]
NEHKK1-di NEH(KK1|TBKK2|di) [162]
NEHKK2 NEH(KK2|TBKK3|d) [85]
NEHD NEH(AD|DHC|d) 35]
NEHD-di NEH(AD|DHC!|dq) [162]
CLwrTs NEH(SD|FS|d) with a backward shift mechanism in the insertion phase [211]
CLworTs NEH(SD|RCT|d) with a backward shift mechanism in the insertion phase [211]
NEHI Best of several runs of NEH (—| — |—) [201]
FRB1 Similar to NEH(SD|FS|d) including a local search method in the insertion phase [150]
FRB2 Similar to NEH(SD|FS|d) including a local search method in the insertion phase [150]
FRB3 NEH(SD|FS|d) including a local search method in the insertion phase [150]
FRB4; NEH(SD|FS|d) including a local search method in the insertion phase [150]
FRB5 NEH(SD|FS|d) including a local search method in the insertion phase [150]

reference, the type of metaheuristic and the acronym (maintaining the same acronym as in the original
papers) respectively. The fifth column shows the papers proposing metaheuristics that outperform the
referenced one. In the sixth column, the benchmark(s) used for the computational evaluation are shown
(the following notation is used: T1, [190]; T2, non-complete set of instances of [190]; R, [158], C, [10];
D, [30]; W, [206]; H, [71]; O, Other set of instances). The seventh column shows the ARPD2 values of
the metaheuristics when tested on Taillard’s benchmark [190]. When the raw makespan value for each
instance is given in the paper, the ARPD?2 is computed again using (3.2) and the best known value
for those instances in order to have a common reference. Otherwise, the ARPD2 values of the paper
are reported. Note that these papers could have used different upper bounds (UB) and the values are
therefore only approximations. For papers using the same upper bounds as in [190], a factor of 0.565 is
added to correct the ARPD2. This value is the difference in ARPD?2 between the actual upper bounds

and the upper bounds of [190].

The eight and ninth columns indicate the programming languages used for coding the algorithms as
well as the raw speed of the processors used for the evaluation. Finally, the average CPU time on Taillard’s
instances as a function of the size of the problem (i.e. n and m) is calculated, when possible, in the last
column in order to analyze the CPU requirements of the algorithms. This value is expressed in terms of
t; for metaheuristic j, a variable traditionally used in the literature to measure its stopping criterion as
n-m-t;/2 milliseconds (see e.g. [174]). When ¢; is not indicated and/or other stopping criteria are used,

t; is calculated as follows:
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ti= t
Vi

and

2. CPU;;
7 B —

where C'PU;; is the CPU time in milliseconds required by algorithm j in instance i. n; and m; and
the number of jobs and machines in instance i. Therefore, ¢;; balances the CPU time with the size of the
problem, and t; —average of t;;— can be seen as an indicator of the average CPU time requirements of an
algorithm, since, given an instance, n; and m; are constants for different algorithms.

For clarity, when a paper proposes several metaheuristics, these methods are included in the table as
long as they are used as reference metaheuristics in other papers. Otherwise, only the best one among
the reported results is selected. The language used to code the algorithms has been included in the table

since languages can result in much bigger differences than those caused by the use of varying computer

characteristics.
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4.3 Total lowtime

The Fm|prmu|)_ C; is known to be NP-hard, therefore most of the research on this topic is devoted to
developing approaches yielding good (but not necessarily optimal) solutions in reasonable computation
time. An excellent review on these heuristics is provided by [137] where 14 of these heuristics are identified
as efficient. In the following, we just outline the main aspects of these heuristics and refer the interested

reader to the paper by [137] for a more detailed description of all existing heuristics in the literature.

e Heuristic LR(x) [108]. This heuristic constructs a solution for the problem by appending, one by
one, the unscheduled jobs (jobs in set U in the following) at the end of a sequence S of already
scheduled jobs. To do so, &;; an indicator of the suitability for job j (j € U) to be scheduled in
last position (position k 4+ 1 where k indicates the amount of scheduled jobs in each iteration) is

calculated according to:

&r = (n—k —2) - ITy, + ATy,

where I'T};, estimates the weighted idle time induced when scheduling job j in position k + 1, i.e.:

zm: m - maz{Ci_1; — C; 1,0}

ITy, = itk -(m—1i)/(n—2)

=2
and AT}y, is the so-called artificial flowtime and it is defined as the sum of the completion time of
job j plus the completion time of job p, an artificial job with processing times equal to the average

processing time of the other jobs in U (excluding job j), and can be computed as follows:

ATjk, = CnLj + Cmp

More specifically, the LR(x) heuristic operates as follows:

1. Sort all jobs in ascending order of indicator &;o (Let us U denote such ordered set). Ties are

broken in favor of jobs with higher IT}g.

2. Use each of the first « ranked jobs in U as the first job in S, and then constructs a solution by

appending the rest of the jobs one by one using indicator &;x

3. Out of the x solutions so obtained, select the one with the minimum flowtime.

e Heuristic LR(z)— FPE(y) [108]. This is a composite heuristic where a local search method (denoted

FPE(y)) is applied to the solution of LR(x). FPE(y) consists of the following steps: For each job
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7 in a sequence, this job is exchanged with the next y jobs in the sequence, and the flowtimes of
the so-obtained solutions are evaluated. If any of the solutions has improved the flowtime, then the

local search procedure is repeated. Otherwise, the local search stops.

Heuristic NEH [127] (see Section 4.2 for a detailed description). Originally conceived for minimizing
the makespan in a permutation flowshop, this well-known algorithm has been used as a reference
method for many problems in the literature. Its application to the flowtime minimisation problem
was discussed by [42], and it was found that the best option is to first sort the jobs in ascending

sumn of their processing times.

Heuristic Raj [151]: This heuristic can be seen as a version of the NEH but here job k is inserted
only in slots |k/2] to k, thus reducing the computation time. Additionally, jobs are initially sorted
in ascending order of index T} as defined in equation (4.1), breaking ties in favor of the job with the

lowest sum of total processing times.

m

T;=> (m—j+1)-pj (4.1)

i=1
Heuristic LR — NEH(x) [137]. This is a composite heuristic where the last n/4 steps of each z
sequences obtained applying the LR(x) procedure are carried out according to the N EH heuristic
instead of the normal procedure of the LR(z) algorithm, i.e., the first 3/4n jobs of each sequence

are scheduled according to the LR(z) procedure and the rest according to the NEH procedure.

Heuristic RZ [152]. This heuristic consists of two steps: An initial ordering, and an improvement
phase. With respect to the initial ordering, the jobs are sorted in ascending order of the total
processing times. The improvement phase (denoted ¢RZ in the following) consists of inserting each

job in the sequence in the rest of positions updating the sequence when a better solution is found.

Heuristic RZ — LW [97]. This heuristic consists in iteratively performing ¢RZ until no further

improvement is found.

Heuristic /C? [96]. This is a family of composite heuristics where an initial solution is obtained
by using LR(1) and then improved by using different local search methods. If the local search is
performed using the iRZ procedure, then the heuristic is denoted IC1. Heuristic /C2 performs
FPE on the solution obtained by IC1. Finally, IC3 consists of running /C1 and then performing
a local search denoted as FFPE — R, which is essentially FF'PE adding a restart from the first job

every time the current solution is improved.
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o Heuristic PRi(z) [137]. These are several composite heuristics: PR1(x) performs ¢RZ on each one of
the x sequences obtained by heuristic LR — NEH (x). PR2(x) first run the heuristic LR — NEH (x)
and then tries to improve this solution using a VNS-like (Variable Neighborhood Search) local
search method. This method was introduced by [192] and consists in an insertion and interchange
variant of the classical VNS where insertion and interchange movements are repeated until no
further improvement is found. PR3(x) performs z times a iRZ and two NEH methods after an
initial solution obtained by heuristic LR — NEH(10). Finally, PR4(z) replaces the iRZ method
of PR3(xz) by a VNS local search. In order to bound the computation time of the heuristics, if
the CPU time reaches the value of 0.01 - n - m seconds, a last loop is performed and the procedure

terminates.

All aforementioned heuristics have at least a complexity of O(n® - m), and most of them use the LR

heuristic to generate a seed solution.

4.4 Due-date related objectives

In this section, we review the PFSP minimising due-date-based objectives. We focus in two well-known
decision problems: the Fm|prmu|) T, and the Fm|prmu|Y_ E; + > F; problems.

Regarding the Fm|prmu|)_T; problem, most researchers have focused on developing solution pro-
cedures (i.e. heuristics) that do not guarantee the optimality of the solution, but that can provide a
(hopefully) good solution in a reasonable time interval due to the NP-hard nature of the problem. More
specifically, several heuristics and metaheuristics have been proposed in the literature for the problem,
such as those by e.g. [56, 90, 153, 46, 197].

The extensive computational evaluation of heuristics for the problem carried out by [199] shows that
NEHedd is a key constructive heuristic for the problem since, aside to being very efficient, the rest of
efficient heuristics in the literature with more average CPU time employ NEHedd as an initial solution.
More specifically, more than half of the state-of-the-art improvement heuristics or metaheuristics for the
problem use NEHedd as a starting solution. This fact can be also seen in more recent works, such as [197],
or [178]. The NEHedd heuristic differs from the NEH heuristic in the starting order (jobs are arranged
now according to the Earliest Due Date or EDD rule), and in the evaluation of the partial sequences (as
the one with lowest total tardiness is selected). Taillard’s acceleration cannot be applied to the NEHedd,
and, although [197] propose a mechanism similar to that by [96], the complexity of the NEHedd remains
O(n3 - m).
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Regarding the Fm|prmul| ) E; + > F; problem, given the acceptance of just-in-time systems in prac-
tice, there is a growing interest in the last decades in analysing scheduling problems where both earliness
and tardiness are penalised (see e.g. reviews [4], [94], [81] and [183]). Although, this type of problems is
collectively known as E/T problems, the problem under consideration is the PFSP to minimise total ear-
liness and tardiness, Fm|prmu| )" E; + > Tj. Some exact approaches and approximate algorithms have
been proposed in the literature for this problem. However, both the NP-hard nature of the problem (see
[117]) and the huge computation times required by the optimal approaches even for small instances (not
more than 20 jobs) justify the need to develop fast approximate algorithms. The methods are classified

into two groups:

o Methods for E/T problems on a flowshop where the idle time can be inserted.

o Methods for E/T problems on a flowshop where the idle time cannot be inserted.

On the one hand, regarding the problem allowing the insertion of idle times, [168] propose several
mixed-integer models for the problem including insertion of idle time as well as considering unlimited
and zero buffer. [15] propose some approximate approaches to solve the PFSP to minimize the sum of
earliness and tardiness with common due dates for all jobs. Finally, [118] combine the VNS search with
the mixed integer programming to solve the same problem but without common due dates.

On the other hand, without insertion of idle times, [123] propose an optimal algorithm for the PFSP
with two machines to minimise the sum of maximum earliness and tardiness, as well as branch-and-bound
algorithms are developed in [114] for several multi-objective functions including the total earliness and
tardiness. [213] was first in proposing an approximate algorithm (more specifically a simulated annealing
algorithm) to solve the PFSP to minimise the sum of weighted earliness and tardiness. In [179], a genetic
algorithm (GA) has been developed which outperform several metaheuristics of similar research problems
as well as the algorithm proposed by [213]. Using the same benchmark, [117] propose an iterated local
search (ILS) where a variable neighborhood descent is iteratively repeated after a perturbation mechanism,
which gave better results than the GA. However, both the GA and the ILS algorithms use the NEHedd
(originally proposed for the Fm|prmu|_ T; by [88]) and the Earliest Due Date or EDD rule respectively,

which are either very simple seed sequences or simple adaptations from another research problems.
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4.5 Conclusions

Makespan

Although the excellent performance of non-population based algorithms was shown by [174],[138], the
literature using this type of metaheuristic is scarce and researchers have mainly been focused on the
implementation of algorithms using several populations in parallel. Note that the best metaheuristics (see
e.g. iterated greedy algorithm) and the best heuristics (see e.g. NEH) include Taillard’s accelerations,
which is a special characteristic of the F'm|prmu|Chax. It probably represent the main reason for the
excellent behaviour of insertion phases in the algorithms and could explain its extensive use in the heuristics
and metaheuristics of the last decade, as well as the excellent performance of the NEH and IG-based
algorithms. Both in NEH and the Iterated Greedy algorithm, ties among (sub)sequences yielding the
lowest makespan may occur. In the original proposals, no specific mention on ties is given, so it is usually
assumed that the first slot for which the minimum makespan is achieved when inserting job in position & is
kept as the best (sub)sequence. However, the mechanism employed to break these ties has a great influence
on the performance of these algorithms, as well as it represents an advance in their intensification, as [83]
first attested for the NEH. To the best of our knowledge, there is no proposal of integrating tie-breaking
mechanisms in the Iterated Greedy algorithm. In our opinion, these facts highlight that a special effort
should be made, firstly, in a better understanding of the problem and its properties (specific objective SO1
and secondly in applying them to non-populations algorithms for the problem (specific objective SO2).

In view of Tables 4.1, 4.2 and 4.3, there are very few papers whose methods are directly compared
with the state-of-the-art algorithms (i.e. the IG_RSpg by [174]). Most of them are directly compared
with metaheuristics of the same type (i.e. papers proposing PSO metaheuristics are compared with other
PSO metaheuristics). Additionally, among all analyzed metaheuristics, only 9 papers (less than 10%)
explicitly state that the metaheuristics are compared using the same conditions. Finally, there is no
homogeneity in the set of instances used to compare the methods. Most metaheuristics (56) are tested
in Taillard’s benchmark, although only 20 of these use all 120 instances of the testbed. The rest of the
testbeds used were mainly Reeves’ (23 times) and Carlier’s (15 times). From this literature review, the
current state-of-the-art is far from easy to identify.

As a conclusion, a new evaluation of the approximate methods for the F'm|prmu|Ciax problem is
pertinent (specific objective SO3) and may serve firstly to establish a clear picture of the state-of-the-art
within this important problem, and secondly, to give indications of possible avenues for future research.
Additionally, a special effort should be also made when comparing efficient heuristics against the best

metaheuristics under the same stopping criterion since the CPU time required by some heuristics is
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Figure 4.1: Pareto set using the average computational time [137]

relatively high in comparison with some metaheuristics (specific objective SO4).

Total flowtime

The heuristics discussed in Section 4.3 constitute the (so-far) set of efficient heuristics for the problem, as
found by [137] in their exhaustive analysis of all existing heuristics for the F'm|prmu| )" C; problem with
respect to the quality of the solutions and computational requirements. Since there is a clear tradeoff
between the solution obtained by one heuristic, and its computation time, the authors were able to depict
a Pareto set to place the efficient heuristics for the problem in view of their performance on the well-known
Taillard’s testbed (see Figure 4.1). As it turns out, this Pareto set is formed by the following heuristics:
Raj, LR(1), RZ, LR—NFEH(5), LR—NFEH(10), LR—NEH(15), LR—FPE, PRA(5), PR2(5), PR3(5),
PRA4(10), PRA(15), PR2(15) and PR1(15).

From the analysis of the Pareto set, some conclusions can be derived:

e As it can be seen in Table 7.1, all the efficient heuristics consist on variation/adaptations of the
following five main (or primary) procedures: NEH, LR(x), FPE, iRZ and VN S. More specifically,

the LR(z) heuristic is present in 12 of the 14 heuristics in the Pareto set.

e Regarding the complexity of the five primary procedures, NEH is known to be O(n®-m), the same

complexity as LR. It is easy to check that each iteration of iRZ is O(n® - m). Hence, the iRZ
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has a complexity of k - n - m with k the number of iterations in which there is an improvement in
the objective function. The complexity of FPE corresponds to = - k - n? - m (for FPE — R, the
worst case is O(x - k- n® - m)), with k indicating again the number of iterations with improvement
in the objective function. From the complexity of these five procedures, the complexity of the rest
of algorithms in the Pareto set can be easily obtained (this information is summarised in Table
7.1). As it can be seen, each heuristic in the Pareto set has at least a complexity of n3 - m. Note
that the parameter & cannot be nor bounded neither linked to the problem size. However, in the
computational experience carried out in Taillard’s testbed (see Section 3.2), this value is usually

larger than both n and m.

A detailed analysis of this Pareto set reveals that 12 out of the 14 heuristics employ a mechanism
for constructing the solutions based in the heuristic by [108]. However, its complexity is still high in
comparison with the best heuristic of related scheduling problems (see e.g. Fm|prmu|Cyq.). For this
problem, new advances should come from a reduction in the complexity of the heuristics to obtain similar

or even better solutions with much lesser CPU time (specific objective SO5)

Due-date related objective

Despite the excellent performance of the NEHedd heuristic, we believe that additional improvements
could be gained by further analysis of the problem under consideration. First, the Fm|prmu|>_T; and
the Fm|prmul| )" E; + > F; could resemble different scheduling problems depending on the due dates of
the jobs for each specific instance: Intuitively, it is clear that, for an instance with due dates much greater
than the sum of the processing times of its jobs, almost every schedule may yield zero total tardiness for
the Fm|prmu|)_ T; (turning the problem into a trivial one), as well as the problem resembles that of
flowtime maximisation for the Fm|prmu| )" E; 4+ F;. Analogously, unachievable due dates for each job
results in an instance for which almost every sequence yields tardiness for every job and therefore both
problems resembles that of minimising flowtime. By conducting an analysis of these possible scenarios
(specific objective SO6 and SO7), further insights into the problem can be obtained, so the performance
of the NEHedd procedure can be enhanced (specific objectives SO8 and SO9).

Summary of specific objectives

Several specific objectives for the PFSP have been identified above, which will be addressed in this Thesis.

In this section, we summarise them:

SO1. To provide further insights into the problem and its properties.
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SO2.

S03.

S04.

SO5.

SO6.

507.

S08.

SO9.

CHAPTER 4. STATE OF THE ART
To propose non-populations algorithms for the F'm|prmu|C),q. problem.

To perform a new computational evaluation of heuristics and metaheuristics for the Fm|prmu|Ciqz

problem.

To compare efficient heuristics against the best metaheuristics under the same stopping criterion

for the Fm|prmu|Cpqs problem.

To develop new efficient heuristics decreasing the typical complexity of the algorithms for the

Fml|prmul| Y~ C; problem.

To analyse different scenarios depending on the due dates for the Fm|prmu| ) T; problem.

To analyse different scenarios depending on the due dates for the Fm|prmul| > E; + T; problem.
To design efficient heuristics for the Fm|prmu| ) T; problem.

To develop of efficient heuristics for the Fm|prmu| )" E; + T; problem.



Chapter 5

Influence of input parameters

5.1 Introduction

In the vast majority of the works reviewed in Chapter 4, it has been assumed that a) processing times
are not job- and/or machine-correlated, b) processing times are not resource dependent, ¢) due dates are
generated by the same distribution for all jobs and d) all machines are initially available. In this chapter,
addressing Objectives GO2, SO1, SO6 and SO7, we try to go deeper in the understanding of the influence
of these assumptions over the PFSP.

Firstly, we will show that under certain conditions of the due dates, the Fm|prmu) T, and the
Fm|prmu E;T; can be reduced to other different related scheduling problems. In order to show that,
several properties are shown for both scheduling problems, to identify the theoretical conditions required
for them. In addition, we analyse how far the due dates traditionally generated in the literature are from
the above conditions.

Secondly, we will show that under certain conditions, or correlated processing times, the PFSP could
be considered easily solvable or be equivalent to other decision problems. To address it, several properties
and dominance rules are presented to analyse the relation between the PFSP and the single machine
scheduling problem, denoted as SMSP, for makespan and total flowtime minimisation depending on the
processing times of the jobs. Additionally, in order to empirically compare the problems, 11 algorithms
(5 for makespan and 6 for total flowtime) are tested on an extensive testbed with more than 600,000
instances designed for the PFSP with machine correlated processing times. Four algorithms have been
designed to solve directly the instances of the PFSP. Five of them reduce each instance to an equivalent
SMSP considering only the most saturated machine, whereas the other 2 algorithms solve a reduced

PFSP without considering the machines before the most saturated one. Results show that the algorithms

43
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designed for the PFSP and for the SMSP tend to be very similar for several values of the parameters
of the testbed. The goal is to prove the intuition that, when in a PFSP there is a machine much more
saturated than the rest, then the problem should be similar to the equivalent SMSP considering only the
most saturated machine. Thereby, we intend to explore the theoretical and empirical boundaries between
these two problems.

Finally, we will also analyse the different relationships between the processing time of an operation
and the number of resources assigned to that operation. Traditionally, different functions have been
used in the literature in order to map the processing time of the operation with the amount of resources
assigned to the operation. Obviously, this relation depends on several factors such as the type of resource
and/or decision problem under study. Although in the literature there are hundreds of papers using these
relations in their models or methods, most of them do not justify the motivation for choosing a specific
relation over another one. In some cases, even wrong justifications are given and, hence, infeasible or
nonappropriated relations have been applied for the different problems, as we will show. Thus, we intend
to fill this gap establishing the conditions where each relation can be applied by analysing the relations
between the processing time of an operation and the amount of resources assigned to that operation.

More specifically, the outline of the rest of this chapter is organised as follows:
e In Section 5.2, the influence of the due dates is analysed.
e In Section 5.3, we discuss the influence of the processing times.

e In Section 5.4, we discuss the functions used in the literature for controllable processing times.

5.2 Due dates

The Fm|prmu| > T; and Fm|prmu|)_ E; + > T, problems are highly influenced by the due dates of
the jobs in a specific instance. In this section, we make an effort to gain a better understanding of the

problems so the performance of existing solution procedures can be enhanced.

Theoretical analysis

Let first state four simple properties:

Property 5.2.1. Let 7 be an instance of the Fm|prmu|)_ E; + Y T; problem, and WM the worst
(mazimum) makespan for the instance. If d; > WM Vj, an optimal solution for I is obtained by solving

the corresponding Fm|prmu| — " C; problem for I.
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Proof. Since each due date is greater or equal than the worst makespan WM, then each due date d; is
greater or equal than its completion time, Cp,;(II) (i.e. d; > WM > C,, ;(II), V5, 1I). Hence, minimising
Zw maz{Cn,; (H)*djvo}JFZvj maz{d;—Cp, ;(I1),0} = OJFZW dj—Cp 5 (I1) = ZW‘ dj*ZVj Crm,; (II) =
const — 3 2y Crm 5 (11). O

Property 5.2.2. Let T be an instance of the Fm|prmul| Y E;+>_ T problem verifying that d; < > " t;;
Vj. Then, an optimal solution for T can be obtained by solving the corresponding Fm|prmul| " C; problem
for T.

Proof. Considering d; < t; Vj, each completion time C,, ;(II) (Vv II) is greater or equal than its due

date, dj, since ¢; is a lower bound of the makespan of the job j. Hence ), max{Cy, ;(II) — d;,0} +

> vy maz{d; —Cry (1), 0} = 320 (Cra i (I =) +0 = 3y O i (D) =32y, dj = 3oy O (1) +const. O

Property 5.2.3. Let T be an instance of the Fm|prmu| Y T; problem, and WM be the mazimum (worst)
makespan that can be obtained for Z. If d; > WM, V3, then each feasible sequence m is an optimal solution

for L. That is, T has n! optimal solutions.

Proof. The proof of this property is obvious: since WM is the worst makespan of the problem (i.e.
WM > Cy, ;,Vj) and each due date is greater than or equal to WM (i.e. dj > WM > C, ;, Vj),
then minimising >, maz{Cy, ; — d;,0} is equal than minimising >, maz{—P,0} = 0, where P is a

non-negative number, and hence each feasible solution is an optimal solution of the problem. O

Property 5.2.4. Let T be an instance of the Fm|prmul| Y. T; problem with d; <> t;; ,¥j. Then, an

optimal solution for T can be obtained by solving the corresponding Fm|prmul| )" C; problem for I.
Proof. Trivial in view of Property of 5.2.2. O

On the one hand, from Properties 5.2.1 and 5.2.2, it is clear that extremely loose due dates transform
the Fm|prmu| )" E; + T; into a PFSP with the objective of flowtime maximization. Extremely tight due
dates lead to a problem similar to the PFSP with flowtime minimisation. Both bounds represent opposite
objective functions and therefore, algorithms specifically focused on yielding good solutions for instances
with loose due dates would necessarily perform bad for tight due dates. Thereby, depending on the due
dates, three different scheduling problems can be solved: the Fm|prmu| )" C; problem in case of tight due
dates, the Fm|prmu| — )" C; problem in case of loose due dates and the original Fm|prmul| )" E; + > T;
problem in the rest of the cases. This fact speaks for the difficulties to find constructive heuristics that
perform well for the problem, which in our opinion is reflected by the fact that the NEH —an algorithm

not designed for this specific problem— is the only constructive heuristic proposed so far.
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On the other hand, for the Fm|prmu| )T, problem, Properties 5.2.3 and 5.2.4 formalise the inter-
dependence between the due dates and processing times of an instance, and the type of optimisation
problem. If the due dates are extremely tight, the Fm|prmul| > T} is similar to that of flowtime minimi-
sation (F'm|prmu| )" C;) according to Property 5.2.4 whereas extremely loose due dates lead to a trivial
problem according to Property 5.2.3.

Therefore, a problem instance can be classified along these two extreme cases (extremely loose and

tight due dates). To do so, we first define for each job j the following indicator v;:

dj — 1t

WM —t; (5.1)

Uj:

Clearly, v; < 0 indicates that the due date cannot be met for job j, regardless of the position where
it is scheduled. Similarly, v; > 1 corresponds to the case where the completion time of job j is lower
than its due date. By adequately truncating v;, we can obtain a normalised indicator for job j, i.e

min{1l; max{0;v;}} € [0, 1].

Then, the indicator v can be defined as:

v =

zn: min{1; max{0;v;,}} _ zn: min{W»M — t;;max{0;d; —t;}}

= n = n- (WM —t;)

(5.2)

It can be shown that v € [0,1], and that if, for a given instance, v = 0 (tight due dates), then
minimising the total tardiness is equivalent to minimising the total flowtime. On the other extreme, if
v =1 (loose due dates), then any sequence is optimal.

In addition to how tight /loose the due dates are, the variability of the due dates among jobs also plays

an important role in the optimization problem, which is formalised using the following property:

edd ._ (ﬂ_fdd,“. edd)

Property 5.2.5. The sequence , %) obtained by the EDD rule, is an optimal solution

of the F'm|prmul 3, T problem if dpeaa 2 drca +> 0 Limsaa (or, equivalently, pean > STy timeaa),
Vj>1, and d, cdd >Z

i=1 lTFE(id'

Proof. Taking into account that C,, nedd +- Dy tineda is an upper bound of C, reaa, ie. Cp reas +
J R A

ST tiweaa > C medd the property can be easily proved recursively, as follows: Beginning with the first

zlwr

job of the sequence, 7¢% and assuming that d cdd > Yo tin

cdd then Cm,ﬂ.izdd — dﬂ.fdd < Cm,ﬂ.izdd —
Disy timgaa = D300 tizeas — 33 tireas = 0, where it has been used that the completion time of the
first job is equal to the sum of processing times, i.e. Cy, rcas = > tixcaa. Hence, the first term of the

objective function is zero, i.e. €y, reas — dpeas <0 — mam(Cmﬁedd — dyeaa, 0) = 0.

Following with the job in second position and assuming that d cia > dreaa + S tingaa, Where
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C’mmfdd < dﬂ.fdd by means of the job in the first position. Then d,n.;dd > C’mﬂredd +3 tingad. Note that
Cmyﬂ’fdd + 27;1 tiﬂ.sdd is an upper bound of C,, mgdd and, hence d_ cdd > Cm redd + 27 1 ”redd > Cmmgdd
which implies that the completion time of the job in second position is again lower than its due date and

that the second term of the objective function is again zero, i.e. C, reaa — dyeaa <0 — max(Cy, reaa —

drgad, 0) =0.
For the job in a position j, we assume dycas > dpeas + St imeda. As C,, et < dyeaq from the
previous job and C,, medd + >, 7ﬂ.rdd < G, medd then the completion time of the job in position j is

lower than its due date as well as the jth term of the objective function is zero, i.e. C,, eda — d caa <
N J

0 — maz(C, —d, caa ,0) =0.

m, 71'

Taking into account the last expression, the minimisation of total tardiness can be written as maz > maz{C, ;—

d;,0} = max(0) and, hence, the EDD rule is optimal. O

Property 5.2.5 suggests that, for instances with high values of indicator v (i.e. loose due dates)
and a high variability in the due dates of the jobs, the EDD rule may have a good performance for
Fm|prmul| ) Tj, as the due dates would have a greater influence on the objective function than the
completion times of the jobs. Clearly, for such instances, employing more sophisticated algorithms might

not pay off.

Analysis of the methods to generate the due dates

The five simple properties stated above determine different extreme cases of Fm|prmul " T; and Fm|prmu| Y E;+
T; where good /optimal solutions by algorithms designed for different problems (e.g. Fm|prmul_ C; and
Fm|prmu| — > C;). Obviously, the interest lies in finding efficient algorithms for instances in between
these extreme cases. Therefore it is useful to review the different sets of instances that have been gener-
ated in the literature to check whether they adequately cover the specific tardiness minimisation case, or
not.

To the best of our knowledge, testbeds for both scheduling problems have been built employing three

different methods to generate due dates:

o [56] generate the due dates according to a uniform distribution drawn between the sum of processing
time of the job and this sum plus an upper bound. This method for generating due dates is labelled

in the following as GS.

o [147] generate the due dates using two parameters, T and R, related to the mean and variance of

the due dates, respectively, according to an uniform distribution between P - (1 — T — R/2) and
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P.-(1—-T+ R/2), where P is a lower bound for the makespan. This method is labelled in the

following as PV.

e In [67], due dates are generated according to (1 +3-U[0,1]) > ¢;;. This method is denoted as HR

in the following.

Clearly, these methods produce instances with different values of the indicator v and, in the case of the
PV method, parameter R controls the variability of the due dates among jobs. To analyse the range of
instances generated by each method, three different benchmarks have been built in the following manner:
we consider the data regarding number of jobs, machines, and processing times as in the testbed Bs, and

generate three testbeds:

e The first testbed is generated using the PV procedure with parameters T = {0.2,0.4,0.6} and
R ={0.2,0.6,1.0}, and produced 5 replicates for each combination of m, n, T, and R. In total, 540

instances were obtained (see Section 3.2 for a more detailed description of this benchmark).

e The second testbed is generated using the GS procedure. To have the same number of instances

than in the previous testbed, 45 replicates are generated for each combination of m and n.

e The third testbed is generated in an analogous manner to the previous one (with 45 replicates for

each combination of m and n), but using the HR procedure for due date generation.

For each instance in the three benchmarks, the indicator v has been calculated according to expression
(5.2), where the worst makespan, WM has been approximated using a modified version of the NEH to
maximise makespan. The amount of instances for different intervals of v is shown in Figure 5.1 for the
three benchmarks. In the figure in the left side, the percentage of instances is classified according to the
parameter v whereas the figure in the right shows the cumulative percentage of instances. As can be seen,
HR and specially GS produce many instances with very low values of v for which the problem is similar
to minimising the total flowtime. For HR, 65% instances have a v lower than 0.15 while with GS all the
instances have v lower than 0.20. Hence, in this Thesis, we focus in the generation of due dates according
to the PV method, which is more likely to generate instances in the range of interest of both scheduling

problems.

Computational Analysis

To further analyse the similarities between the related scheduling problem in the chosen set of instances,

we empirically analyse the relationship between Fm|prmul|) T; and Fm|prmu|)_ C;, for low values of
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Figure 5.1: Distribution of the percentage of instances depending on v for different generation of due
dates (In the left, the percentage of instances of the testbeds in each interval of v is shown, while the right
figure shows the cumulative percentage of instances).

the parameter v. Thereby, we solve all instances in the testbed with the PV due date generation method
using the NEHedd heuristic and the NEH heuristic for flowtime minimisation (denoted as NEH_FT). In
addition, we obtain the solution given for each instance by the EDD rule in order to test the influence of

higher values of v and R. Note that there are only two differences between NEHedd and NEH _FT:

1. The starting order of NEHedd is the EDD rule whereas in NEH FT the starting order is the

ascending order of the sum of the processing times, and

2. When iteratively constructing the solution, NEHedd selects the best partial sequence with lowest

total tardiness, while NEH FT selects the one with lowest flowtime.

As seen in Section 3.3, the usual indicator of the quality of the solutions with respect to tardiness is the
relative deviation index (RDI). However, to better compare the performance obtained by the different
heuristics that are to be tested in Chapter 8 and those by the NEHedd (which is the reference heuristic for
Fm|prmul| )" T problem), we build the Compared Relative Deviation Index (CRDI), which is simply the
difference between the RDI of the heuristic ¢ and that of the NEHedd when both heuristics are applied

to instance j, i.e.:

sumTip — sumT; NEHedd
Worst; — Best;

RDILip — RDI; NEHead = CRD1;, = 100 (5.3)

Clearly, CRDI € [—100,100]. In the subsequent experiments, Worst; and Best; are taken from the
best and worst known total tardiness for the instances recorded in http://soa.iti.es/problem-instances.
The values of CRDI.4q and CRDINEm pr are shown in Figure 5.2 with respect to indicator v for each
instance of the benchmark, while Figure 5.3 groups the results for different values of R. The following

conclusions can be obtained according to those results:
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Figure 5.2: CRDI.4q and CRDINE H_FT for different values of v in each instance of benchmark Bs.
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eters v and R.
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e Ag predicted by Property 5.2.4, the performance of NEH _FT and NEHedd procedure is very similar
for low values of v. CRDINgn pr is on average 0.79 for instances with v < 0.1 and 2.91 for instances

with v < 0.15.

e NEH FT outperforms NEHedd when the variance of the due dates is low, i.e. R = 0.2, even for
high values of v. The average CRDINEHipT for R = 0.2 is -2.71. This fact can be explained if
we analyse the objective function when the variance of the due dates is zero (common due dates).

jelate(omwj - dj) = Zjelate CWJ - Ejelate dj =

Zjelate Cp,j — L - const, where L is the number of jobs late. The first term is directly included in

Then, minimising Z]‘ maz{Cp, ; — d;,0} = >

the minimisation of total flowtime, while the second term decreases when minimising total flowtime.

e In general, the performance of NEH FT deteriorates as v increases until it reaches medium-high
values (this is particularly clear for the combination of parameters R = 0.6 and R = 1.0), i.e.
NEH_FT procedure only performs better when the problem can be reduced to either a flowtime

minimisation problem (low v) or to a trivial one (high v).
e The performance of the EDD rule improves as v increases.

e For high values of v and a high variance of the due dates (R = 1.0), the EDD rule performs roughly
as good as the NEHedd procedure, i.e. CRDI.qq ~ 0. This could be predicted as a consequence
of Property 5.2.5, since if the variance of the due dates of an instance is high enough to verify the

conditions of Property 5.2.5, then EDD is optimal.

5.3 Processing times

This section —of computational/experimental nature- show that the Fm|prmu|Cpay problem is also em-
pirtcally hard, in the sense that optimal or quasi-optimal sequences statistically represent a very small
fraction of the space of feasible solutions, and that there are big differences among the corresponding
makespan values. In the vast majority of works solving the F'm|prmu|Cpax problem, it has been assumed
that a) processing times are not job- and/or machine-correlated, and b) all machines are initially available.
However, some works (see [206] and [144]) have found that the problem turns to be almost trivial (i.e.
almost every sequence yields an optimal or quasi-optimal solution) if one of these assumptions is dropped.
To the best of our knowledge, no theoretical or experimental explanation has been proposed by this rather
peculiar fact.

Our hypothesis is that, under certain conditions of machine availability, or correlated processing times,

the performance of a given sequence in a flowshop is largely determined by only one stage, thus effectively
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transforming the flowshop layout into a single machine. Since the single machine scheduling problem with
makespan objective is a trivial problem where all feasible sequences are optimal, it would follow that,
under these conditions, the equivalent F'm|prmu|Cpax problem is almost trivial. To address this working
hypothesis from a general perspective, we investigate some conditions that allow reducing a permutation
flowshop scheduling problem to a single machine scheduling problem, focusing on the two most common
objectives in the literature, namely makespan and flowtime. Our work is a combination of theoretical
and computational analysis, therefore several properties are derived to prove the conditions for an exact
(theoretical) equivalence, together with an extensive computational evaluation to establish an empirical
equivalence.

The additional notation necessary for this section can be set as follows. Let us it;r, be the idle time

immediately before job m; on machine i of a PFSP. Clearly,

Ciﬂ'k _Ciﬂ'k,_l _tiﬂkg ke2...n
itin, = (5.4)
Ciﬂ"k - tifrka k=1

or analogously,

itiﬂ-k = max {O Ci_l,ﬂ—k — Ci7ﬂk71 },Vk, 07;0 = Ooj =0 (55)

Regarding the single machine scheduling problem, denoted as SMSP, n jobs have to be scheduled in
a shop with a unique machine. The processing times and the completion times of job j in that machine
are denoted by t; and C; respectively.

Once the PFSP and SMSP decision problems have been formulated, let us introduce some useful
definitions. For a given instance of the PFSP, the machine s with the highest sum of processing times is

denoted as saturated machine. More specifically:

§ = arg max E tij
i -

J
The remaining machines i # s are denoted as non saturated machines. Additionally, let us consider

two types of dominance between machines.

e Dominance type I, (see e.g. [11]): a machine a dominates (type I) a machine b if t,; > 7, Vj # i,

where the machine b is consequently denoted as type-I-dominated machine.

e Dominance type II, (see e.g. [73], [25] and [203]): a machine a dominates (type II) a machine b

(denoted as type-Il-dominated) if miny; t,; > maxy; ;.
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Additionally, let us define the following dominance case for a flowshop of more than two machines:
e Case ddm: Each machine ¢ dominates (type I) machine ¢ + 1, Vi € [1,m — 1].
e Case idm: Each machine ¢ dominates (type I) machine i — 1, Vi € [2,m].

e Case idm-ddm: In this case, each machine i; (Vi; < s) dominates (type I) machine i; — 1 and each
machine iy (Vie > s) dominates (type I) machine is + 1. Obviously, machine s is the saturated

machine.

Finally, let us define the equivalence between PFSP and SMSP as follows: Given an instance 7
of a PSFP with processing times ¢;;, and Z an artificial instance of a SMSP with i; = t,;, we say
that, for instance Z, both problems are equivalent regarding objective F' if, for any feasible sequence
II, Fz(II) = F;(IT) + constant. In other words, PFPS and SMSP are equivalent for an instance if the
objective function values of all feasible sequences applied to both problems differ only with respect to a
constant. Obviously, for an instance where both problems are equivalent, the optimal sequences are the

same.

Theoretical analysis

Equipped with the above definitions, several properties can be derived to state when some PFSP instances
are equivalent to SMSP for makespan and/or total flowtime minimisation under some (rather restrictive)
assumptions. Since the PFSP with 2 machines has been widely analysed in the literature as an important
particular case of the general m-machines cases, the properties presented in this section also adopt this

division, and are formalised in two separate sections.

PFSP with 2 machines

Let first assume that machine s is the most saturated in the PFSP with 2 machines. In order to be able
to show that one instance of the PSFP with two machines is equivalent to the SMSP, we need to state
several properties and corollaries as well as define a condition to be satisfied for the saturated machine
(the hardest condition needed to prove the properties and corollaries is that tg; > bty Vi # i £ 5).

First, we study the case where the first machine is saturated, i.e. s = 1. Let us define the following

property in order to provide further insight into the understanding of this case:

Property 5.3.1. Let I := (mq,- -+ ,mg, -+ ,mn) be a sequence of jobs with t1., > tar, ,,Vk > 2. Then,
the completion time of job my in the second machine equals its completion time on the first machine plus

its processing time in the second, i.e. Cor, = Cir, + tar,, Vk.
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Proof. The property can be recursively proved in view of the definition of the completion time of job my,

on the first machine:

Clﬂk _ Clﬂ'k,l + tlﬂ'k? vk Z 2

timy s k=1

and in the second one:

max {Ci r,,Cor, ,} +tor,, Vk>2
O27Tk =

tlﬂ'k + t27‘rk7 Vk = 1

Beginning with the second job of the sequence, m2: on the one hand, taken into account t1,, > tar,, the
completion time on the first machine is Cir, = Ciny +tiny = t1ny + b1y > t1my +t2n, = Copy — Clipy >
Car,; on the other hand, the completion time in the second machine is Cor, = max {C r,, Ca.n, } +t2m, =
Ci,xy +tor, — Con, = C4 x, + tar, using the expression of on the first machine.

Following with the third job of the sequence, ms: the completion time on the first machine is C,, =
Ciny + tins > Cigy +tor, = Cor, — Cin, > Cor,; in the second machine, the completion time is
Cony = max {C1 r,, Co 7y} + tony = Ciny +tony — Cony = C1 ry + tor,.

Analogously, in a recursive manner, for job in position k, m;: on the first machine, the completion
time is Cir, = Cirx_y +tin, = Ciny_y + o, = Cox,, — Cig, = Corn,_,; then the completion time
in the second machine is Cor, = max{Ci r,,Co.r, .} + tor, = Cin, + tor, — Con, = C1 r, + tor,.

O

This property extends the following result found by [120], which can be seen now as a corollary of the

above property:

Corollary 5.3.1. ([120]: First part of Theorem 3 for m = 2). Let I be an instance of the PFSP where
machine 2 is type-II-dominated by machine 1. Then, the completion time of a job on the second machine

is equal to the completion time of a job on the first machine plus its processing time on the second machine.

Proof. The proof of the corollary is obvious in view of Property 5.3.1. O

Corollary 5.3.2. Let I1 := (71, -+ , g, -+ ,7p) be a sequence of jobs with ti,, > to,_,,Vk > 2. Then,

the idle time itar, is always greater than 0, i.e. itar, > 0, Vk.

Proof. The proof of the corollary is obvious in view of Property 5.3.1 just by taking into account the

definition of idle time given in Equation (5.5). O

The above property and corollaries establish respectively that the completion time of each job on the

second machine depends only on its completion time on the first machine and that there are always idle



5.3. PROCESSING TIMES 55

time in the second machine. This occurs if the processing time of each job on the first machine is higher
than its previous job on the second machine. Extending this condition to the processing time of each other
job on the second machine, the equivalence between F2|prmu|Ci,q. with 1||Chuaz of the first machine is

theoretically established in the Theorem 5.3.1 with the exception of the last job of the sequence.

Theorem 5.3.1. Let Z be an instance of the F2|prmu|Chyae where t1; > by Vi # j/ (i.e. machine 2
is dominated type I), and 7 be an instance of the 1||Cinax problem where fj = t15. Let II be a sequence
of the form 11 := {0, g} := (01, -+ , 0%, *+ ,0n—1,9) where g is the last job of the sequence and o is an
unknown sequence of n—1 jobs. Let Cp,q. be the makespan on instance Z of 11 and Conaz be the makespan

on instance T of II. Then, for each feasible sequence, Cpar = mas + 2,9

Proof. Let us consider the PFSP with two machines to minimise makespan. In view of Property 5.3.1,
Craz = Car, = Cix, + toy,. Then, minimising Ci,q. in the F2|prmu|Ciq. is equivalent to minimise

Cir, + tar, . Considering that 7, is job g, Caz = Cix, + tax, = Cir, +t2.g = Crnax + to.q- O

Corollary 5.3.3. Under the conditions of Theorem 5.3.1, the optimal solution for T and I is the same.
Additionally, any sequence of the form 11 := {o, e} is optimal for both instances where e is the job with

the least processing time on the second machine, i.e. ta. = miny; ta;.

Proof. The proof of the theorem is obvious in view of Theorem 5.3.1 and since each feasible solution is

optimal for the 1||C),q. problem. O

Note that the result of this theorem is given in [72] for m = 2 under more restrictive conditions, i.e.

miny; ¢1,; > maxy; ty ;, which can be seen now as a special case of the above result:

Corollary 5.3.4. ([72]: Theorem 2 for m = 2). Let T be an instance of the F2|prmu|Cyq. where the
machine 2 is type-II-dominated by the machine 1. Then, any sequence of the form Il := {0, e} is optimal

where o is any sequence of n — 1 jobs and e satisfies to. = miny; to;.
Proof. The proof of the theorem is obvious in view of Corollary 5.3.3. O

On the other hand, the equivalence between F2|prmu|>" C; and 1|| > C; is theoretically proved by
Theorem 5.3.2 and Corollary 5.3.5.

Theorem 5.3.2. Let Z be an instance of the F2|prmu| Y C; where t1; > ty;, Vj # i (i.e. machine 2 is
dominated type 1), and T be an instance of the 1|| >= C; problem where fj = t1;. Let 11 be a sequence of
the form 11 := (my,--- , @, -+~ 7). Let S(I) be the total flowtime on instance T of 11 and S(II) be the

total flowtime on instance I of II. Then, for each feasible sequence, S(IT) = S(II) + > ovjt2,-
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Proof. Let us consider the PFSP with two machines to minimise the total flowtime, i.e. ZW Cyj. In
view of Property 5.3.1, ZVj CQj = ZVj(Clj + tQj) = ZV]’ Clj + ZV]’ tQj = ZV]’ Clj + C where d is a

constant. O

Then, the minimisation of total flowtime in the second machine (3_,,; C2;), goal of the F2[prmul|3_ Cj,
is equivalent to the minimisation of total flowtime on the first machine (3_y,; C1;) which is the goal of the

1|| >~ C; problem of the first machine.

Corollary 5.3.5. Under the conditions of Theorem 5.3.2, the optimal solution for T and 7T is the same
where an optimal solution is obtained ordering the jobs according to the non-decreasing processing times

on the first machine.

Proof. The proof of the theorem is obvious in view of Theorem 5.3.2 and since the non-decreasing sum of

the processing times is optimal for the 1|| >~ C; problem. O

For m = 2 and a more restrictive condition of processing times, this result is found by [72]:

Corollary 5.3.6. ([72]: Theorem 4 for m = 2). Let T be an instance of the F2|prmu|)_ C; where the
machine 2 is type-II-dominated by the machine 1. Then, an optimal solution can be obtained ordering the

jobs in ascending order of their processing times on the first machine.
Proof. The proof of the theorem is obvious in view of Corollary 5.3.5 O

For the case where the second machine is saturated, the following property is needed to prove the

equivalence between the problems:

Property 5.3.2. Let Il := (my,-++ , 7, -+ ,Tp) be a sequence of jobs with tar,_, > tin,,Vk > 2. Then,
the completion time of each job, m, on the second machine is equal to the its processing time plus the
completion time of the previous job, mx_1, on the second machine machine with the exception of the first

job, i.e. Cgﬂ-k = 02ﬂk71 +tor,, vk > 2, and Cgﬂ—l = {15, +tor,.
Proof. The proof of the property is obvious using the same reasoning as in Property 5.3.1. O
This property extends the results by [72] and [120], but the opposite cannot be asserted.

Corollary 5.3.7. ([120], second part of Theorem & for m = 2; and [72], Lemma 1 form = 2). Let T be an
instance of the PFSP where the machine 1 is type-1I-dominated by the machine 2. Then, the completion
time of each job on the second machine is equal to the its processing time plus the completion time of the
previous job (on the second machine machine), with the exception of the first job in the sequence which is

equal to the sum of the processing times of this job on both machines.



5.3. PROCESSING TIMES 57
Proof. The proof of the corollary is obvious in view of Property 5.3.2. O

Corollary 5.3.8. Let Il := (71, , 7, -+ , ) be a sequence of jobs with ti,, < ton, ,,Yk > 2. Then,

the idle time itor, is equal to 0, i.e. ilor, =0, Vk €2...n.

Proof. The proof of the corollary is obvious in view of Property 5.3.2 just by taking into account the

definition of idle time given in Equation (5.5). O

Then, when the first job of the sequence is known, the equivalence between the F2|prmu|Cy,e. and

1]|Cnaz is established in Theorem 5.3.3.

Theorem 5.3.3. Let Z be an instance of the F2|prmu|Ca. where machine 1 is dominated type I, and
T be an instance of the 1|Cyaz problem where t; = to;. Let 11 be a sequence of the form 11 := {f, o} =
(f,o1,-"+ Ok, yon_1) where f is the first job of the sequence and o is an unknown sequence of n — 1
jobs. Let Cphq, be the makespan on instance L of 11 and C’mam be the makespan on instance A of IL. Then,

for each feasible sequence, Cypor = Ama,,; +t1,5.

Proof. The proof of the theorem is obvious in view of Property 5.3.2 and Corollary 5.3.8, or using the

reversibility property of the Fm|prmu|Ciax problem. O
Note that a consequence of this theorem is that the optimal solution of both problems is identical.

Corollary 5.3.9. Under the conditions of Theorem 5.5.3, the optimal solution for T and T is the same.
Additionally, any sequence of the form 11 := {f, o} is optimal for both instances where [ is the job with

the least processing time on the second machine, i.e. t1 y = miny; t ;.

Proof. The proof of the theorem is obvious in view of Theorem 5.3.3 and since each feasible solution is

optimal for the 1||C),q. problem. O

A similar result is found by [72] for both m = 2 and a more restrictive condition, but the opposite

cannot be asserted.

Corollary 5.3.10. ([72]: Theorem 1 for m = 2). Let T be an instance of the F2|prmu|C,q. where the
machine 1 is type-II-dominated by the machine 2. Then, any sequence of the form Il := {f,o} is optimal

where o is any sequence of n — 1 jobs and f satisfies t1y = miny; t1;.
Proof. The proof of the theorem is obvious in view of Corollary 5.3.9 O

Additionally, the equivalence between the F2|prmu| " C; and 1|| Y~ C} is established in Theorem 5.3.4

for the case of a fixed first job in the sequence.
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Theorem 5.3.4. Let I be an instance of the F2|prmu|)_ C; where machine 1 is dominated type I, and
7 be an instance of the 1||3. C; problem where t; = to;. Let 11 be a sequence of the form 11 := {f, o} =
(f,o1,-"+ 0k, ,on_1) where f is the first job of the sequence and o is an unknown sequence of n — 1
jobs. Let S(IT) be the total flowtime on instance I of I1 and S(I1) be the total flowtime on instance I of
II. Then, for each feasible sequence, S(II) = S(H) +n-ty .

Proof. The proof of the theorem is obvious in view of Property 5.3.2 and Corollary 5.3.8. O

Corollary 5.3.11. Under the conditions of Theorem 5.8.4 and considering [ as a fixed job on the first
sequence position, an optimal schedule is obtained ordering the remaining jobs (sequence o) according to

the non-decreasing processing times on the second machine.

Proof. The proof of the theorem is obvious in view of Theorem 5.3.4 and since each feasible solution is

optimal for the 1| Y~ C; problem. O

For a more restrictive condition, the same result is found by [72].

Corollary 5.3.12. ([72]: Theorem 8 for m = 2). Let I be an instance of the F2|prmu|Ci,q, where the
machine 1 is type-II-dominated by the machine 2. Then, an optimal schedule 11 := {f,c}, where f is a
fized job on the first sequence position, is obtained ordering the remaining jobs (sequence o) according to

the non-decreasing processing times on the second machine.

Proof. The proof of the theorem is obvious in view of Corollary 5.3.11 O

Note that the conditions to reach the equivalence between the PFSP and the SMSP to minimise
makespan and total flowtime can be reduced when initial availabilities are considered, see Theorem 5.3.5.

In this case, both problems are equivalent regardless the sequence of jobs when the conditions are fulfilled.

Theorem 5.3.5. Let Z be an instance of the PFSP where machine 1 is dominated type I, and 7 be an
instance of the SMSP problem where t}- = toj. Let ay be the initial availability of the second machine on
both instances. Let 0; the difference between the processing time of job j on the first and second machines
i.e. 05 =1ty —to. If

a9 Z Z 6j + H\lﬁx{tlj} (56)
V6;>0 J

Then, the completion time of each job, mr, Yk > 1, in the second machine is equal to the its processing
time plus the completion time of the previous job or, analogously, the idle time before job my is always

equals to 0,
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Proof. According to the definition of idle time, Expression (5.5), an idle time equals to 0 implies that
Compy > Ciomyy VE.

For k = 1 (the first job in the sequence), the expression is Cyr, > Cix, — a2 > t1,., which is
satisfied attending to Expression 5.6.

For k=2 Cin, =Ciry +tig, =t17, +ti0, and Cony = ag +toq, as it r, = 0. Then, Cy r, >
Cipgy — a2 +tog > tia +tia, — G2 >t gy + 10, — tor, — a2 > t1 x, + 0r,. This condition is
fulfilled according to Expression 5.6.

Analogously, for a generic k = [, the condition to reach an idle time equals to zero before 7 is
ag >ty 5, + Zje[l,l] Or,. Since maxy;{ti;} + Zv5j>0 0; >t m + Zje[l,l] dr,; and according to Expression

(5.6), the previous condition is always satisfied. O

PFSP with m machines

Similar results of the equivalence between the PFSP and the SMSP can be found for a flowshop factory
with more than two machines. In this section, we detect four possible requirement to be fulfilled by an
instance in order to achieve the equivalence between both problems.

Case ddm

Let us define some properties and corollaries, before beginning analysing the equivalence between the

problems for the ddm dominance case.

Property 5.3.3. Let Il := (my, - , g, -+ ,my) be a sequence of jobs with t; ., > tiyi ., ,Vk > 2 and
Vi > 1. Then, the completion time of job m, on the last machine equals its completion time on the first

machine plus the sum of the processing times on the rest of machines, i.e.:

m

Cm,ﬂ'k = Cl,ﬂ'k + Z t’i,ﬂ'k7v]€
=2

or equivalently:
Jj—1 m
Cm,ﬂk = Z tl,ﬂ'j + Z ti,ﬂ'k ) vk
j=1 i=1

Proof. The proof of the property is obvious applying recursively Property 5.3.1. O

The same result is also found by e.g. [11] and [203] for a more restrictive condition of dominance:

Corollary 5.3.13. (/11], Corollary 8.3; and [203], Observation 2). Let I be an instance of the PFSP

where each machine i + 1 is type-II-dominated by machine ¢, Vi. Then, the completion time of a job on
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the last machine is defined by:

m

Jj—1
Cm,Trk = Z tl,ﬂ'j + Z ti,ﬂ'k7Vk
j=1 i=1

Proof. The proof of the corollary is obvious in view of Property 5.3.3. O

Then, for this case of dominance between machines, the equivalence between Fm|prmu| . C; and
1]]>° Cj is defined in Theorem 5.3.7 as well as the equivalence between the Fm|prmu|Cuax and 1||Cpaz,

when the last job of the sequence is fixed, is established in Theorem 5.3.6.

Theorem 5.3.6. Let T be an instance of the Fm|prmu|Cax where the machines are dominated according
to ddm, and 7 be an instance of the 1||Cynae problem where fj = t1,;. Let Il be a sequence of the form
I := {o,9} = (01, "+ ,0ky"** ,On_1,9) where g is the last job of the sequence and o is an unknown
sequence of n — 1 jobs. Let Cia be the makespan on instance T of 11 and Corax be the makespan on

instance T of II. Then, for each feasible sequence, Cpar = Amam + E:iz tig-
Proof. The proof of the theorem is obvious in view of Property 5.3.3 and Theorem 5.3.1. O

Theorem 5.3.7. Let T be an instance of the Fm|prmu| " C; where the machines are dominated according
to ddm, and T be an instance of the 1| > C; problem where t; = t1;. Let I be a sequence of the form
IT := (my,- ,@hy--- 7). Let S(II) be the total flowtime on instance T of 11 and S(II) be the total

flowtime on instance I of II. Then, for each feasible sequence, S(II) = S(IT) + > vjis1 i
Proof. The proof of the theorem is obvious in view of Property 5.3.3 and Theorem 5.3.2. O

Case idm
For the idm case, the following property establishes the value of the completion time of each job on

the last machine:

Property 5.3.4. Let Il := (my,--- , g, -+ ,7p) be a sequence of jobs with t; ., > ti_1.x,.,Yk > 2 and
Vi > 1. Then, the completion time of each job, Tk, on the last machine is equal to its processing time plus
the completion time of the previous job, mp_1, on the last machine machine, with the exception of the first

job, i.e. Crymp = Cromyy +tmymys Yk > 2, and Cry ey = > i ti ry - Equivalently,

m—1 k
C'm‘n';€ = Z ti,Trl + tm,ﬂ'ijk
=1 j=1
Proof. The proof of the property is obvious applying recursively Property 5.3.2. O

For more restrictive conditions, the same result is found by e.g. [11], [72] and [203].
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Corollary 5.3.14. ([72], Lemma 1; [11], Corollary 3.1; and [205], Observation 1). Let I be an instance
of the PESP where each machine i is type-IlI-dominated by machine i + 1. Then, the completion time of

a job on the last machine is defined by:

m—1 k
Cm,ﬂ'k = Z ti,ﬂ'l + Z tm,ﬂ']-ka
i=1 j=1
Proof. The proof of the corollary is obvious in view of Property 5.3.4. O

Additionally, the Property 5.3.4 implies that there is no idle time on the last machine after the fist job

of the sequence:

Corollary 5.3.15. Let Il := (mq, -+ , g, -+ , ™) be a sequence of jobs and T be an instance of the PFSP

where the machines are dominated according to idm. Then, the idle time IT,, ., is equal to 0, Vk > 1.

Proof. The proof of the corollary is obvious in view of Property 5.3.4 just by taking into account the

definition of idle time given in Equation (5.5). O

The equivalence between the Fm|prmu|Cpaz (D C;) and 1]|Cpaaz (D C;), when the first job of the

sequence is fixed, is established in Theorem 5.3.8 (5.3.9).

Theorem 5.3.8. Let T be an instance of the Fm|prmu|Cax where the machines are dominated according
to idm, and 7 be an instance of the 1||Cynae problem where fj = tm,j. Let Il be a sequence of the form
II:={f,0} = (f,01,"+ ,0k, - ,0n—1) where [ is the first job of the sequence and o is an unknown
sequence of n — 1 jobs. Let Ciq. be the makespan on instance Z of 11 and é?rLax be the makespan on

instance T of II. Then, for each feasible sequence, Cpyar = Cmaz + Z:":_ll tif.
Proof. The proof of the theorem is obvious in view of Property 5.3.4 and Corollary 5.3.15. O

Theorem 5.3.9. Let T be an instance of the Fm|prmul| > C; where the machines are dominated according
to idm, and T be an instance of the 1|| 3. C; problem where i; = t,, ;. Let II be a sequence of the form
Il :={f,o} := (fyo1,"++ , Ok, ,0n—1) where f is the first job of the sequence and o is an unknown
sequence of n — 1 jobs. Let S(II) be the total flowtime on instance Z of 11 and g(H) be the total flowtime
on instance I of 1. Then, for each feasible sequence, S(II) = S(II) +n - Z:i_ll tif-

Proof. The proof of the theorem is obvious in view of Property 5.3.4 and Corollary 5.3.15. O

Case idm-ddm
Similar to the previous case, the completion time of each job on the last machine is defined by the

following property for the idm-ddm case:
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Property 5.3.5. Let Il := (71, , 7, -+ ,mp) be a sequence of jobs with t; r, . > ti,—1,x,,Vk > 2,5 >
i1 > 1 and ti, r, > tis41,m,_1, VE > 2,0 > 5, t.e. following a dominance configuration type idm-ddm

where the saturated machine is s. Then, the completion time of each job, my, on the last machine is:

mm‘ Z tll,‘ﬂ'l + Zts Lo + Z tzz,ﬂ'“

i1=1 ig=s+1

Proof. The proof of the property is obvious in view of Properties 5.3.3 and 5.3.4. O

For a more restrictive condition, the same result is found by [203].

Corollary 5.3.16. ([203], Observation 4). Let T be an instance of the PFSP where each machine iy < s
is type-I1I-dominated by machine i1 + 1 as well as each machine s < i < m is type-II-dominated by

machine i — 1. Then, the completion time of a job on the last machine is defined by:

Con, Zt“m+ZtM + Z tig,mer Vh

i1=1 ig=s+1

Proof. The proof of the corollary is obvious in view of Property 5.3.5. O

Then, for this case of dominance between machines, the equivalence between Fm|prmu| . C; and
1]]>° Cj is defined in Theorem 5.3.11 fixing the first job of the sequence as well as the equivalence between
the Fm|prmu|Cpax and 1||Cpae, when the first and last job of the sequence is fixed, is established in
Theorem 5.3.10.

Theorem 5.3.10. Let Z be an instance of the Fm|prmu|Cynax where the machines are dominated accord-
ing to idm-ddm, and 7 be an instance of the 1||Cirax problem where fj = tyj.Let Il be a sequence of the
form I :={f, 0,9} :=(f,01, -+ , 0k, ,On—2,9) where f and g are respectively the first and the last job
of the sequence and o is an unknown sequence of n — 2 jobs. Let S(II) be the total flowtime on instance

T of II and S(H) be the total flowtime on instance 7 of II. Then, for each feasible sequence,
s—1 m
Cmam = Chaz + Z til,f + Z tig,g
i1=1 to=s+1
Proof. The proof of the theorem is obvious in view of Property 5.3.5. O
Theorem 5.3.11. Let Z be an instance of the F'm|prmu|)_ C; where the machines are dominated ac-

cording to idm-ddm, and T be an instance of the 1|| 3. C; problem where t; = ty;.Let 11 be a sequence of

the form Il :={f,0} := (f,01, -+ ,0k, -+ ,0n_1) where f is respectively the first job of the sequence and
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o is an unknown sequence of n — 1 jobs. Let Cyq, be the makespan on instance Z of II and C’mam be the

makespan on instance 7 of II. Then, for each feasible sequence,

s—1
SA) =S+ > tij+n- Y tig

Viin>s i1=1
Proof. The proof of the theorem is obvious in view of Property 5.3.5. O

Generic Case

The assumptions to achieve this equivalence are much harder in the generic case of a factory with
m > 2 machines. In fact, it is necessary that the processing time of each job j on the saturated machine
s is higher than both the sum of the processing times on the machines before s of each job j/ # 4, and
the sum of the processing times on the machines after s of each job j # j. Obviously, this behaviour is
hardly found in real-life environments. It thus represents only a sufficient but not necessary condition to

state the equivalence.

Theorem 5.3.12. Let T be an instance of the F'm|prmu|Cuax with ts; > 37, . and ts; > >0, t.r,
Vi # j/, and I be an instance of the 1||Cruaz problem where fj =ts;. Let f and g be the fized first and
last job of a sequence of jobs Il := (f, 01, ,0k,"** ,0n—2,9) where o is an unknown sequence of n — 2

jobs. Then, the Fm|prmu|Chax 18 equivalent to the 1||Crae of machine s.
Proof. The proof is obvious using the same reasoning as Properties 5.3.1 and 5.3.2. O

Theorem 5.3.13. Let T be an instance of the Fm|prmul|}_ Cj with ts; > >t and ts; > >0, t0r,
Vj # 5, and T be an instance of the 1|3 C; problem where i; = ty;. Let f and g be the fived first and
last job of a sequence of jobs Il := (f,01, -+ ,0k, -+ ,0n—2,9) where o is an unknown sequence of n — 2

jobs. Then, the Fm|prmu|)_ C; is equivalent to the 1||>" C; of machine s.
Proof. The proof is obvious using the same reasoning as Properties 5.3.1 and 5.3.2. O

All the properties presented in Sections 5.3 and in this section analyse the assumptions required to
theoretically prove the equivalence between the PFSP and the SMSP of the most saturated machine, under
the minimisation of makespan and total flowtime. The equivalence between both scheduling problems is
theoretically proved in the Theorems 5.3.1, 5.3.2, 5.3.3, 5.3.4, 5.3.5, 5.3.7, 5.3.7, 5.3.8, 5.3.9, 5.3.10,
5.3.11, 5.3.12 and 5.3.13 for different conditions. Given an instance, the fulfillment of these conditions
then indicates that solving the equivalent SMSP is analogous as solving the original PFSP. However, this
equivalence could be approximately satisfied under milder conditions. In the next section, we empirically

analyse them by means of an extensive computational experience.
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Computational analysis

In this section we consider the following issues: the procedure to generate the instances; the description
of the implemented heuristics; the results for several values of the parameters of the testbed; and finally,

the boundary lines between both problems.

Testbed generation

Using the above formulations and definitions, existing testbeds for the PFSP can be analysed. As men-
tioned in the previous section, most algorithms for the PFSP problem have been tested on benchmarks
where the processing times follow a uniform distribution. However, in the experiments by [206], a struc-
tured benchmark with job-correlated, machine-correlated and mixed-correlated processing times is em-
ployed. Regarding machine-correlation, processing times are generated using a uniform distribution con-

sidering the following two aspects:

e For each machine, the mean of the processing times is generated from 1 to 100 depending on a

parameter.

e For each machine, the width of the uniform distribution is uniformly generated from 2 to 10.

The goal of this section is to show that the problem can be reduced to a SMSP when there is a
machine saturated in the PFSP. The study of this equivalence between the problems must obviously be
done without the influences of another effects and therefore, a specific benchmark is generated to test the
experiments performed in Section 11.4, where different levels for the saturated machine are considered.
Firstly, the same distribution is considered for each non-saturated machine since it is the worst case.
Additionally, the consideration of different distributions in the non-saturated machines would strongly
hinder the understanding on the cause of the equivalence between the problems. Secondly, the same
width of the uniform distribution (equivalently variance) is considered for all machines (including the
most saturated one) both for clarity and to reduce the parameters of the proposed benchmark.

Taking into account the previous discussion, the processing times for our computational experience
are then generated according to the expression (5.7) for the non-saturated machines and (5.8) for the

saturated machine (denoted as s):

ti;—Ule-(1—B),e-(1+PB),Visjel,...,n (5.7)

ts; 2 Ule-(1+y—=0),e-(1+~v+p),jel,....n (5.8)



5.3. PROCESSING TIMES 65
where the following parameters must be defined:
e ¢: Mean of the processing times on non-saturated machines.

e (: Half length of the interval of the uniform distribution of each machine with respect to the mean
processing time €, i.e. € yields the half width of the interval, and 2 - € - § is the full length of the

interval of the uniform distribution of each machine (including the saturated machine).

e v: Increase of the mean processing times on the saturated machine s relative to e. In this way,
(1 + v)e represents the expected processing time on machine s whereas the expected value of the

processing time for the rest of the machines is e.

Regarding the initial availability of the machines, the following parameter must be considered in the

benchmark:

e §: Number of jobs being processed in the shop floor to create a fictitious initial unavailability. More
specifically, we generate 0 jobs, which are sequenced according to certain heuristic (in this Thesis, we
use the NEH of [127] and [48] for makespan and flowtime minimisation respectively). The processing
of these jobs according to such sequence creates a;, the initial unavailability in each machine ¢, which

can be computed as follows: a; = C; »,, — Ci x,,-

Implemented heuristics

The following simple 11 algorithms are implemented to analyse the relationship between SMSP and PFSP

problems. More specifically, we will design the following procedures:

e PF B(MK) and PF_B(FT) will be designed to provide good —hopefully best— solutions for the

PFSP problems with makespan and flowtime objective, respectively.

o PF_W(MK) and PF_W(FT) will be designed to obtain bad —hopefully worst— solutions for the
PFSP problems with makespan and flowtime objective, i.e. they seek makespan and flowtime

mazximization.

e SM_R(MK) and SM_ B(FT) will be designed to provide the best solutions for the equivalent SMSP

problems if only the saturated machine in the PFSP is considered.

e SM_W(FT) will be designed to provide bad —hopefully worst— solutions for the equivalent SMSP
problem if only the saturated machine in the PFSP is considered. Note that the corresponding worst

procedure for makespan would be also SM_R(MK).
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e SM_EB(MK) and SM_EB(FT) will be designed to provide good —hopefully best— solutions for the
equivalent SMSP problems considering the saturated machine in the PFSP and the influence of the

last and first jobs in this machine.

e M B(MK) and M_B(FT) will be designed to provide good —hopefully best— solutions for a reduced

PFSP formed by machines i € {s,m} for makespan and flowtime objectives, respectively.

With these procedures we can check the (statistical) equivalence of SMSP and PFSP problems on a set
of instances, since, for the cases where the objective function values found by SM_B(FT), SM_ R(MK),
SM_EB(i) and M_B(i) are close to those provided by PF_B(i), and those found by SM_W(FT) and
PF_W(i) are similar, then both problems (PFSP and SMSP) are (approximately) equivalent. In order

to implement these procedures, the following decisions have been taken:

e SM_B(FT): Jobs are sorted in non-decreasing order of their processing times on machine s, which

corresponds to the optimal solution of the equivalent 1|| Y C; problem.

e SM_W(FT): Jobs are sorted in non-increasing processing times on machine s, which is expected to

provide a bad solution for the equivalent 1|| >~ C; problem.

e SM_R(MK): Jobs are sorted according to sequence (1,...,n), which is a random solution for the
1||Cinaz problem. Since, for this problem, each solution is optimal, this procedure would yield both

the best and worst solutions for the problem.

o SM_EB(MK): Since the idea is to take into account the influence of the first and last jobs of the
sequence on the non-saturated machines, the procedure reduces the Fm|prmu|Cpax to a problem
similar to the SMSP problem where the first and last jobs add the processing times on the machines
before and after the saturated machine s to their processing times, i.e. given a sequence II of jobs,

the processing times are:
-1
tim), + Zf:1 bimgs k=1
timy, = timss Vk #1,n

bimg + D oi timys k=n

To find a good II/ final sequence, as in the SM_R(MK), jobs are first sorted randomly (let us
denoted I1# to this sequence). Then, two simple phases are carried out as follows to find the first

and last job:

— In case of § = 0, the first job of the sequence is the job with minimal sum of processing times
before machine s, i.e. 7 is the job F satisfying that 7"} t;p < 32571 #;;¥4. In case of § > 0,

the first job is the same as in the SM_ R(MK) heuristic, 7/ = 7.
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— The last job of the sequence is the job with minimal sum of processing times after machine s

respectively, i.e. 7 is the job L which satisfies that 7" 1 t;p < D270 1 tij, V.

SM_EB(FT): Designed for flowtime, SM_EB(FT) solves the equivalent SMSP problem as the
SM_B(FT). However, in contrast to that heuristic, the SM_EB(FT) considers the influence of the
first job in the machines before the non-saturated machine, i.e. ¢ < s. Thereby, the processing time
of the first job is the sum of the processing times of the machines ¢ < s, i.e. given a sequence II of

jobs, the processing times are:

' Limy, + Zf;ll 229 k=1

tm—k, Vk > 1

The procedure of the heuristic consists of two phase: first phase is the same heuristic SM_B(FT)
where jobs are ordered according to non-decreasing processing times on machine s; then, the first
job of the sequence is the job with minimal sum of processing times until machine s, i.e. 7T{ is the

job F which satisfies that > ;_, t;p < Y i_, V).

PF_B(i) (¢ € [MK,FT]): Since the idea is to provide good solutions for F'm/|prmu|)_ C; and

Fm|prmu|Cpax, we use the NEH heuristic of [127] and [48], respectively.

PF_W(i) (: € [MK,FT]): Since the idea is to provide bad solutions for Fm|prmu|)_ C; and

Fm|prmu|Cpax, we use the NEH heuristic for makespan and total flowtime mazimisation.

M_B(i) (¢ € [MK, FT]): These heuristics use the same NEH heuristics to solve a reduced PFSP
considering only machines i’ € {s,m}. The operations of the jobs in the other machines are omitted.
Note that the initial availabilities, a;, are calculated from the saturated machine, i.e. a;; = C}

1 3T

Cym, Vi € {s,m}.

Evaluation of the solutions

Traditionally, the related literature has used Relative Percentage Deviation (RPD) and the CPU time to

measure both the quality of the solution and the required computational effort of heuristic r in an instance

s. More specifically, the average RPD (ARPD) and the average CPU time (ACPU) obtained over a set

of S instances can be defined as follows:

> s RPD,

ARPD, = (5.9)
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T’I‘S
ACPU, = ZVT (5.10)

where

OFYV,, — Best,

RPD,, =
Best,

100 (5.11)

OF'V,, is the objective function value (makespan or total flowtime) obtained by heuristic r in instance
s. Bests is the best solution among the implemented heuristics in that instance, i.e. Bestg := min, OFV,,.
Finally, T, is the CPU time of heuristic r in instance s.

The consideration of initial availability introduces a disruption in the evaluation of the objective
function which must be taken into account. This disruption is illustrated with the following example: Let
us assume a PFSP problem with two machines and two jobs. Processing times of the first and second
jobs on the machines are t1; = 10, to; = 40, and t15 = 10, t22 = 50 respectively. For the two possible
sequences i.e. 7t = (1,2) and 72 = (2, 1), the total flowtimes are > Cpmt =150 and 3 C,y, -2 = 160. In
terms of RPD, RPD(>’ Cm,ﬂjl.) =0and RPD(}. Omnrf-) = 6.67.

Let us now assume that the second machine is not available until time 300. Then, the total flow-
time of both sequences change to Zcm,w}. = 730 and ZCm,WJQ- = 740 respectively, while RPD are
RPD(>. C’m,ﬂjl_) = 0 and RPD(>_ C'm_yﬂjz) = 1.37. Although in this case the initial availability of the
second machine clearly does not influence the hardness of the problem, its influence on the RPDs is very
high.

To avoid this issue, we do not consider the time 0 as reference for the completion times. Instead, we
consider a reference (denoted as B) based on the first job of the sequence. Nevertheless, in order not to

have a sequence-dependent reference, we consider as the first job of the sequence all jobs and we average

B — Z;L:1 C’”:""lz_‘i

~ . Once B is obtained, the completion time of each job on

theirs completion times, i.e.

the last machine is reduced by B for each heuristic.

Computational results

All algorithms are coded in the same language (C# under Visual Studio 2013) and under an Intel Core
i7-3770 with 3.4 GHz and 16 GB RAM. They are tested in an set of instances following the indications
of Section 5.3, which includes n € {20,50,100,200}, m € {2,5,10,20} and two values of § € {0,100}
representing an initially empty and loaded shop respectively. Processing times are generated according to

the expression (5.7) and (5.8) with the following parameters:

e ¢ = 50.
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e 3 € {0.10,0.20,0.40,0.60, 1.00}.

e ~ € {0.00,0.04,0.08, ...,2.96,3.00}.

For each combination of parameters (n, m, 0, €, 8 and =), 10 instances are generated forming a total
of 121,600 instances.

Values of ARPD of the heuristics with (§ = 100) and without (§ = 0) considering initial availabilities
are shown in Table 5.1 for each value of the parameter n, m and S, and for some values of . Clearly, the
heuristics SM_ B(FT), SM_R(MK), SM_EB(i) and M_ B(i) go closer to PF_ B(i) when the parameters 3
and m decrease, and v and n increase. In Figure 5.4 and 5.5 for makespan and total flowtime minimisation
respectively, it can be seen the ARPD of the heuristics for the complete set of values of the parameter ~

and ¢ as well as the decreasing tend of each curve. Several aspects can be highlighted from the results:
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Figure 5.4: ARPD of the heuristics versus parameter gamma for makespan minimisation. On the left, no
initial availability is considered and on the right an initial 6 = 100 is taken into account.
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Figure 5.5: ARPD of the heuristics versus parameter gamma for total flowtime minimisation. On the left,
no initial availability is considered and on the right an initial § = 100 is taken into account.

e Regardless the effects of other parameters, for high values of v, solving the equivalent SMSP problem
or the original PFSP yield a similar solution (i.e. ARPD obtained by SM_B(FT), SM_R(MK),
SM_EB(i) and SM_B(FT) are very close to the ARPD of PF_B(i)).

e Additionally, for high values of 7, the worst solutions found in the Fm|prmul|)_ C; problem by
PF_W(FT) are also similar to the solutions found for the equivalent 1|| >~ C; problem by SM_ W(FT).

e The ARPD found by SM_R(MK) for the equivalent 1||C),4. problem is always between the best
and worst ARPD found by heuristics PF_B(MK) and PF_ W(MK). The distance between the
three curves heavily decreases with the increase of v which explains the trivial behaviour of the

Fm|prmu|Chax for those cases.

o The initial availability () has a strong influence over the ARPD of the curves as seen in Figure
5.4 and 5.5. Thereby, e.g. the ARPD of SM_EB(i) goes close to PF_B(i) regardless the other

parameters (m, n or ) from - around 30%.

Attending to the dominance rules of Section 5.3 and 5.3, the number of machines and the bounds of
the processing times play an essential role in the comparison between the PFSP and the SMSP problems.
This influence is also empirically shown in this section. Thereby, the Figure 5.6 shows the evolution of

the ARPD compared with the « parameter for different number of machines. The ARPD curves clearly
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Figure 5.6: ARPD of the SM_EB(i) heuristic for different values of parameter m

decrease with the decrease of the number of the machine in the shop. Note that for clarity only the
SM_EB(i) heuristics are represented although the behaviour is also similar for the other heuristics. As
the ARPDs for the PF_ B(i) heuristics are always approximately zero, then values closes to zero in the
SM_EB(i) heuristics indicate the proximity in the solutions found for the original PFSP problem and for
the equivalent SMSP problem. Thereby, e.g. it can be seen that the ARPD of the SM_ EB(MK) heuristic
for § = 100 is always less than 1, regardless the value of ~.

Regarding the 3 parameter, its influence over the ARPD is shown in Figure 5.7 for the heuristics
SM_EB(i). The curves also present a high decrease in ARPD when the § parameter decrease. In fact,
from v = 8, the ARPD for the curve 5 = 10 is always less than 1 regardless the objective or the value of
J.

Boundary lines between the PFSP and the SMSP

In previous Sections, we have proved the relationship between both scheduling problems and have shown
that the ARPDs of several heuristics (designed for the original PFSP and for reduced scheduling problems)
tend to be similar for high values of v, § and n, and for low values of m and 5. In this section, we analyse the
conditions which have to be approximately fulfilled in order that the reduced SMSP is (roughly) equivalent
to the original PFSP. Firstly, let us consider that both problems are similar when the differences in the

ARPDs of the heuristics to solve both problems (i.e. PF'_B(i) and SM _EB(i)) are lesser than 0.5%.
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Figure 5.7: ARPD of the SM_EB(i) heuristic for different values of parameter beta
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The experiments of this Section are carried out under an exhaustive set of 608,000 instances (which contain

some more values of the parameter 8 in comparison with previous testbed):

n € {20, 50,100, 200}.

m € {2,5,10,20}.

e ¢ = 50.

B € {0.04,0.08, . ..,0.96,1.00}.

~ € {0.00,0.04,0.08, . .., 2.96, 3.00}.

§ € {0,100}.

In this set, there are 40 instances with different values of n for each combination of m, 5, v and 4.

’

m,B,7,

Let us denote by ARPD

s the average RPD of those 40 instances for each value of m, 3, v and J as

well as by v, 5 5, the first value of ~ for which the ARPD;TM;,%(; < 0.5 for the instances with parameters

m, (3 and 7. Values of v}, 5 ; are graphically shown in Figure 5.8 and 5.9 for makespan and flowtime

minimisation respectively. On the left sides of both figures values for 4 = 0 are shown while on the right

sides values for § = 100 are shown. Additionally, for each value of m, a linear trend line is represented.

Thereby, those lines represent approximately the boundary lines (difference of ARPD less than 0.5%) of
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Figure 5.8: Boundary lines between the PFSP and the SMSP for makespan minimisation. On the left, no
initial availability is considered and on the right an initial § = 100 is taken into account.

Table 5.2: Regions where solving PFSP is very similar to the SMSP for makespan minimisation

m | §=0 \ 6 =100

2 | v>048-5-3.08-10"% (R*=0.962) | v>049-3—7.12-10 2, (R* = 0.890)
5 | y>1.53-8-12.12-107% (R*=0.960) | ~+>1.22-8—9.88-1072, (R* = 0.972)
¥ >279-8—14.64-1072, (R* =0.994) | v > 2268 —20.36-1072, (R* = 0.984)
v >422-8-15.58-1072, (R* =0.997) | v >3.43-3—20.26- 1072, (R* = 0.976)

—_

0
20
both decision problems for a value of m and §, i.e. for a given 8 , m and ¢ it represents the first value
of v for which the ARPD between the heuristics PF_B(i) and SM_EB(i) is lower than 0.5%. The R? of
each trend line is mostly close to 0.99. By means of those trend lines, regions with relative similar ARPD
between heuristics to solve the PFSP and the reduced SMSP are shown in Table 5.2 and 5.3 for makespan
and total flowtime minimisation respectively.

Note that these boundary lines are obviously exact over the proposed set of instances but they are
an approximation for other benchmarks or for processing times following different distributions. Thereby,
they can be useful for the decision makers to give an idea of solving their manufacturing layouts, since
variables v and (8 can be easily approximated by an sample of the processing times of the shop. Let fi;
and fiz be the sample means of the processing times on the saturated machine and non-saturated machine
respectively. Additionally, let 52 be the unbiased sample variance. Then, using the definition of the mean
and the variance for the uniform distribution, the following expressions approximate the variables used in

this study:

® [l € — €[y

e 2_ 52.124+1—-1
2 (2.eB+1)*—1 5:\/525

¢ 0y = 12
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Figure 5.9: Boundary lines between the PFSP and the SMSP for flowtime minimisation. On the left, no
initial availability is considered and on the right an initial § = 100 is taken into account.

Table 5.3: Regions where solving PFSP is very similar to the SMSP for flowtime minimisation

m | §=0 \ 5 =100

2 [ y>048-8-148-10% (R =0974) | v>0.49 -8 —1.56-10"7, (R = 0.989)
5 | y>1.21-8—-3.40-1072, (R2 =0.991) | v>0.92-8—508-10"2, (R* =0.987)
10 | y>1.86-8—6.56-10" 2, (R* =0.989) | v>1.35-8—10.12- 1072, (R? = 0.989)
20 | v>3.01-8-7.92-107% (R*=0.984) | v>1.79 -8 —10.76- 1072, (R* = 0.982)

5.4 Controllable processing times

Introduction

Properly speaking, resource-dependent processing times have been usually classified depending on the level
of skill of the assigned resources, and/or on the amount of resources. In the former case, an operation is
performed by a resource (typically an employee) with a given level of skill or experience, and the processing
times of that operation is different depending on such level (examples can be found in [87], [36], [33], [70]
and [200]). In the latter case, the processing time of an operation changes with the amount of resources
assigned to the operation. The term “controllable processing times” has traditionally been used in the
literature to reflect this case. This section focuses on this second type. Regarding the type of resources,
the classical classification of resources proposed by [8] and [184] is adopted here whereas resources are
classified from the viewpoint of renewability and divisibility.

With respect to renewability:

o A resource is denoted as renewable if only its total usage is constrained at every moment, i.e. once

a resource has been used by an operation, it may be assigned to another operation.

e A resource is denoted as non-renewable if its total consumption is constrained i.e. once it is con-

sumed, it cannot be allocated to other operation.

e A resource is denoted as doubly constrained if both previous aspects are considered.
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With respect to the divisibility:

e A resource is called discrete if it can be allocated to the operations in discrete amounts, i.e. we have

a finite set of resources.

e A resource is denoted continuous if it can be assigned to the operations in a continuous amount

between an interval.

Controllable processing times have been widely analyzed in the scheduling literature (see reviews
in [133] and [182]). Additionally, there are contributions in related decision problems such as resource
allocation or software development size team. Processing times depending on the amount of resources
have been used in many operation research problems e.g. for single-machine/flowshop scheduling, resource
allocation problems, multi-mode resource-constrained project scheduling problem (MRCPSP), etc., and
both for discrete and continuous resources. However, to the best of our knowledge, there is no analysis or
detailed discussion regarding the different types of relations between processing times and the amount of

resources used in controllable-processing-times-based scheduling problems.

Notation

Firstly, it is necessary to clarify the notation to be used here. We have tried to accommodate the terms
while maintaining the original notation as far as possible.

Let us assume a job composed of several operations that have to be performed using an amount of
resources u. Depending on w, p the processing time of the operation may change, i.e. p = p(u). Addition-
ally, let us define the effort, e = e(u) as the amount of resource-hours or resource-months (depending on
the unit of p) that an operation needs to be carried out.

Let us now define S as the size of the operation or workload, which indicates the amount of work that
has to be performed to complete the operation. S is measured in the unit of the work. It is an attribute
of each operation that will be assumed constant in this section. Thus, the productivity of the operation,

Pr, can be written as a function of the size of the operation and the effort (see e.g. [68], [91] and [113]):

Pr= = Pr(u) (5.12)

An increase in the productivity indicates an increase in the operation size if the effort is constant, or
a decrease in the effort when the size of the operation remains the same. As it can be seen in (5.12),
the productivity only depends on the amount of resources, u. The amount of resources for which the

maximum productivity, max(Pr), is achieved is denoted as u* and can be obtained by maximizing the
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productivity or minimizing the effort. More specifically, we intend to find v* for which Pr(u*) > Pr(u),
Vu # u*. Since S is assumed constant, it is clear that e(u*) < e(u), Yu # u*.
The tuple (u*,p(u*)), with maximum productivity is denoted as the productive configuration or pro-

ductive points of the problem.

Properties

Next, we present two basic properties which must hold. By doing so, two regions are distinguished to
establish the limits of the area where each configuration (u,p) can take place. Second, a general law for

productive processes is introduced in order to analyze the relations.

Property 5.4.1. Assuming that the same amount of resources is available for each period, the processing
time of the operation must fulfill: p > constant/u, i.e. the processing time must be over an ideal boundary

which corresponds to an inverse proportional relation between p and u as defined in Figure 5.10.

Proof. If the same amount of resources is employed throughout the duration of the operation, the effort

can be written as the amount of resources times the processing time of the operation (5.13):

e=p(u) u (5.13)
Substituting in the expression (5.12):
S
Pr(u) = 5.14
(1) = 5 (514

As shown in (5.13), maximizing the productivity is equivalent to minimize the effort, therefore:

T p(u) — 2 _ _plw) (5.15)

Op(u-u) _, _ Oplw)
ou U

ou ou

Thus, solving the differential equation, the point(u,p) reaching the maximal productivity is:

p(u) = S (5.16)

Corollary 5.4.1. Fach tuple (u,p) under the ideal boundary, p(u) < k/u, is infeasible (see Figure 5.11)

otherwise, p(u) > k/u, is feasible.

Proof. Trivial in view of Property 5.4.1. O
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Ideal Boundary

Number of Resources

Processing Time

Figure 5.10: Ideal Boundary.

Processing Time

Infeasible Region

Number of Resources

Figure 5.11: Infeasible Region.

For a tuple (u1,p1) in the ideal boundary, any other tuple (u,p) placed in the region “Dominated
Region” (in Figure 5.12) is dominated by (u1,p1), since the latter achieves less processing times with
less amount of resources. Note that points that are non-dominated by others are labelled as “efficient”
according to the discussion shown in e.g. [29] and [66]. Hence, any tuple (u,p) candidate to be chosen as
configuration of the problem must be located outside both the infeasible region and the dominated region,
as we can see in Figure 5.13. In general, at least one tuple with minimal w - p must exist representing
the most productive configuration to perform the operation, i.e. the productive configuration (u*, p(u*)).
Since the goal pursued by companies is to minimize both the processing times and the amount of resources,
different trade-offs can be established, which leads to a number of non-dominated solutions forming a
Pareto frontier. Note that the points over this frontier are dominated and cannot be considered as
possible configurations for the operation, i.e. non-dominated processing times must be a non-increasing

function of the amount of resources assigned to the operation, dp(u)/du < 0 for each u € [u, .

Property 5.4.2. Given some amount of resources u/, the fulfillment of the law of diminishing marginal

returns is the same as the fulfillment of W(ug) < W(ul), Vug > uy > u'.

Proof. The law of diminishing marginal returns establishes that, given some amount of resources denoted

’ - . .
as u , the output of a productive process increases at a decreasing rate when the amount of recourse
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Figure 5.12: Dominated Region.

Dominated Region

Processing Time
©
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Figure 5.13: Example for many configurations p-u.

79



80 CHAPTER 5. INFLUENCE OF INPUT PARAMETERS

increases (see e.g. [7] and [145]). Considering the output Y = S/(p(u)) as the amount of the operation
size performed in each time period and the input X = u, the law of diminishing marginal returns can be
written as:

dY dy

T (X2) < o (X1), Vo > X > X' (5.17)

Y(X,) > Y(X;) and X

Substituting Y and X in the expression (5.17):

(o)
du

ug) < ) (u1),Vug > uy > u (5.18)

du du

O

Corollary 5.4.2. Given some amount of resources u', the processing times of the operation must satisfy

d* (A~ ,
% <0, Vu <u <.
Proof. Trivial in view of Property 5.4.2. O

This property, together with the previous one, is used in this section to analyze the different relations
used in production management. Although in production management the output must satisfy the law
of diminishing marginal returns, there is no such condition for renewable discrete resource (manpower).
However, there are several results based on the experimentation for manpower in the literature. Among
them, [131] established that the u-productivity graphics must be similar to an inverted U-shaped where
it is assumed that there is only a single productive configuration with maximum productivity defined by
the tuple (u*,p(u*)) (|6]). The productivity decreases for uw > u*, this scenario is denoted as EC in the
following,due to the fact that there is too much coordination and communication if more employees are
assigned ([143] and [185]), and that these difficulties in communication increase with the size of the team
([167] and [51]). It is also assumed that there is a decrease in productivity due to lack of specialization,
denoted as LS, in small teams if fewer employees are assigned (i.e. for v < u*). This fact is confirmed by
[35], who also cite other difficulties such as making trade-off decisions, or managing error backlog.

The main relations between processing times and amount of resources are presented and classified in
Table 5.4 where b, d, k, ec, f, g, h and i are constants.

We summarize the main characteristic of each relationship in Table 5.5. Columns 2 and 3 indicate
the environment where each relation has been used, while the type of resource used is shown in column
4. The next two columns indicate the amount of productive points in the expression and their position,

respectively. 7" and 8" columns are related to the fulfillment of the diminishing marginal returns law
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Table 5.4: Main relations between processing times and amount of resources

Relationship Expression
Linear relation plu)y=p—b-uwithu<u<u
. vk
Convex relation p=(%)

Convex relation + Constant p=05b+

Convex + Communication p=24ec-u-(u—1)
2 2
e—h u—1 _
Hyperbola ( 7 ) — ( 7 ) =1
Multimode —

Piecewise Linear —

and the inverted U-shaped, respectively. In the last column, the number of constants necessary to fulfill
each p —u relation has been represented. Note that a higher value of the number of constants means more

difficulty to configure the model.
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Figure 5.14: Location of the problem based on the mean and variance of the due dates.

5.5 Conclusions

Due dates

According to the previous analysis in Section 5.2, the Fm|prmu| " T; on an instance is bounded by three
different problems depending on v and on the variance of the due dates of the jobs, as shown in Figure
5.14. Roughly speaking, high values of the mean and variance of the due dates correspond to a problem
where the EDD rule is optimal (see Region 3 of Figure 5.14). Low values of the mean and variance
determine a problem similar to F'm|prmu| )" C; (see Region 1 of Figure 5.14). Finally, high values of the
mean of the due dates combined with a low variance correspond to a trivial problem where each sequence
is optimal (Region 2). The interesting region to be analysed for the F'm/|prmu| ) T} problem is the region

between 1, 2 and 3, since otherwise we would be solving a different decision problem.

Regarding the Fm|prmu| ) E; + Tj, it is bounded by the Fm|prmu| > C; in case of tight due dates,
and the Fm|prmu| — Y C; problem in case of loose due dates. Typically, the good performance of a
constructive heuristic is due to the fact that the objective computed in the iterations of the algorithm
is similar to the objective function of the problem. Thereby, when minimising e.g. total flowtime in
the PFSP, the choice of a partial sequence fulfilling the minimisation of total flowtime clearly seems to
have a good performance when the sequence is completed. This is a consequence of having a regular

measure as objective. Since this is not the case for the Fm|prmu|)_ E; + T; due to its relationships
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with Fm|prmu|)_ C; and Fm|prmu| — > C; for extreme values of the due dates, the algorithm may
not work well. In fact, Properties 5.2.2 and 5.2.2 confirm this fact and show how the objective of the
constructive heuristics in their iterations could be distorted: A partial sequence could have loose due dates
but, once completed, these due dates would become tight and thus, the algorithm would solve a completely
different objective during its iterations than the objective function. This fact could also explain the good
performance of composite heuristics as compared to constructive heuristics (as discussed in Chapter 9).
In order to overcome the aforementioned problems, efficient heuristics for Fm|prmu| > E; + T} should be

designed according to the following ideas:

e They should be very fast in order to work as soon as possible with complete sequences. In this

manner, it is easier to identify whether the instance has loose due dates, or tight ones.
e They should incorporate an analysis of both sequenced and non-sequenced jobs in each iteration.

e They should avoid the use of local search procedures operating with non-complete sequences.

Processing times

Regarding conclusions about the processing times of the jobs in the PFSP, on the one hand, theoretical
results prove that both problems (the PFSP and the SMSP) are equivalent under several conditions.
Although those conditions are hardly present in a real manufacturing environment (mostly in shops with
several machines), they are sufficient but not necessary conditions and they only give an idea of the
relationship between both problems. On the other hand, the empirical comparison stresses the high
relationship between both problems. It has been showed that the increase of 7y (related to the dispersion
of the processing times) and n and the decrease of 8 (related to the predominance of the most loaded
machine) and m makes the PFSP to be more similar to a SMSP. In fact, for low values of § and/or m,
procedures for the equivalent SMSP are able to find similar or even better solutions than the heuristics to
solve the original PFSP. In order to empirically establish the frontier between both problem, an extensive
set of instances with 608,000 instances has been generated. Then, we have determine several boundary
lines depending on the number of machines in the shop. Given a configuration in the shop (number of
machines, initial machine availabilities, objective to be solved, length or variation of the processing times
on the machines), these lines show the value of v causing the difference of ARPD between the heuristics
of both problems to be less than 0.5% on the analysed set of instances.

The relation between both scheduling problems remarks the importance of the pre-processing of the
processing times of the problems as well as the importance of the right choice of the scheduling problem to

be solved which do not have to necessary have the original machine environment of the shop. Additionally,
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it explains the behaviour found in the paper of [206] and [144] where the F'm|prmu|Cpnax has been found

to be easily solvable for structured instances and for machines with initial availabilities respectively.

Controllable processing times

The following conclusions can be obtained for the controllable processing times regarding the productive
point, the law of diminishing marginal returns and the renewable discrete resources. Beginning with the

productive configuration, it is found that:

e The productive configuration obtained by the relations convex relation with & = 0.5, convex relation
with k& = 0.5+ constant, convex relation with £ = 14 constant or the convex plus communication
is a unique productive point which is necessarily the left endpoint. Hence, feasible points are only
on the right of that point. Thereby, regarding manpower, only the excess of communication can be

modelled.

e The productive configuration is placed either in one endpoint or eventually in both endpoints by

the linear relation.
e Convex relation with k = 1 corresponds with the ideal boundary.

e Control over the productive point is only allowed for non-renewable resources by the convex relation

with k = 2+ constant and for renewable resources by hyperbola and multi-mode.
Regarding the law of diminishing marginal returns, the following aspects can be summarized:

e The relations that partially satisfy the law of diminishing marginal returns (only for the decreasing
part of the law) are the convex relation with k < 1, the convex relation with & = 0.5+ constant, the

convex relation with k = 1+ constant since the «" must be placed in the left endpoint.

e The convex relation with k = 24 constant fulfills the diminishing marginal returns law for any

amount of resources bigger than d/v/3-b, i.e. u = d/v3-b.

e The linear relation, the convex relation with £k = 1 and the piecewise linear relation does not fulfill

this law.
With respect to renewable discrete resource:
e The convex relation with £k = 1 does not reflect the reality for manpower.

e The inverted U-shaped is only fulfilled by the hyperbola and the convex relation with £ = 2 plus a

constant and eventually, by the multimode and the piecewise linear relation.
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e The lack of specialization can be also eventually approximated by the linear relation.
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Chapter 6

PFSP to minimise makespan

6.1 Introdution

In this section, dealing with specific objectives SO2, SO3 and SO4, we propose a new tie-breaking mecha-
nism that outperforms existing ones both in the NEH and in the Iterated Greedy, as well as an extensive
computational evaluation of algorithms. The rationale of our proposed tie-breaking mechanism is rel-
atively simple, as it seems intuitive that lower values of the total idle time would mean less delays in
the processing of the jobs, which would eventually lead to a better utilization of the machines and to a
shortest makespan value once all jobs have been positioned. The challenge is to calculate these idle times
in an efficient manner, particularly taking into account that Taillard’s acceleration provides a very fast
mechanism to evaluate the subsequences which is at the core of the excellent performance of NEH and
Iterated Greedy. Our proposal is to use an ersatz of the idle times that can be calculated in parallel to
the evaluation of the makespan of the subsequences and thus not adding computational complexity to the

algorithms.

This chapter is organized as follows: Section 6.2 is devoted to explain the proposed tie-breaking
mechanism. In Section 6.3, our proposal is compared against existing tie-breaking mechanisms when
embedded in the NEH, and in the IG_RSrs and IGgrrs algorithms. In Section 6.4 an exhaustive
computational evaluation is performed comparing the proposed mechanisms with the most promising

heuristics and metaheuristics in the literature. Finally, in Section 6.5, the main conclusions are discussed.

89
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6.2 The proposed tie-breaking mechanism

The tie-breaking mechanism presented in this chapter (denoted by T B in the following) is related to the
minimisation of total idle times. According to [42], the definition of machine idletime is not unambiguous

and at least three different ways have been used:

e The idletime considering front delays (time before first job) and back delays (time after the last job

on the machine).
e Excluding front and back delays.

e Including front delays and excluding back delays.

In this chapter, we assume the third definition of the idle time. Therefore, it; the idle time of machine 7
can be calculated according to the expression it; = Cj, — 221:1 p;j and the total idle time by it = >_" , it;.
If we denote by A;; the idle time in machine ¢ induced between the completion of job in position j and

the beginning of job in position j + 1, then A;; can be written in terms of equations (2.2) as follows:

Aij = (€ij+1 = Pij+1) — €ij (6.1)

The first two terms in the right side of the equation indicate the starting time of job in position j+ 1,
therefore subtracting the completion time of job in position j yields the idle time between jobs in positions
j and j + 1 in machine i. Clearly, it; = Z;:Ol A;;, and therefore it = Y 1", Z;:g Aij

In order to explain the tie-breaking mechanism, let us assume that we have a subsequence of £k —1 jobs
(see Figure 6.1). Then, an unscheduled job r is going to be inserted in all positions in the subsequence
in order to select the position yielding the minimum makespan. If ties occur, then the position whose

insertion yields the minimum total idle time is to be selected. Note that, if the unscheduled job is to be

inserted in position [, then g; ;—1 the cumulative idle times on machine ¢ induced by jobs prior to position

l—1is:
-2 =
giim1 = ANy = [(eij — pij) — €ij-1] (6.2)
=0 =1

Analogously, h;; the cumulative idle times on machine ¢ induced by jobs after position [ is:

k—2 k—2

ha = Z Ay = Z [(eij+1 — Pij+1) — €ij) (6.3)

j=l j=l
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Figure 6.1: Sequence of jobs before inserting the new job in position [

It is clear that, for each machine ¢, when an unscheduled job r (with ¢;, its processing time on machine
i) is inserted in position ! (see example in Figure 6.2), g;;—1 remains the same. However, this does not
happen for h;;, which would have to be recomputed. Unfortunately, doing so would substantially increase
the computation time since Taillard’s acceleration cannot be employed to calculate the new idle times.
As a consequence, we suggest using an estimation of the idle time as tie-breaking indicator, based on the
assumption that the new A;; values for jobs in positions [ +1 to k are not very different from the old ones.
Therefore, when inserting an unscheduled job, e;;, ¢;; and f;; are used according to equations (2.2-2.4) in
order to obtain the makespans for each position. Then, the position yielding the minimum makespan is
selected. In case of ties, we calculate an estimation of the new idle time denoted by it/(l) for each position
[ for which the tie occurs, and selects the position [ yielding the minimum makespan for which it (1) is

minimum:

it/ (1) = D7 (goar + ha+ ALy + Ay (6.4)

=1

The first term in Equation (6.4) denotes the idle time in machine ¢ caused by the jobs prior to position
[ — 1. This value has been already obtained, as it has not been modified by the insertion of the job. The
second term is the idle time in machine i caused by jobs in (old) positions I to k — 1 (now positions [ + 1
to k once the job is inserted). As stated before, after the insertion of job [, this is not anymore the idle
time of the new sequence, but we will assume that they are the same (hence the estimation). Finally, the
insertion of the job in position [ induces a new idle time between the job in position [ — 1 and the new job
(denoted by A;,l—l)’ and between the new job and the job in the old position [ (I + 1 after the insertion),

denoted by A; ;- Both terms can be easily calculated from the data obtained from Taillard’s acceleration:
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A;,z_1 = (fu —tir) — €i4—1 (6.5)

and

A;y=max{f,_y,— fu.0} (6.6)

where fi,fl,l is the completion time on machine i of the job which before was in position [ (after

inserting the new job, it corresponds to the job placed in position [ + 1) and can be computed as follows:

’

fu=max{fu, fi_y,} +pai=1...m (6.7)

and f(;l = 0 being p;; the processing time of the job that before was in position .

Note that Equation (6.4) can be simplified by means of the idle time, A;;_1, between the job in

position [ — 1 and {:

m

it’' (1) = Z (gi,l—l +hi+ Aiji—1 — Aqji + A;,l_l + A;l) (6.8)
i=1
it' (1) = Z (gii—1 4+ ha 4+ Diy—1) + Z (A;J_l +A, -~ Ai,z—1> (6.9)
=1 1=1

Equation (6.9) can be decomposed into two terms, i.e.:

it'(l) = C +it (1) (6.10)

where C = Z:L (gijg—1 + hit + A ;—1) is a constant that does not depend on the tie-breaking [, and

"

it (1) is:

m m

it (1) = Z (A;,zq + Ay - Ai,lq) = Z (fil — €l +pit — tir + maX{f,»/,u — fu, 0}) (6.11)
i=1 i=1
where it has been used that A; ;_1 = (e; —pi) —e€i -1, see Equation (6.1). Additionally, since Y .-, t;,
is the same regardless the position [ where the job is inserted, we can define it (I) a more concise indicator

equivalent to it (1) as follows:
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Figure 6.2: Sequence of jobs after inserting the job in position [

m

it (1) = (fu — ea +pu+max{f;_y, — fa,0}) (6.12)

i=1

Therefore, the proposal breaks the ties according to the minimisation of it (1) —or, equivalently, to the
minimisation of itm(l). The pseudo code of this tie-breaking mechanism for the NEH is shown in Figure
6.3. Note that the idle time it”(l) is forced to be zero for the last job to be inserted, i.e. no tie-breaking
mechanism is considered for the last job to be inserted. It can be easily checked that the insertion of tie-
breaking mechanism does not alter the complexity of the algorithm, i.e. it remains O(n?-m). Analogously,
this mechanism can be easily incorporated in the constructive and in the local search phase of IG_RSps

[174], and in the IGRrrs by [138].

6.3 Computational comparison of tie-breaking mechinisms

The tie-breaking mechanisms described in the previous section have been coded in C# and embedded
into the NEH and the two versions of the Iterated Greedy. As for initial ordering in the NEH, the
non-increasing order of the sum of the processing times has been adopted. This is the initial order of the
original NEH and it has been chosen because, on one hand, it is the most widely-employed mechanism and
the results are easier to compare with the rest of the literature. On the other hand, this allows focusing
exclusively on insertion tie-breaking mechanisms and removes the possible influence of more elaborated
initial ordering rules such as the ones discussed above. Nevertheless, we also provide the results using
these more advanced initial orderings.

The computational experiments are carried out on an Intel Core i7-930, 2.8GHz, 16GB RAM under

Windows 7. This section is divided into two parts depending on which heuristic (NEH or Iterated Greedy
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7 +— Sort in decreasing order of sum of processing times p;;;
T — 7r/1;
for £k =2 ton do
r— /s
Determine the values of e;;, ¢;; and fi; from Taillard’s acceleration (see equations 2.2, 2.3, and 2.4);
Determine minimal makespan resulted of testing the job r in all possible positions of 7;
bp <—First position where the makespan is minimal;
tb «— Number of positions with minimal makespan (i.e. number of ties);
ptb <— Array (of length tb) with the positions where the makespan is minimal;
ity is the idletime corresponding to the bp and set to a very large number;
if tb > 1 and k < n then
for [ =1 to tb do
it —— 0;
if ptb[l] = k then
for i =2 to m do

| it — it fik = ek — tin
end
else
fi,ptb[l] < frpep) + P1pev[i)
for i =2 tom do

it it + fiptoll] = €i,ptblt) + Pipeofi) — ti,r + max{0, fi,,l’ptb[l] — fiptbl 1

fi/,ptb[l} — max{fi/—l,ptb[lﬁflﬁptb[l]} + Diptb[1];
end

end

if ity, > it then

bp <— ptb[l];

itbp — it N

end

=

end

end
7 <— Array obtained by inserting job 7 in position bp of 7;
end

Figure 6.3: Our Tie-Breaking Method



6.3. COMPUTATIONAL COMPARISON OF TIE-BREAKING MECHINISMS 95

Table 6.1: Average relative percentage deviation of NEH implemented with tie-breaking mechanisms

Instance TBrps T1TBp TBrxgi1 TBrgks TBrr
20x 5 3.300 2.655 2.638 2.729 2.293
20 x 10 4.601 4.661 4.488 4.312 4.152
20x 20 3.731 3.443 3.683 3.407 3.305
50x 5 0.727  0.497 0.586 0.588 0.922
50 x 10 5.073  5.082 5.022 4.875 5.150
50x 20 6.648 6.091 6.274 6.412 6.207
100 x 5 0.527  0.459 0.354 0.397 0.378

100 x 10 2.215  2.065 1.829 1.771 2.182

100 x 20 5.345 5.235 5.417 5.284 5.021

200 x 10 1.258 1.182 1.179 1.166 0.984

200 x 20 4.408 3.901 4.243 4.232 4.037

500 x 20 2.066 1.779 2.080 2.020 1.776
Average 3.325 3.088 3.149 3.099 3.034

Algorithm) the tie breaks are implemented.

Comparison of tie-breaking mechanisms for the NEH

The performance of the NEH with the tie-breaking mechanisms by [35] (denoted as T'Bp), [83] (labelled
TBkk1), [84] (denoted as T B k2) and our proposal, as well as with the original tie-breaking mechanism
of the NEH (labelled TBrg in the following) are compared using the benchmark B;. Note that, although
in [86] it was established that Dong’s tie-breaking mechanism outperformed the two suggested by Kalczyn-
ski&Kamburowski for the NEH, we nevertheless include them to test them against the proposal and to
make the comparison homogeneous with that of the IG (for which none of the mechanisms’ performance
was tested).

For each instance, the RPD2 is computed with respect to the best known solution according to
Expression (3.2), where O is the solution obtained for instance i by the NEH algorithm using the j
tie-breaking mechanism while U B is the best known solution or the lowest known upper bound value for
the instance. The Average RPD2 (ARPD?2) values are obtained by averaging RPD?2 for each instance
size or for the whole testbed. The results in Table 6.1 show that the ARPD?2 found by the original NEH
is 3.325 while each other tie break yields better ARP D2, being the value of 3.034 the best one, obtained
by our tie-breaking proposal.

Since we use the same test bed for all tie-breaking mechanisms, being each one a version of the same
algorithm, the random variables (ARP D2) are related and the hypothesis of independence can be rejected.
Therefore, a paired samples ¢t-test (shown in Table 6.2) can be used to compare the results. Note that

paired samples t-test is a usual test to establish the statistical significance of the differences in the perfor-
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Table 6.2: Paired samples t-test for NEH using Taillard’s benchmark

Algorithm Mean SEM IC - Lower IC - Upper t Significance

TBrs-TBrr  0.291 0.806 0.146 0.437 3.958 0.000

TBrs - TBp 0.237 0.852 0.084 0.391 3.054 0.003
TBrs-TBgk1 0176 0.736 0.043 0.308 2.626 0.010
TBrs - TBgrgs 0.226 0.711 0.098 0.354 3.490 0.001

TBp - TBrr 0.054 0.770 -0.086 0.193 0.764 0.446
TBxki1-TBrr 0.115 0.842 -0.037 0.268 1.502 0.136
TBkko - TBrpr 0.066 0.877 -0.093 0.224 0.819 0.415

Table 6.3: Paired samples ¢ test for NEH using the extended benchmark

Algorithm Mean SEM IC - Lower IC - Upper t Significance

TBrs - TBrr  0.226 0.496 0.177 0.274 9.117 0.000

TBrs - TBp 0.169 0.486 0.121 0.216 6.943 0.000
TBrs-TBkgk1 0.102 0.466 0.056 0.148 4.375 0.000
TBrs - TBgka 0126 0472 0.080 0.173 5.351 0.000
TBp - TBrr 0.057 0.450 0.013 0.101 2.545 0.011
TBkki1-TBrr 0.124 0.490 0.076 0.172 5.057 0.000
TBkko - TBrr 0.099 0.410 0.059 0.140 4.849 0.000

mance of algorithms for flowshop scheduling problems in Taillard’s testbed (see e.g. [60, 191, 34]). In view
of the values of the significance levels, it can be stated that each tie-breaking mechanism is statistically
significant with respect to T Brs. However, no statistical significance among the rest of the tie-breaking
mechanisms can be found due to the small size of the benchmark, a fact also noted by [84] when proposing
their tie-breaking mechanisms. Therefore, in line with these authors, an extended test-bed of 400 instances
with n € {50,100, 150, 200, 250, 300, 350, 400, 450, 500}, and m € {5, 10,15,20}, with 10 replications for
each combinations of n and m is generated with the processing times uniformly distributed in the interval
[1,99]. A paired-samples t-test (shown in Table 6.3) was performed, indicating that our proposal is statisti-

cally significant with respect to the other tie-breaking mechanisms, being 0.01 the maximum p-value found.

Results of the NEH algorithm with the proposed tie-breaking mechanism using different initial orders
are shown in Table 6.4 for the Taillard’s testbed. As explained above, three different initial orders
outperforming the original non-ascending order of the sum of their processing times have been proposed
in the literature by [84] (denoted as K K1 — Init), by [35] (denoted as AvgDev — Init); and by [85]
(denoted as K K2 — Init). All three were implemented in order to obtain the best initial order for the
NEH using our tie-breaking mechanism. The ARPD2 using the initial order AvgDev was 2.897 being

the best initial order for Taillard’s testbed, a result in line with those obtained by [86].
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Table 6.4: Average relative percentage deviation of NEH implemented with our tie-breaking mechanisms
and different initial order

Instance KK1—Init KK2— Init AvgDev— Init Original

20x 5 2.484 2.372 2.559 2.293
20x 10 4.919 4.453 3.543 4.152
20 x 20 3.265 3.509 3.331 3.305
50 x 5 0.555 0.791 0.749 0.922
50 x 10 4.865 4.861 4.905 5.150
50 x 20 6.139 7.026 5.812 6.207
100 x 5 0.379 0.321 0.412 0.378
100 x 10 1.961 2.057 1.719 2.182
100 x 20 5.284 5.114 5.147 5.021
200 x 10 1.030 0.899 0.987 0.984
200 x 20 3.712 3.895 3.885 4.037
500 x 20 1.726 1.650 1.713 1.776
Average 3.027 3.079 2.897 3.034

Comparison of the tie-breaking mechanisms in the iterated greedy

As explained before, the iterated greedy has two parameters (T,d) to be set. [174] conducted a full
factorial design to determine both parameters, resulting d = 4 and T" = 0.4 as the best combination.
Therefore, these values are used in our implementation. Two versions of the iterated greedy are analysed:
IG_RSrs as in [174] and IGRrrs as proposed by [138]. The tie-breaking mechanism analysed in Section
6.2 was integrated in these Iterated Greedy Algorithms, together with our proposal. In order to compare
them, the same test bed as in [174] was employed, i.e. Taillard’s benchmark using 5 replicates for each

instance to increase the power of the analysis.

The termination criterion considered for both versions of the Iterated Greedy is the CPU time. In
line with most papers, this time ¢ depends on the amount of jobs and machines, i.e. t = n - (m/2) - 30,
t =mn-(m/2)-60 and t = n - (m/2) - 90 milliseconds (see e.g. [174], or [195]). ARPD2 results for
each version of the iterated greedy algorithm and for each tie-breaking mechanism are shown in Tables
6.5, 6.6 and 6.7 for each stopping time, respectively. The results show that the ARPD2 for IG_RSLs
with our tie-breaking mechanism is the best for every stopping time, being the average results 0.461,
0.376 and 0.350 respectively. Kalczynski & Kamburowski’s tie-breaking mechanism II also yields good
ARPD2? results: 0.518, 0.446 and 0.418 respectively. Both mechanisms performs better than the original
iterated greedy algorithm. Nevertheless, it is to note that Dong’s tie-breaking mechanism and Kalczynski

& Kamburowski’s tie-breaking mechanism I give worse results when included in IG_RSpg.

Furthermore, a paired-samples ¢t- test was carried out in order to analyse the different mechanisms

(see Table 6.8). Our tie-breaking mechanism was found to be statistically significant with respect to every
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Table 6.5: Average relative percentage deviation of iterated greedy algorithms implemented with tie breaks
and n - (m/2) - 30 milliseconds as stopping criterion

IG_RSLs IGRi1s
Instance TBFS TBD TBKK1 TBKK2 TBFF TBFS TBD TBKK1 TBKK2 TBFF
20x 5 0.045 0.066 0.076 0.049 0.076 0.037  0.041 0.076 0.053 0.041
20 x 10 0.055 0.052 0.087 0.080 0.104 0.080 0.096 0.099 0.064 0.057
20 x 20 0.092  0.095 0.085 0.066 0.114 0.081  0.093 0.098 0.090 0.092
50 x5 0.007  0.039 0.021 0.003 0.017 0.006  0.020 0.024 0.007 0.006
50 x 10 0.724  0.754 0.842 0.707 0.566 0.683  0.651 0.787 0.666 0.621
50 x 20 1.199 1.188 1.228 1.191 1.134 1.160  1.066 1.195 1.149 1.173
100 x 5 0.005 0.066 0.030 0.013 0.014 0.005 0.067 0.018 0.013 0.013
100 x 10 | 0.274 0.383 0.415 0.215 0.226 0.258 0.301 0.336 0.202 0.219
100 x 20 1.624  1.446 1.789 1.624 1.346 1.547  1.365 1.770 1.542 1.387
200x 10 | 0.317 0477 0.284 0.140 0.155 0.267 0.361 0.263 0.161 0.148
200 x 20 1.656  1.401 1.925 1.466 1.239 1.549  1.287 1.898 1.478 1.248
500 x 20 | 0.767 0.724 1.033 0.668 0.542 0.728  0.621 0.987 0.626 0.530
Average | 0.564  0.558 0.651 0.518 0.461 0.534 0.497 0.629 0.504 0.461

Table 6.6: Average relative percentage deviation of iterated greedy algorithms implemented with tie breaks
and n - (m/2) - 60 milliseconds as stopping criterion

IG_RSLS ]GR]s
Instance TBFS TBD TBKK1 TBKK2 TBFF TBFS TBD TBKKl TBKK2 TBFF
20x 5 0.024  0.039 0.041 0.041 0.032 0.032 0.041 0.041 0.032 0.041
20 x 10 0.043 0.031 0.049 0.057 0.059 0.038  0.042 0.064 0.032 0.046
20 x 20 0.067  0.042 0.047 0.049 0.057 0.052  0.070 0.066 0.060 0.071
50 x5 0.004 0.009 0.016 0.003 0.007 0.000 0.026 0.010 0.004 0.001
50 x 10 0.529 0.615 0.692 0.595 0.441 0.549 0.524 0.626 0.584 0.478
50 x 20 1.044 1.005 1.047 0.978 1.048 1.011  0.940 1.060 1.008 1.012
100 x 5 0.008 0.056 0.011 0.006 0.006 0.006  0.028 0.006 0.006 0.009
100 x 10 | 0.218 0.228 0.310 0.170 0.149 0.173 0.214 0.223 0.184 0.111
100 x 20 1423  1.317 1.643 1.449 1.118 1.394 1.145 1.589 1.402 1.245
200 x 10 | 0.250  0.397 0.217 0.092 0.093 0.174 0.271 0.188 0.113 0.101
200 x 20 1.407  1.217 1.819 1.313 1.049 1.407  1.125 1.754 1.401 1.036
500 x 20 | 0.720 0.627 0.992 0.602 0.453 0.650  0.519 0.958 0.573 0.473
Average | 0.478  0.465 0.573 0.446 0.376 0.457 0.412 0.549 0.450 0.385
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Table 6.7: Average relative percentage deviation of iterated greedy algorithms implemented with tie breaks
and n - (m/2) - 90 milliseconds as stopping criterion

IG_RSLs IGRi1s
Instance TBFS TBD TBKK1 TBKK2 TBFF TBFS TBD TBKKl TBKKQ TBFF
20x 5 0.015 0.024 0.041 0.041 0.041 0.041 0.041 0.039 0.041 0.041
20 x 10 0.035 0.022 0.072 0.026 0.024 0.025 0.040 0.048 0.057 0.024
20 x 20 0.038 0.030 0.049 0.048 0.035 0.028 0.054 0.028 0.041 0.051
50 x5 0.000  0.007 0.007 0.002 0.004 0.003 0.007 0.011 0.001 0.003
50 x 10 0.517  0.567 0.649 0.532 0.438 0.493 0.526 0.583 0.555 0.453
50 x 20 0.918 0.953 0.978 0.874 0.858 0.902 0.837 0.912 0.925 0.935
100 x 5 0.006 0.053 0.008 0.008 0.001 0.006 0.037 0.008 0.004 0.003
100 x 10 | 0.213  0.253 0.293 0.183 0.169 0.199 0.187 0.239 0.139 0.155
100 x 20 1.261  1.193 1.485 1.388 1.096 1.274  1.048 1.516 1.350 1.106
200x 10 | 0.169 0.388 0.180 0.080 0.078 0.155 0.241 0.171 0.069 0.061
200 x 20 1.337 1.184 1.706 1.276 1.026 1.278  1.049 1.704 1.344 0.987
500 x 20 | 0.674 0.611 0.933 0.558 0.428 0.605 0.488 0.920 0.543 0.412
Average | 0.432 0.441 0.533 0.418 0.350 0.417  0.380 0.515 0.422 0.353

other tie-breaking mechanism for every value of ¢ considered, being 0.017 the highest p-value. Regarding
the rest of the tie-breaking mechanisms, Kalczynski & Kamburowski’s tie-breaking mechanism II was
found to be statistically significant with respect to the original IG_RSrg for t = n - (m/2) - 30 and
t =n-(m/2)-60 but not for t = n - (m/2) - 90, being 0.118 the p-value for this case. On the other
hand, Kalczynski & Kamburowski’s tie-breaking mechanism I was found statistically worse, with p-value
of 0.000. Finally, no statistically significance was found for any ¢ between Dong’s tie-breaking mechanism
and the original /GRSy s. Regarding IGRrs, very similar results were found (results are shown in Tables
6.5, 6.6 and 6.7 for the different values of t). On the one hand, the proposed tie-breaking mechanism
yields again the best ARPD2, being 0.461 for t = n - (m/2) - 30 milliseconds, 0.385 for t =n - (m/2) - 60
milliseconds, and 0.353 ¢ = n - (m/2) - 90 milliseconds. On the other hand, Kalczynski & Kamburowski’s

tie-breaking mechanism I is again the one with the worst results.

It is worth to highlight that the proposed tie-breaking mechanism performs better than existing mech-
anisms when embedded in the iterated greedy than when integrated in the NEH. Note that the fact that a
tie-breaking mechanism performs efficiently for the NEH does not imply the same for the iterated greedy.
This is due to the fact that, in the NEH, the insertion is performed in all steps (i.e. from an one-job
sequence until the n jobs have been scheduled), while the construction phase of the iterated greedy is
performed only for the last d steps (beginning with a sequence of N — d jobs). Therefore, a tie-breaking
mechanism should have a good performance in the last steps of the insertion phase in order to be efficient

when embedded in the iterated greedy algorithm.
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Table 6.8: Paired samples t test for IG__RSps using the benchmark of Taillard

CPU time Algorithm Mean SEM IC - Lower IC - Upper t Significance
TBrs - TBrr 0.103  0.277 0.080 0.125 9.078 0.000
TBp - TBFrr 0.097  0.283 0.074 0.119 8.361 0.000
TBrx1-TBrr 0190 0.335 0.163 0.217 13.889 0.000
n-(m/2)-30 TBkko- TBrr 0.057  0.235 0.038 0.076 5.961 0.000
TBrs - TBp 0.006 0.286 -0.017 0.029 0.522 0.602
TBrs - TBrkk1 -0.087 0.259 -0.108 -0.067 -8.266 0.000
TBrs - TBxkr2 0.045 0.222 0.028 0.063 5.002 0.000
TBrs - TBrr 0.102  0.266 0.081 0.124 9.402 0.000
TBp - TBrr 0.089 0.272 0.067 0.111 8.034 0.000
TBkr1-TBrr 0.197 0.361 0.169 0.226 13.397 0.000
n-(m/2)-60 TBgke TBrr 0.070  0.250 0.050 0.090 6.880 0.000
TBrs - TBp 0.013  0.263 -0.008 0.034 1.205 0.229
TBrs-TBkk1 -0.095 0.267 -0.117 -0.074 -8.746 0.000
TBrs - TBrkk2 0.032 0.251 0.012 0.052 3.132 0.002
TBrs - TBrr 0.082  0.243 0.063 0.102 8.280) 0.000
TBp - TBrFr 0.091 0.254 0.070 0.111 8.753 0.000
TBrkk1-TBrr 0184 0.311 0.159 0.209 14.455 0.000
n-(m/2)-90 TBgka TBrr 0.068 0.221 0.050 0.086 7.554 0.000
TBrs - TBp -0.009 0.252 -0.029 0.012 -0.846 0.398
TBrs - TBxkrk1 -0.102  0.249 -0.121 -0.082 -10.006 0.000
TBrs - TBrkr2 0.014 0.219 -0.004 0.031 1.564 0.118

6.4 An extensive computational evaluation

In this section, we perform a comprehensive comparison between the proposed mechanisms and the most
promising algorithms in the literature. To the best of our knowledge, the last computational evaluation
for the F'm|prmu|Cpax was presented by [172], who carried out an exhaustive computational evaluation
of the heuristics and metaheuristics published until 2004 for the PFSP to minimize makespan. A total
of 18 heuristics and 7 metaheuristics were implemented and tested under the same conditions. Among
them, two of these methods turned out to be the most efficient ones: The NEH heuristic [127] was clearly
the most efficient among the constructive heuristics for the problem, and the Iterated Local Search [187]
presented itself as the most efficient metaheuristic for the problem.

All experiments have been carried out on a computational cluster formed by 30 blade servers. Each
server contains two Intel XEON E5420 processors running at 2.5 GHz and 16 Gbytes of RAM memory.
However, the specific tests are performed on virtual machines running on this cluster. Each virtual machine
runs Microsoft Windows 7 64 bit operating system and has one virtual processor and 2 GBytes of RAM.
Several benchmarks have been used (see e.g. [190, 10, 158, 206, 30, 71]) in the literature to perform
comparisons between algorithms. Among them, the most extended one is the benchmark from [190], i.e.
Bi. More recently, [198] proposed a more exhaustive orthogonal benchmark, B;. This benchmark was

shown to have more discriminant power than that of [190]. In this section, both benchmarks are used to
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compare the algorithms.

In this computational evaluation, we use the ARP D2 indicator to measure the quality of the solutions
and both ARPT?2 and ACPU indicators to measure the computational effort of the algorithms. Note
that, despite the problems when using the ACPU indicator to compare algorithms, it is included in
the evaluation in order for one to be able to reproduce the original comparisons of the authors since all
reviewed and implemented heuristics consider the ACPU indicator. By means of these two indicators, let
us denote a method as efficient in terms of ARPT2 (ACPU) when there is no other method with both
less ARPD?2 and less ARPT2 (ACPU).

Regarding the algorithms implemented in the computational evaluation, numerous algorithms have
been proposed in the literature since the last computational evaluation of [172]. As a matter of fact,
the number of metaheuristics is staggering and new proposals do not cease to appear. Therefore, only a
selected number of them have been implemented with a cutoff date of December 2014.

Among the heuristics of Section 4.2, the FRB1 heuristic has been statistically improved by several
heuristics (e.g. FRB4g, FRB4g) in the same paper. Additionally, the tie-breaking mechanisms of [35],
[83], [84] as well as the original one of [127] are statistically outperformed by the tie-breaking mechanism
proposed in Chapter 6 and therefore, heuristics NEHD, NEH1, NEHKK1 and NEH are removed from the
analysis. A total of 19 remaining heuristics, are reimplemented here under the same conditions. They are:
RAER, RAER-di, KKER, KKER-di, NEHR, NEHR-di, NEMR, NEMR-di, NEH-di, NEH1-di, NEHKK1-
di, NEHKK2, NEHD-di, NEHFF, CLwrs, FRB2, FRB3, FRB4, (k € {2,4,6,8,10,12}) and FRB5 (these
implemented heuristics are indicated in bold in Table 4.1). Note that, although the recent heuristic NEHI
was initially discarded due to the fact that it was available online after December 2014, it also seems to
be clearly inefficient according to the ARPD2 and average computational times (around 25 times bigger
than the original NEH) shown in that paper (as compared to FRB4;¢ or FRB45 for example). Note that
there are two possible interpretations of RCT), the idle-time- based tie-breaking mechanism proposed by
[162]. The authors state that this mechanism can be implemented in O(n?m?). However, as explained in
Section 6.3, it can be implemented in O(n®m) if the idle time between jobs is calculated only for the ties.
Thereby, the complexity is O(E -n?m) due to the need to evaluate a complete sequence for each iteration
F times. Clearly, since the maximum number of tie-breaks is the number of jobs in the partial sequence,
the complexity of this interpretation is O(n3m). In this Thesis, this latter interpretation is employed as
it yields a lower computational effort for the benchmark B, i.e. the constant affecting the complexity of
the original interpretation is higher than that of the second one for each instance of the testbed.

Regarding metaheuristics, the decision about which ones to select is not trivial due to the large

amount of existing methods. More precisely, only algorithms fulfilling the two following requirements are
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considered:

e ARPD < 0.4 (on T1 or T2, see Table 4.2) or

e ARPD < 0.6 and ¢ parameter < 90 (on T1).

In other words, we are demanding that for a metaheuristic to be selected it either has to have a
good solution quality (ARPD < 0.4), or a reasonable solution quality in short-medium computational
times (ARPD < 0.6 and ¢ parameter < 90). 11 metaheuristics fulfil these requirements: EXTS by [186];
HGA RMA by [173]; MSSA by [132]; IG_RSrg by [174]; IGris by [138]; DDEgLs by [138]; 3XTS by
[37]; EDAAcs by [195]; PSO by [218]; IG_RS1s(TBpr) in Chapter 6; IGris(TBrp) by in Chapter 6.
Among them, EXTS and HGA RMA, are discarded since they are outperformed in statistically and/or
sound comparisons by [37] and [174] respectively. Additionally, the H-CPSO algorithm by [77] has been
implemented due to its promising results despite being outperformed by [138] under different stopping
criteria and conditions. Furthermore, we have tried to implement the MSSA metaheuristic proposed by
[132] without success, and after several unsuccessful attempts to make contact with the authors, we have
removed this algorithm from the computational evaluation. Finally, metaheuristic HCS by [99] has also
been included in the comparison since the ARPD is very close to 0.4 and has not been shown to be
outperformed by any other metaheuristic. Hence, a total of 10 metaheuristics have been chosen (these
metaheuristics are indicated in bold in Tables 4.2 and 4.3).

When reimplementing the algorithms, doubts relating to the implementation were transmitted to the
corresponding authors of the papers. All questions were successfully answered by the authors with the
exception of [218], where no answer was received after several tries. Other specifics considered in order to

carry out a fair comparison of the algorithms (apart from these of Section 3.4) are the following:

e The order of the instances was randomly chosen in the experiments to avoid systematic errors in

the tests.
e The algorithms to be run in each instance are similarly randomized.

e For each instance, ten independent runs were performed for each heuristic to better fit the required

CPU time (the average CPU time is kept).

e For each instance, five independent runs were carried out for each metaheuristic keeping the average

values.

The results of these experiments —that have required a total CPU time effort of 348.74 days— are

presented in the next two sections.
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Constructive and improvement heuristics

The 19 heuristics implemented in this evaluation are first compared under the classic benchmark set
of Taillard with 120 instances. The overall results are summarised in Table 6.10. The second, third
and fourth columns represent the ARPD2, ACPU and ARPT?2 values for each algorithm in the set of
instances of Taillard. ARPD2 values range from 3.89 (RAER heuristic) to 1.48 (FRB5 improvement
heuristic) while ARPT?2 values range from 0.02 to 7.23. Results are graphically shown in Figures 6.4
and 6.5 where the y-axis represents the ARPD?2 for each heuristic and x-axis, respectively, represents
ACPU and ARPT?2 in logarithmic scale. Although results obtained for the different time indicators are,
in general, similar, there are also differences in the performance of the heuristics. Therefore, considering
ACPU as a measure of the computational effort as compared to ARPT2, FRB4; is faster than KKER-di,
NEHR-di and RAER-di in addition to the CLwrs being slower than the FRB2 heuristic. According
to indicators ARPD2 and ARPT?2, the efficient heuristics are NEHKK2, NEHFF, NEHR-di (this last
one would not be efficient considering ARPD2 and ACPU), FRB42, FRB4,, FRB4¢, FRB4;9, FRB412,
FRB3 and FRB5 (shown with a black circle in Figure 6.5). To be able to compare heuristics with different
stopping criteria, they are grouped into clusters as a function of similar ARPT?2 values (see Figure 6.5).
Then, the heuristics of each cluster are compared with the best heuristic in terms of ARPD?2 of that
cluster, i.e. NEHFF, FRB4,, FRB4,, FRB4¢ and FRB4,5, respectively, for clusters 1, 2, 3, 4 and 5. The
hypotheses to statistically check the efficiency of the heuristics are shown in Table 6.9, ordered by these
clusters of heuristics. Since each heuristic is based on the original NEH algorithm and the same set of
instances is used, the hypotheses of independence of the random variables (RDI) can be rejected (see
third and fourth columns in Table 6.9). We use Holm’s procedure [73] where p-values are calculated using
the non-parametric Wilcoxon signed-rank test (see [138] for similar tests). Holm’s procedure orders the
p-values of the hypotheses in non-decreasing order (let us denote by i the position of the heuristic in that
order) where the hypotheses are rejected if the p-value is lower than a/(k — i + 1) (with k& the number of
hypotheses). Results are shown in Table 6.9. Considering a level of confidence of 0.05, several hypotheses
of the NEHFF heuristic (cluster 1) have not been rejected (see e.g. NEHFF vs NEHR or NEHFF vs
NEH-di). Additionally, there is no statistical significance to state that FRB4¢ and FRB415 outperform
FRB4g and FRB2 respectively.

A similar Pareto set is found when the heuristics are compared under the new set of instances Bs.
Average results are shown in Table 6.10. The last three columns represent the ARPD2, ACPU and
ARPT? of each heuristic in that set of instances. Clearly, heuristics of complexity O(nm) (CLwrs,

FRB2, FRB3 and FRB5) need proportionally more computational effort since this set of instances consid-
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Table 6.9: Hypotheses, analysis of dependence and Holm’s procedure on B;

Clusters C . Analysis of Dependence | Wilcoxon | Holm’s Procedure
-0mparison Correlation Sig. Sig. Reject? % a/(k—1i14+1) Reject?
NEHFF vs NEHKK2 0.891 0.000 0.015 R 11 0.0083
NEHFF vs NEH-di 0.923 0.000 0.054 14 0.0167
NEHFF vs NEHKK1-di 0.895 0.000 0.001 8 0.0056 R
Cluster 1 ( reen) NEHFF vs NEHR 0.893 0.000 0.055 15 0.0250
g NEHFF vs NEH1-di 0.910 0.000 0.021 R 12 0.0100 R
NEHFF vs KKER 0.884 0.000 0.010 R 10 0.0071
NEHFF vs NEMR 0.869 0.000 0.006 R 9 0.0063 R
NEHFF vs RAER 0.830 0.000 0.000 R 1 0.0031 R
FRB4> vs RAER-di 0.842 0.000 0.000 R 2 0.0033 R
FRB45 vs NEHR-di 0.880 0.000 0.000 R 3 0.0036 R
Cluster 2 (blue) FRB45; vs KKER-di 0.877 0.000 0.000 R 4 0.0038 R
FRB42 vs NEHD-di 0.860 0.000 0.000 R 5 0.0042 R
FRB45> vs NEMR-di 0.864 0.000 0.000 R 6 0.0045 R
Cluster 3 (orange) FRB44 vs CLwTs 0.868 0.000 0.000 R 7 0.0050 R
Cluster 4 (red) FRB4s vs FRB4g 0.937 0.000 0.937 16 0.0500
Cluster 5 (yellow) FRB4:2 vs FRB2 0.927 0.000 0.041 R 13 0.0125
Table 6.10: Summary of heuristics
Algorith B By
SOTMIM | ARPD2 ACPU ARPT2 | ARPD2 ACPU ARPT2
NEHKK?2 3.09 0.02 0.12 3.21 0.47 0.02
NEHFF 2.90 0.02 0.13 2.95 0.46 0.02
NEH-di 3.03 0.04 0.20 3.18 0.91 0.04
NEH1-di 3.11 0.04 0.20 3.15 0.91 0.04
NEHKK1-di 3.15 0.04 0.20 3.19 0.93 0.04
RAER 3.89 0.06 0.20 3.46 0.88 0.04
NEHR 3.05 0.06 0.21 3.16 0.93 0.04
KKER 3.15 0.06 0.21 3.15 0.93 0.04
NEMR 3.16 0.10 0.31 3.22 1.64 0.07
RAER-di 3.53 0.13 0.40 3.33 1.71 0.07
NEHR-di 2.85 0.13 0.40 3.02 1.82 0.07
KKER-di 2.86 0.12 0.42 3.00 1.79 0.07
NEHD-di 2.84 0.16 0.48 2.86 2.06 0.08
FRB4; 2.33 0.11 0.48 2.57 2.81 0.13
NEMR-di 2.97 0.18 0.52 3.05 2.53 0.10
FRB44 2.13 0.18 0.68 2.31 4.65 0.20
CLwTs 3.02 0.86 0.73 3.11 26.63 0.68
FRB4s 1.91 0.25 0.89 2.17 6.42 0.28
FRB4s 1.95 0.31 1.06 2.07 8.09 0.35
FRB410 1.87 0.37 1.20 1.97 9.87 0.43
FRB4:2 1.79 0.42 1.34 1.94 11.42 0.49
FRB2 1.93 0.64 1.68 1.74 37.97 1.40
FRB3 1.61 5.08 3.61 1.32 198.31 4.34
FRB5 1.48 14.59 7.23 1.04 753.56 14.36
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Table 6.11: Hypotheses, analysis of dependence and Holm’s procedure on Bj

Comparison Analysis of Dependence | Wilcoxon | Holm’s Procedure
Correlation Sig. Sig. Reject? % a/(k—14+1) Reject?
NEHFF vs NEHKK?2 0.950 0.000 0.000 R 1 0.0036 R
NEHFF vs NEH-di 0.954 0.000 0.000 R 2 0.0038 R
NEHFF vs NEHKKI1-di 0.952 0.000 0.000 R 3 0.0042 R
Cluster 1 (green) NEHFF vs NEHR 0.946 0.000 0.000 R 4 0.0045 R
NEHFF vs NEH1-di 0.939 0.000 0.000 R 5 0.0050 R
NEHFF vs KKER 0.952 0.000 0.000 R 6 0.0056 R
NEHFF vs RAER 0.945 0.000 0.000 R 7 0.0063 R
FRB45; vs NEMR 0.943 0.000 0.000 R 8 0.0071 R
FRB4> vs RAER-di 0.946 0.000 0.000 R 9 0.0083 R
Cluster 2 (blue) FRB4> vs NEHR-di 0.958 0.000 0.000 R 10 0.0100 R
FRB4> vs KKER-di 0.953 0.000 0.000 R 11 0.0125 R
FRB4; vs NEHD-di 0.948 0.000 0.000 R 12 0.0167 R
FRB4> vs NEMR-di 0.952 0.000 0.000 R 13 0.0250 R
Cluster 3 (orange) FRB415 vs CLwTs 0.942 0.000 0.000 R 14 0.0500 R

ers higher values of n and m than on By. This increase in computational effort also results in a decrease
in the ARPD?2 of the heuristics with the exception of C Ly rs. Results are graphically shown in Figure
6.6 comparing ARPD?2 versus ACPU and in Figure 6.7 comparing ARPD?2 versus ARPT2. In terms of
ARPD?2 and ARPT?2, efficient heuristics are shown with a black circle in Figure 6.7. Note that regard-
ing the NEH-based heuristics of [162] with direct and inverse approach, the best ARPD?2 is now found
by the NEHD-di heuristic instead of the NEHR-di. In order to compare the heuristics, we group them
according to their ARPT?2 (see Figure 6.7) and perform the same Holm’s procedure [73] (hypotheses of
independence can be rejected again). Note that heuristics FRB4y, are not compared together since all are
the same heuristics with a different input parameter. Results are shown in Table 6.11. Each p-value is
0.000 and all hypotheses are rejected using Holm’s procedure. Thus, according to ARPD2 and ARPT?2,
statistically there is no reason to affirm that the NEHFF, FRB4,, FRB2, FRB3, FRB5 heuristics are not

efficient heuristics within each cluster.

Metaheuristics

In Section 4.2, 10 metaheuristics were defined as the most promising according to the results shown in
their papers. In this section, these metaheuristics are compared under the set of instances B; and Bs.
Each metaheuristic is stopped using the same stopping criterion based on CPU time. More specifically,
three different stopping criteria are applied, t - n - m/2 milliseconds with ¢ € [30, 60, 90], which depends on
the number of jobs and machines. Results are shown in Table 6.12. For both sets of instances, the best
metaheuristics are those based on the Iterated Greedy (IG_RSyg) proposed by [174], see the results found
by IG_RSis, IGris, IG_RSps(TBer) and IGris(TBrr) for example. These results are also confirmed
by the DDFERyg, a discrete differential evolution algorithm which uses similar phases. Regarding Bj, the

ARPD2s of Iterated Greedy metaheuristics for ¢ = 90 is between 0.28 and 0.38 which clearly outperforms
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non IG-based metaheuristics (the ARPD2s of 3XTS, H-CPSO, HCS and PSO are, respectively, 1.24,
0.70, 1.35 and 0.84 for ¢t = 90). The best ARPD2 value is obtained by IG_RSps(TByr), with 0.37, 0.32
and 0.37 for t = 30, ¢ = 60 and ¢t = 90 on Taillard’s instances respectively. Let us highlight the fast
convergence behaviour of the IG_RSps(TBpp) where the ARPD2 obtained for ¢ = 30 is lower than or
equal to every other metaheuristic for ¢ = 90. Metaheuristics are compared with IG_RSps(TBgp) using
the non-parametric Mann-Whitney test (see Table 6.13). With the exception of the IG-based algorithms
IG_RSrs, IGgris and IGgris(TBrr), each p-value on B; is less than or equal to 0.032 regardless the value

of t.

Regarding the benchmark Bs, the superiority of the IG-based algorithms is more clear, as B include a
wider range of values of n and m. Thereby, the differences between the ARP D2 values of the metaheuris-
tics greatly increase with respect to the IG_RSys(TBpr) metaheuristic (see the difference of ARPD2
between 3XTS and IG_RS1s(TBgr) is 0.96 on B; and 2.10 on Bs for t = 90 for example). Statistical
significance has been found for all metaheuristics with the exception of IG_RSps(TBgg) 0.000 being the
maximum p-value (see Table 6.13). In view of the results, although there are many papers proposing meta-
heuristics, no metaheuristic statistically outperforms the original Tterated Greedy Algorithm (IG_RSrs)
of [174] on By, while only the Tterated Greedy variants proposed here statistically outperform IG_RSpg
on Bs.

We have already discussed that many metaheuristics have been published since the last computational
evaluation and review proposed by [172] (see Tables 4.2 and 4.3) and since the original Iterated Greedy
algorithm proposed by [174]. On one hand, in view of Tables 4.2 and 4.3 only 11 metaheuristics have
promising results in terms of quality of solutions and computational effort. On the other hand, in view
of the results in this section, only the original IG_RSpgs and the IG_RS;s(TBgr) algorithms are state-
of-the-art methods. It follows that many metaheuristics were not state-of-the-art even at the time on
their publication, a fact that strongly highlights the need for a review and framework for computational

evaluation such as the one proposed here.

Comparison of heuristics with metaheuristics

Traditionally, researchers have focused either on finding efficient heuristics, or on obtaining the best meta-
heuristic for the problem. The former are implemented to find a good fast solution and/or a good initial
seed sequence for the problem, while the latter are typically implemented to find better solutions using
longer CPU times. As a consequence, typically both heuristics and metaheuristics have been separately

evaluated and compared. In this section, we analyse both heuristics and metaheuristics together, as there
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Table 6.12: Summary of ARPD2s of the metaheuristics

e B B
Metaheuristic Ref. =30 =60 {—90 | t—=30 =60 ¢—90
IG_RSis [174] 047 040 037 | 096 077 0.67
IGRis [138] 049 042 038 | 085 067 0.56
DDEgrs [138] 052 047 043 | 092 077  0.69
3XTS [37] 1.64 134 1.24 | 280 265 247
H-CPSO [77] 084 0.75 070 | 1.65 1.41 1.28
EDAacs [195] 060 0.51 047 | 143 125 1.16
HCS [99] 155 142 135 | 254 235 2297
PSO [218] 1.09 095 084 | 251 214 1.93
IG_RS;s(TBpp) | Our proposal | 0.37 0.32 028 | 0.60 046 0.37
IGris(TBrr) | Our proposal | 0.42 034 0.31 | 0.61 047 0.38

Table 6.13: Comparison of metaheuristics using Mann-Whitney tests

. B; (Sig.) | B, (Sig.)
Comparison t=30 t=60 t=90 | t=30 t=60 t=90
IGnis vs IG_RSis(IBrr) 0.114 0.130 0.132 | 0.000 0.000 0.000

IG_RSps vs IG_RSps(TBrp) | 0.371 0.331  0.297 | 0.000 0.000 0.000
DDEgrs vs IG_RS1s(TBrp) | 0.011  0.007 0.013 | 0.000 0.000 0.000
3XTS vs IG_RSrs(TBpr) 0.000 0.000 0.000 | 0.000 0.000 0.000
H-CPSO vs IG_RSps(TBrr) | 0.000 0.000 0.000 | 0.000 0.000 0.000
EDAjcs vs IG_RSps(TBgr) | 0.018 0.023 0.032 | 0.000 0.000 0.000
HCS vs IG_RSps(TBgr) 0.000 0.000 0.000 | 0.000 0.000 0.000
PSO vs IG_RSLs(TBgr) 0.000 0.000 0.000 | 0.000 0.000 0.000
IGris(TBrr) vs IG_RSps(TBrr) | 0.533 0.526 0.556 | 0.638 0.816 0.711
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are several heuristics requiring long CPU times and vice versa. Therefore, each heuristic is compared
with one of the best metaheuristics, i.e. the iterated greedy IG_RSps(TBgr). In order to have a fair
comparison, the metaheuristic is stopped at the CPU time used by each heuristic. These comparisons are
performed using the set of instances B and Bs. A summary of the results is shown in Table 6.14 as well
as in Figures 6.8 and 6.9 for these benchmarks, respectively, where the dotted lines represent logarithmic
trend lines for the heuristics and the red squares represent all values obtained by the IG_RSys(TBrr)
metaheuristic. Note that the IG_RSps(TBpr) metaheuristic starts with the sequence obtained by the
NEHFF heuristic and therefore, the NEHKK2 and NEHFF heuristics are not included in the comparison
as they need shorter CPU times. For all other heuristics, the metaheuristic outperforms them in terms
of ARPD?2. All compared heuristics are outperformed by the IG_RSys(TBpr) metaheuristic, especially
when compared on Bs. The statistical significance of these comparisons is established by means of the
non-parametric Mann-Whitney test since the normality and homoscedasticity assumptions are not ful-
filled. Although no statistical significance is found for many of the comparisons on the Taillard instances
(see heuristics by [150] which have ARP D2 values similar to or even better than those obtained by the
IG_RS1s(TBpr) metaheuristic for several problem sizes for example), on By each hypothesis is rejected,
0.001 being the highest p value. This Section highlights the exceptional performance of IG-based algo-
rithms for short periods of time and also serves to classify IG_RS;s(TBrr) as a state-of-the-art method

for constructive and improvement heuristics.
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Figure 6.8: Heuristics versus IG_RSps(TBgr) on the set of instances By. X-axis (variable ARPT?2) is
shown in logarithmic scale.

6.5 Conclusions

In this chapter, we have presented a new tie-breaking mechanism based on an estimation of the idle
times of the different subsequences in order to pick the one with the lowest value of the estimation.
This tie-breaking mechanism can be incorporated into the most efficient approximate procedures for the
flowshop scheduling problem with makespan objective, resulting in statistically significant better results

than existing tie-breaking mechanisms.

The proposed tie-breaking mechanism has been compared with the most promising tie-breaking mech-
anisms and algorithms in the literature. Since the last reviews in 2005, a large number of heuristics
and metaheuristics have been proposed for the permutation flowshop scheduling problem to minimize
makespan. Most of them are compared with other non-efficient algorithms and/or under uncomparable
conditions. Thus, it was not clear which algorithms were state-of-the-art. In this chapter, an exhaustive
evaluation of algorithms for the permutation flowshop is proposed, with special attention being paid to
conducting a fair comparison of algorithms. The most promising ones, i.e. a total of 29 algorithms (19
constructive heuristics and 10 metaheuristics), have been implemented and compared under the same
conditions. The comparisons have been done using the benchmarks B; and B;. On one hand, the
metaheuristics are compared under three different stopping criteria to analyse the evolution of the each

algorithm with the computational effort. On the other hand, the comparison of (constructive and im-



6.5. CONCLUSIONS 113

3.5

= RAER
g RAER-di
NEHKK2 NEHR NEHKKL-dL \evr
, NEH1-di KKER NEHR-di  NEMR-di * CL_WTS
« NEHFF KKER-di
NEHD-di
25 = " FRB4:
~‘-\ -
a T FRB4_4
2 s FRB4_6
< FRB4_8
2 - - FRB4 10
- + FRB4_12
.
- Tl
. « FRB2
L] s~
- h T-a
15 Tl
-‘ ~.
el FRB3
.
1 FRB5
.- -
0.5 : : ‘
0.02 0.2 2 20

ARPT

Figure 6.9: Heuristics versus IG_RSps(TBgg) on the set of instances By. X-axis (variable ARPT?2) is
shown in logarithmic scale.

provement) heuristics has been performed using two relative indicators to measure the quality of the
solution and the computational effort in order to identify the efficient ones. Statistical analyses of the
quality of the solutions have been carried out to study the efficiency of the heuristics as well as to compare
the metaheuristics. Additionally, each heuristic has been compared with the best metaheuristic under the
stopping criterion of the heuristic to analyze tentative best seed sequences for the metaheuristics. There-
fore, we believe that this contribution may represent a starting point for future researchers who attempt

to propose new algorithms for the permutation flowshop scheduling problem with makespan objective.

Among all coded metaheuristics, IG-based algorithms have been clearly identified as the most efficient
metaheuristics for the problem. This fact is further confirmed since other well-performing metaheuristics
also incorporate some part of the IG algorithm (see metaheuristics EDA__ACS or DDE_RLS for example).
In particular, the proposed iterated greedy with the proposed tie-breaking mechanisms is the most efficient
one. Additionally, the difference in solution quality between IG-based algorithms and other methods is
even greater in the new set of instances Bs which also consider a higher number of jobs and machines, a
fact which explains why some metaheuristics tested on just a subset of the instances I3; were found to be

efficient ones at their time.

Regarding heuristics, most have been identified and classified as variations of the NEH algorithm.
Among the 19 coded algorithms, only 5 heuristics (NEHFF, FRB4,,, FRB2, FRB3 and FRB5) could
be classified as efficient. Nevertheless, when they are compared with the best metaheuristic under the

stopping criteria of the heuristic, all efficient heuristics have been outperformed by the metaheuristic, with
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the exception of NEHFF since that heuristic is the initial solution of the metaheuristic. Hence, this fact
clearly indicates a way of proceeding when future new heuristics are proposed in the literature. From now,
constructive and improvement heuristics should be directly compared either with the best metaheuristic
under the same stopping criterion or with NEHFF with at least the same computational effort, as it might

turn out that a few iterations of a good metaheuristic already give better results.



Chapter 7

PFSP to minimise total flowtime

7.1 Introduction

In this chapter, we propose a new heuristic that improves the results with respect to that by [108] both in
terms of quality of the solutions and in CPU time (Objective SO5). Starting with this heuristic, we also
propose an advance population-based constructive heuristic. With these new two heuristics, a completely
new efficient Pareto set is obtained. The heuristics are tested on an extensive computational evaluation,
comparing them against the set of 14 efficient heuristics (see Section 4.3).

The rest of the chapter is organised as follows: Section 7.2 analyses some issues related with the
performance evaluation of the different heuristics for the problem. In Section 7.3 and 7.4, two new set of
heuristics are presented for the problem. The computational evaluations are carried out in Section 7.5.

Finally, conclusions are discussed in Section 7.6.

7.2 Implemented heuristics

As mentioned in the previous chapter, a great number of heuristics have been proposed for the problem.
For a detailed presentation and evaluation of all these heuristics, we refer the interested reader to 4.3, and
we will describe here only a sub-set which are found to be state-of-the-art and consequently are the ones
used in this chapter for comparison.

From the conclusion of Section 4.5, it can be seen that LR is a key heuristic of complexity O(n? - m),
playing a role similar to that of the NEH for makespan minimisation. For this latter problem, Taillard’s
accelerations (Section 2.2) showed that the complexity of the NEH can be reduced from O(n®m) to

O(n?m) by using an acceleration mechanism, but unfortunately, such mechanism cannot be used to

115
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Algorithm LR NEH iRZ FPE VNS Complexity
Raj X o(n®-m)
RZ X O(n® - m)
LR(x) X O(z-n®-m)
RZ-LW X O(k-n®-m)
LR-NEH(x) X X O(z-n®-m)
LR(n/m)-FPE(n) | X X O(n*)
IC1 X X O(k-n®-m)
IC2 X X X O(k-n®-m)
IC3 X X X (r) O(k-n*-m
PR1(x) X X X O(z-k-n®-m)
PR2(x) X X X | O -k-n® m)
PR3(x) X X X O(z - k-n®-m)
PR4(x) X X X | O -k-n* -m)

Table 7.1: Efficient heuristics [137] as variation/adaptation of primary procedures.

minimize flowtime. The only acceleration proposed is due to [96], who reported savings in the CPU time
around 30-50%. Nevertheless, the complexity of the NEH remains the same and thus a way to reduce

the complexity of efficient approximate algorithms for flowtime to O(n?m) has remained elusive.

We can employ the data from [137] to calculate the corresponding values of ARPT1 for each heuristic.
The results are shown in Table 7.2, and are represented in two axis in Figure 7.1. The set of efficient
heuristics according to the proposed approach is: Raj, LR(1), RZ, RZ — LW, LR — NEH(5), LR —
NEH(10), LR — FPE, IC1, IC2, IC3, PR1(5), PR1(10) and PR1(15).

It can be checked in Table 7.2 that the alternative representation of efficiency is more complete in the
sense that ten heuristics of the thirteen heuristics considered efficient using ARPT'1 are indeed efficient
for six or more problem sizes, whereas only three heuristics with less than six efficient sizes are included.
Furthermore, the data in [137] expressed the CPU time with two decimals, therefore for some heuristics
the CPU time is 0.00 in some problem sizes, and in this case it is not possible to establish a realistic
trade-off between CPU time and ARPD1. More specifically, heuristics RZ and RZ — LW should have
several more efficient sizes due to the fact that their CPU time is 0.00 for the first 3-5 instance sizes
(this may also happen with as IC1 or IC2, among others). Tt is worth noting that, using CPU time, six
heuristics globally efficient are efficient for six or more problem sizes while there are eight heuristics which
have less than six sizes for which they are efficient. The average number of efficient sizes for the fourteen

efficient heuristics using CPU time is only 4.00, as compared to an average of 6.08 using ARPT1.

Furthermore, in order to re-assure that no heuristic is excluded by using the proposed indicator, we
conduct a series of experiments to extend the comparison between heuristics PR1 and PR2. Note that,
according to the results, PR1 seems to outperform PR2, but the latter is extremely efficient for the biggest

instances (i.e. 100 x 10,200 x 20, and 500 x 20). In addition, the improvement phase of VNS used in
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Algorithm | ARPD1  ARPT1 #Efi%‘;i%&% #Efg;’j;ﬁ flze
Raj 5.02 1.00 7 7
LIT 8.26 -0.96 0 0

SPD1 1737 -0.97 0 0
SPD2 16.56  -0.97 1 1
RZ 2.65 -0.97 3 3
WY 2.83 -0.67 0 0
LR(1) 3.13 -0.99 7 7
LR(n/m) 2.29 -0.89 2 2
LR(n) 2.09 0.27 0 0
NEH 4.03 -0.99 1 1
FL 1.99 -0.41 0 0
RZ-IW 1.29 -0.82 4 4
FL-LS 1.22 0.1 0 0
LR-NEH(5) | 1.84 -0.94 8 8
LR-NEH(10) | 175 -0.90 6 6
LR-NEH(15) | 172 -0.78 3 3
LR-FPE 1.14 -0.81 7 7
LR-BPE 1.23 -0.80 5 5
THT 1.43 -0.25 0 0
IH7-FL 1.30 -0.22 0 0
C1-FL 1.72 -0.35 0 0
C2-FL 0.95 0.26 1 1
IC1 0.81 -0.75 6 6
1C2 0.66 -0.62 8 8
1C3 0.62 -0.26 6 6
PR1(5) 0.50 -0.15 7 7
PR1(10) 0.39 0.79 4 4
PR1(15) 0.33 1.43 6 6
PR2(5) 0.51 0.54 3 3
PR2(10) 0.41 1.90 3 3
PR2(15) 0.36 2.93 1 1
PR3(5) 0.51 0.04 4 4
PR3(10) 0.46 0.91 2 2
PR3(15) 0.45 1.64 1 1
PRA(5) 0.54 0.69 1 1
PR4(10) 0.45 2.00 0 0
PR4(15) 0.41 2.98 0 0

Table 7.2: Summary of average results of the heuristics implemented in [137] using ARPT'1. Last two

columns show the number of problem sizes where each heuristic is efficient using both ACPU and ARPT1.

In bold it is indicated when the heuristic is efficient when averaged for the 120-instances using either CPU
time or ARPT1.
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Figure 7.1: Pareto set using the ARPT'1

[137] (which includes pairwise interchanges and insertion movements in an single position) is used as the
first neighborhood. This may affect the performance of the PR2 heuristic, as more exhaustive insertion
movements (such as iRZ) could be also considered as the first neighborhood so the performance of this
so-obtained heuristic (labelled PR2A in the following) is improved. Note however, that PR2A would be

much slower than PR1 and PR2.

Thus, these three heuristics (PR1, PR2 and PR2A) are further compared using Taillard’s testbed. To
obtain more points in the Pareto approximation, we extend the initial range of the stopping criteria and
that of parameter z for the fastest heuristics (i.e. PR1 and PR2). More specifically, we test the following
stopping criteria: 0.01-n-m, 0.05-n-m, and 0.1 - n - m for all three heuristics, and also 0.2 - n - m for
PRI1. Regarding the values of x, z € {5,10,15, 20,25} is used for PR1(z) , = € {5,10, 15,20} is employed
for PR2(z), whereas z € {5,10,15} is used for PR2A(z). A clear dominance of PR1(z) over PR2(x)
and PR2A(x) is obtained from these results (summarised in Figure 7.2, where the dotted lines represent
quadratic polynomial trend lines for the heuristics). As a result, in the computational experiments in the

following sections, PR2(x) and PR2A(x) will be excluded.

In view of the discussion and the results in this section, it seems clear that the evaluation of the

performance of heuristics for the problem is not trivial, and that both the quality of the solutions and
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Figure 7.2: Comparison heuristics PR1, PR2 and PR2A

the computational effort should be taken into account. Building upon the work by [137], an indicator
for measuring the computational effort has been proposed. This indicator, although not perfect, presents
more consistency between the disaggregated (i.e. at instance size level) and aggregated (overall) results.
Nevertheless, since the state-of-art evaluation of heuristics for flowtime (that of [137]) was done using

CPU time as indicator, we report the subsequent results in this chapter using also their scheme.

7.3 A simple constructive heuristic

The proposed heuristic —denoted in the following as FF'(x)— uses the idea present in LR of decreasing
number of the evaluations of solutions, beginning with n — 1 evaluations and finishing with 0. Thereby,
the heuristic is composed of n — 1 step with a maximum of n — 1 evaluations. However, in contrast to the
LR, we focus in the evaluation of each solution trying to reduce the complexity of the algorithm. When

introducing a new job at the end of the sequence, there are three elements to be considered:

o Idle time induced by the newly inserted job. This idle time influences the next jobs to be inserted.
Clearly, this influence decreases with each step (being 0 in the last step). Its calculation has a
complexity O(m) since only the completion time of the preceding job in each machine is required.

For a given iteration k, this data is known from the previous iteration (or zero if it is the first job).

o Completion time in machine m of the newly inserted job. Its influence on the total flowtime is clear
since the completion time of each job in machine m is included in the objective function. This data

can be calculated within O(m) using the completion time on each machine of the preceding job.



120 CHAPTER 7. PFSP TO MINIMISE TOTAL FLOWTIME

o Completion time in machine m of the artificial job. It seems that it influences the objective function
in an indirect manner, as it is an indicator of the completion time in machine m of the yet unscheduled
jobs. It is thus convenient to ensure that the unscheduled jobs will not have a very large completion

time in machine m. However, the calculation of this completion time has a complexity of n - m.

As in the LR heuristic, we intend that, once a job is scheduled in a position, it stays in this position,
then choosing the adequate position of a job is critical. The problem thus lies in weighting the influence
of the aforementioned elements. To do so, we use two parameters (a and b), to balance the first two
elements, i.e. idle time and completion time of the newly inserted job. In contrast, we leave aside the
third element (completion time of the artificial job), since its influence on the objective function is not as
direct as the other two elements, and its consideration would increase the complexity of the algorithm to
n3-m.

More specifically, the proposed heuristic is as follows:

1. Sort the jobs according to a non descending order of indicator f;'o (see equation 7.1), breaking ties

in favor of jobs with lower ITJQ0 (see equation 7.2). Let us denote by I the so-obtained vector

2. Obtain z partial sequences 7% (i = 1,..., ) of length 1, where the first (and only) job of sequence

7’ is the job in position i in I. Store in U’ the jobs not scheduled in 7.
3. Fork=1ton—1:

(a) For each partial sequence 7!, remove from U’ the job for which the minimum value of 5; i (see

equation 7.1) is found and place it in the last position of 7’.

4. Return the (final) sequence 7 yielding the lowest completion time.

Therefore, the proposed procedure begins with = sequences (¢ with i € [1, 2]) with only one job. The
first job of each sequence 7’ is the job in position i of a vector sorted in non descending order of indicator
530 (equation 7.1) breaking ties in favor of jobs with higher I T;70 (equation 7.2) and each final sequence
7 is obtained adding one by one jobs to the last position of the vector.

Let us denote by k the size of the vector in each step until the vector reaches the n jobs. To insert
a new job j (j € U?) in each sequence 7, one of the unscheduled jobs of each sequence, U?, is removed
according to an ascending index of a complexity m, 5;.) .- This index is based on I T;h the weighted idle
time between the job in position k and the new job j to be inserted, and on the makespan of the sequence
when inserting job j, Cy, ;. For each job j € U, 5;% is calculated as follows:

(n—k—2)

gj,k’ = ’ ITj,k: + ATj,k: (71)
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Notation using LR Notation using FF

LR(1) FF(1)
LR-NEH(5) FF-NEH(5)
LR-NEH(10) FF-NEH(10)

LR(n/m)-FPE(n) FF(n/m)-FPE(n)

IC1 FF-IC1

1C2 FF-IC2

1C3 FF-1C3
PR1(5) FF-PR1(5)
PR1(10) FF-PR1(10)
PRI(15) FF-PR1(15)

Table 7.3: Notation for the heuristics using the proposed heuristic F'F

where ATJ: , and I TJ/ i are defined as follows:

]T/ _ i m - ma:c{C’,-_Lj - Oi,[k]a 0}
Ik Lai bt k- (m—i+D)/(n—2)

DR
1=2

AT k — On1,7j (7-3)

being a and b the aforementioned parameters to balance the influence of idle times and completion time
of the newly inserted job. Note that by avoiding the calculation of the completion time of the artificial
job p (Cyp), the complexity of the algorithm decreases from n® - m to n? - m, a complexity n times lower
than the fastest heuristics in the efficient set by [137].

As explained in Section 7.2, 10 of the 13 efficient heuristics using ARPT1 are based on LR. All of
these 10 heuristics can be reimplemented using F'F instead of LR. The notation for this set of heuristics
is shown in Table 7.3. Additionally, due to the decrease in complexity, F'F(x) can be implemented for
larger values of x. Note that LR(n/m) — FPE(n) has a greater complexity than LR(n/m), i.e. O(n*).
Once LR is replaced by FF, FF(n/m) — FPE(n) has a lower complexity and it can be interesting to
perform the heuristic FF(x) — FPE(y) for more values of both « and y since e.g. now FF(1) — FPE(1)
is also O(n? - m).

Prior to conducting these experiments, the best values for parameters a and b have to be found.
To do so we carry out some computational experiments where different values are tried. After a first
screening where different ranges of values were discarded, a multi-factor Analysis of Variance (ANOVA)
was performed for a € {1,2,3,4}, b € {0,0.5,1} on calibration benchmark Bei. The results in Table
7.4 show that all parameters n, m, a and b are statistically significant. To determine the best level for
each parameter, a Least Significant Difference (LSD) interval for each one is carried out (see Figure 7.3).

Although from this figure it may seem that there is a monotonic trend for both a and b, further tests with
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Source Sum of Squares Df  Mean Square F-Ratio p-Value
Main Effects
n 52.169 4 13.042 20.755 0.000
m 26.724 2 13.362 21.264 0.000
a 7.711 3 2.570 4.090 0.007
b 10.763 2 5.381 8.564 0.000
Interaction
axb 0.114 6 0.019 0.030 1.000
mxa 6.087 6 1.015 1.614 0.139
nxa 6.063 12 0.505 0.801 0.647
mx*b 5.548 4 1.387 2.207 0.066
nxb 13.679 8 1.710 2.721 0.006
n*m 110.808 8 13.851 22.042 0.000
Residual 1095.905 1744
Total (corrected) 1335.571 1799

Table 7.4: ANOVA for the parameters n,m,a,b

Means and 95.0 Percent LSD Intervals Means and 95.0 Percent LSD Intervals
1,00 1,00
0,80 0,80
0 00 I o o0s §
& K g
< 4 =+
0,40 0,40
0,20 0,20
0,00 T T T T 0,00 T T T
1 2 3 4 o 05 1
Parameter a Parameter b

Figure 7.3: LSD intervals of the RPD1 for each level of the parameters a and b.

a >4 and b > 1 did not produce better results. Therefore, a = 4 and b = 1 were used for the new set of

heuristics FF,FFF — FPE,FF — NEH,FF — ICxz, FF — PR1(z) in the next section.

7.4 A population-based constructive heuristic

In this section, we propose a Population-based Constructive Heuristic —denoted PC H—-, for the PFSP to
minimise total flowtime. PCH works with several individuals in parallel in each iteration. The number
of individuals is controlled by the parameter x. The heuristic operates performing n — 1 iterations. At
iteration k, each individual I (I € {1,...,z}) is formed by a set, SL, of k scheduled jobs (sé,C denotes the
job placed in position j of individual ! in iteration k). Consequently, for each individual [ in iteration k

there is a set UL of n — k unscheduled jobs. Let us denote ué»k the jth unscheduled job of individual [ in
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iteration k.

For each iteration k € {1,...,n—1}, |U/| candidates can be obtained from each individual [ by inserting
each one of the jobs in U} in position k + 1 of SL. In total, (n — k) - « candidates can be obtained. The
idea is to retain the best x candidates as the next iteration individuals. However, comparing candidates

may be or may be not straightforward depending on the specific situation:

e If the candidates to be compared have been obtained by appending different jobs in U, ,i to a same
individual S,IC, then their corresponding partial sequences are identical with the exception of the last
job. Therefore, they can be compared in terms of the completion time of the added job, or of the

new idle time induced by the added job.

e If the candidates to be compared have been obtained from different individuals —e.g. one candidate
is the subsequence (1,2), and other candidate is subsequence (2,3)—, both the scheduled and the
unscheduled jobs are different for each candidate. In such case, it is useless to perform a straight-
forward comparison among candidates taking into account either the job to be inserted, or just the

scheduled jobs.

Clearly, the key to select the best x candidates is to be able to compare partial sequences composed
of different jobs. Since in iteration k, a candidate partial sequence is formed by individual S} plus a job
inserted in position k£ + 1, both the individual and the inserted job would contribute to the value of the
flowtime of a final sequence obtained from this candidate.

Regarding the contribution of the inserted job, there are two elements that largely influence the value
of the sum of completion times in the complete sequence (see Section 7.3), i.e.: the weighted idle time
induced by the new job ué i inserted, and the completion time of the new job ué x- Note that the evaluation
of these elements can be done in O(m).

Regarding the contribution of individual [ in iteration % to the flowtime of the final sequence —denoted
Fy,; or forecast index in the following—, it is clear that such contribution is related to both scheduled
and unscheduled jobs. On one hand, the contribution due to the scheduled jobs can be evaluated by
means of a function of the idle times and completion times of the previous jobs. On the other hand, an
“artificial” completion time, denoted as C'T'\y;, can be used to identify the contribution of the unscheduled
jobs. Therefore, the forecast index will be used as an indicator to take into account the scheduled and
unscheduled jobs of each individual. Note that this type of indicator is different that the traditional fitness
function employed in the iterated population-based algorithms, since the latter always work with complete
sequences, and thus different individuals contains the same jobs in different order. The calculation of Fy;

is developed in Section 7.4.
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Hence, steps of the constructive heuristic can be summarised as follows:

e Obtain initial individuals

e During n iterations:

— Generate candidates
— Evaluate candidates

Select the best x candidates

Update forecast index

These steps are elaborated in the next subsections.

Generation of initial individuals

Jobs are initially sorted in non descending order of indicator 5;-’0 (see Section 7.3) breaking ties in favor
of jobs with lower ITJQO as in F'F heuristic. Let us denoted by «; (o := a1,as,...,a,) the component
i of that sorted list. Hence, to obtain the first = individuals (consisting of one job), job in position [ of
the sorted list is placed in the first position of the partial sequence s} ; of the [ individual (s} ; = o).
The rest of the jobs form the unscheduled jobs of the individual, ué-’l with j € {1,...,n — 1} for each

individual (.

Candidates generation

New candidates are formed by adding an unscheduled job at the end of the partial sequence of each
individual. More specifically, from each individual I € {1,...,z}, n — k candidates are obtained at
iteration k where each candidate j is obtained from individual I by adding the jobs in U} at the end of

the scheduled jobs.

Candidates evaluation

Once candidates are formed, they are evaluated. This evaluation is performed taking into account two

factors:

e Influence from the individual: As already discussed, the influence of individual [ in iteration k is

measured by means of the forecast index Fj; which is explained further in Section 7.4.
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e Influence from the inserted job: This influence is due to the new job inserted at the end of the
scheduled jobs. This influence is measured by CTjy; the completion time of the unscheduled job j,

which is the additional completion time incurred when inserting job j in the individual, i.e.:

CTjg = Chnj
and by IT}y; the weighted idle time induced by the insertion of job j (see 7.2).

Hence, in iteration k, given an individual [, the insertion of unscheduled job j is evaluated according

to the following index:

Bjyi = F+ ¢ CTj + ITjp - (n — k — 2) (7.4)

Note that parameter ¢ has been introduced in the expression in order to balance the completion time
and the idle time of the new introduced job (in Section 7.4, the calibration of this parameter is addressed).
Additionally, the idle time is weighted by (n—k—2) to decrease its importance as indicator as the sequence

contains more jobs.

Candidates selection

The procedure to select the candidates that would constitute the individuals of the next iteration is very
simple. We adopt an elitist selection procedure where the x candidates with the lowest values of B are
selected, i.e. in iteration k we look for the combination of j and I achieving the lowest values of Bjy; as
defined in 7.4. The rest of candidates are removed from the population, and the chosen candidates are
denoted as the individuals for the next iteration. Let us denote by branch[l'] and job[l'] the value of

and j respectively of the I'th best B, in iteration &.

Forecasting phase

The Forecast Index, F', is used to be able to compare candidates with different un- and sequenced jobs.

It considers:
1. the idle time of each scheduled job in the individual,
2. the completion time of each scheduled job in the individual, and

3. the completion time of the unscheduled jobs in the individual.
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The influence of 1) and 2) changes across the iteration of the algorithm. Recall that the influence of
the idle time allows us to compare individuals with different jobs. In the first iterations there are few
sequenced jobs, and these sequenced jobs may be quite different. Therefore, the idle time between jobs
is expected to have a larger influence in the comparison between individuals, as compared to the sum of
completion times (which is strongly schedule-dependent). In contrast, in the last iterations the individuals
are almost complete sequences, so they are very similar in terms of scheduled jobs and therefore, a direct
evaluation of the completion times of the jobs to compare individuals would be more related to the final
objective. Thereby, in the expression of the forecast index, the cumulated idle time, denoted as SIT
(11.10) would be reduced with the number of scheduled jobs (it is multiplied by n — k — 2), while the
cumulated completion time, so-called SCT (11.12), would remain the same in the formation of the final

individual. More specifically:

n—>b /
SITI@J' = T ’ [SITk—l,bTanch[l/] + ITjob[l/],k,branch[l/] : (n —k- 2) ,Vk = {]-a s, 1}71 - {17 s 7I}

(7.5)
SCTy = SCTy_1 yranen’) T CLion 1k pranchit’) T CT Ak pranchiy Yk = {1,....,n — 1,0 ={1,...,z}
(7.6)
where SIT;, , = SCTj ;= 0, vI' = {1,...,2} and CT\y, is the completion time of the individual I
in the iteration k of an artificial job placed at the end of the sequence with processing times equal to the

average processing times of the unscheduled jobs (uik v7).

Taking these indicators into account, the forecast index can be then defined as follows:

Foy=a-SCT,y +SIT, Yk ={1,...,n—1},1 ={1,...,z}

where a, and b are parameters designed to better balance the components of the forecast index.
Parameter a balances the influence of SIT and SCT. Parameter b is introduced in fraction (n —b)/n of
SIT in order to diminish the weight of idle time with the increase of iterations, given that 1) the idle
time of the last jobs is less important than that of the first ones given the flowtime objective, and 2)
the importance of the cumulated idle time as indicator also decreases as the number of scheduled jobs is

higher.
The calibration of a and b is discussed in Section 7.4.

An example of the algorithm is presented in Figure 7.4. We use the third instance of the benchmark

By but removing last 16 jobs and considering only the first 4 ones. Individuals are shown in lilac while
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| ) By, = 15454.7

1.9 -
-19258 | iolel B,,,=15370.7 m
fia=19258 £,y = 109957 w hae /m -
m "-' ‘ -

Iteration 1 Iteration 2 iteration 3

Figure 7.4: Example of PCH

By, =5545.8

A |

£, = 1828.0

Source ‘ Significance
Parameter a 0.000
Parameter b 1.000
Parameter ¢ 0.007

Table 7.5: Kruskal-Wallis for the parameters d, L and T

candidates are shown in orange.

The pseudo-code of the algorithm is shown in Figure 7.5.

Experimental parameter tuning

Parameters a, b and ¢ have been included to better adjust the performance of the proposed heuristic.
In this subsection, a full factorial design of experiments is performed to set up proper values for these

parameters. For each of them, the following levels are tested
e a€{1,3,57,9,11,13}
e bc{0,1,2,3,4,5,6}
e cc{1,3,5,7,9,11,13}

representing 343 combinations of values. Each combination is tested on calibration benchmark Boi. A
non-parametric Kruskal-Wallis analysis is performed since normality and homoscedasticity assumptions
required for ANOVA were not fulfilled. In the experiments, = n/10 in order to avoid excessive CPU time
requirements in the parameter tuning. Results are shown in Table 7.5, indicating that there are significant
differences between the levels of parameters a and ¢, but not for parameter b. The best combination is
obtained for a = 9, b = 3 and ¢ = 7. These values are used for the PCH heuristic in the next section

regardless the value of z.
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Procedure PCH(x)
//Initial Order

Determination of ITJ 0 C'T o and §JO,

ITj707] = ITj,O and CTJ,O,I C,TJ,O VZ,

«a = Jobs ordered according to non-decreasing 5; o breaking ties in favor of jobs with lower I T;-’O;

Update S (s}, = a;) VI and U{ with the remaining jobs.

Determination of CTMo, VI. Note that the processing times of the artificial job for individual [ is

equal to the average processing times of all jobs with the exception of 811,1;

for /=1 to z do

SITy; ==t (ITuphap,00 - (n —0—2));

SCTy,; = CTalpha .00 +CTX o5

Fl,l =a- SCTl,l + SITLI;

end

for k=1ton—1do

//Candidates Creation

Determination of Tk, CTjki;

//Candidates Evaluation

Bjkl =F, +c- CTj}cl + ITjkl, Vi € [1,513] and Vj € [1,71 — 1‘];

//Candidates Selection

for ' =1 to z do
Determination of the I'-th best candidate according to non-decreasing Bji; in iteration k.
Denote by branch|l'] the value of the index [ of that candidate and by job[l'] the value of j;

end

/ /Forecasting Phase. Update of the Forecast Index

for ' =1 to z do

Update SkJrl and U,CJr1 by removing job u;’:)’;[’llf]h[ 1 from memh[ T and including in Sbmnch[z I

Determination of CT Ay pranchr) for new individual I" formed by the old individual branch[l/]
with job job[l/]. Note that the processing times of the artificial job is equal to the average
processing times of all unscheduled jobs (U,i/_H);

SITk-l—l U= nT_b ’ (SITk bran(’h[l ] + IT]ob[l l,k,branchll’] * (n —k- 2))

SCTk+1 = SCTk branchll + CT; job[l'],k,branch[l'] + CT)‘k branch[l']?

Fopy =a-SCT +SITk+1,l ;

end

end

//Final evaluation

Evaluate the flowtime of the sequenced jobs of each individual and return the least one.
end

Figure 7.5: PCH
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7.5 Computational experience

Computational experience for the FF heuristic

In order to compare the performance of the FF heuristic, the efficient heuristics described in Section 7.2
are implemented and their results on the benchmark B; are collected. Note that all experiments carry
out in this chapter are run on an Intel Core i7-3770 PC with 3.4 GHz and 16GB RAM. As mentioned
before, [96] showed that heuristics for the Fm|prmu|)_ C; with insertion and pair-wise exchanges (i.e.
all efficient heuristic but LR) can be implemented reducing around 30-50% computational times. Thus,
in order to conduct a fair comparison, this acceleration has been implemented in our codification of each
insertion method of all heuristics.

Comparing the CPU time required by each heuristic with those in the chapter by [137], we found that
the former were larger by a factor of 3.38 times on average. This can be explained due to the different
programming languages used to implement the heuristics, to the different ways of coding the routines and
to the different computer employed for the implementation. However, since the stopping criterion of some
heuristics in [137] was set to 0.01 - n - m seconds, applying the same criterion in our slower procedures
would penalise the performance of these heuristics, as they now require more time per iteration and thus
will perform less iterations. Therefore, in order to conduct a fair comparison, we change the stopping
criterion to 0.0338 - n - m so to have a similar number of iterations to that of [137].

The overall results of the experiments are summarised in Table 7.6, where the average results of each
heuristic over all 120 instances are shown. The effect of replacing LR by F'F is specifically highlighted in
Table 7.7, showing the efficiency of the proposed heuristics. For instance, the average computational time
of FF(1) is just 0.02s while the average computational time for LR(1) is 0.76s. Not only the complexity
of the algorithm has been reduced from n® - m to n? - m, but the ARPD1 of FF(1) is also lower as
compared to the ARPD1 of LR(1).

Regarding the detailed results, those obtained by the heuristics Raj, LR(1), RZ, RZ — LW, LR —
NEH(5), LR— NEH(10), LR — FPE, IC1, IC2 and IC3 are shown in Table 7.8 while the CPU times

are shown in Table 7.11.
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Heuristic ARPD1 ARPT1 ACPU
LR(1) 3.01 -0.98 0.76
LR(n/m)-FPE(n) 1.02 047  33.07
IC1 0.64 -0.29  41.93
1C2 0.54 0.08 5533
IC3 0.53 126 330.92
LR-NEH(5) 1.52 -0.75 6.69
LR-NEH(10) 1.44 -0.52 13.37
Raj 4.86 -0.99 0.29
RZ 2.32 -0.90 2.97
RZ-LW 1.13 042 32.69
PR1(5) 0.37 1.93 58.87
PRI1(10) 0.26 4.60 67.38
PRl( 5) 0.21 7.06 68.54
FF(1) 2.76 -1.00 0.02
FF(2) 2.34 -0.99 0.05
FF(n/10) 1.95 -0.98 0.99
FF(n/m) 2.05 -0.98 0.54
FF(n) 1.83 -0.69 10.12
FF(1)-FPE(1) 2.36 -0.99 0.15
FF(1)-FPE(n/10) 1.81 -0.94 2.89
FF(1)-FPE(n) 1.23 -0.64  21.39
FF(2)-FPE(1) 1.97 -0.97 0.17
FF(2)-FPE(n/10) 1.55 -0.94 3.05
FF(2)-FPE(n) 1.07 -0.63 19.78
FF(15)-FPE(1) 1.58 -0.88 0.44
FF(15)-FPE(n/10) 1.29 -0.86 2.90
FF(15)-FPE(n) 0.96 -0.62 16.89
FF(n/10)-FPE(1) 1.63 -0.96 1.12
FF(n/10)-FPE(n/10) | 1.33 -0.92 3.51
FF(n/10)-FPE(n) 0.94 -0.63 18.79
FF(n/m)-FPE(1) 1.70 -0.96 0.64
FF(n/m)-FPE(n/10) 1.37 -0.92 3.11
FF(n/m)-FPE(n) 1.01 064 1805
FF(n)-FPE(1) 1.53 -0.65 10.27
FF(n)-FPE(n/10) 1.25 -0.62 12.68
FF(n)-FPE(n) 0.94 035  28.00
FF-IC1 0.62 048 2533
FF-1C2 0.56 026 36.47
FF-IC3 0.55 113 300.93
FF-NEH(5) 1.40 -0.86 3.18
FF-NEH(10) 1.34 -0.72 6.33
FF-PR1(5) 0.34 1.37 48.60
FF-PR1(10) 0.24 3.68 58.48
FF-PR1(15) 0.19 5.45 63.03

Table 7.6: Summary of results

of heuristics
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Heuristic ARPD1 Avg. Time ARPT1 Heuristic ARPD1 Avg. Time ARPT1
LR(1) 3.01 0.76 -0.98 — FF(1) 2.76 0.02 -1.00
LR(n/m)-FPE(n)  1.02 3307  -047 — FF(n/m)-FPE(n) 1.01 18.05  -0.64
IC1 0.64 41.93 -0.29 — FF-1C1 0.62 25.33 -0.48
1C2 0.54 55.33 -0.08 — FF-1C2 0.56 36.47 -0.26
1C3 0.53 330.92 1.26 — FF-IC3 0.55 300.93 1.13
LR-NEH(5) 1.52 6.69 -0.75  — FF-NEH(5) 1.40 3.18 -0.86
LR-NEH(10) 1.44 13.37 -0.52 — FF-NEH(10) 1.34 6.33 -0.72
Raj 4.86 0.29 -0.99 — — — —
RZ 2.32 2.97 -0.90 — — — —
RZ-ILW 1.13 32.69 -0.42 — — — —
PR1(5) 0.37 58.87 193 — FF-PR1(5) 0.34 48.60 1.37
PR1(10) 0.26 67.38 4.60 — FF-PR1(10) 0.24 58.48 3.68
PR1(15) 0.21 68.54 706 — FF-PR1(15) 0.19 63.03 5.45

Table 7.7: Comparisons between composite heuristics which include LR and FF heuristics

131



CHAPTER 7. PFSP TO MINIMISE TOTAL FLOWTIME

132

IT sonstmoT Jo TAdY :6'2 Td®BL

760 STT €ST T0°T LET 0LT %60 ee'T €9T 960 6CT 8ST L0T SST  L6T €¢T IS8T 98¢ |1ddy¥V

€0 €F0 TlL0 €20 A} L0 €20 Sl TL0 €0 8¢0 160 850 880 OFT 6.0 OT'T 087T|0T X009

190 860 LFT %80 9Z'T €8T 080 ST'T ¥OT 080 STT %971 8T 20C %8¢ OFT TFC €5€|0TX00C

670 690 80T 690 650 80T 6%0 6S°0 80T 8F0 190 OI'T €0 990 F&T €90 880 0L7T|0T X002

0T GLT SIC 8TT €0'c TLT ST e0'c 06 SI'T L8T OFcT SFT 9LC CFE€ ¢8T €¢¢ S8T¥|0%x00T

9.0 160 ST 080 86°0 ¢eT 080 86°0 Ge'T LL0 960 SST 980 ST'T IS8T 860 LZT €0°C|0T X001

6z’0 TF0 0S0 €T0 7l 060 ST0 170 060 €20 TIF0 0%0 120 TFO0 S0 LFO 980 960| ¢ X001

9¢'T 88T ¥CC 99T LTC 7'c  9¢T 88'T ¥2C 9¢T 88T ¥2C 9¢T  LT'C  IPC LST I€T 99T 0T X 0%

ST'T 29T IS8T SI'T 96T LT STT 9G'T LLUT  STT 28T TIST OFT  FLT  STC LST 66T 2LPT|OTXxXO08

LL0 960 LTI LLO 96°0 LTT  6L0 €01 I€T 220 960 22T 990 60 €T 080 0TT S9T| §x0¢

9T 0¢C SCT 8T 87°C vLC 09T 16T 61C G9T 08T S¢c 09T L6T 61C ¥8T SF¢ ¥LC| 0CXx0¢

8P'T ¢L1 06T 991 81'C 62 991 81°¢ 6C¢ SP1T ST 06T 99T 8I'C  6¢¢ S91 ¢¢¢ 19¢C| 01X0¢

72T OFT F¥FT SCT i SFT IT'T 9.1 18T ¥¢T OFT ¥FT IT'T  9LT IS8T 6T°T 08T T0C| §X0%

u-u (J/u-u [-u wur/u gf/u-u/u [-w/u u-Qr/u Qr/u-0r/u [-01/u u-¢l QI/u-¢T 16T u-g 0I/u-g I-¢ wI OI/ul 1T

(HAda-(x)ad
I somsumney Jo TAdY ‘8°L 2198l

€8T S0°¢C g6° T 7e'C 9L'C 12°0 9¢°0 1€°0 eT'T ¢e'C 98V V1 [4°NS €8°0 ¥9°0 ¥9°0 [N 10°¢ | Tdd4V
6L0 18°0 6.0 8T 06T 990 9g°0 93’0 180 9TT ¥V 79°0 7.0 92°0 620 LE0 €r'0 12T |02 X 009
79T 90°2 18T 8T'¢  18¢  ¥E0 7€°0 6€°0  1TT LT 697 18T 87T 1€°0 170 670 201 gL'e |0z % 00C
ST'T ST'T ST'T 91 681 v10 v1L0 L1°0 911 [9'C 9V 79°0 89°0 €C0 ¥2°0 0€0 6€°0 ov'a |01 X 00G
6S°C v1°¢ 6L°C 96°¢ 99’7 L2°0 L2°0 870 96°0 €8¢ 8¥'¢ 86°T iraé €9°0 GL°0 980 47t o'y |0 X 00T
19T GL'T cL'1 80°¢C 1€°¢ LT°0 ¥Z'0 (4 0)] G0'T 9¢°C LL'V 60°T 61T Ggc’0 820 Lv'0 g9°0 $9°¢ | 0T X 00T
740 7470 7470 19°0 €01 ¢G0 €¢°0 8¢°0 7e'T q0'c 1¢¥ €9°0 89°0 gc’0 92°0 LT0 €0 ST'T g X 00T
e 78°C ele ¥8'C  98%  FT10 92°0 07’0 69T €8T 99°C 20'% °TT 740 $S0 280 go'1 go'¢ | 0T X 09
70T 702 70 T8 T0e  9T0 9T°0 820  IV'T  8LT ¥9°C €6°T 76T ¥8°0 7.0 08°0 90°T 12°¢ | 0T X 0%
o'l o'l el 0s'1 I8°1 ¢e0 v¢0 9¢°0 GGl QI'c vy L0°T 801 70 1¥'°0 090 6.0 L1°C g X 09
ve'c 1¢¢ v.C v.C 1¢°€ €0°0 9¢°0 S5l I8°0 GL'T 09'% 96°T 00°G S0'T G0°'T SO'T 69°T [ARY 0¢ X 00
68°C ST°¢ ST°¢ ST°¢ €e'e 020 ¥Z'0 94670 88°0 Voo L9V 20°C 20°C 780 ¥8°0 ¢0O'T 47t AN 0T X 0¢
0¢°¢C 44 8G°C 8G°¢C er'e 80°0 GG 0 0€°0 G0 T 68°C L9°C €6°T €6°T 99°0 L9°0 ¢L°0 AN 0L°¢C g X 0¢
(W)ad (w/w)aa (01/w)dd (g)dd (T)dd (S1)1dd (01)1ud (9)19d MT-Zd 74 [y (0T)HAN-UT (9HAN-YT €11 DI 101 (Wadd-(w/u)yT (1)gT|eouessu]




133

COMPUTATIONAL EXPERIENCE

7.5.

[ sonsumay jo sowt], reuoryeindwo)) 1L 9[qe],

69°0-  86°0- 86°0-  66°0- 00T- 907 09°F% €6T &P 0- 060- 660- 260" qL0- 9z'T  80°0- 680- 170 86°0- | 1LLJUY
Tror %50 660 00 ©00 FS89  8SL9  L8'8G  69CE  L6T 6C0 1E°€T 69°9 T608E €699 6°TF 10°¢€ 9.0 | #8eiery
60T @9¢C 69°0T  ¥F0 ©o0 89LEC  €8FPE  8F'8ES 9TF9E 9L TE L0€ £8°THT SV TL VS TT8E TH'LI9 8L L9F £8°89¢ I8 | 0T X 009
199 GE0 89°0 200 €0°0 ST LVT LV'8V1T ¥8°¢0T 68°GT 61°'C €¢'0 T0°0T 70'g I6°T0T 8%'9C LT'6T LLTT 8¢'0 | 0C X 00T
ze'e ¥€0 v€°0 €00 @00 L8'TL €8cL  SVFF 688  IT'T &I'0 ¥6'T 1V ¥6'9€  SLVT 69Tl 01°0T 120 | 0T X 002
OT'T 90°0 £T0 T00 100 8TCE 1T°€c 6601  S9°T 820 €00 8T'T €90 109  68C GCT 8T 80°0 |0z x 00T
6g'0 600 90°0 T0°0 T0°0 TO'LT |0°'TT ce'e 96°0 ¥1'0 <CO0'0 ¥9°0 2¢e0 QLC Qa1 oT'T 980 ¥0°0 |01 X 00T
¥z 0 20°0 £0°0 000 000 00°L 8V'Y 61°C Y70 800 100 ¥€0 LT°0 el 80  0L0 9g'0 z0'0 | ¢ X001
TTo 00°0 100 000 0000 8¢ At 60°T 9T'0  $00 000 8T°0 60°0 160 8¢0  6T0 TTo 100 | 0T X 09
80°0 10°0 100 00°0 000 Z8'1 vo'1 19°0 60°0 ¢0'0 000 60°0 <0'0 61°0 ST'0 o010 80°0 T0°0 0T X 0§
€0°0 10°0 000 000 000 680 1570 620 900 100 000 500 £0°0 110 600 400 c0°0 000 | gxo0g
T0°0 00°0 00°0 000 0000  0%0 eT'0 900 TO0O 000 000 200 10°0 200 C00 100 T0°0 00°0 | 02 X 0%
000 000 00°0 000 000 z1'0 00 £0°0 100 000 000 10°0 000 10°0 100 000 000 000 | OT x 0%
00°0 000 00°0 000 0000 900 $0°0 200 000 000 000 00°0 00°0 100 100 100 00°0 000 | gxo0z
(Wad (w/v)ga (01/vdd (dd (Ddd (s1)1ud (0D)T1dd (9)1dd mIzd zd fed (0DHAN-YT (9HAN-YT €01 eol 101 (Wadd-(w/u)g1 (1)97| eoueisug
IIT somysunoy jo TddY :0T°L °19%L

610 ¥¢'0 7¢°0 7E€'1 07’1 ¢e'0 9¢°0 ¢9°'0 Iddidv

160 ¢g'0 Gae'o 19°0 99°0 70°0 80°0 ¥1°0 0¢ X 00¢

6T°0 61°0 8¢'0 IT'T GC'1 7€°0 6£°0 9%°0 0¢ X 00¢

8T°0 ST°0 0€°0 78°0 ¢6°0 €¢'0 9¢'0 6£°0 0T X 00¢

LT°0 ¥¢'0 €¥'0 CL'T G6'T 760 9¢°0 09°0 0¢ X 00T

¥1°0 9T°0 9¢'0 L0°T I¢'T 0%°0 9¢°0 09°0 0T X 00T

710 LT°0 020 19°0 €9°0 I1°0 ¢L0 9¢°0 ¢x 001

¢1'0 cc0 L3°0 08'T 08'T 98°0 98°0 16°0 0¢ X 0¢

710 1¢°0 L2°0 €e'1 €e'1 09°0 ¢9°0 41} 0T X 0¢

6¢°0 6¢°0 LE°0 IT'T IT'T ¢S0 (41} 970 ¢ X 0¢

¢r'0 ST°0 0€°0 G6'T €0'¢C LO'T SO'T SO'T 0¢ X 0¢

010 7€°0 L¥°0 [4are [4are L6°0 L6°0 180 0T X 0¢

€10 020 €0 791 791 L0°1T L0°1T 911 ¢ X 0¢

CDTId-dd (01)T9d-dd (9)19d-Ad (0T)HAN-AA (9HAN-II €HOI-AA ¢HDI-Ad THOI-AJ




CHAPTER 7. PFSP TO MINIMISE TOTAL FLOWTIME

134

[II sousunay jo sowit ], feuonyeinduio) :¢1°), 9[qe],

eh'g 89°'¢ 1€'1 TL0- 98°0- er'l 920~ 87°0- | TILdUV
€0°€9 8%'8G 09'8¥ €e'9 81'€E €600 79 £e'Gg | eSeeay
eV 16¥ TL8Sh ¢e'8GH €9°L9 26°€E ¢8'ICHE TV L6E  98'€LT | 0T X 00S
90°9%1 IiAzal €Ll 86°F ve'e gT00T 0% ¢8'8T | 0% X 002
54 ¢L L9 Ty og 0%'¢ 121 L8'6¥ 00°TT €62 |01 X00¢
621 8291 628 €90 ze0 81°G 1L ¢6'T |0% X 00T
¢TI 99, cLe ee0 8T°0 1.2 0e'1 120 |01 X 00T
9¢°g Ve 781 8T°0 60°0 68°0 g0 2e0 | € X001
¥9'C L1 180 010 ¢0°0 1270 A 8T'0 | 0 X 0%
el 68°0 ) c0°0 €0°0 910 zro 600 | 0T X 0%
99°0 ¥50 €20 €0°0 10°0 80°0 90°0 c0°0 ¢ X Qg
910 010 c0°0 10°0 00°0 10°0 10°0 100 | 02 X 02
010 90°0 €0°0 10°0 00°0 10°0 10°0 100 | 0T X 02
90°0 c0'0 200 00°0 00°0 10°0 00°0 000 ¢ X Qg
(eDTYd-dd (01)TUd-dd (91d9d-dd (0T)HAN-AA ($)HAN-AA €HOIAA ¢HOI-AA THOI-Ad

II sonsume jo sewr ], Teuorpeindwo)) :g1°, 9[qel,

¢e0- 790~ €¢90- ¥90- T60- 960 €9°0- T6°0- 96°0- ¢90- 98°0- 880- €90- F¥60- 260~ ¥90- ¥60- 660-| ILJIV
008 8921 LZ0T SO'ST 1T°¢ ¥9°0  6L°ST 16°¢ TI'T 6891 06C ¥F0 8L61 S0'E LT'0 6§£1¢ 68C SI'0 |odeioay
187208 TLFET 92°S0T €€G6T  L0°€E 189 T9°€0T  L9°.€  FLIT €6°G8T  LTTE  C6'E TECIT 1608 €ST S8FEC L0°TIE TIFT |0T X 00¢
€CT6T 6.6 9T'S  09°CT 8T 9¢0 ggeT 18°¢ ¥6'0 6201 00C €90 6£€T I1gC 680 STPT  9T'C 020 |0Z X 00C
L6 €TC  6SF €09 T 060 ¥8°6¢ LET 870 6% 0T T80 TT9 660 <TI0 TE&S  TOT 010 |0TX00C
00z ¢l ITT TI¥FT 120 80°0 VT 8Z°0 €10 0T  Lg0 ST0 ¢TI 20 900 92T €20 ¥0°0|0Z X 00T
9T'T  ¢90 ¥S0 690 e1°0 L00  FL0 e1'0 80°0 280  FI'0 800 290 20 €00 8S0 OT'0 200 |0TX00T
IS0 620 .20 TL0 60°0 90°0  0€0 90°0 €00 S0 900 ¥00 920  ¥O0 T00 220 ¥00 100 | S XO00T
720 ¢T0  FI0  TT0 200 100 €1°0 €0°0 200  FT0 €00 FO0 <Tr0 00 100 FIO0 200 T00| 0ZXO0S
gro L0000 900 200 100 90°0 200 100 900 200 200 900 100 1000 900 100 000 | 0T X0¢
€00 F00 F00 €00 10°0 100 €00 10°0 000 €00 100 T00 €00 100 000 €00 100 000 ¢x0g9
100 100 100 000 00°0 000 100 000 000 1000 100 TI000 T00 000 000 000 000 000/ 0ZX02
100 100 000 000 00°0 000 000 000 000 100 000 000 000 000 000 000 000 000]|0TX02
0000 0000 000 000 00°0 0000 000 000 000 000 000 000 000 000 000 000 000 000| $X0¢
u-u  (f/uu U ww/u gf/uw/u [-w/u u-Qr/u O7/u-Qr/u 1-0r/@ u-g¢ QI/u-¢r 16T w-g 0I/u-g I¢ Wl OI/ul T

(HAda-(x)ad




7.5. COMPUTATIONAL EXPERIENCE 135

5.00

- Raj

4.50

4.00

3.50

L 4
D

3.00

[

FF(1)
[=]
& 2.50
< FF(2) RZ
200 FF(2) FPE(L)
LR-NEH(5)
1.50 FF(ISFFPE() @ [R-NER(10]
FF{15)-FPE{n/10) - £
1.00 -~ Gi— LR{rm)-FPE(R}
- 4'/."/,
FF(n)-FPE(n/10) Py A|Cl
050 FE(15)FPE(R) Jc2 e
: / P ERUS)
FF(n/10)-FPE(n).~ PR1(10)
FF-IC1 PR1(15)
0.00 T T FE=tc2—FFPRY{5} 7 T !
0.01 0.10 1.00 10.00 FF—PRI(ID, ! 100.00 1000.00
Average Computational Time FF-PR1(15)

Figure 7.6: ARPD1 versus average computational times. X-axis (Average computational time) is shown
in logarithmic scale. Noted that only the efficient heuristics of the new set of heuristics are named.

Different values of parameters  and y of the heuristic F'F'(z) — FPE(y) have been analysed according
to the literature (see e.g. [108, 137]). More specifically, z € {1,2,15,n/10,n/m,n} and y € {1,n/10,n}
have been employed. Regarding the parameters of the heuristics FF' — NEH (z) and PR1(a), the same
values than in [137] (i.e. x € {5,10} and a € {5, 10, 15}) are chosen since the analysis of these parameters
was already performed by these authors. Detailed ARP D1 results are shown in Tables 7.8, 7.9 and 7.10,

while computational results are shown in Tables 7.11, 7.12 and 7.13.

Graphically, the new efficient set of heuristics using the average computational time is shown in Figure
7.6 while new efficient heuristics using ARPT1 as time reference are shown in Figure 7.7. For the former,
the Pareto set is formed by the following heuristics: FF(1), FF(2), FF(2)— FPE(1), FF(15)— FPE(1),
FF(15)—FPE(n/10), FF(15)— FPE(n), FF(n/10)—FPE(n), FF(n)—FPE(n), FF—IC1, FF—IC2,
FF — PR1(5), FF — PR1(10) and FF — PR1(15). For the latter, the efficient frontier is: FF(1), FF(2),
FF(n/10), FF(n/m), FF(2) — FPE(n/10), FF(15) — FPE(n/10), FF(n/10) — FPE(1), FF(n/10) —
FPE(n/10), FF(n/10)— FPE(n), FF(n/m)—FPE(n), FF—IC1, FF—1C2,1C2, IC3, FF — PR1(5),
FF — PR1(10) and FF — PR1(15). It represent a total of 17 heuristics in the new Pareto set. 15 of these

heuristics correspond to the new set of heuristics presented in this chapter.

Seven paired samples t-test were carried out in order to compare the new set of efficient heuristic to
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Figure 7.7: ARPD]1 versus ARPT1.
Heuristics Mean SEM IC - Lower IC - Upper t Significance

Raj vs FF(1) 2.096 1.798 1.770 2.421 12.767 0.000
LR(1) vs FF(2) 0.668 1.507 0.396 0.941 4.857 0.000
LR(n/m)-FPE(n) vs FF-IC1 0.404 0.667 0.283 0.524 6.628 0.000
LR-NEH(5) vs FF(15)-FPE(n/10) 0.233 0.709  0.105 0.361  3.598  0.000
RZ vs FF(n/10)-FPE(n/10) 0.989 1.156 0.780 1.198 9.374 0.000
RZ-LW vs FF-IC1 0.510 0.830 0.360 0.660 6.738 0.000
LR-NEH(10) vs FF(n/10)-FPE(n) 0.500 0.711  0.371 0.628  7.699  0.000

Table 7.14: Paired samples t-test using Taillard’s benchmark.

the old one. Comparisons were always performed between algorithms with higher ARPT1, i.e.: Raj vs

FF(1), LR(1) vs FF(2); LR(n/m) — FPE(n) vs FF — IC1; LR — NEH(5) vs FF(15) — FPE(n/10);

RZ vs FF(n/10) — FPE(n/10); RZ — LW vs FF — IC1 and LR — NEH(10) vs FF(n/10) — FPE(n).

The results of the analysis are shown in Table 7.14. Statistically significant differences were found for

each comparison being 0.000 the maximum p-value found in the analysis. The Least Significant Difference

(LSD) intervals for each heuristics are shown in Figure 7.8.

Computational experience for the PCH heuristic

The proposed heuristic is compared with the current set of efficient heuristics formed by FF(1), F'F(2),

FF(n/10), FF(n/m), FF(2) — FPE(n/10), FF(15) — FPE(n/10), FF(n/10) — FPE(1), FF(n/10) —
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Figure 7.8: LSD intervals of the RPD1 for each analysed heuristics.

FPE(n/10), FF(n/10) — FPE(n), FF(n/m) — FPE(n), FF - IC1, FF — IC2, FF —IC3, IC2, IC3,
FF — PR1(5), FF — PR1(10) and FF — PR1(15).

Experiments have been performed for the 120 instances of the benchmark B;. Additionally, parameter
x of the proposed heuristic must be set. As shown in Section 7.4, x indicates the number of individuals
in each iteration and therefore, it is directly proportional to the CPU time required by the heuristic. For
x > n, additional indications in the first iteration of the algorithm would have to be provided (i.e. at
least it should be indicated which is the first job of the last x — n individuals after the first iteration),
80 here we restrict to @ € {1,n}. More specifically, we use the values of x also used in the literature for
the LR heuristic, i.e. x € {2,5,10,15,n/10,n/m,n} (see e.g. [108] and [137]). Note that z = 1 has been
removed of the analysis since PCH (1) is equal to F'F'(1) (with a different combination of parameters), so

it is already included in the computational evaluation.

The comparison of heuristics is performed in terms of quality of the solutions and computational effort.
On the one hand, the former is commonly evaluated by means of the Relative Percentage Deviation RPD1.
On the other hand, the most common indicator for the computational effort is the average CPU time,
ACPU. However, in Section 7.2 detected that this indicator presents several problems when used to
evaluate heuristics with different stopping criteria, and proposed the (Relative Percentage Time) RPT

indicator to overcome these problems.

The RP D1 values obtained for each algorithm are shown in Tables 7.15 and 7.16. The last file indicates
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the average value, i.e. the ARPD]1 for each algorithm. As it can be seen, the ARPD1s of the actual
set of efficient heuristics ranges from 3.84 to 1.22, where the best one (1.22) is found by FF-PR1(15).
Regarding PC'H, the worst ARPD1 is 2.51 while the best one is 0.19. In order to be able to perform a
fair comparison between the heuristics, CPU times (in seconds) are summarised in Tables 7.17 and 7.18
(the last two files represent the average CPU time and the ARPT1 respectively). The average values
are indicated in Table 7.19 and graphically shown in Figure 7.10 using the ARPT as measure of the
computational effort, as well as in Figure 7.9 using the average CPU time.

Using ARPT1 as a measure of the computational effort, the actual set of efficient heuristics is updated
by including a complete new set of heuristics, all of them including PCH for different values of z. As
it can be seen, our proposal PCH outperforms existing efficient heuristics, according to the following

conclusions:

e PCH(2) (with ARPD1 = 2.51) improves heuristics FF(n/m), FF(n/10) and FF(n/10)— FPE(1)
with ARPD1s equal to 3.11, 3.02 and 2.70 respectively, while using less ARPT1.

e PCH(n/m), PCH(5) and PCH(n/10) with ARPD1 1.46, 1.35 and 1.21 respectively outperform
FF(2) — FPE(n/10) and FF(n/10) — FPE(n/10) using less ARPT1.

e PCH(10), with ARPD1 and ARPT1 equal to 0.88 and —0.87, clearly outperforms FF(15) —
FPE(n/10), which has an ARPD1 of 2.35 and an ARPT1 of —0.83.

e PCH(15) (ARPD1 = 0.64) outperforms with less computational effort FF(n/10) — FPE(n),
FF(n/m)— FPE(n), FF — IC1 and FF — IC2 which have a minimal ARPD1 of 1.61.

e The best heuristic, PCH (n), with ARPD1 = 0.19 clearly outperforms heuristics IC2, FF — IC3,
IC3, FF — PR1(5), FF — PR1(10) and FF — PRI(15).

In order to establish the statistical significance of these results, Holm’s procedure [73] is used where each
hypothesis is analysed using a non-parametric Mann-Whitney test (see e.g. [138]). In Holm’s procedure,
the hypotheses are sorted in non-descending order of the p-values found in the Mann-Whitney test. The
hypothesis i is rejected if its p-value is lower than «/(k —i+ 1) where k is the total number of hypotheses.
The results of the Holm’s procedure are shown in Table 7.20, where the fourth and sixth columns indicate
if the hypothesis is rejected (denoted as R in such case) by Mann-Whitney and/or Holm’s procedure. As
can be seen hypothesis PCH(2) = FF(n/10)— FPE(1) is the only one that cannot be rejected by Holm’s
procedure, but it has to be noted that the computational effort required by FF(n/10) — FPE(1) is much
higher to that by PCH(2). In summary, it can be concluded that PCH(n/10), PCH(10), PCH(15)
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and PCH (n) are statistically efficient and that PCH(2) is not inefficient. Note that PCH(2) would
be statistically efficient when considering the Pareto frontier using the average CPU time instead of the
ARPT1.

A final series of experiments have been conducted to compare the PCH (n) heuristic with an iterated
local search (denoted as M RSILS) and an iterated greedy algorithm (denoted as IGRrrs). These two
are among the best metaheuristics for the problem (see [34] and [138]). In order to analyse the impact of
PCH(n), we separately run both metaheuristics until the stopping criterion 60 - n - m /2 milliseconds. For
each instance, five runs are considered and the average flowtime values are recorded. Both metaheuristics
have been again implemented under the same conditions and the comparison has been performed for all
instances of the benchmark. Results in terms of ARPD?2 and ACPU are shown in Table 7.21. Note that,
last column indicates the ratio between the time needed by metaheuristics and the PC H (n) heuristic for
each size of instance. The UB is the best known upper bound for the instance i taken from [136].

As it can be seen, both ARPD?2 and ACPU values of the metaheuristics are clearly improved by the
proposed constructive heuristic. One the one hand, the best ARPD2 value of the metaheuristics is 0.76
while the ARPD?2 value of the PCH(n) heuristic is 0.40 (there are statistical differences between the
algorithms when a non-parametric Mann-Whitney test is used as p-value equals to 0.004). Additionally,
35 new best upper bounds have been found in the instances (see Table 7.22). This fact clearly highlights
the excellent performance of the proposed heuristic since e.g. only 12 upper bounds were updated when
[136] ran the several metaheuristics until a stopping criterion of 400 - m - n milliseconds (i.e. an average
CPU time of 731.7 seconds). On the other hand, big differences are found when analysing the average
CPU time between the algorithms, which are 19.4 seconds for the PCH (n) heuristic and 54.88 seconds
for the metaheuristics. Although the differences in average CPU time are not so relevant, it is due to
the use of an instance-size dependent indicator to compare algorithms with different stopping criteria (see
Section 7.2 and Chapter 3.3 for a more detailed explanation). In fact, regarding the ratio of the CPU time
between the metaheuristics and the proposed heuristic, the computational effort for the metaheuristics is
767.23 times bigger than for the proposed heuristic. This also serves to explain the good performance of
the metaheuristics in the 60 smallest instances as compared with the proposed constructive heuristic since
a huge computational effort is used for the former (e.g. approximately 3,500 times higher in instances
Ta21-Ta-30). In contrast, the CPU time of the proposed heuristic is always less than 1 second, and
its average CPU times for the first 90 instances is 0.17 seconds against 19.83 seconds required by the

metaheuristics.
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Heuristic ARPD1 ARPT1 Avg. Time
FF(1) 3.84 -0.99 0.01
FF(2) 342 -0.99 0.01
FF(n/10) 3.02 -0.98 0.26
FF(n/m) 311 -0.97 0.14
FF(2) — FPE(n/10) | 2.62  -0.94 0.83
FF(15) — FPE(n/10) 2.35 -0.83 0.86
FF(n/10) — FPE(1) 2.70 -0.96 0.29
FF(n/10) — FPE(n/10)| 2.39  -0.92 0.96
FF(n/10) — FPE(n) 2.00 -0.66 5.25
FF(n/m)— FPE(n) 2.07 -0.66 5.09
FF—-1IC1 1.68 -0.42 7.51
FF—1C2 1.61 -0.15 11.10
FF—1IC3 1.60 1.04 94.14
1C2 1.58 0.14 15.72
1C3 1.54 1.26 94.43
FF — PRI(5) 137 1.82 34.71
FF — PRI1(10) 1.28 4.57 38.74
FF — PRI(15) 1.22 7.12 41.93
PCH(2) 2.51 -0.98 0.02
PCH(5) 1.35 -0.95 0.05
PCH(10) 0.88 -0.87 0.11
PCH(15) 0.64 -0.80 0.18
PCH(n/10) 1.21 -0.95 0.66
PCH(n/m) 1.46 -0.95 0.27
PCH(n) 019  0.02 19.40

Table 7.19: Summary of results of the heuristics.

7.6 Conclusions

In this chapter, we have presented two new constructive heuristics denoted by FF(x) and PCH(z) for
the permutation flowshop scheduling problem to minimise flowtime. On the one hand, the first heuristic
constructs the final sequence adding jobs, one by one, at the end of the sequence based in the machine
idle times and in the makespan of the inserted job. The complexity of the proposed algorithm is x -n?-m
being lower than the complexity of the heuristics in the actual Pareto set. Since most efficient heuristics
use the algorithm LR in some of their phases, the latter can be replaced by the new algorithm F'F in each
of these heuristics. On the other hand, the population-based constructive heuristic, PCH, constructs
sequences and, at the same time, combines them and selects the best z ones. Since the individuals are

formed by partial sequences, a forecast index is introduced in order to be able to compare individuals

with different un- and scheduled jobs.

The proposed heuristics have been compared on an extensive computational evaluation with the state-
of-the-art algorithms. The results obtained by F I and PCH are much better than those obtained by
other constructive heuristics in the literature for the problem (e.g. the ARPD1 and ARPT1 of the

PCH (n) heuristic is 0.19 and 0.02 respectively which are much less than those obtained by the most
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i H; p-value Mann-Whitney «a/(k —i+ 1) Holm’s Procedure
1 PCH(2)=FF (n/m) 0.000 R 0.0031 R
2 | PCH(n/10)=FF(2) — FPE(n/10)  0.000 R 0.0033 R
3 | PCH(n/10)=FF(n/10) — FPE(n/10) 0.000 R 0.0036 R
4| PCH(10)=FF(15) — FPE(n/10)  0.000 R 0.0038 R
5| PCH(15)= FF(n/10) — FPE(n)  0.000 R 0.0042 R
6| PCH(15)=FF(n/m)— FPE(n) 0.000 R 0.0045 R
7 PCH(15)=FF — IC1 0.000 R 0.0050 R
8 PCH(15)=FF — IC2 0.000 R 0.0056 R
9 PCH(n)=IC2 0.000 R 0.0063 R
10 PCH(n)=FF — IC3 0.000 R 0.0071 R
11 PCH(n)=IC3 0.000 R 0.0083 R
12 PCH(n)=FF — PR1(5) 0.000 R 0.0100 R
13 PCH(n)=FF — PR1(10) 0.000 R 0.0125 R
14 PCH(n)=FF — PR1(15) 0.000 R 0.0167 R
15 PCH(2)=FF(n/10) 0.001 R 0.0250 R
16| PCH(2)=FF(n/10) — FPE(1) 0.163 0.0500
Table 7.20: Holm’s procedure.
ARPD?2 Avg. time

Instance | MRSILS IGgrrs PCH(n)| MRSILS,IGrrs PCH(n) %

20x 5 0.01 0.05 1.25 3.00 0.00 1704.55

20 x 10 0.00 0.08 0.75 6.00 0.00 2500.00

20 x 20 0.00 0.01 0.75 12.00 0.00 3508.77

50 x 5 0.57 0.69 0.75 7.50 0.03 291.60

50 x 10 0.70 0.90 1.04 15.00 0.03 438.34

50 x 20 0.69 0.99 1.48 30.00 0.06 529.10

100 x 5 1.11 1.17 0.30 15.00 0.31 48.49

100 x 10 1.44 1.60 0.57 30.00 0.40 74.63

100 x 20 1.50 1.89 1.14 60.00 0.68 87.60

200 x 10 1.10 1.35 -0.61 60.00 7.25 8.28

200 x 20 1.24 1.46 -0.76 120.00 8.57 14.01

500 x 20 0.79 0.85 -1.87 300.00 215.44 1.39

Average 0.76 0.92 0.40 54.88 19.40 767.23

Table 7.21: ARPD?2 and average CPU time, for each instance size, required by the PCH (n) heuristic
and the metaheuristics M RSILS and IGgys.
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Instance Best Bound

Instance Best Bound

Instance Best Bound

Instance Best Bound

TA1

TA2

TA3

TA4

TA5

TAG6

TA7

TAS8

TA9

TA10
TA11
TA12
TA13
TA14
TA15
TA16
TA17
TA18
TA19
TA20
TA21
TA22
TA23
TA24
TA25
TA26
TA27
TA28
TA29
TA30

14033
15151
13301
15447
13529
13123
13548
13948
14295
12943
20911
22440
19833
18710
18641
19245
18363
20241
20330
21320
33623
31587
33920
31661
34557
32564
32922
32412
33600
32262

TA31
TA32
TA33
TA34
TA35
TA36
TA37
TA38
TA39
TA40
TA41
TA42
TA43
TA44
TA45
TA46
TA47
TA48
TA49
TA50
TA51
TA52
TA53
TA54
TA55
TA56
TAB7
TA58
TA59
TAG60

64802
68051
63162
68226
69351
66841
66253
64332
62981
68770
87114
82820
79931
86446
86377
86587
88750
86727
85441
87998
125831
119247
116459
120261
118184
120586
122880
122489
121872
123954

TAG61
TA62
TA63
TA64
TA65
TAG6
TA67
TAG68
TA69
TA70
TAT71
TAT72
TA73
TA74
TAT75
TA76
TAT77
TAT78
TAT79
TAS80
TAS81
TAS82
TAS83
TA84
TAS85
TAS86
TAS87
TAS88
TAS89
TA90

253232
242093
237832
227738
240301
232342
240366
230945
247677
242933
298385
273826
288114
301044
284279
269686
279463
290908
301970
291283
365463
372449
370027
372393
368915
370908
373408
384525
374423
379296

TA91
TA92
TA93
TA94
TA95
TA96
TA97
TA98
TA99
TA100
TA101
TA102
TA103
TA104
TA105
TA106
TA107
TA108
TA109
TA110
TA111
TA112
TA113
TA114
TA115
TA116
TA117
TA118
TA119
TA120

1042494
1028957
1043467
1029244
1029384
999241
1042663
1035981
1015389
1022277
1223860
1234081
1259866
1228060
1219886
1219432
1234366
1240627
1220873
1235462
6558547
6679507
6624893
6649855
6590021
6603691
6576201
6629393
6589205
6626342

Table 7.22: New best bounds (in bold) found by the proposed algorithm.
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efficient heuristic so far, FF' — PR1(15) with 1.22 and 7.13). When comparing PCH (z) with the so-far
most efficient heuristics in the literature, there are statistical differences for each new efficient heuristic
with the only exception of PCH(2). Thereby, the set of efficient heuristics for the problem has been
reduced from 14 heuristics to seven heuristics of only two types of heuristics, the F'F' for parameters 1 and
2 which is efficient for the smallest CPU times, and the PCH with z € {2,n/10,10,15,n}. The excellent
performance of the proposed heuristic PC'H is also shown by means of its comparison against two of the
best metaheuristics for the problem. Our proposal statistically outperforms both metaheuristics (ARP D2
of PCH (n) is 0.40 against 0.76 of the best metaheuristic) using much less computational effort for each
instance of the benchmark. Additionally, the proposed heuristic found new best upper bounds for 35 of
the 120 instances in Taillard’s benchmark.

Additionally, certain issues have been identified in the evaluation of efficient heuristics in the literature.
When analysing the trade-off between the quality of the solutions and the time required by the heuristics
to obtain them, an dimensionless (and relative) variable (ARPD1) was used to represent the former while
a dimensional and absolute variable (average computational time of the heuristic) was used to represent
the latter. As discussed earlier in this chapter, some heuristics are deemed as efficient whereas they are
not efficient for many problem sizes.

The intended contribution of the chapter can be summarised as follows. F'F and PCH, two efficient
heuristics, has been presented. These heuristics achieve better results in terms of both CPU time and
ARPD1 than those obtained by the fastest efficient heuristic (with complexity O(n® - m)) so far. By
means of these heuristics, a new set of efficient heuristics for the problem has been identified, all of them

formed by the proposed heuristics.



Chapter 8

PFSP to minimise total tardiness

8.1 Introduction

In this chapter, we will show that an analysis reveals the importance of adequately addressing the high
number of ties appearing in the constructive phase of the NEHedd. In order to handle these ties in
an efficient way, we propose several tie-breaking mechanisms for the problem and conduct an extensive
computational experiment to test their performance (Objection SO8). The results show that one of these
mechanisms (based on machine idle time) improves the original results obtained by NEHedd by roughly
25% while requiring the same CPU time. Another one (based on Taillard’s acceleration for makespan)
outperforms the NEHedd by 15% while employing less CPU time. Furthermore, when using the idle time-
based version of the NEHedd as starting solution for the metaheuristic by [197] (which is the state-of-the-
art metaheuristic for the problem), the metaheuristic improves its result for different stopping criteria.
The remainder of the section is organized as follows: in Section 8.2, eight tie-breaking mechanisms are
proposed. An extensive comparison among them and with the original NEHedd procedure are performed

in Section 8.3. Finally, conclusions are discussed in Section 8.4.

8.2 New tie-breaking mechanisms

The analysis carried out in Section 5.2 also serves to explain the excellent performance of the NEHedd
procedure and to identify possible improvements. The NEHedd heuristic performs well in the three regions
since it minimises also flowtime in Region 1, and, since it includes the EDD rule as a sorting order, it
guarantees good performance in Region 3. However, it can be seen that its performance decreases for

medium /high values v as compared to that for low/medium values of v. An explanation of this rather
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80
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Average Number of Ties
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Figure 8.1: Average number of ties in each instance grouped by the parameter v.

surprising fact could lie in the high number of ties that would have to broken when, for each iteration of
the NEHedd procedure, several partial sequences may have the same total tardiness. This situation could
be rather common, as in the first iterations of the algorithm the total tardiness of the partial sequence is
zero, thus leading to a high number of ties. In addition, since these ties appear in the first iterations, the
mechanism chosen to solve them can greatly influence the final sequence obtained.

To confirm this fact, the number of ties on the well-known benchmark of instances proposed by [199],
Bs, has been studied. Results are shown in Figure 8.1 for different values of v, and yield an average of 10.1
ties per iteration, where 210 is the maximum number of ties found in an iteration. The number of ties
increases with v and is close to zero for low values of v, which is consistent with the fact that the problem
is similar to that of flowtime minimisation. The analysis also shows that, for some instances with a high
value of v, an average of around a 40% of the positions where the job is to be inserted has the same total
tardiness in each iteration, which represents a huge amount of ties.

In view of the results of the experiments, it can be concluded that the existence of a mechanism to break
ties is extremely important for the NEHedd procedure in the F'm|prmu|)_ T; problem. However, a tie-
breaking mechanism is not considered either in the NEHedd procedure, or in the original NEH algorithm
for makespan minimisation. In the next section, we propose different tie-breaking mechanisms so the
performance of NEHedd procedure can be improved in the most interesting region of the Fm/|prmu| )" T}.

As mentioned in the previous section, no specific tie-breaking mechanism is mentioned in the original
NEH heuristic for makespan minimisation. Indeed, it is cited [127] that “... Next, the job with the third
highest total process time is selected and the three partial sequences are tested in which this job is placed
at the beginning, middle and end of the partial sequence...”, which seems to indicate that the first position

where a tie is found is selected. In the following, we will denote this tie-breaking mechanism as FT (First-
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Procedure NEHedd(T'Bx )

« := Jobs ordered by non-decreasing due dates where o = {a1, ..., iy ooy i }5

7= {au);

for k=2 to n do
Test job «y in any possible position of 7.
7 = permutation obtained by inserting ay in the position of m with less total tardiness breaking
ties according to an specific mechanism;

end

end

Figure 8.2: NEHedd with different tie-breaking mechanisms

Tie). Later, in the race for improving the NEH heuristic, [83] established the importance of breaking ties
in the NEH heuristic and proposed a tie-breaking mechanism to improve the results obtained by the NEH
heuristic. Since then, this aspect has been extensively analysed in the literature and several tie-breaking
mechanisms have been proposed for the PFSP to minimise makespan (see [84], [35], [85], [162], [86], or
the proposed in Chapter 6).

To the best of our knowledge, there are no tie-breaking mechanisms proposed for the NEHedd proce-
dure, which adopts the first-tie mechanism as in the original NEH heuristic. However, it has to be noted
that, since the EDD rule sorts the jobs according to non-decreasing due dates, in case of ties in the first
iterations of NEHedd, the jobs would be finally ordered according to non-increasing due dates, which
would probably lead to a worse final sequence than using a different mechanism.

In this section, several tie-breaking mechanisms are proposed to improve the traditional tie-breaking
mechanism of the NEHedd procedure. The pseudo-code for the NEHedd algorithm including a generic
tie-breaking mechanism is shown in Figure 8.2.

The proposed tie-breaking mechanisms involve using a secondary indicator related to the performance
of the partial sequence. The goal is to pick, among those slots with the same tardiness, the slot yielding
the best value of the secondary indicator for the unscheduled jobs. Thereby, total idle time (/71 or
IT2, see below), total flowtime (CT)), total earliness (ET') and makespan (M S) are chosen as potential
secondary indicators. Note that, since these indicators have to be computed for every slot where the job
is to be inserted in each iteration of the algorithm, they have to be carefully chosen so that the additional
computational effort pays off.

More specifically, the tie-breaking mechanisms analysed in this chapter are:

e First tie, NEHedd(TBpr). Original tie-breaking mechanism of the NEHedd algorithm proposed

in [127] where, in case of ties, the first tie is chosen.

e Last tie, NEHedd(TBrr). This tie-breaking mechanism simply consists in selecting the last tie

as reference for the next iteration. This tie-breaking mechanism tries to solve the problem of T'Bpp
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where jobs are sorted according to the reverse EDD rule.

Total idle time, NEHedd(TB;r1) and NEHedd(T Birz). Denoting front delay of a machine as
the time until it starts processing the first job, and back delay of a machine as the time between
completing the processing of the last job and the completion of all jobs in any machine, machine
idle time can be ambiguously defined by means of at least three different ways ([42]), i.e.: idle time
including front delays and excluding back delays (denoted as IT1); idle time excluding front and

back delays (denoted as IT2); and idle time considering front delays and back delays.

If we adopt the first definition of idle time, then the idle time of machine i can be calculated as
IT1; = C’m—zyzl pij. Consequently, the total idle time is I71 = > | I'T1,. Minimising IT1 looks
for a more compacted schedule of the inserted jobs and it is equivalent to the minimisation of the
sum of the completion times of each job in each machine. On the other hand, the second definition of
idle time (excluding both delays) can be calculated as IT2 = >77_, > 3\", maz{Ci—1,; — C; j—1,0}.
The heuristics resulting from the use of these tie-breaking mechanisms in NEHedd are denoted
as NEHedd(TB;r1) and NEHedd(TByrs) respectively. Finally, note that the minimisation of

the third definition of idle time is analogous to the minimisation of makespan and, therefore, it is

considered below when discussing breaking ties according to the makespan.

Total completion time, NEHedd(TBcr). Total completion time can be defined as follows:

J
j=1

and the resulting NEHedd heuristic is denoted by NEHedd(T Ber).

ct = Chn - As with idle time, this tie-breaking mechanism tries to balance the use of resources,

Total earliness, NEHedd(TBgr). If a job finishes before its due date, its earliness indicates the
time between the due date and the completion time of the job. Given several sequences with the
same total tardiness, sequences with a high value of the total earliness indicate that, on average,
the completion times of the jobs are far from their due dates. Thus, breaking ties by maximising
earliness looks for sequences with a greater buffer against the due date of each job, which tries to
improve the objective function when the following jobs are inserted in any position of the sequence.
NEHedd(TBgr) is denoted when earliness maximisation is used in the NEHedd algorithm to break

ties.

Makespan, NEHedd(TBjsgs). Similarly to the first two tie-breaking mechanisms, the minimisation
of the makespan tries to compress the sequence for the subsequent iterations. The NEHedd heuristic

using the minimisation of the makespan as tie-breaking mechanism is denoted as NEHedd(T Bass).

e Makespan using Taillard’s acceleration, NEHedd(TByrs—raitiard,171)- As explained above,



8.3. COMPUTATIONAL EXPERIENCE 151

Procedure NEHedd(T By s—Taillard, IT)

« := Jobs ordered by non-decreasing due dates where o = {a1, ..., iy ooy i }5
m:={a1};

flag := true;

for k=2 to n do

if flag then
T =

Test job «aj in any possible position of m; (using Taillard’s acceleration).
m := permutation obtained by inserting oy in the position of m; with less makespan;
TT := total tardiness of the sequence 71;
if TT > 0 then
| flag := false;

else
| =T

end
end

f flag # true then
Insert job ay in the position of 7 which minimises the total tardiness breaking ties according

to the total idle time IT1 of the sequence.
end

-

end

end

Figure 8.3: NEHedd(TBMS_Tamard,]T)

Taillard’s acceleration represents a huge reduction of the computation time of the NEH algorithm
and it is one of the main reasons for its efficiency. However, it cannot be applied to total tardiness
minimisation since the completion time of each job in the last machine is needed. To reduce the
computation time of the NEHedd algorithm for the tardiness goal, this tie-breaking mechanism
applies the NEH algorithm to minimise the makespan, using Taillard’s acceleration as long as the
tardiness of the (partial) sequence is zero, i.e. in the first iterations of the algorithm when applied.
Once the (partial) tardiness is greater than zero, the proposed algorithm minimises the total tardiness
(without Taillard’s acceleration) breaking ties according to the total idle time, IT'1. The pseudo

code of this method is shown in Figure 8.3.

e Random, NEHedd(TBqnd). A random tie-breaking mechanism is proposed as a baseline for

comparisons with the other mechanisms.

8.3 Computational experience

Each proposed tie-breaking mechanism has been compared under the same conditions (see Section 3.4).
Algorithms were tested using the set of instances of the benchmark Bs. The different tie-breaking mech-

anisms were compared by means of the RDI as an indicator of the quality of the solution.
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Instance | T'Brr TBrr TBrand TBiri TBire TBer TByuix TBer TBys—tTailard,1T1
50x10 17.46 17.46 17.25 13.72 15.22 15.21 14.47 15.21 14.53
50x30 | 19.79 20.31 19.55 18.61 18.69 18.80 18.74 18.80 18.68
50x50 | 18.17 17.94 17.88 17.57 18.12 17.88 17.98 17.88 17.97
150x10 | 13.80 13.60 14.45 9.91 1091 11.11 10.61 11.11 10.69
150x30 | 20.70 20.35 20.68 15.81 16.47 1832 17.83 18.32 17.02
150x50 | 22.04 21.26 21.70 18.57 19.64 19.96 20.14 19.96 19.64
250x10 | 10.06 9.46 10.02 6.70 7.31 7.45 7.47 7.45 7.26
250x30 | 17.81 17.03 17.93 11.62 12.19 14.58 13.82 14.58 13.29
250x50 | 20.21 19.52 20.13 13.96 14.73 17.49 16.87 17.49 15.90
350x10 | 9.01 8.59 8.86 6.14 6.30 6.47 6.63 6.47 6.65
350x30 | 15.74 15.43 15.95 9.84 10.41 12.21 11.88 12.21 11.40
350x50 | 17.38 16.87 17.11 11.10 11.63 14.01 13.74 14.01 13.11
Average | 16.85 16.48 16.79 12.80 13.47 14.46 14.18 14.46 13.84

Table 8.1: Relative deviation index (RDI) for the NEHedd heuristic using different tie-breaking mecha-

nisms
Instance | TBrr TBrr TBranda TBiri TBire TBer TByurx TBer TBys—Taillard, I1T1
50x10 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
50x30 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
50x50 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
150x10 0.43 0.42 0.43 0.42 0.42 0.44 0.42 0.43 0.40
150x30 1.29 1.29 1.29 1.30 1.30 1.30 1.29 1.30 1.27
150x50 2.16 2.16 2.16 2.18 2.18 2.17 2.15 2.16 2.15
250x10 1.92 1.90 1.91 1.89 1.89 1.96 1.90 1.95 1.77
250x30 | 5.86 5.84 5.86 5.85 5.84 5.94 5.85 5.92 5.67
250x50 | 9.92 9.91 9.95 9.96 9.97 9.99 9.89 9.94 9.78
350x10 | 5.15 5.14 5.15 5.08 5.07 5.26 5.12 5.24 4.73
350x30 | 15.86 15.85 15.89 15.80 15.76 16.10 15.85 16.03 15.23
350x50 | 26.99 26.98 27.06 27.01 27.01 27.26 27.05 27.18 26.35
Average | 5.81 5.80 5.82 5.80 5.80 5.88 5.81 5.86 5.63

Table 8.2: ACPU for the NEHedd heuristic with different tie-breaking mechanisms

The results of the heuristics are shown in Table 8.1 in terms of their values of RDI. The best
overall results are found using IT'1 as tie-breaking mechanism with an average RDI (denoted as ARDI)
of 12.80, roughly about a 25% less than in the original FT. Note that each tie-breaking mechanism
(also including the random mechanism) outperforms on average the original mechanism of the NEHedd
algorithm, NEHedd(TBpr), which has an ARDI of 16.85. Although the difference between this original
tie-breaking mechanism and the NEHedd(T Byr) or the NEHedd(T Byana) is less than 0.37, for the rest of
tie-breaking mechanisms the ARDIT is at least a 2.39 lower than that obtained by NEHedd(T Bpr), which
represents an increase in the quality of the solution without increasing the complexity of the algorithm.
The CPU times of each algorithm for each combination of n and m are shown in Table 8.2. The differences
between CPU times are negligible with the exception of the NEHedd(T Bars—raitlard, 171), which requires
a bit less computational effort and has an ARDI of 5.63, 3.22 lower than that of F'T.

Given that each tie-breaking mechanism is a version of the original NEHedd algorithm and that the
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Comparison N Correlation Sig.

NEHedd(TBrr) vs NEHedd(T Brr1) 540 0.707 0.000
NEHedd(TBrr) vs NEHedd(T Bir2) 540 0.760 0.000
NEHedd(TBFT) VS NEHedd(TBjus_Taium«d,1T1) 540 0.816 0.000
NEHedd(TBrr) vs NEHedd(TBer) 540 0.876 0.000
NEHedd(TBrr) vs NEHedd(T By ) 540 0.826 0.000
NEHedd(TBrr) vs NEHedd(TBgT) 540 0.876 0.000
NEHedd(TBrr) vs NEHedd(TBrt) 540 0.949 0.000
NEHedd(TBrr) vs NEHedd(T Brand) 540 0.962 0.000

Table 8.3: Analysis of dependence of samples

Comparison Wilcoxon signed-rank test Sign test

Z Sig. Z Sig.

NEHedd(TBrr) vs NEHedd(T Brr1) -14.498 0.000 -12.363 0.000
NEHedd(TBrr) vs NEHedd(T Brrs2) -13.665 0.000 -11.446 0.000
NEHedd(TBFT) VS NEHedd(TB]us_Tm'”m«d’]Tl) -13.829 0.000 -12.020 0.000
NEHedd(TBrr) vs NEHedd(T Ber) -13.616 0.000 -13.207 0.000
NEHedd(TBrr) vs NEHedd(T By k) -13.246 0.000 -11.810 0.000
NEHedd(TBrr) vs NEHedd(TBgr) -13.616 0.000 -13.207 0.000
NEHedd(TBrr) vs NEHedd(TBrr) -3.865 0.000 -2.904 0.004
NEHedd(TBrr) vs NEHedd(T Brand) -0.262 0.794 -0.349 0.727

Table 8.4: Wilcoxon signed-rank test and sign test

same test bed for all tie-breaking mechanisms is used, it is clear that the random variables (RDI) are
related and the hypothesis of independence can be rejected (see Table 8.3 for each comparison). However,
the hypothesis of normality is not fulfilled, so a paired samples t-test cannot be used. Two non-parametric
statistical hypothesis tests (Wilcoxon signed-rank test and sign test) are carried out then with a confidence
level of 99% to compare the statistical significance between the mean and the median of the samples,
respectively. Results of the tests are shown in Table 8.4. For both tests, each tie-breaking mechanism
statistically outperforms the original one with the exception of the random tie-breaking mechanism, for
which no statistical difference was found (p-values of 0.794 and 0.727 for the Wilcoxon signed-rank test and
sign test respectively). Regarding the significance of the different tie-breaking mechanisms, the highest p-
value found was 0.004 when comparing T By and T Bpr, which indicates the relatively bad performance

of the original tie-breaking mechanism of the NEHedd procedure. The rest of the p-values are 0.000.

ARDI is shown in Table 8.5 grouped by the values of the different parameters in the testbed: The first
and second columns correspond to the value of each parameter in each row according to the values of T', R,
n and m of the testbed. The third and fourth columns represent the average number of ties per iteration
and the maximum number of ties in an iteration, respectively. The rest of the columns show the ARDI
values for each tie-breaking mechanism. ARDI values for each tie-breaking mechanism are always lower

than the ARDI of T Bpr regardless of the value of the parameters, with the exception of T'B,.4nq and
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Figure 8.4: CRDINgy rp(1T1) In each instance of benchmark B.

TBprr. Although NEHedd(T Brr) statistically outperforms NEHedd(T Brr) in the whole testbed, this
does not happen when grouping by parameters. The minimum difference between the original tie-breaking
mechanism and the rest is found for 7' = 0.6 and R = 1.0, which corresponds to tighter due dates with
high variance. Obviously, the performance of the tie-breaking mechanism is related to the average number
of ties. Thereby, note that the average and maximum number of ties decreases as m, T', or R increase, or
as n decreases, reaching the maximum value of ties for the following combination of parameters: T = 0.2,
R =0.2, n =350 and m = 10. Regarding the behaviour with respect to indicator v, CRDINgn TB(IT1)
the difference between the best tie-breaking mechanism T'Bjr; as compared to the original one is shown
in Figure 8.4. Most points are below zero in the y-axis, which highlights the improvement achieved by
the heuristic when using I7T'1 as a tie-breaking mechanism, especially for v > 0.15 where the problem is

far from being of the type Fm|prmul}_ C;.

Influence on iterative improvement algorithms

In this section, we evaluate the influence of the proposed NEH-based heuristics when they are incorporated
as seed sequences in iterative improvement algorithms. For this comparison, we use the genetic algorithm,
GAPR, proposed by [197]. Three types of genetic algorithms were proposed. Each one was shown to be
statistically more efficient than other iterative improvement algorithms in the literature for three different
stopping criteria. The GAPR, algorithm uses a fast selection mechanism denoted as n-tournament as well
as the path relinking as crossover mechanism. As initial solution, the algorithm uses 28 random sequences
and two individuals provided by the original NEHedd algorithm and by the EDD despatching rule. To

analyse the influence of the chosen tie-breaking mechanism, we substitute the NEHedd seed sequence by



8.3. COMPUTATIONAL EXPERIENCE 155

Parameter Ties Tie-breaking mechanisms
Mean Max.| FT' LT rand IT1 1IT2 CT MK ET MS-Taillard, IT1

T 0.2 22.5 210 |14.57 13.91 14.47 7.18 8.27 10.45 9.71 10.45 8.90
T 04 6.5 144 |18.14 17.92 18.08 14.15 14.95 15.84 15.67 15.84 15.45
T 0.6 1.1 81 |17.83 17.62 17.83 17.06 17.18 17.09 17.17 17.09 17.19
R 02 17.1 210 |20.86 19.72 20.49 13.14 14.27 15.65 15.02 15.65 14.96
R 06 8.3 146 [16.83 16.70 16.84 12.88 13.60 15.00 14.84 15.00 14.07
R 1 4.7 112 |12.86 12.98 12.95 12.41 12.51 12.69 12.77 12.69 12.57
n 50 0.5 23 |18.25 18.28 17.85 16.81 17.32 17.18 17.20 17.18 17.15
n 150 3.8 81 |18.85 18.40 18.94 14.76 15.67 16.47 16.19 16.47 15.78
n 250 8.9 153 |16.03 15.33 16.02 10.76 11.41 13.17 12.72 13.17 12.15
n 350 149 210 |14.11 13.70 14.04 9.13 9.55 10.98 10.84 10.98 10.47
m 10 16.0 210 |12.37 12.02 12.32 9.13 9.80 9.90 9.82 9.90 9.75
m 30 8.7 182 |18.25 18.06 18.38 13.82 14.26 15.79 15.43 15.79 14.97
m 50 54 162 [19.30 18.78 19.04 15.16 15.86 17.20 17.05 17.20 16.52

Table 8.5: Average number of ties for iteration, maximum number of ties in an iteration and ARDI for
each tie-breaking mechanism.

Stopping Criterion ARDI-GAPR Wilcoxon signed-rank test | Sign test
NEHedd(TBrr) NEHedd(TBrr1) p-value p-value

t=20.5 14.66 11.01 0.000 0.000

t=1 12.65 9.72 0.000 0.000

t=2 10.61 8.42 0.000 0.000

t=5 7.57 6.65 0.000 0.000

t=10 6.25 5.63 0.000 0.000

t =20 5.09 4.71 0.000 0.000

Table 8.6: ARDI, Wilcoxon signed-rank test and sign test for the GAPR algorithm when it is initialized
with NEHedd(TBrr1) and NEHedd(T Brr)

the best proposed NEHedd-based constructive heuristic, i.e. NEHedd(TBrr1), and we compare them
using the same benchmark as in the previous Section. Average computational results in terms of ARDI
are shown in Table 8.6 and in Figure 8.5 for six different stopping criteria to observe the evolution of the

performance for different CPU times, ¢t -n - (m/2) with t € [0.5,1,2, 5,10, 20] expressed in milliseconds.

Obviously, one might expect that the influence of the initial solution on a well-designed metaheuristic
such as the GAPR would decrease with the CPU time. Still, for the range of CPU times employed
(which represents around 3 minutes of CPU times per instance for the biggest sizes), the results show
that our proposal positively impacts on the quality of the solution. In fact, the positive contribution of
the tie-breaking mechanism is found to be statistically significant for every stopping criteria, for both
non-parametric statistical hypothesis tests (Wilcoxon signed-rank test and sign test). The highest found

p-value was 0.000 (see Table 8.6).
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Figure 8.5: Evolution of the GAPR algorithm with different initial solutions for six different stopping
criteria.

8.4 Conclusions

In this chapter, several tie-breaking mechanisms for the NEH heuristics have been proposed to solve the
Fm|prmu| Y Tj problem. It is clear that, depending on the due dates, the decision problem to be solved
is different. Extremely tight due dates induce to a Fm|prmul )" C; problem, whereas very loose due
dates lead to a trivial problem. Thereby, the problem has been first analysed in detail, depicting the
limits between the tardiness problem and other problems. As a conclusion, it was obtained that several
testbeds generate instances for a problem more similar to Fm|prmu|)_ C;. Additionally, it has been
found that the number of ties in each iteration of the NEHedd heuristic is very high outside these limits
(i.e. the most interesting setting regarding tardiness minimisation), and that the original tie-breaking
mechanism of NEHedd would result in worse sequences as it orders the jobs in non-increasing due dates in
the very likely case of ties in the first iterations. To address this problem and to enhance the performance
of the NEHedd procedure, a set of eight tie-breaking mechanism have been proposed. These are tested
against the original one in an extensive computational evaluation, and the results show that some of these
mechanisms improve the performance of the NEHedd procedure by more than 25% while requiring similar
computation time. Additionally, when embedding this mechanism as seed sequence in a state-of-the-art
iterative improvement algorithm, the performance of the resulting algorithm significantly improves that

of the original one.



Chapter 9

PFSP to minimise total earliness and

tardiness

9.1 Introduction

In this chapter, four new efficient heuristics (one constructive heuristic and three composite heuristics) are
proposed (see Objective SO9). These heuristics incorporate several properties and a speed up procedure
in order to reduce and accelerate the search space of the heuristics. The subsequent computational
experience shows that the proposed heuristics outperform the best-so-far heuristics for the problem, as
well as adaptations of other state-of-the-art heuristics for related problems. Note that, for this problem,
insertion of idle time is not allowed, which represents a common assumption in the literature due to its
undesirable effects in certain production environments (see e.g. [81] and [179]).

The rest of the chapter is organised as follows. A speed up procedure for the insertion phase of the
heuristics as well as a complete comparison among the implemented heuristics is performed in Section
9.3. Additionally, the influence of using the heuristics as seed sequences in the best so-far metaheuristic

(ILS) is discussed. Finally, in Section 11.5, conclusions are presented.

9.2 Proposed algorithms

Following the recommendations in Section 5.2 regarding very fast heuristics and complete local search

methods, four heuristics are proposed for the Fm|prmu| > E; + > T; problem:

e an adaptive constructive heuristic (see Section 9.2), denoted as ACHI,

157
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e a composite heuristic (see Section 9.2), denoted as ACH2, composed by ACH1 plus a bounded local

search procedure labelled BLS,

e a composite heuristic (see Section 9.2), denoted as ACH3, formed by ACH1 plus an iterative bounded

relative local search method, iBRLS,

e a composite heuristic (see Section 9.2), denoted as ACH4, formed by ACH1 and an iterative local

search method, iLLS.

Additionally, a speed-up procedure is described in Section 9.2 to accelerate the insertion phases of all

implemented algorithms.

Proposed constructive heuristic

ACH1 tries to find a good solution using very short computational times so it can embedded in more
sophisticated constructive and composite heuristics such as the ones proposed in the next subsections.
The procedure of this heuristic is relatively simple: Beginning with a partial sequence with a single job,
the procedure constructs a final sequence appending one by one jobs at the end of the partial sequence
according to an index &, (II). Let us denote by II* := (71, ..., m) the partial sequence in iteration k and
by U, the set of unsequenced jobs of that sequence (uj; the jth unsequenced job with j € [1,n — k]).
Additionally, let NT} be the number of tardy jobs in iteration k according to sequence II*. The algorithm
chooses the job from U with the lowest value of fujk(l_[k) and places it at the end of sequence II*, i.e.
in position k + 1, forming the sequence IT**! of the next iteration. This procedure has been shown to
be very efficient for other decision problems, being the appropriate choice of the index the critical issue
for the efficiency of the algorithm (see e.g. Chapter 7). This difficulty increases in our case due to the
strong dependence of the best solutions on the due dates of the jobs. The index must be adapted to solve
different problems depending on the due dates (loose due dates, tight ones, or neither of them). In Section
5.2, three different situations have been identified: tight due dates (F'm|prmul|)_ C; decision problem),
loose due dates (F'm|prmu| — ) C; decision problem) and normal due dates (Fm|prmu| >’ E; + > T}).

Therefore, at each iteration, the algorithm would check whether the sequence is within one of these cases:

e Case 1: Tight due dates (i.e., the problem is similar to the Fm|prmu| Y C;). There are hundred of
heuristics solving the F'm|prmu| ) C; in the literature. Particularly, in Section 7.3 we have designed
an efficient constructive heuristic following a similar procedure of insertion in last position of the
partial sequence. There, jobs are chosen according to the &jk(ﬂk) index, Equation (9.1), which

considers the minimization of the completion time and the weighted idle time of the candidates jobs



9.2. PROPOSED ALGORITHMS 159

(i.e. w, with j € [1,n — k]) to be inserted (see Section 7.3 and Equations 7.2 and 7.1 for more

detailed explainations):

1) — 1 (1) - KD

Ujk

-IT,

4 Ujk (Hk) + Crnuyy, (Hk) (9.1)

where IT;(I1¥) are:

o m m - mal‘{ci—l,ujk (Hk) — Ci,ﬂ'k (Hk)vo}
IT’(LM(H)_Z Z—1+/€(m_2+1)/(n_2)

=2

(9.2)

In this chapter, this index is directly incorporated into the ACH1 heuristic when due dates of jobs are
tight, assuming that this is the case if, in iteration k, the fraction of tardy jobs in the partial sequence
is equal to or greater than a. More specifically, the index is used if a - 100% (NT}/(n — k) > a) and
there are at least four tardy jobs. Note that a is a parameter of the algorithm which is introduced
in order to determine when the algorithm is adapted to solve Fm|prmu|)_ C;. The suitable values

for a are discussed later.

e Case 2: Loose due dates (the problem is similar to Fm|prmu| — )" C;). We divided this case in two
cases depending on how loose the due dates are. The idea behind these two subcases is to separate
the case where all due dates are extremely high (the earliness can be omitted and the problem is
similar to the Fm|prmu|—>_ C;) and where only some of the due dates are extremely high (earliness
should be also considered). To the best of our knowledge, there are no algorithms for the PFSP to
maximise total flowtime as it is not a common objective to be followed by companies. Therefore, we
consider the inverse index for the first subcase, &,,, (II*) = — 11% (IT*). The conditions to apply this
index are fulfilled when there are at least four candidates (n — k > 3), all candidates in iteration k
are in earliness (i.e. C’myu‘m(H’“) < dy,, vj), and NE;, = n — k where NE} is the number of jobs
whose earliness is lower than (n — k) - ¢. On the other hand, when due dates are not so loose (this
fact is measured by the condition b- (n — k) < NE < n — k) we consider the index ¢2 which adds
the earliness of job By, (II*¥) to the index —¢':

(n—Fk—2)

b TTup () = O, (1) + B, (1) (93)

E“'J’v(nk) = 72ij (Hk) = —

Note that b and ¢ are parameters of the proposed algorithm.

e Case 3: Intermediate due dates, i.e. the instance is a pure F'm|prmu|)_ E; + > T; problem. When

a job is inserted at the end of the sequence, the algorithm should focus in the minimization of total
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Case Condition Eujk (Hk) index
Tight due dates NTk]Q(;ki>k§ za 511% (")
Comugye ) < duy, Vi L
Loose due dates (Subcase 1) n—k>3 *ﬁujk (IT%)
NEy, =n—k
oy (%) < duyy, Vi R,
Loose due dates (Subcase 2) n—k>3" Eujk_ (IT®)
b-(n—k)<NE, <n-—k
Intermediate due dates Otherwise §ijk (T1%)

Table 9.1: Summary of cases in the ACH

earliness and tardiness. Then, we try to place each candidate at the end of the partial sequence
and, in order to select the job to be inserted, we focus on the minimisation of earliness by using the

index in Equation (9.4):

€uy (1) = &5, (1) = B, (I1F) (9-4)

Ujk

Note that the minimisation of earliness implicitly takes into account also tardy jobs as their earliness

is equal to zero and then, they would be the first to be chosen.

The different values adopted by &, (IT¥) are summarized in Table 9.1 together with the corresponding
conditions. Once the index has been identified, we choose the job with the lowest value and place it at the
end of the current partial sequence. Ties are broken according to the weighted idle time of the candidate
jobs (IT,,, (II¥)) for all cases.

Finally, note that, when inserting a job at the end of the sequence, the completion time of previous
last job remains the same and hence, only the completion times of the inserted job on each machine has
to be computed, which can be easily done in O(m). Analogously, earliness time and/or weighted idle time
of each candidate job can be computed with complexity m. Thereby, the proposed ACH1 constructive
heuristic has the same number of complexity than the NEH. However, the heuristic heavily decreases the
CPU time due to the complexity of each evaluation, which is simply m. Therefore, the complexity of the

(n+1)-n

proposed heuristic is 2" - m ~ O(n? - m).

The pseudo code of the ACH1 heuristic is shown in Figure 9.1.

Proposed composite heuristics

Once a sequence has been obtained by the fast ACH1 constructive heuristic, it can be improved by three
different insertion-based local search methods, leading to composite heuristics. The first two local search

methods try to reduce the computational effort required in each iteration by avoiding the insertion of a
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Procedure ACHI1

end

Determination of each IT} o, CTj o and E;

w1 := Job with least value of E; o breaking ties in favor of the job with the lowest 17} o;
I = (m)

for k=1ton—1do

Determination of each IT,,, (I*), Cp, o, (I1¥), NT},, NE}, and E,,, (II¥), Vj € [L,n — k];
if NT,/(n—k) > a & NTj, > 3 then
for j=1to k—ndo
| G (%) = €, (%) = O3 T, (4 O, (I1)
end
Ise if AllFarliness & n—k >3 & NE, =n — k then
for j=1to k—ndo

‘ gujk (Hk) = - ijk (Hk) = *W : ITu,k(Hk) - Cm,ug-k(ﬂk)

[¢)

end

nd

Ise if AllEarliness & n—k>3& b-(n—k) < NE, <n—k then
for j=1to k—ndo

o o

| G () = &2 (%) = —=3=2 1T, (11%) = Cop o, (TTF) + B, (TTF)
end
end
else
for j=1to k—ndo
‘ gujk (Hk) = 52]‘;‘, (Hk) = Eu_jk, (Hk)
end
end

161

o:= Job with the lowest value of &, (II*) in iteration k, breaking ties in favor of the job with the

lowest IT,,, (IT¥).
[T¥+1:= Permutation obtained by inserting job a at the end of sequence II¥.

end

Figure 9.1: ACH1
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Procedure ACH2()
(IL X Ej + > T5) = ACH1();
(IL Y. Ej + X T5) = BLS(IL Y Ej + 32 T5);

end

Figure 9.2: ACH2

Procedure BLS(1I,0F)

OF, =OF

for j =1tondo

I1° := remove job 7; from II;

Calculate P1 and P2;

Test job ; between the positions P1 and P2 of II°;

Il := permutation obtained by inserting m; in the position j € [P1,P2] of II° with less total
earliness and tardiness, OF/;

if OF' < OF, then

OF, = OF;
b .= 1I;
end
end
return II° and OF;
end

Figure 9.3: Bounded Local Search, BLS

job far from its optimal position in order to accelerate the intensification of the procedures. The idea is
to bound the positions where the jobs are inserted between P1 and P2, which are defined in Equations

(9.5) and (9.6).

Pl = min{PAS, Pedd} (95)

P2 = max{PAS, Pedd} (9.6)

where P.qq is the position in the EDD rule of 7;, and P4g is the position that should have that 7; in
the actual sequence in order to get a minimum value of Eﬁj and Tﬂj.

Recently, bounded local search methods have been successfully applied to scheduling problems. The
key of this success comes from the reduction of the search space in each iteration of the local search methods
in order to avoid sequences that are far from the optimum, therefore decreasing the computational effort

of the algorithms. More specifically, the proposed composite heuristics are:

e ACH2. It performs a bounded local search (denoted BLS) after the ACH1 heuristic. The BLS tries
to insert each 7; in each position between P1 and P2. Pseudo code of both ACH2 and BLS methods

are shown in Figures 9.2 and 9.3 respectively.
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Procedure ACH3()
(IL Y. B+ 3. T)) = ACH1();
(H, ZEJ' + ZT]) = ZBRLS(H, ZEj + ZTj);

end

Figure 9.4: ACH3

Procedure iBRLS(1I,0F)
OF, =OF
h=1;
1=1;
It .= 1II;
while i <=n do
7 = h mod n;
I1° := remove job ; from II;
Calculate P1 and P2;
Test job 7; between the positions P1 and P2 of I°;
II := permutation obtained by inserting 7; in the position j € [P1, P2] of II° with less total
earliness and tardiness, OFl;
if OF < OF, then
OF, = OF;
1=1;
It .= 1I;
else
| i+ +;
end
h++;
end
return II° and OF};
end

Figure 9.5: Iterative Bounded Relative Local Search, iBRLS

e ACH3. It performs an iterative bounded local search method, denoted as iBRLS after the ACH1
heuristic. Similarly to the BLS method, the iBRLS tries to iteratively insert each job m; between
P1 and P2 until there is no improvement after trying n consecutive jobs. Pseudo code of ACH3

and iBRLS are detailed in Figure 9.4 and 9.5 respectively.

e ACH4. This heuristic carries out a iterative local search method (iLS) after the ACH1 heuristic. This
local search method simply tries to place each job 7; in the rest of positions of the current sequence
and has been extensively used in the literature (see e.g. [174], [97] and [139]). The procedure is
repeated until there are no more improvements. Pseudo codes for ACH4 and iLS methods are shown

in Figures 9.6 and 9.7.
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Procedure ACHJ()
(IL S Ej + 5. T;) = ACHL();
(IL Y2 Ej +>°T5) = iLS(L Y- Ej + > Tj);

end

Figure 9.6: ACH4

Procedure ¢LS(II,OF)
OF, =0F
flag := false;
while flag = false do
flag := false;
for j =1tondo
I1° := remove job m; from II;
Test job m; in each position of 1%,
I1 := permutation obtained by inserting 7; in the position j of II° with less total earliness and
tardiness, OF ;
if OF' < OF, then
OF, = OF;
b .= 1I;
flag := true;
end

end
end

return II° and OF};
end

Figure 9.7: Iterative Local Search, iLS
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Speed up procedure

In this section, a simple speed-up procedure to accelerate the insertion phases of the algorithms for the
Fm|prmu| Y E; + > T, problem is described. Let II¥ be a partial sequence with k jobs and I the job
which is to be inserted in position j € [1,k + 1]. Similarly to the speed up methods proposed by [96]
and [197], this method stores the completion time of each job on each machine of the partial sequence
II¥. When the job [ is inserted in each position j of the partial sequence, the completion times of the
jobs prior to this position j are already known and do not have to be recomputed. According to several
studies, this procedure reduces the CPU times between 30% and 50% and is therefore introduced in each

insertion phase of all algorithms implemented in this chapter.

9.3 Computational experience

In this section, the proposed algorithms are compared against the most efficient heuristics in the literature.
The procedure adopted to evaluate the algorithms is the following: First, we introduce the set of instances
used for both the experimental parameter tuning and the comparison among heuristics. In Section 9.3,
a full factorial design of experiments is carried out to find the best values of the parameters of the
algorithms proposed. The algorithms under comparison are listed in Section 9.3. Constructive and
composite heuristics are compared in Section 9.3, leading to the identification of the set of efficient
heuristics for the problem. Finally, in Section 9.3, the efficient heuristics are compared as seed sequences

of one of the best metaheuristic for the problem.

Experimental parameter tuning

The proposed heuristic ACH1 uses three parameters: a, b and c. In this section, a full factorial design
of experiments is carried out to determine their best values on the set of instances Bgs. The following

values are chosen for the experiments:
o a={0.8,0.85,0.9,0.95,1},
o b=1{0.4,0.45,0.5,0.55,0.6},
o ¢ ={25,30, 35,40, 45, 50,55}
In each instance, the ACH1 heuristic is evaluated according to Equation (9.7):

OF — Base
RPD3 = —— - 100 9.7
Base (9-7)
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where OF and Base are the solutions obtained by the ACH1 heuristic and a reference algorithm (NEHedd)
respectively.

Since normality and homoscedasticity assumptions are not fulfilled, a non-parametric Kruskal-Wallis
test is carried out. The p-values are 0.267, 0.865 and 0.000 for parameters a, b and c respectively. Results
show that there is statistically significant differences only between the levels of parameter c. Additionally,
among the 175 combinations of a, b and ¢, the best results are found for a = 0.90, b = 0.55 and ¢ = 30.
These values are subsequently used in each heuristic which incorporates the ACHI, i.e. ACH2, ACH3 and
ACH4.

Implemented algorithms

The performance of the proposed heuristics is tested against the most efficient heuristics for the problem,
as well as for some of the most efficient heuristics for similar scheduling problems. More specifically, due
to their excellent performance (see computational evaluations by [137] and [150]), the following heuristics

are considered:

o NEHedd®: NEHedd®" is the NEHedd heuristic proposed by [88]) for Fm|prmu|>_ T;. The speed

up procedure described in Section 9.2 is not applied to maintain its original version.

e NEHedd®*: Heuristic NEHedd® using the speed up procedure in Section 9.2. Additionally, the
evaluation of total tardiness in each iteration is replaced by the evaluation of the sum of total

earliness and tardiness.

e Raj: Adaptation of the Raj heuristic by [151], originally proposed for the F'm|prmu| > C; problem.
To adapt the heuristic to our problem, the speed up procedure in Section 9.2 is applied, and the
original evaluation of total flowtime is replaced by the evaluation of total earliness and tardiness.

Additionally, the original initial order is replaced by the EDD rule.

e RZ: Adaptation of the RZ heuristic by [152] proposed for the Fm|prmul ) C; problem, with the
initial order replaced by the EDD rule. The speed up procedure is applied, and the evaluation of

total flowtime is replaced by the evaluation of total earliness and tardiness.

e RZ LW: Adaptation of the RZ_LW heuristic by [152], originally proposed for the Fm|prmu|}_ C;
problem. The speed up procedure is applied and the evaluation of total flowtime is replaced by the

evaluation of total earliness and tardiness. Furthermore, the EDD rule is used as initial order.

o FRB4y: Adaptation of the FRB4y heuristic by [150], originally proposed for the Fm|prmu|Cias

problem. The evaluation of the makespan is replaced by the evaluation of the total earliness and
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tardiness, and the speed up procedure by [189] is replaced by the proposed one. As in the NEHedd®®,

the original order is replaced by the EDD rule.

All heuristics are fully recoded for the Fm|prmu|)_ E; + YT, problem under the same conditions
(see Section 3.4) using an Intel Core i7-3770 with 3.4 GHz and 16 GB RAM).

Efficient set of heuristics

In this section, all implemented heuristics are compared using benchmark Bs. Average results in terms
of ARPD1 are shown in Table 9.2 for each combination of n and m, and in Table 9.4 for each value of
the parameters. The CPU time required by each heuristic is shown in Table 9.3 for each n and m. The
last two rows show the ACPU and the ARPT2 of each heuristic. A summary of the results is graphically
shown in Figure 9.8 using ACPU to evaluate the computational effort, while ARPT?2 is used as indicator
in Figure 9.9. In view of the results, the NEHedd®® heuristic clearly outperforms the NEHedd®" in terms
of quality of the solution and computational effort. The best ARPD1s are clearly found by the proposed
heuristic ACH4 (1.19), and by the RZ LW heuristic (2.40). Regarding heuristics adapted from other
problems, the best results are found by Raj, RZ and RZ LW, which are either very fast heuristics, or
local search methods (using dispatching rules as seed sequences). The good performance achieved by the
composite heuristics RZ, RZ_ LW, ACH2, ACH3, and ACH4 confirms the conclusions obtained after the
analysis of the problem in Section 5.2 which advocated for fast heuristics employing as soon as possible
local search methods of full sequences. This fact is also confirmed by the performance of the family
of heuristics FRB4y. Each of these heuristics is outperformed in terms of quality of the solutions and
computational effort by RZ and ACH3. According to Figure 9.9, the efficient heuristics (set A) are:
ACH1, Raj, NEHedd®®, ACH2, RZ, ACH3 and ACH4. To statistically justify this statement, we perform

a Holm’s procedure [73] with the following hypotheses:
e H;: ACH2 = NEHedd®".
e Ho: RZ = FRB4,.
e Hi: RZ = FRB4,.
e H,: RZ — FRB4s.
e Hy: ACH3 — FRB4s.
e Hg: ACH3 — FRB4,,.

e H;: ACH3 = FRB445.
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e Hg: ACH4 = RZ_ LW.

Results are shown in Table 9.5, where the p-values have been calculated using a non-parametric Mann-
Whitney test since the normality and homoscedasticity assumptions were not confirmed (see e.g. [138]).
Assuming a confidence of 0.95, only two hypotheses (H2 and H3) are not rejected and the proposed
heuristics (ACH2, ACH3 and ACH4) can be therefore considered as statistically efficient. The heuristics

of the sets A are shown in Figure 9.9.
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Figure 9.8: ARPD1 vs ACPU of implemented heuristics. X-axis (ACPU in seconds) is shown logarithmic
scale.

Comparison among efficient heuristics

As there is a trade-off between quality of the solution and computational effort, heuristics in set A cannot
be directly compared in terms of ARP D1 due to their different computational efforts. In this section, they
are included as initial solution for one of the best metaheuristic for this problem, i.e. the ILS by [117],
replacing the original seed sequence of the metaheuristic (EDD rule). Thus, the metaheuristic is run using
eight different initial sequences (EDD rule and each heuristic in set .A) where the EDD rule is included in
the comparison as it is the original seed sequence of the metaheuristic. Each variation of the metaheuristic
is run under the same computational conditions described in Section 9.3 using benchmark Bs. In this
case, five runs are performed per instance and the average values are recorded. The variations of the

ILS are stopped depending on the size of the problem according to expression n - m - t/2 (milliseconds)

i H; p-value Mann-Whitney «/(k —i+ 1) Holm’s Procedure
1| ACH2 = NEHedd®" 0.000 R 0.0063 R

2| ACH3 = FRB4s 0.000 R 0.0071 R

3| ACH3 = FRB4;, 0.000 R 0.0083 R

4| ACH3 = FRB4;2 0.000 R 0.0100 R

5| ACH4=RZ_ LW 0.000 R 0.0125 R

6 RZ = FRB4: 0.001 R 0.0167 R

7 RZ = FRB44 0.069 0.0250

8 RZ = FRB46 0.690 0.0500

Table 9.5: Holm’s procedure.
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Figure 9.9: ARPD1 vs ARPT?2 of implemented heuristics. X-axis (ACPU in seconds) is shown logarith-
mic scale.

where ¢ = 5,10, 15,20,25,30 (see e.g. [174] for a similar stopping criterion). Obviously, the CPU time
required by each heuristic is included in the CPU time of the metaheuristic, i.e. the clock starts before
applying the heuristic. Results of the ILS metaheuristic using different heuristics as initial solution are
shown in terms of ARPD1 in Table 9.7. Note that using the original seed sequence (EDD rule) in the
metaheuristic outperforms several other initial sequences (Raj, NEHedd®® and RZ). However, the best
ARPD1s are found when embedding the proposed heuristics (ACH1, ACH2, ACH3 and ACH4) in the
ILS metaheuristic being e.g. 1.87, 1.94, 1.56 and 1.32 respectively the ARPD1 of these heuristics for
t = 10, as compared to 2.20 obtained by the EDD rule. The best value is found using ACH4 as initial
solution regardless the stopping criteria, being 1.08 the lowest ARPD1 found for ¢ = 30. Additionally,
in order to confirm the excellent results found by the ILS using the ACH4 heuristic as seed sequence, a
Holm’s procedure is carried out comparing the ILS both with the ACH4 heuristic and with the EDD rule.

More specifically, the hypotheses tested are:
e H;: For t =5, ILS(ACH4) = ILS(EDD rule).
e Hy: For ¢t = 10, ILS(ACH4) = ILS(EDD rule).
e Hj: For t =15, ILS(ACH4) = ILS(EDD rule).

e Hy: For t =20, ILS(ACH4) = ILS(EDD rule).
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i| H; p-value Mann-Whitney «a/(k — i+ 1) Holm’s Procedure
1| ILS(ACH4) — ILS(EDD rule) (for £t =5) _ 0.000 R 0.0083 R
2| ILS(ACH4) = ILS(EDD rule) (for t = 10)  0.000 R 0.0100 R
3| ILS(ACH4) = TLS(EDD rule) (for t = 15) 0.000 R 0.0125 R
4 |TLS(ACH4) = TLS(EDD rule) (for t = 20)  0.000 R 0.0167 R
5 | ILS(ACH4) = ILS(EDD rule) (for t = 25) 0.000 R 0.0250 R
6 | ILS(ACH4) = ILS(EDD rule) (for t = 30) 0.000 R 0.0500 R

Table 9.6: Holm’s procedure for comparisons with metaheuristics.

Parametert‘EDD rule Raj NEHedd** RZ ACH1 ACH2 ACH3 ACH4

5 3.26 4.58 4.77 3.60 2.97 2.72 1.90 1.39
10 2.20 2.91 3.09 2.43 1.87 1.94 1.56 1.32
15 2.11 2.80 2.96 2.33 1.82 1.85 1.46 1.22
20 2.03 2.69 2.84 2.24 1.76 1.75 1.41 1.16
25 1.95 2.60 2.75 2.17 1.70 1.69 1.34 1.11
30 1.94 2.58 2.71 2.14 1.67 1.67 1.31 1.08

Table 9.7: Average relative deviation index (ARDI) of the metaheuristic ILS using different heuristics
as initial solution

e Hs: For ¢ = 25, ILS(ACH4) = ILS(EDD rule).
e Hg: For t = 30, ILS(ACH4) — ILS(EDD rule).

Results of the Holm’s procedure are shown in Table 9.6. Each p-value is equal to 0.000 and therefore,

each hypothesis is rejected statistically, confirming the previous results.

9.4 Conclusions

In this chapter, we have addressed the PFSP with a just-in-time objective. By incorporating this knowl-
edge, we propose four different heuristics. Firstly, a fast constructive heuristic, ACH1, inserts the jobs
one by one at the end of the partial sequence based on an dynamic index. This index is automatically
calculated in each iteration depending on the idle times, completion times, earliness and tardiness of the
jobs. Then, three composite heuristics ACH2, ACH3 and ACH4 are proposed by incorporating three
different local search procedures after ACHI.

The proposed heuristics have been compared under a complete set of instances with the best heuristic
for the problem as well as with adaptations of efficient heuristics for similar scheduling problems. The
computational results show the excellent performance of the proposed algorithms. In fact, the heuristics
ACH1, Raj, NEHedd®*, ACH2, RZ, ACH3 and ACH4 are established as efficient, being the ACH4 the
heuristic with the lowest ARPD1 (1.19).

Finally, the impact of the efficient heuristics is evaluated including them as seed sequences for one
of the best metaheuristic for the problem, and for six different stopping criteria. As a result, the four

proposed heuristics statistically outperform every other heuristic, thus establishing a new state-of-the-art
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of approximate solutions for the problem.
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Chapter 10

PFSP to minimise makespan subject to

total tardiness

Among the criteria established to measure the performance of the different schedules shown in Section
2.1, the maximum completion time of a sequence or makespan is related to resource usage, while tardiness
refers to the delay of the completion time of a job with respect to its committed due date. Since these are
key aspects in manufacturing companies’ competitiveness, it seems appropriate to consider both objectives
together. Regarding tardiness minimisation, customer due dates may be regarded as “hard” constraints
(i.e. deadlines) in some manufacturing scenarios, while in others some flexibility is allowed by the customer
as long as the deviation from the completion times of the jobs is limited. In contrast, makespan is an
intra-company criteria that is related to maximising machine utilisation, which in turns minimises fixed
unit costs. Therefore, one option to balance both objectives is to seek the minimisation of the makespan
while allowing only a given deviation from the committed due dates, expressed as the maximum tardiness
allowed. Note that this problem includes the special case where no deviation from the jobs’ due dates is

allowed, thus forcing the fulfilment of the committed due dates.

The problem described in the previous paragraph can be denoted as Fm|prmule(Craz/Tmaz) (see
[193])). This problem belongs to the class of e-constrained multi-criteria scheduling problems, and it has
been the subject of several research contributions in the last decades. Since the minimisation of any of
the individual criteria (either makespan or maximum tardiness) in a flow shop is NP-hard, the research
effort has focused on approximate procedures providing good —but not necessarily optimal— solutions in
a relative short period of time. In this regard, the works by [27], [12], [45], and [171] develop different

heuristics either for the problem, or for general cases of the problem. In this chapter, we propose a
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constructive heuristic and a metaheuristic that exploits the specific structure of solutions of the problem
to reduce the search space and to accelerate the evaluation of solutions. Both algorithms improve existing
ones by a larger degree and constitute therefore the new state-of-art approximate solution procedures for
the problem.

The remainder of the chapter is structured as follows: the state of the art for the problem is shown in
Section 10.1. In Section 10.2, some definitions and properties of the problem are defined. Sections 10.3
and 10.4 are devoted to propose two algorithms (a constructive heuristic and a metaheuristic) which use
the properties discussed previously. The algorithms are compared with the (up to now) state-of-the-art

algorithms in Section 10.5 and, finally, conclusions are discussed in Section 10.6.

10.1 Literature review

[27] were the first in proposing a constructive heuristic for the Fm|prmule(Craz/Tmaz) problem. In
their heuristic, assuming a partial sequence II formed by already scheduled jobs, a (partial) sequence is
constructed for each non-scheduled job uj by placing it as the first job, and then scheduling the jobs in
II after uj, according to the NEH algorithm. Out of these so-obtained sequences, the one with the lowest
makespan is chosen for the next iterations (consequently, uy is removed from the non-scheduled jobs set
for the next iteration).

[12] propose a simulated annealing algorithm to solve the Fm|prmule(Z/Tqz) where Z = X Cryap +
(1 =X Tz, A € [0,1]. Clearly, our problem is a special case of their problem when A = 1. Their
algorithm begins with the best sequence among the solutions found by the NEH heuristic, the earliest
due date rule and the least slack rule (jobs ordered according to ascending order of d; — Y7, ;). The
procedure iteratively samples neighbour solutions (using an adjacent pairwise interchange neighbourhood)
until the stopping criterion is fulfilled.

[45] propose a constructive heuristic, denoted in the following as FL, based on the NEH algorithm
to solve the F'm|prmule(Craz/Tmasz) problem. The heuristic tries to improve the makespan without
worsening the tardiness by using a property of the problem. The heuristic is compared with those of [27]
and [12] for small and big instances. The results show that the FL outperforms the other ones in terms
of both the quality of the solutions and the number of the feasible solutions obtained.

Finally, [171] propose an iterated optimization algorithm to solve the F'm|prmule(Z/Tpq5) problem.
More specifically, they proposed a high-performance Genetic Algorithm (GA in the following) where
the selection procedure is based on n-tournament (see [170]). The fitness values of the individuals are

calculated depending on whether all individuals are feasible; feasible and infeasible; or only infeasible.
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The algorithm outperforms the FL for the Fm|prmu|e(Z/Tas) problem in an extended benchmark.
Nevertheless, GA and FL were not compared for the specific Fm|prmul|e(Cpaz/Tmaz) problem.

To summarise the state of the art regarding the Fm|prmu|e(Cpaz/Tmaz) problem, there are some
efficient heuristics for the problem, but their performance is not completely clear, as the comparison
between the most efficient contributions (i.e. GA and FL) has been only partially conducted. In addition,
both mechanisms made extensive use of insertion neighbourhoods, so it could be extremely interesting to
devise a mechanism similar to that by Taillard to reduce the computational burden. Finally, it is also
to note that all existing procedures make little use (or no use at all) of the knowledge on the problem

domain.

10.2 Problem properties

As mentioned in Section 10.1, Taillard’s acceleration does not compute the completion times of each job
and therefore, it cannot be used to compute the maximum tardiness of the sequence. Indeed, our problem
is complicated by the fact that, when inserting a new job o in position r of an existing partial sequence,
an infeasible solution can be obtained due to either the increase in the completion times of the jobs after
o, or due to the completion time of job o itself. In order to further classify these two possibilities, let us

introduce the following definitions:

Definition 10.2.1 (First Feasible Position). Given a feasible (partial) sequence 11 := (my,...,mx), and
a non scheduled job o, let H/r = (71, ., Tp1,0,Tp, ..., T) be the (partial) sequence obtained by the

insertion of o in position v of II. Then, the First Feasible Position (FFP) is defined as follows:

FFP(Il,0) := argmin {T%, () <e Vj=r,... Kk}
1<r<k+1

As it can be seen from the definition, F'F P is the lowest position where a new job can be inserted in an
existing sequence without causing infeasible due dates in any of the jobs resulting in positions later than
the insertion point. It is clear that, in a given instance of the problem and a partial sequence II, it is not
possible to obtain feasible schedules by inserting a non scheduled job o into a position j < FFP(II,0).

Note also that obtaining F'F'P for a tuple II and o does not guarantee that H;» is feasible for j > FF'P,

since the computation of F'F'P does not take into account the potential infeasibility caused by job o.

Definition 10.2.2 (Last Feasible Position). Given a feasible (partial) sequence 11 := (m1,..., ), and
a non scheduled job o, let H; = (1,0, Tp1,0,Tp,...,Tg) be the (partial) sequence obtained by the

insertion of o in position v of II. Then, the Last Feasible Position (LFP) is defined as follows:
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LFP(II, o) := arg max{T,(IL,) < ¢}
1<r<k+1

In this manner LF'P is the highest position r» where job 7, can be inserted without making its com-
pletion time infeasible. Note that the feasibility of the jobs in positions r + 1,7 + 2, ... is not considered
when computing LFP.

The calculation of both limits is of interest due to some straightforward observations which follow from

both definitions:

1. If FFP(Il,0) > LFP(II,0) for a given tuple II and o, then no feasible sequence can be obtained

by inserting o into II.

2. If FFP(Il,0) < LFP(II,0) for a given tuple II and o, then the sequence obtained by inserting o
in position F'FP of 1I is feasible.

3. If FFP(Il,0) < LFP(Il,o0) for a given tuple II and o, then at least one feasible sequence can be

obtained by inserting o in positions between F'F'P and LF P, inclusive.

4. For a given tuple II and o with FFP(Il,0) < LFP(II,0), the set of feasible sequences obtained
by inserting o in positions between FF'P and LF P represent all feasible sequences that can be

obtained by inserting o into 1I.
Once FFP and LFP are obtained, the sequence with the lowest makespan can be computed by using
Taillard’s acceleration between both bounds, i.e.:

— mi J
Cmaz - rnjln(cmaa:

) j=FFP,... LFP (10.1)

where CJ

) aw 1S Obtained using the Taillard’s accelerations. Note that the so-found sequence is not

necessarily feasible. The advantage of this mechanism lies in speeding up the computations.
In view of the above expressions, the challenge now is to compute both FF'P and LFP in an efficient

manner. To do so, we introduce the following properties:

Property 10.2.1. Given an instance of the Fm|prmule(Craz/Tmaz) problem, and given a tuple 11 and

o of a partial sequence and a non-scheduled job respectively, then

FFP(II,0) := 1+ argmax{Cyr, + 1I<n_i<n tic — dr, > €}
j Stsm

is a lower bound for FFP(Il,0). Furthermore, FFP can be computed in O(n - m)
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Proof. Recall that the completion times of the jobs in II placed after the insertion of a job o must
increase at least min; (¢;5),% € [1,---,m] (see the Property 12.2.1 in the Chapter 12). Therefore, Cy,r, +
mini<j<m tis is a lower bound of completion time of job in position j after the insertion of ¢ in position
r < j. As a consequence, if Cmﬂ] + mini<i<m tic — dm > ¢, then the due date of job in position j is
always infeasible, so F'F'P is a lower bound of FFP.

FFP can be computed in two steps: First M = minj<j<m ti; is computed in O(m). Next, the
expression Ej = Cyy n; + M — dr; is computed in O(n-m) for j =1,2,... until it verifies that E; > e. It

is thus clear that the computation of FFP is O(n - m). O

Property 10.2.2. Given an instance of the Fm|prmule(Craz/Tmaz) problem, and given a tuple 11 and

o of a partial sequence and a non-scheduled job respectively, then LF P can be computed in O(n - m).

Proof. First e; ,, the earliest completion times of the jobs before o are computed in O(n -m) (see Section
2.2). Then, for a position k& where o can be inserted, the completion time of o is computed in O(m)
by adding the processing times of o to €; r;, and the result is compared to €. Since this comparison is
performed for all positions prior to the candidate position where the new jobs is to be inserted, it is clear

that LF P can be computed in O(n - m). The detailed pseudo code is presented in Figure 10.2. O

Equipped with these problem properties, we propose efficient approximate procedures based on the
insertion of jobs into existing partial schedules. More specifically, in Section 10.3 we present a constructive

heuristic for the problem whereas in Section 10.4 we present a non-population based metaheuristic.

10.3 Bounded-insertion-based constructive heuristic, BICH

In this section, we present a constructive heuristic based on a so-called bounded insertion (BICH) using
some properties of the problem, that also repairs infeasibility by means of a tabu local search in each
iteration (see pseudo code in Figure 10.1).

More specifically, the algorithm obtains a sequence II := (71, ..., m,) in the following manner: Initially,
jobs are sorted in non ascending order of the sum of their processing times, so a sorted sequence « :=
(a1,...,ay) is obtained. The first job in the sorted sequence is also the first job in I, i.e. 71 = «3. Then,
the remaining jobs in « are inserted in II one by one in the following manner: in iteration k (k € [2,n]),

job ay, is removed from « and the following steps are carried out:

e Compute ¢;r,,qir, and fi,. In this step, the variables required to apply Taillard’s acceleration
are calculated here according to the expressions described in Section 2.2. These computations can

be implemented in O(n - m).
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e Compute FFP. In this step, F'FP(II, ay) is obtained according to Property 10.2.1.
e Compute LFP. In this step, LFP(II, o) is obtained according to Property 10.2.2.

e Obtaining the best makespan between FF'P and LFP inclusive. If FFP < LFP, a set of

schedules can be obtained when inserting aj between these two indices. To select the position of
insertion in II, Taillard’s acceleration is employed as described in Section 10.2. If FFP > LFP, oy,
is inserted in position LF P. Note that this does not necessarily mean that the so-obtained partial

sequence is infeasible, as F'F'P is a lower bound for F.F'P.

Repairing infeasible solutions. If the resulting partial sequence II is infeasible, a Feasible Tabu
Search (FT'S) procedure is performed to try to get to a feasible solution. The FT'S is an iterative
procedure which maintains the idea of insertion between FFP and LFP. First, for each iteration,
infeasible jobs are removed from the partial sequence II and are randomly ordered. Then, they are
successively inserted one by one between the FFP and LFP indices (inclusive), but in this case
the feasibility of each so-obtained sequence is checked, so Taillard’s acceleration cannot be used.
Furthermore, a simple tabu procedure is introduced to avoid cycles: Each job has a tabu list of
positions previously chosen. Once an infeasible job is inserted in a position, this position is added
to the tabu list of such job. Thereby, when a job is to be inserted in the actual sequence, only
positions that are not in its tabu list can be chosen. The tabu lists of all jobs are set to zero if
the infeasible jobs of the current iteration are different from the previous infeasible jobs. Only in
this case jobs from the tabu list can be removed from the lists. The procedure finishes when either
there are no more infeasible jobs, or when more than z iterations have been run and the number of
infeasible jobs has not decreased during the last iteration. The length of the tabu list is sufficiently
long to allow storing each possible position (here the maximum number of iterations of the search
method i.e. z). Furthermore, when the output sequence of this procedure is infeasible, the FT'S is

not further implemented in the rest of iterations of the BIC H heuristic.

The pseudo code of the F'TS procedure is shown in Figure 10.3.

10.4 Advanced non-population-based algorithm, ANPA

In this section, an Advanced Non-Population-based Algorithm (ANPA) is proposed as an extension of

the ideas presented in the constructive heuristic BICH. The algorithm tries to improve the solution by

iteratively performing greedy methods and local search methods. The global procedure of the algorithm

is shown in Figure 10.4.
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Procedure BICH (x)

« := Jobs ordered by descending sums of processing times where a = {1, ag, ..., an};
II:={a1};
flag := true;

for k=2 to n do
Calculate eir; ,Gir;, and fir, fori=1...m,j1=1...kand jo=1...k+1;
for j =1 to k do
if €y, +Mini—1. 1 (tia,) — dr, >€ then
| FFP=j+1,
end
end
LFP := CalculateExactly LF' P(I1, o, k, {€in;, });
Test job oy between the positions FFP and LFP of 1I;
IT := permutation obtained by inserting ay in the position j € [FFP, LFP] of II with lowest
makespan using Taillard’s Acceleration (note that infeasible permutations are allowed here as
feasibility is not checked);
if flag = true then
IT := FeasibleTabuSearch(Il, x);
if IT is infeasible then
| flag := false;
end

end
end
end

Figure 10.1: BICH

Function CalculateEzactlyLFP(m, NewJob, k,{€ix,})

flag := false;
LFP :=0;
Co = O;

for : =1 to m do
| Co = Co+tiNewob;
end
if Cy — dnewjop > € then
| flag := true;
end
j:=1
while j < k and flag = false do
for : =1 to m do
‘ Cj = max (Cj7 ei,ﬂ']-> + ti,NewJob
end
if Cj — dNewjob > € then
| flag := true;
else
| LFP++
end
J++
end
return LF'P;

end

Figure 10.2: Procedure CalculateExactlyLFP
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Procedure Feasible TabuSearch(m, x)
~ := Infeasible jobs of II;
n := Number of infeasible jobs in II, |v|;
ngld =n,+1
#Iterations = 1;
while n, /=0 and (n., < n2? or #Iterations <= z) do
II := Extract jobs v of l:f;
~ := Randomly order infeasible jobs 7;
if Infeasible jobs are different from last iteration then
| Empty tabu list;
end
for k =n, to 1do
for j=1to k do
if ensr, +ming(tiy, ) — dr, >¢ then
| FEP=j+1;
end
end
LFP := CalculateExactly LF P(I1, v, k, e;11; );
Test job 7 in the feasible and non-tabu positions between FFP and LF P of I and denote bj
the position with the lowest makespan;
Il := permutation obtained by inserting v in bj;
Add position bj to the tabu list of job ~yg;

end
nf/ld =1,
~ := Infeasible jobs of 1I;
Ny = |’Y|§
#Iterations + +;
end

end

Figure 10.3: Procedure FeasibleTabuSearch
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Procedure ANPA(d, z,T)
(I1, Crpaz) = BICH (z);
I = BRLS(IL, Cyaz);
while stopping criterion is not reach do
I =1I;
II' := randomly remove d jobs from II' and insert it in IT7;
(112, Cppaz) := ConstructionPhase(ITP , I1Y);
112 := BRLS(T?, Craz);
1% := FeasibleTabuSearch(I12, z);
I := Simulated AnnealingCriterion(11%,T);
end

end

Figure 10.4: ANPA

Procedure ConstructionPhase(I1” 11)
for k=n—-—d+1tondo
Calculate €x; ,qin;, and fir, fori=1...m,j1=1...kand jo=1...k+1;
for j =1 to k do

if € r, +mMing(tx0p—(n—ay) — dr, >¢ then

| FFP=j+1,

end
end
LFP := CalculateExactlyLF P(, 7T]€Di(n7d), k,{€in; });
Test job W,?_(n_d) between the positions FFP and LFP of 1I;
II := permutation obtained by inserting ’/T]?_(n_d) in the position j € [F'FP, LFP] of II with the
lowest makespan using Taillard’s Acceleration (note that infeasible permutations are allowed here
as feasibility is not checked);
end

end

Figure 10.5: ConstructionPhase

AN PA starts with the sequence obtained by the heuristic BICH and tries to improve it by means of
a bounded relative local search (denoted as BRLS) explained below in more detail. Then, the following

phases are repeated until the stopping criterion is reached:

e Jobs Determination Phase. In this phase, d jobs are randomly chosen to be removed from the

sequence. The set of removed jobs is denoted IIp.

o Construction Phase. Jobs in IIp are re-inserted one by one in the sequence following a similar
procedure as in the BIC H heuristic, but without applying the F'T'S procedure after each insertion.

This phase is explained in detail in Figure 10.5.

e Bounded RLS (BRLS). The solution of the previous phase is improved by a relative local search
method. One by one, jobs are removed from the sequence, tried to be inserted in each position

J € [1,n] and finally, placed in the position with the lowest makespan using Taillard’s acceleration
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Procedure BRLS(11, C\04)
h=1;
1 =1;
It .= 1I;
while i <=n do
k := h mod n;
I1° := remove job 7 from II;
Calculate €irx; ,qir; and fir;, fori=1...m,j1=1...kandjo=1...k+1;
for j =1to k do

if ey x, + ming(tir,) — dr, >¢ then

| FFP=j+1;

end
end
LFP := Calculate ExactlyLF P(II°, 7, n — 1, {eix, });
Test job m between the positions FFP and LFP of TI°;
IT := permutation obtained by inserting 7 in the position j € [FFP, LFP] of II with lowest
makespan, C;naw, using Taillard’s Acceleration (note that infeasible permutations are allowed here
as feasibility is not checked);
if C), 0 < Crnas then

max
/

Oma.r = Cm(m:;
1 =1;
b .= 1I;

else

| i+ +;

end

h+ +;

end

return I1°;
end

Figure 10.6: Bounded Relative Local Search, BRLS

between FF'P and LF P inclusive. This procedure finishes when n jobs are tried without improving

the current best makespan. The pseudo code of this local search method is shown in Figure 10.6.

e Feasible Tabu Search. After the ConstructionPhase and the BRLS procedures, FT'S is imple-

mented in order to try to reach feasibility when the solution is infeasible.

e Simulated Annealing-like Acceptance Criterion. To add diversification to the algorithm,
solutions are kept according to a simple simulated annealing procedure. When a solution, Il5, is

worse than the local search optimum, II, it is maintained only if:

7(Cma.1:(H2) — Cmas (H)) }

random < ex
- p{ Temperature

where random is a random number between 0 and 1 and the T'emperature is a function that depends

on parameter 1"
) ZW Zw tij

Temperature =T
n-m-10
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The temperature parameter has been generated following the suggestions by [135] (see e.g. [13§]

and [174] for similar approaches).

10.5 Computational results

In this section, the performance of the proposed algorithms BICH and ANPA is compared with the
best algorithms so far for the problem, i.e. the GA by [171] and the constructive heuristic FL by [45].
Additionally, two efficient heuristics for makespan minimisation (i.e. the NEH heuristic, and the iterated
greedy algorithm, IGRrs rs) are included in the comparison as they are two of the most efficient con-
structive heuristic and iterative improvement algorithm, respectively. The adaptations of these heuristic
to our problem are denoted A NEH and A IGA, respectively. When adapting both methods to the

proposed problem, the following assumptions are adopted:

e The objective function remains the original of these algorithms, i.e. the minimisation of makespan.

e In the insertion phases of the algorithms, only feasible sequences are considered, i.e. the jobs to be

inserted are placed in the feasible position with the lowest makespan.

e Taillard’s acceleration is removed from both algorithms since the calculation of the tardiness for

each job does not allow its use.

To be able to determine the most efficient algorithms for the problem, all methods have been coded
under the same conditions (see Section 3.4), and using an Intel Core i7-3770 with 3.4 GHz and 16GB
RAM. The algorithms are tested using the set of instances Bs. Furthermore, in order to increase the
accuracy of the iterated improvement algorithms, five runs have been performed per instance and the
average values are recorded for the makespan and for the CPU times.

The same stopping criteria as in [171] are applied for the iterative improvement algorithms. These
stopping criteria depend on the size of the instance (i.e. the number of jobs and machines) following the
expression ¢ - n - m - /2 milliseconds where the values 2, 5, 20 and 60 are tested for the parameter ¢. The
FL and BICH constructive heuristics stop naturally when their final sequences are constructed.

Due to the fact that the problem under consideration is subject to maximum tardiness, the evaluation
of the quality of both constructive and iterative algorithms is not trivial. Usually, the decision maker
would first look for the feasibility of the solutions (i.e. tardiness of each job lower than the maximum
tardiness) and, once it is achieved, he/she would look for a low value in the makespan. Finally, the

quality of the sequences obtained by each algorithm has to be balanced against the time interval required
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to obtain the sequences, as the high CPU time requirements posed by some of the algorithms may not
be acceptable for some scenarios. Therefore, there is a trade-off among these goals that increases the
difficulty of a direct comparison of the algorithms. To make an exhaustive analysis of all these aspects,
three indicators have been chosen to determine the quality of the solutions obtained by the algorithms,

as well as the CPU time required to obtain the solutions. The indicators are:

e Number of feasible solutions obtained by each procedure.

e Makespan value of the solution (in terms of Average Relative Percentage Deviation) obtained by

each procedure.

e Number of instances with the best solution obtained by each procedure.

Regarding the computational time requirements, note we use the average CPU time (ACPU), which
is both instance- and instance-size- dependent indicator (see Section 3.3). However, similar results are
also found when using a dimensionless time indicator. Particularly, the average relative percentage com-
putation time described in 3.3 has been tested with similar results. In order not to excessively increase

the extension of the chapter, these findings are not detailed.

Experimental parameter tuning

The proposed algorithms use three parameters: T, d, and x. Therefore, it is interesting to investigate the
values of these parameters for which the algorithms reach the best performance. Parameter z is used in
both BIC'H and AN PA, while the other two parameters are included only in ANPA. In order to simplify
the experimentation, the three parameters have been tested only for ANPA, and the value obtained for

parameter x was also chosen for the constructive heuristic BICH. The level of parameters tested are:

e T €[0.1,0.2,0.3,0.4]
o dc[4,5,6,7]
e z € [10,20,30]

ANPA is tested following the same calibration test as in [197] by means of benchmark Bcs. The
stopping criterion adopted is to halt the procedure when the CPU time in milliseconds reaches the value n-
(m/2)-20. To establish statistically significant differences between parameters T', d and z, a non-parametric
Kruskal-Wallis test is performed, since the normality and homoscedasticity assumptions required for an

analysis of variance were not satisfied. As a result of the test, statistically significant differences between
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Table 10.1: Values of the three quality indicators and the average CPU time of each algorithm

Algorithm | #Feasible Solutions | # Best Instances | ARPD | Average CPU Time (s.)

A NEH 277 9 2.83 1.27

BICH 490 14 3.24 0.43

FL 448 1 6.96 15.22
ANPA(t = 2) 491 69 0.76 6
A _IGA(t=2) 303 26 1.32 6
GA(t =2) 435 18 2.73 6
ANPA(t =5) 491 80 0.52 15
A _IGA(t =5) 314 28 1.13 15
GA(t =5) 439 26 2.23 15
ANPA(t = 20) 491 112 0.20 60
A_IGA(t = 20) 333 43 0.80 60
GA(t = 20) 446 39 1.63 60
ANPA(t = 60) 492 491 0.00 180
A _IGA(t =60) 342 68 0.56 180
GA(t = 60) 457 47 1.37 180

the levels of the parameters  and T were found, but not for d since the significance values were 0.011,
0.000 and 0.870 respectively. The best combination of parameters was found for d = 5, T' = 0.4 and

x = 30, so these were used in the computational experience carried out in the next section.

Number of feasible solutions

The average number of feasible solutions obtained by the implemented algorithms are shown in Table 10.1.
For 494 instances out of the 540 instances in the benchmark it was possible to find a feasible solution
by one/several algorithms. Among them, 492 feasible solutions were found by ANPA for the stopping
criterion t = 60, being the best algorithm in terms of the number of feasible solutions obtained. Next
is the AN PA heuristic with 491 feasible for the stopping criteria ¢t = 2, ¢ = 5 and ¢t = 20, 490 for the
BICH heuristic. 457 feasible solutions were found by GA with ¢t = 60 followed by the FL heuristic with
448 feasible solutions. The worst results were obtained for A NEH and A _IGA algorithms.

It is worth to note that both BICH and AN P A found more feasible solutions within lesser CPU time
than the rest of the procedures, a remarkable result specially as BIC H had very small CPU requirements.
As it can be seen in the Table 10.1 and in Figure 10.7, the efficient algorithms following this criterion

would be: BICH, ANPA(t =2) and ANPA(t = 60).

Average relative percentage deviation

The makespan of the solutions obtained by each algorithm can be evaluated by means of the ARPD1,

see Expression (3.1). It has to be noted that RPD1 is computed only if a feasible solution is found by
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Figure 10.7: Number of feasible solutions vs ACPU for each algorithm. X-Axis is shown in logarithmic

scale.
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Figure 10.8: ARPD1 vs ACPU for each algorithm. X-Axis is shown in logarithmic scale.

the algorithm, otherwise the results would be greatly biased.

The ARPD1 is shown in Table 10.1. Since certain algorithms do not find feasible solutions for some
instances for which others do, the ARPD1 is calculated with different sample sizes depending on the
algorithm, e.g. 333 instances for A TGA(t = 20) and instances 491 by ANPA(¢t = 20). This fact might
cause that algorithms with lesser feasible solutions than other ones could have less ARPD1, as it is the
case with A TGA(t =20) and A _IGA(t = 60) as compared to GA(t = 60). Nevertheless, we also include
it in the analysis since it is the usual way in which this analysis is carried out (see e.g. [45, 171]). As it
can be seen in Figure 10.8, the efficient heuristics with ARPD1 as indicator would be A NEH, BICH,
ANPA(t =2), ANPA(t =5), ANPA(t = 20) and ANPA(t = 60). In order to statistically justify this

statement, we use Holm’s procedure [73] with the following hypotheses:
e Hi: ANPA(t=2) = GA(t=2)

o Hy ANPA(t=2)= A _IGA(t=2)
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Table 10.2: Holm’s procedure for multiple hypotheses. R indicate that hypothesis is reject by Mann-
Whitney and/or Holm’s procedure

i H; p-value | Mann-Whitney | a/(k — i + 1) | Holm’s Procedure
1| ANPA({t=2) — GA(t=2) 0.000 R 0.0056 R
2| ANPA(t=2)=A_IGA(t=2) | 0.000 R 0.0063 R
3| ANPA(t=5) = GA(t =5) 0.000 R 0.0071 R
4| ANPA(t=5) = A IGA(t=5) | 0.000 R 0.0083 R
5 ANPA(t=5)=FL 0.000 R 0.0100 R
6| ANPA(t=20) — GA(t=20) | 0.000 R 0.0125 R
T|ANPA(t=20) = A_IGA(t =20)| 0.000 R 0.0167 R
8| ANPA(t=60) = GA(t =60) | 0.000 R 0.0250 R
9| ANPA(t=60) = A _IGA(t =60)| 0.000 R 0.0500 R

o Hy: ANPA(t=5) = GA(t =5)

o Hy: ANPA(t=5) = A_IGA(t=5)

o Hs: ANPA(t=5) = FL

o Hg: ANPA(t =20) = GA(t = 20)

o Hy;t ANPA(t=120) = A_IGA(t = 20)
o Hy: ANPA(t = 60) = GA(t = 60)

o Hy: ANPA(t=60) = A_IGA(t = 60)

The p-value of each hypothesis is calculated using a non-parametric Mann-Whitney test (see [138]).
Then, Holm’s procedure orders the hypotheses according to these p-values in non-decreasing order. The
procedure rejects hypothesis 4 if its p-value is lower than a/(k—i+1) where k is the number of hypotheses.
The results of this statistical analysis are shown in Table 10.2. As the p-values are always lower than
a/(k — i+ 1), each hypothesis is rejected justifying the statement regarding the efficient algorithms in

terms of their ARPD1. In fact, each p-value of the non-parametric Mann-Whitney analysis is 0.000.

Number of instances with the best makespan

The third indicator used in this section is the number of instances where each algorithm finds the best
solution. This indicator is related to both the feasibility and the makespan in each instance of the
algorithm. Results are shown in Table 10.1 for each algorithm. On the one hand, regarding the constructive
heuristics, the BIC'H algorithm finds the best solution in 14 instances as compared to the 9 and 1 of the
A NEH and FL heuristics respectively. On the other hand, the ANPA algorithm is clearly the best

with 69, 80, 112 and 491 instances for the stopping criteria ¢ = 2,5,20 and 60 respectively. Regarding
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Figure 10.9: Amount of best solutions vs ACPU for each algorithm. X-Axis and Y-Axis are shown in
logarithmic scale.

the other two iterative improvement algorithms (A IGA and GA), A IGA slightly improves GA for
each stopping criterion. Taking into account this indicator, the efficient algorithms would be BICH,

ANPA(t =2), ANPA(t =5), ANPA(t = 20) and ANPA(t = 60), as shown in Figure 10.9.

Different distributions for the processing times

The above analyses have been performed with processing times following a uniform distribution, as it
is usual in the literature for the PFSP (see e.g. the benchmarks of [190] and [30]). In this section,
three additional benchmarks have been generated using different distributions for the processing times in
order to evaluate the robustness of the results. The procedure to generate the three benchmarks is the
same as in Bs, with the exception of the distribution of the processing times, which follow Exponential

(positive and negative) and Normal distributions, respectively. Hence a total of 540 instances are generated
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Table 10.3: Values of the three quality indicators and the average CPU time of each algorithm considering
different distributions of the processing times. The exponential distribution (positive and negative) are
denoted by EP and EN respectively, as well as the normal distribution is denoted by N.

Algorithm #Feasible Solutions | # Best Instances ARPD1 Average CPU Time (s.)

EP EN N EP EN N EP EN N EP EN N

A NEH 354 253 316 3 17 8 2.63 290 2.82| 1.34 1.34 1.23

BICH 537 458 495 3 15 9 2.73 3.57 3.10| 0.58 0.75 0.36

FL 490 420 443 0 3 2 6.19 9.47 6.96|14.18 17.53 13.90
ANPA(t=2) |537 458 495 34 84 55 0.63 0.88 0.73 6 6 6
A IGA(t=2) 392 270 343 8 27 25 1.24 1.48 1.38 6 6 6
GA(t=2) 511 416 433 5 19 18 2.10 3.54 2.57 6 6 6
ANPA(t=5) |538 459 495 47 96 69 0.43 0.59 0.49| 15 15 15
A IGA(t=5) | 403 281 352 9 38 28 1.07 1.26 1.17| 15 15 15
GA(t =5) 515 426 445 8 36 21 1.74 2.88 2.13| 15 15 15
ANPA(t =20) | 538 459 495 77 122 98 0.17 0.23 0.19| 60 60 60
A _TIGA(t =20)|421 292 364 19 55 40 0.77 0.90 0.84| 60 60 60
GA(t = 20) 522 442 454 20 51 34 1.26 2.08 1.53| 60 60 60

ANPA(t =60) | 538 459 495 535 455 490 0.00 0.01 0.00| 180 180 180

A TGA(t =60)|432 304 370 35 84 57 0.55 0.63 0.59| 180 180 180

GA(t = 60) 526 444 457 29 65 43 1.04 1.69 1.26| 180 180 180

per benchmark representing a total of 1620 instances. In order to have homogeneous results, the same
mean (i.e. 50.5) is chosen for those distribution. In the case of the normal distribution, the standard
deviation is chosen to achieve a moderate variation of the processing times which means, according to
[74], a coeflicient of variation between 0.75 and 1.33. Therefore, a value of 1 is used for the coefficient
of variation. Additionally, the distributions are truncated and the lower bound and upper bounds are
set to 1 and 100, the same as in the uniform distribution. A summary of the results is shown in Table
10.3 for the aforementioned three indicators. The results are very similar to that found using the uniform
distribution (see Table 10.1). Additionally, the excellent behaviour and the efficiency of the two proposed
algorithms (for the three indicators) are also confirmed in these benchmarks being e.g. the ARPD]1 of
the ANPA(t = 60) algorithms less than 0.01.

10.6 Conclusions

This chapter addresses the permutation flow-shop scheduling problem to minimise the makespan subject
to that the tardiness of jobs does not exceed a given maximum tardiness. After analysing the problem and
deriving some properties, a constructive heuristic BICH and a non-population based algorithm ANPA
are proposed. The performance of both algorithms has been evaluated against the FL. and GA algorithms
which are the (up to now) state-of-the-art algorithms for the problem under study on an extensive bench-
mark of 540 instances. Additionally, two of the most efficient algorithms for the F'm/|prmu|Cpax problem
are also included in the comparison.

The efficiency of the two algorithms proposed has been shown according to three different measures
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of the quality of the solutions: number of feasible solutions, average relative percentage deviation, and
number of instances with the best solution. Although the determination of the best algorithms for the
problem under study is not trivial due to the existence of infeasible solutions, the proposed algorithms
BICH and AN P A have been found to be the most efficient algorithms for each one of the three indicators
analysed. Among the 494 feasible instances found in the benchmark, AN PA(t = 60) finds the best solution
for 491 instances with an ARPD1 equal to 0.00. The performance of BICH is also noteworthy, as it
improves several iterative improvement algorithms using much lesser CPU time. These results are also
confirmed in other three different benchmarks (of 540 instances each one) generated using three different
distributions for the processing times of the jobs. With respect to the rest of the algorithms, it is not
clear whether A _IGA outperforms GA or vice versa, since the latter A IGA is better for the last two

indicators, but finds less feasible solutions. The same happens when comparing FL and A NEH.
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Chapter 11

Blocking flowshop scheduling problem

In the classical permutation flowshop scheduling problem studied above, unlimited buffers capacity be-
tween two consecutive machines are considered. However, zero-buffer flowshops are very common in
several industrial sectors, such as iron and steel industry, chemical and pharmaceutical industries, just-
in-time production lines and in-line robotic cells (see e.g. [159], [181], [59] and [57]). This problem is
usually denoted as blocking flowshop scheduling problem (BFSP) since a job blocks a machine until the
next machine is available. Therefore, interest in this problem is increasing over the past years ([161]),
although there are not many algorithms as compared to the number of heuristics and metaheuristics for
the traditional permutation flowshop scheduling problem —denoted as PFSP— (see e.g. [172] and [137]),
which is one of the most studied problems in Operations Research.

The problem to minimise total flowtime (makespan) is denoted as Fm|block|)_ C; (F'm|block|Crqz)
according to the notation by [58]. Note that as there are zero-capacity buffers between two consecutive
machines, several jobs cannot wait at the same time before the machine and the job sequence must
therefore be the same on every machine. As a conclusion, n! schedules have to be considered, i.e. the
number of solutions is the permutation of n jobs.

In this chapter, we propose an efficient constructive heuristic for the BFSP with flowtime objective
based on beam search which can easily be adapted to makespan minimisation. The proposed algorithm
outperforms existing heuristics for the Fm|block| Y C; and Fm|block|Cpqz. Additionally, we test adapta-
tions of the most efficient algorithms for the PFSP to minimise makespan and total flowtime (respectively
denoted as Fm|prmu|Cp,q, and Fm|prmu| ) C; according to [58]). We include them in the comparison
since algorithms originally implemented for the PFSP have turned to be efficient algorithms for several
decision problems (see e.g. the iterated greedy proposed by [174] or the NEH heuristic by [127]). The

resulting computational evaluation is composed of a total of 36 heuristics which are fully recoded and

197
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exhaustively compared under the same conditions. Additionally, we introduce a speed-up method to
accelerate the insertion phases of all algorithms.

The rest of the chapter is organised as follows. The state of the art is analysed in Section 11.1. In
Section 11.2, the problem and the notation is described. The beam-search-based constructive heuristic is
proposed in Section 11.3. In Section 11.4, a complete comparison of heuristics is performed. Finally, the

conclusions are discussed in Section 11.5.

11.1 Literature review

In this section, a review of the literature on the problem under consideration is presented. Since there
are heuristics for related scheduling problems that can be adapted to our problem, we also review these

contributions. More specifically, we review:
e Heuristics for the (classical) permutation flowshop scheduling problem to minimise makespan.
e Heuristics for the permutation flowshop scheduling problem to minimise total flowtime.

e Heuristics for the blocking flowshop scheduling problem, both with makespan and flowtime objec-

tives.
e Speed-up procedures developed for related flowshop scheduling problems.

Regarding heuristics for the Fm|prmu|Cy,q. problem, we focus on the most promising ones and refer
the reader to [43], [160] and [172] for more extensive reviews. Among the available heuristics, the NEH
heuristic [127] is, without doubt, the most efficient heuristic for the problem. Its excellent performance
—established by [172]- probably lies in the low computational cost of carrying out the insertion phases
due to the speed-up by [189] (see Section 2.2). Therefore, several papers have focused on improving some
of the phases of the NEH, or on proposing NEH-based heuristics. More specifically, improvements in the
initial order of the NEH are proposed by e.g. [42] and [201]. Regarding improvements in the insertion
phase of the NEH, [150] propose several heuristics (denoted as FRB1, FRB2, FRB3, FRB4 k and FRB5)
where a partial insertion local search method after the insertion of a job is employed. In a similar way,
[211] employ another partial local search based on the interchange of jobs. Several works address the
problem of breaking the ties of the partial makespans when inserting a job, wuch as e.g. [162], [83], [84]
and [85], [35].

Regarding the F'm|prmul " C; problem, the evaluation carried out in Chapter 7 shows that, in terms

of average relative percentage deviation and average relative percentage computation time, the set of
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efficient heuristics is formed by the Raj heuristic by [151]; the LR heuristic proposed by [108]; the RZ
heuristic by [152]; the RZ-LW proposed by [97]; the LR-NEH heuristic proposed by [137]; the IC1, IC2
and IC3 improvement heuristics by [96]; and finally, the PR1 heuristic proposed by [137]. As most of
these heuristics include the LR heuristic as initial or main procedure, [41] propose an improvement of
this method, denoted as FF, which heavily decreases the required CPU time. This procedure has been
incorporated in each heuristic that the LR procedure obtaining excellent results for the heuristics: FF,
FF-FPE (replacing LR by FF in the LR-FPE heuristic by [108]), FF-ICi (ICi heuristics by [96] with FF
instead of LR) and FF-PR1 (PR1 heuristic by [137] using the FF procedure).

Regarding BFSP, several algorithms have been proposed for makespan minimisation. [116] implement
a constructive heuristic, denoted as PF, to minimise cycle time, which constructs a sequence inserting
progressively an unsequenced job with minimal sum of idle and blocking time. [169] propose three con-
structive heuristics (denoted as MM, MME and PFE) to solve the F'm|block|C\,a.. MME and PFE are
variations of the original NEH heuristic where the initial order is replaced by the MM and PF heuristics
respectively. In [163], several NEH-based heuristics are proposed using different mechanisms to break ties
in the first and second phase of the NEH heuristic. The heuristics are compared with the MME and PFE
heuristics. [139] propose eight heuristics (the wPF and PW constructive heuristics and the PF-NEH,
wPF-NEH, PW-NEH, PF-NEH s, wPF-NEHL g and PW-NEHLg improvement heuristics) based on NEH
and LR. The heuristics clearly outperform MME and PFE in terms of quality of the solution and com-
putational effort. In [164], these improvement heuristics have been improved by evaluating the sequences
before and after the insertion phase as well as using the reversibility property.

Regarding the minimisation of total flowtime in the BFSP, [204] introduce an adaptation of the NEH
algorithm using the non-decreasing sum of processing times as initial order. Note that this order outper-
forms the original one for the F'm|prmu| ) C; problem. This heuristic is used as initial sequence for the
metaheuristics proposed by [5] and [31]. [63] and [62] adapt the MME heuristic to minimise total flowtime
as well as proposed two new NEH-based heuristics modifying the initial order (denoted as MME-A and
MME-B). Finally, [161] propose 6 new heuristics for the problem. Firstly, they adapt the PF heuristic
([116]) to the problem and propose two new constructive heuristics denoted as HPF1 and HPF2 modifying
the index to choose a job. Then, they propose three NEH-based heuristics (NPF, NHPF1 and NHPF2)
using the previous heuristics as initial sequences of the NEH.

Finally, regarding speed up methods to accelerate algorithms, they have been successfully applied for
several problems related to flowshop scheduling: the PFSP to minimise total flowtime (see e.g. [96]); the
PFSP to minimise total tardiness (see e.g. [197]); the PFSP to minimise makespan subject to maximum

tardiness (see e.g. [45]); and the distributed PFSP to minimise makespan (see e.g. [124]). However, to
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the best of our knowledge, they have not been applied to the BFSP so far.

11.2 Problem statement

The problem under study can be stated as follows: a set A of n jobs have to be scheduled in a flow shop
consisting on a set M of m machines without intermediate buffers. Each machine is always available and
can process at most one job at the same time. Following the notation established in Section 11.2. Each
job j € N has a non preemptive processing time ¢;; on each machine i € M. Set up times are sequence-
independent and non-anticipatory (see [47]) and thus can be included in the processing times of each job.
Let ¢;; (e;j) represent the departure (start) time of job j from (on) machine i. Note that the departure
time of a job must not necessarily be equal to its completion time, as the next machine can block this
job after its completion. Similarly, ¢;) represents the departure time of job in position £k from machine
i. Thereby, when a new job j is placed in the last position of a partial sequence Il := (71,...,7%),
the departure and the start times of job j can be computed according to Expressions (11.1) and (11.2),
respectively. Additionally, let it; and b; be the total idle and the total blocking time induced by job j,

respectively (see Expressions 11.3 and 11.4).

Cifk] + tizs =1
Cij = max{ci_m +tijaci+l,[k]}, Vi= {2,...,77?,— 1} (11~1)
ci—1,j + tij, t=m
Cilk]> i=1
ey =14 W (11.2)

Ci—1,5, v ’L:{Q,,m}

ity = Zmax{€¢—1,j +tio1,j — cir), 0} (11.3)
i=2
bj =Y max{eiy — (-1 +ti-1;), 0} (11.4)
i=2

As the algorithm proposed in Section is composed of a set of (partial) sequences in each iteration,
let us extend the notation and denote by cfjl and efjl the departure and start times of job j on machine
1 of the lth sequence in iteration k, respectively. Analogously, itfl and b;‘-‘l represent the total idle and

total blocking times of job j on machine ¢ of the lth sequence in iteration k, respectively. Finally, let cfl

k

represent the departure time of job j from the last machine m, i.e. c;?l = Coyil
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Figure 11.1: Example of the proposed algorithm.

11.3 Proposed heuristic

In this section, a beam-search-based constructive heuristic, BS, is proposed to solve the Fm|block|}" C;;

which successfully combines the diversification of population-based metaheuristics with the speed of con-

structive heuristics. The algorithm simultaneously constructs several partial sequences in each iteration

(denoted as candidate nodes) by appending jobs one by one and keeping the best ones (denoted as selected

nodes) over all candidates. A simple example of the algorithm with four jobs is shown in Figure 11.1.

More specifically, the algorithm is composed of the following phases:

e Obtain the initial selected nodes

e For n iterations:

— Construct candidate nodes

— Evaluate candidates nodes

— Select the best candidates nodes (selected nodes)

Let us denote by z (beam width) the number of selected nodes in each iteration. At iteration k

(k=1,...,n), selected node [ (I =1,...,z) is composed of k sequenced jobs (partial sequence) denoted

as Sf:= (sf},...,sp;), and a set of n — k unsequenced jobs denoted as Uf := {uf},...,uk_, }.

First, the algorithm sorts all jobs according to non-decreasing order of indicator §; (see Expression

11.5). Let o := (aq, ...

,Q, . .., Q) denote this order.

(n—2)
4

‘wj+ Y tij, Vi€ [1,n] (11.5)

i=1

&=

where w; is the weighted idle time defined by Expression (11.6) (see [108]):
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m m - Zzl_—ll tl,] .
wj =y —= = Vel (11.6)
=2

The nodes selected in the first iteration are constructed according to the indicator as follows: the
partial sequence S} = (s};) with [ € {1,...,z}, is formed by the job in position [ of the initial order, i.e.

s1; = au; the U} set of unsequenced jobs contains all jobs with the exception of the job in S;}.

Once the initial selected nodes are obtained, in each iteration k, each selected node [ forms n — k

candidate nodes for the next generation. Each candidate node v € {1,...,n — z} is constructed from
selected node [, appending each job in set UF at the end of SF. Let S’fl = (8% s ‘§§+1,v,l) and Z/A{fl be

the corresponding partial sequence and set of unsequenced jobs, respectively. Then, the partial sequence

of this candidate node and its set of unsequenced jobs are defined by Expression (11.7).

St = (S 800) = (SEuly) = (ko sl (11.7)

aﬁz = {alfvb e 7’0’Z+1,v,l} = uzk - uﬁl

Consequently, in iteration k, a total of x - (n — k) candidate nodes are formed. Among these candidate
nodes, the best & are selected for the next iteration. Note that, as each new selected node [’ in iteration
k+ 1 (composed of partial sequence Slk,H, vl € {1,...,2}) is formed by adding job uk, to selected node
| (composed of partial sequence SI), node I selected in iteration k + 1 does not have necessarily to come
from the partial sequence Sl’? (i.e. ! may be different from [). Therefore, it may happen that one node [ is
selected in iteration k, but its partial sequence is not selected for the next iteration (k+1). Let branch[l']
and j ob[l/] denote the values of [ and v respectively for the selected node I and job u¥, which form selected
node I’ in iteration k+ 1. In order to select the candidate nodes for the next iteration (k+1), three issues

have to be considered to evaluate the candidate node which are typically different for each one:

k

o Influence of the chosen job, uy;,

i.e. the last job in the partial sequence Sffl (§£+17U7Z). Obviously,
the departure time of this job on the last machine, cﬁ ko has a direct influence on the final objective
function. Additionally, the job may incur idle and blocking times which may largely influence the
completion times of the subsequent jobs to be inserted. This influence is higher at the beginning

of the algorithm when the partial sequence is relative empty and lower in the last iterations where

the sequence is almost complete as it affects to a smaller number of jobs (in fact, it does not affect

k

vl

to any job in the last iteration). The index L7, (see Expression 11.8), which balances these three

objectives, is used to measure the influence of inserting job u¥,.
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k _ .k n—k—2 L k
Ly = e T a- 257 (it + b)),

(11.8)
VE={1,....n—1},uo={1,...,n—k}HI1={1,...,2}
where a is a parameter to balance the influence of the completion time against that of blocking
and idle time. itﬁﬁ‘,l and b'ﬁﬁll are the sum of idle and blocking times between position k (job &F )
and k£ + 1 (job §ﬁ+1,v,l = u¥)) over all machines, respectively. Note that Ufjﬁ.ll, itﬁ,’;‘,l and bﬁ’;ﬁll can
be calculated by means of the start time, efuﬁll, of job uﬁ'l (placed in the last position of the Slk'
sequence) on machine ¢ and the departure time, cf[k]l, of the previous job (i.e. the job in position k,
8., or equivalently s¥,) which was already computed in the previous iteration of the algorithm (this
fact leads to a high reduction of computational effort since the calculation of the departure times of

the complete sequence is avoided).

e Influence of sequenced (previous) jobs, i.e. SF (or equivalently §;?Ul, V5 < k). Due to the process
employed to construct the candidate nodes, the first k sequenced jobs of candidate node v may be
different to the first jobs of other candidate nodes (e.g. first candidate node is formed by jobs 1
and 2, and second candidate node is formed by jobs 3 and 4). The comparison of these partial
sequences is not trivial. Obviously, when the sequences are complete, the algorithm has to look for
the minimisation of the total flowtime. However, in case of partial sequence composed of different
jobs, several other aspects may have a higher influence. On the one hand, although the goal is the
minimisation of total flowtime, a comparison of the partial sequences based only on this measure
would obviously be influenced by the characteristics of the jobs of each partial sequence. It would
prioritise jobs with low processing times regardless their idle or blocking times. On the other hand,
the exclusive consideration of idle and/or blocking times would miss the relation with the objective
of the scheduling problem: the minimisation of total flowtime. To cover both aspects, the proposed
algorithm uses index F® (see Expression 11.9) to measure the influence of the sequenced jobs of
candidate node v in iteration k. Note that this index is identical for all candidate nodes coming
from selected node [ since it does not consider the contribution of the last job of the sequence
(8% 41.0,)- Furthermore, the contribution of idle and blocking times decrease with the number of

iterations, thus avoiding their high influence in the last iterations.

Ff = Ak +a-(Aith + AbF), VE=1{2,...,n -1}, I ={1,...,2} (11.9)

where At, Ab and Ac are the accumulated idle, blocking and departure time, respectively, defined

by the following expressions:
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& n—k

— 2 ’
kbl Ak . _ .
AZtl' - Athraneh[l/] +7’tbranch[l'],job[l'] ’ n , Vk= {1,...,7?,—2}, S {177T} (1110>

n—=k

bE 7_2,Vk:{1,...,n—2}, '={1,...,2z} (11.11)
n

k1l _ Apk
Ab, T = Ab branchl'],job[l'] ”

branch[l’] +

Ac;“,Jrl = Ac*

k k !
branchll’] + Cbranch[l/],job[l/} + C)\,b'r’anch[l']’ VE= {1’ SRR 2}’ I = {1’ T ,CL‘} (1112)

where Ait), = Ac, = F} =0,V I'={1,...,2}. ¢k is the departure time of an artificial job placed

at the end of the sequence as an estimation of the unscheduled jobs (see the following item).

e Influence of the unsequenced jobs. These are the next jobs to be sequenced in the selected nodes and
hence, they also influence the evaluation of the candidate node. However, their impact on the final
total flowtime is diffused since they are not scheduled yet. As a measure of its influence, we use an
artificial departure time denoted as c§,, which is the departure time of an artificial job A tested in
the last position (position k + 2) of the sequence (after the last job, u¥, or 8§, , ;). The processing
times of this job are equal to the average processing times of all unscheduled jobs of selected node
I (i.e. UF). Note that the chosen job uF, is also considered to have an artificial departure time.
The main reason is that the calculation of this term can be then globally done for all candidate
nodes of selected node [, thus decreasing the complexity of the procedure, which is one of the main

advantages of the proposed algorithm (see 7 for a more detailed explanation).

k

Thus, each candidate node v is evaluated using index G,

(see Expression 11.13) where the best x values
are the nodes selected for the next iteration. The pseudo code of the algorithm is shown in Figure 11.2.
The complexity of the algorithm is bounded by the creation and selection of the candidate nodes, which

2

have a complexity of = - n? - m and z? - n? respectively. Then the global complexity of the algorithm is

max{z -n?-m,z? - n?}.

GM=FF4+LF VE={1,....n—2},e={1,....n—k},l={1,...,2} (11.13)

Speed up procedure

In this section, we introduce a simple speed up procedure to accelerate the insertion phases of the al-
gorithms. This procedure is based on the speed up methods proposed by [96] and [197]. Basically, the

proposed procedure stores the completion times, C;;, of each job j on each machine ¢ before testing a job
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Procedure BS(z)

//Initial Order

Determination of w; and &;, Vj € [1,n];

o := Jobs ordered according to non-decreasing ; breaking ties in favor of jobs with lower w;;
Update S} (s}, = ay) VI and U}! with the remaining jobs.

Ait}, Ac}, F =0, Vi € [1,z];

for k=1ton—2do

//Candidate Nodes Creation

Determination of ¥, ,, bF, ¥ . (cF,, cfnu ) Yo € [l,n— k]l €l,z]
vl vl vl vl

//Candidate Nodes Evaluation

G*, '—Fk—|—ckl—|—a (ztkkl—kbkl) Yo e [1,n—k],l € [1,2]

//Candidate Nodes Selectlon
Determination of the I'-th best candidate node according to non-decreasing G¥, in iteration k.
Denote by branch|l'] the value of the index [ of that candidate node and by job[l'] the value of v,
v e [1,x;

]T[:_,'_l] 1 Ck.branchl],i,job[l’]

/ /Forecasting Phase. Update of the Forecast Index
for ' =1 to x do

Update Sﬁ“ and Ullfﬂ by removing job u?ob[l,]

branchl] from U, k+1 and including in Sk

Determination of c’;ﬁamh[l,] for new selected node I formed by the old selected node br(mch[l/]

with job job[l']. Note that the processing times of the artificial job are equal to the average
processing times of all unscheduled jobs (Ul’fH);

k+1 k —k—2,
AZtl/ AZfb'r‘anch[l ] + thob[l l,branchll’ ] " n
k+1 _ Apk k n—k—2.
Abl/ - Ab anchll’] + byob[l l,branch(l’] = n
k+1 _ k
AC ACb7an(h[l ] + cjob[l l,branchll’] +c 5 ,branch[l’ }
F]ngl Ack+1 +a- (Azti€+1 + Abf“),
end
end

//Final evaluation
Evaluate the flowtime of the x selected nodes and return the best one.

end

Figure 11.2: BS
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in each position. Then, when the job is tested in each position j;, all completion times C;; with j < j;
stay the same and are not calculated again. Although the complexity of the insertion phase remains
the same using this procedure, a strong CPU reduction of about 30%-50% has been achieved for similar
procedures in the literature (see e.g. [96]). Note that the procedures proposed by e.g. [189] and [124]
cannot be adapted since they are based only on the calculation of the makespan and cannot be applied
for the calculation of each completion time on last machine. The proposed speed up procedure has been

incorporated in each insertion phase of all implemented heuristics.

11.4 Computational experiments

In this section, a computational evaluation of heuristics is carried out. To perform the comparison we
follow the following procedure: a design of experiments is carried out in Section 11.4. In Section 11.4,
the implemented heuristics are enumerated. Finally, the computational results of heuristics are shown in

Section 11.4.

Experimental parameter tuning

In this section, we perform an experimental tuning of parameter a in the proposed heuristic on set
Beao. Regarding the values for the parameter z, we consider x € {2,5,15,n/10,n} (see e.g. [108] for
similar values of the parameters in other constructive heuristics working with a pool of partial sequences),
since this parameter is directly proportional to the CPU time and complexity of the algorithm. The
computational experiments for the parameter a are carried out for the proposed BS(z = 5) and the same
value is used for each other value of . We use the following values for parameter a € {1, 2,3, ...,23, 24, 25}.

The relationship between the levels of the parameters is evaluated by means of a non-parametric
Kruskal-Wallis test since normality and homoscedasticity assumptions are not fulfilled. Note that, the
Relative Percentage Deviation RPD3 —Expression (9.7)— is used to measure the quality of the solution of
the heuristic for each instance.

As a result of the experiments, it turns out that there are statistically significant differences between
the levels of the three parameters, since the p-values obtained for the parameters n, m and a are 0.000.

The best value found for parameter a is 14, which is used in Section 11.4 in BS(x) Va € {2,5,15,n/10,n}.

Implemented heuristics

In this section, the heuristics included in the computational evaluation are listed. According to the

literature review in Section 11.1, 11 heuristics have been published so far for this problem. Additionally,
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we adapt 8 and 18 heuristics for the F'm|block|C),q. and for the classical PFSP problem, respectively,
given their excellent performance. Finally, the proposed beam-search-based constructive heuristic is added

to the comparison. In summary, the heuristics implemented are:
e Heuristics of the Fm|block|Y" C;:

— Heuristic NEH_WPT: [204].

— Heuristic MME: [61] (adapted from [169] for F'm|block|Ciaz)-
— Heuristic MME-A: [62].

— Heuristic MME-B: [62] (adapted from [63] for F'm|block|Cinqz)-
— Heuristic NEH-MK: [122].

— Heuristic PF: [161] (adapted from [169] for Fm|block|Caz)-

— Heuristics HPF1 and HPF2: [161].

— Heuristics NPF, NHPF1 and NHPF2: [161].

— Heuristics BS(x), V& € {2,5,15,n/10,n}: Proposed heuristic.
o Heuristics adapted from the Fm|block|C\az:

— Heuristics wPF and PW: [139]. These heuristics are implemented as the original ones. For the
final sequence, the total flowtime is calculated.

— Heuristics PF-NEH(z), wPF-NEH(z) and PW-NEH(z), Yz € {1,2,5}: [139]. In the NEH-
based phase of the algorithms, each evaluation of makespan is replaced by the evaluation of
total flowtime. Note that these heuristics include the evaluation of the objective function before
applying the NEH-based phase (proposed by [164]). The other improvement proposed by [164]

(reversibility property) cannot be applied for total flowtime minimisation.

— Heuristics PF-NEHg(x), wPF-NEHs(z) and PW-NEHs(z), Vo € {1,2,5}: [139]. In both
the NEH-based and the local search phases of the algorithms, each evaluation of makespan is

replaced by the evaluation of total flowtime.

e Heuristics adapted from the traditional PFSP to minimize total flowtime (Fm|prmu|}_ C;). To
adapt the heuristics, each evaluation of the total flowtime of a partial sequence is replaced by the
evaluation of the total flowtime with blocking. Note that the indexes of initial sequences and F'F'

and LR-based heuristics are not changed since the objective is the same.

— Heuristic LR(1): [108].
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— Heuristic FF(x), Vo € {1,2,n/10,n/m}: Section 7.5.

— Heuristic FF-FPE(z,y), Y(z,y) € {(2,n/10), (15,n/10), (n/10,1), (n/10,1), (n/10,7/10),
(n/10,n), (n/m,n), (n,n)}: [108] with FF(z) instead of LR(x) heuristic.

Heuristics FF-ICH1, FF-ICH2 and FF-ICH3: [96] with FF(z) instead of LR(z) heuristic.

Heuristic FF-NEH(x) for = 5,10: [137] with FF(x) instead of LR(x) heuristic.
— Heuristic Raj: [151].
— Heuristic RZ: [152].

— Heuristic RZ_LW: [97].

Heuristic FF-PR1(x) for = = [5, 10, 15]: [137] with FF(x) instead of LR(x) heuristic.

e Heuristics adapted from the traditional PFSP to minimize makespan (Fm|prmu|Che.). Given a
partial sequence, each evaluation of the makespan of this sequence is replaced by the evaluation of

total flowtime with blocking:

— Heuristic NEH proposed by [127].

— Heuristics FRB2, FRB3, FRB4y (with k = [2,4,6,8,10,12]) and FRB5: [150]. Due to the
good results found by the NEH WPT as compared to the original NEH, these heuristics are

initialized in a non-decreasing sum of processing times.

Hence, a total of 36 heuristics are compared in this section. Some of them have been executed for
different values of the parameters yielding a total of 70 heuristics which are tested. All heuristics are
tested under an Intel Core i7-3770 with 3.4 GHz and 16 GB RAM.

Heuristics are evaluated and compared according to the quality of their solutions and their compu-
tational efforts. Traditionally, the former is measured by the Average Relative Percentage Deviation,
ARPD1y, for heuristic h, while the Average CPU time, ACPU;, for heuristic h, is the indicator used to

measure the latter.

Computational evaluation of heuristics

Each implemented heuristic is tested on benchmark B;. This benchmark is the most common benchmark
for the studied problems (see e.g. [204], [61], [63], [62], [165]. Computational results are shown in Table
11.1 in terms of ARPD1 (second and fifth columns) and ACPU (third and sixth columns). The best
ARPD1s are found by the proposed heuristic BS(z) (Vo € {5,15,n/10,n}) being 1.239, 0.687, 1.029
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Figure 11.3: ARPD]1 against ACPU. X-axis (ACPU) is shown in logarithmic scale

and 0.333 respectively. Note the huge distance among the best heuristic (BS(n)) and the best non-
proposed heuristics which is 1.682 found by the PF-NEH},g(5) heuristic. Furthermore, the BS(n) needs in
average 42.73% lesser CPU time than the PF-NEH;5(5), i.e. the ACPUgg(y) is 13.148 seconds while the
ACPUpp.NEH,4(5) 15 22.959 seconds. Graphically, the heuristics are shown in Figure 11.3. More detailed
results of ARPD1 and ACPU for each size for the problem are shown in Table 11.2 and 11.3 respectively.
The proposed heuristic BS(z) (Vx € {2,5,15,n}) IS efficient as there is no other heuristic with lower
ACPU and ARPD]1. The excellent performance of the proposed heuristic is also highlighted by the 33
the new upper bounds found for the problem.

Regarding heuristics adapted from related decision problems, some of them yield an excellent per-
formance as compared to heuristics specifically implemented for the problem under study. Thereby, e.g.
the heuristics PF-NEH(2), FF-FPE(n/10,1) and PF-NEH(5) (with an ARPD1 of 3.22, 3.27 and 2.67 re-
spectively) clearly outperform NEH WPT, MME A, MME, MME B and NPF (ARPD1s of 4.82, 4.55,
4.58, 4.80 and 3.56 respectively) using less ACPU. The PF-NEH(5) heuristic even slightly outperforms
NHPF1 and NHPF2 with 3.08, and 2.92 of ARPD1 respectively. In fact, the best ARPD1 among the
non-proposed heuristics is found by PF-NEHg(5), which was originally proposed for the F'm|block|Cipaz
problem.

In order to statistically justify the efficiency of the proposed heuristic, we compare it with the best

heuristics requiring higher ACPU. We use a Holm’s procedure ([73]) to contrast the following hypotheses:
e Hy: BS(5) = PF-NEH(2)

e H,: BS(15) = FF-ICH2
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Table 11.1: ARPD1s and ACPUs of the implemented heuristics (ordered by increasing ACPU). In bold
it is indicated the proposed set of heuristics.

Heuristic =~ ARPD1 ACPU Heuristic ARPD1 ACPU
PF 4529  0.004 FF-NEH(5) 3340 0813
HPF2 3.349  0.005 |FF-FPE(n/10,n/10) 2.945  0.890
HPF1 3.813  0.005 PW-NEH(5) 3.828  1.091
FF(1) 4028 0.006 FRB4, 3452 1.509
wPF 6.423  0.007 FF-NEH(10) 3286  1.623
FF(2) 3.750  0.012 FRB4, 3.025  2.386
BS(2) 2.614 0.019 FRB4s 2.807  3.205
BS(5) 1.239  0.043 FRB4s 2.684  3.946

wPF-NEH(1) 4915 0.044 FF-ICHI 2.313  4.271

PF-NEH(1) 3670 0.051 | PF-NEHg(1) 2462  4.548
Raj 6.184  0.063 FRB4 2584 4.723

wPF-NEH(2)  4.304 0.087 | FF-FPE(n/10,n)  2.258  4.776
PF-NEH(2) 3221 0.101 | PW-NEHg(1) 3.560  4.847

FF(n/m) 3.573 0.117 | FF-FPE(n/m,n) 2.250  5.058

BS(15) 0.687 0.127| wPF-NEH.s(1)  3.508  5.225

PwW 5.926  0.182 FRB4,2 2.558 5.372

LR(1) 4039 0184 | FF-FPE(n,n) 2.209  6.943

wPF-NEH(5)  3.732 0216 | PF-NEHg(2)  2.120  9.504

PW-NEH(1) 4.885 0.219 RZ LW 3.891 9.651
FF(n/10) 3548 0224 | PW-NEH;s(2)  3.197 10.164
FF-FPE(n/10,1) 3.266 0.234 FF-ICH2 1.896  10.745
PF-NEH(5)  2.669 0.250 | wPF-NEH;s(2)  3.056 11.037
NEH 9.043  0.262 BS(n) 0.333 13.148
NEH WPT 4.816 0.264 FRB2 3.814 13.749
MME_ A 4.553  0.266 PF-NEHps(5) 1.682  22.959
MME 4.576  0.267 FF-PR1(5) 1.978  26.477
MME_B 4797 0268 | PW-NEHg(5)  2.647 28.197
NHPF1 3.080 0277 | wPF-NEHrs(5) 2516 29.102
NHPF2 2,921  0.277 FF-ICH3 1.902  29.157
NPF 3.563  0.277 FF-PR1(10) 1.801  34.279
BS(n/10)  1.029 0.403| FF-PRI(15) 1720 35.965
PW-NEH(2) 4.375 0.439 FRB3 2.321  96.546
FF-FPE(15,n/10) 2.879  0.732 NEH-MK 2.229 96.771
RZ 6.066  0.792 FRB5 2.269 176.403

FF-FPE(2,n/10) 3.057 0.801
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Table 11.2: Detailed values of ARPD1 for each size of the problem. The proposed set of heuristics is
indicated in bold.

Size of the problem (n x m) \ARPDI

Heuristic 20x5 20x10 20x20 50x5 50x10 50x20 100x5 100x10 100x20 200x10 200x20 500x20
NEH_WPT 2.02 2.84 3.30 5.03 4.31 3.56 6.70 5.31 4.9 6.97 5.36  7.00 1816
MME 2.88 2.74 2.17 5.6 3.81 3.31 5.94 527 3.81 7.08 5.67 7.06 4.576
MME_A 2.76 2.69 2.20 5.02 3.88 3.21 5.90 5.26 4.30 7.03 5.35 7.05 4.553
MME_B 3.39 3.26 3.34 4.80 4.15 3.35 6.40 5.41 4.84 6.69 5.17 6.69 4.797
NEH-MK 1.13 0.92 0.69 2.42 1.51 0.93 3.50 2.42 1.84 4.22 2.82 4.35 2.229
PF 4.78 4.63 4.23 5.26 3.90 4.81 7.80 4.47 3.96 4.16 3.39  2.94 4.529
HPF1 4.04 4.74 3.87 3.12 4.12 4.64 292 350 4.48 3.26 3.86 3.11 3.813
HPF2 3.71 3.02 3.80 2.99 2.50 3.96 2.73 2.94 4.72 294 3.64 3.25 3.349
NPF 2.62 249 2.65 4.15 2.94 3.34 6.41 4.18 3.49 4.16 3.39 2.94 3.563
NHPF1 2.60 2.58 2.67 2.80 2.99 3.26 2.86 3.42 3.69 3.15 3.74 3.11 3.080
NHPF2 2.73 2.21 258 271 2.50 3.14 2.74 294 3.80 2.83 3.63 3.25 2.921
BS(2) 1.64 1.90 2.34 2.65 2.25 2.99 2.65 2.51 3.04 273 3.50 3.18 2.614
BS(5) 0.50 1.04 1.72 1.17 0.71 1.44 1.25 1.09 1.60 1.33 1.46 1.56 1.239
BS(15) 0.17 1.13 1.64 0.33 0.41 0.94 0.68 0.49 0.41 0.67 0.54 0.84 0.687
BS(n/10) 1.64 1.90 2.34 1.17 0.71 1.44 0.71 0.48 0.74 0.44 0.39  0.39 1.029
BS(n) 0.21 1.09 1.56 0.11 0.12 0.58 0.12 0.03 0.07 0.00 0.09 0.00 0.333
wPF 6.11 4.77 3.58 8.64 7.08 4.06 10.47 7.10 4.18 9.20 573  6.07 6.423
PW 7.22 2.73 262 9.58 6.11 2.46 10.57 6.60 3.63 8.67 5.14  5.77 5.926
PF-NEH(1) 2.87 2.49 2.73 4.35 2.90 3.87 7.10 4.02 3.75 4.17 298 2.81 3.670
PF-NEH(2) 2.45 2.08 2.13 4.20 2.15 2.88 6.55 3.45 3.03 4.02 289 2.72 3.221
PF-NEH(5) 1.96 1.45 1.63 3.52 1.97 2.26 5.57 243 2.67 3.51 2.62 2.43 2.669
wPF-NEH(1) 2.87 222 240 6.16 4.98 3.04 875 540 3.60 873 518 5.64 4.915
wPF-NEH(2) 2.61 1.92 1.88 5.50 B3.58 2.44 8.00 5.26 3.11 7.47 4.53 5.35 4.304
wPF-NEH(5) 1.81 1.74 1.47 4.68 3.06 1.73 7.25 4.86 251 6.69 3.86 5.14 3.732
PW-NEH(1) 2.84 2.58 2.86 6.78 4.44 1.89 9.52 5.85 3.20 815 4.82 5.61 4.885
PW-NEH(2) 2.62 2.39 1.63 5.61 3.88 1.77 9.25 5.32 2.80 7.68 4.23  5.34 4.375
PW-NEH(5) 1.96 1.73 1.44 5.26 3.09 1.50 7.54 4.97 2.60 6.74 3.90 5.21 3.828
PF-NEH,g(1) 1.52 1.08 1.04 3.30 2.04 1.21 5.41 3.17 2.30 3.70 2.37 2.39 2.462
PF-NEH]| g(2) 1.03 0.89 0.71 3.10 1.30 1.01 4.92 258 1.85 3.54 2.22 2.27 2.120
PF-NEH{,g(5) 0.65 0.47 0.33 2.48 0.97 0.71 4.03 1.88 1.48 3.12 1.95 2.10 1.682
wPF-NEH[ g(1) 1.78 1.21 0.98 4.59 3.13 1.47 5.52 4.32 2.87 6.53 4.45 5.25 3.508
wPF-NEH[ g (2) 1.09 1.01 0.66 3.88 2.38 1.22 4.87 4.13 238 6.15 4.00 4.93 3.056
wPF-NEH[g (5) 0.62 0.49 0.30 B3.16 1.97 0.65 4.22 3.64 1.92 523 3.31 4.69 2.516
PW-NEH[g (1) 1.91 0.81 0.77 5.12 3.29 1.31 6.20 4.34 2.74 6.67 4.24  5.33 3.560
PW-NEH[.g(2) 1.37 0.68 0.63 4.40 2.63 1.20 6.16 3.98 2.33 6.06 3.82  5.10 3.197
PW-NEH[.g(5) 0.94 0.48 0.37 3.60 1.93 0.78 4.72 3.40 1.97 5.25 3.49 4.82 2.647
LR(1) 4.30 2.99 2.25 6.00 3.50 2.25 7.13 5.11 2.60 559 2.94  3.81 4.039
FF(1) 3.99 2.74 2.34 6.21 3.36 2.38 6.74 5.68 2.63 5.28 3.21  3.77 4.028
FF(2) 3.64 2.63 1.96 5.65 3.30 2.28 6.33 5.23 2.35 4.92 3.10 3.61 3.750
FF(n/10) 3.64 2.63 1.96 5.21 3.14 2.21 6.17 4.43 210 4.74 2095 3.38 3.548
FF(n/m) 3.47 2.63 2.34 5.15 3.14 2.28 6.10 4.43 218 4.74 2097 3.43 3.573
FF-FPE(2,n/10) 2.54 2.04 1.53 4.82 2.91 1.71 5.19 3.83 203 4.13 278 3.18 3.057
FF-FPE(15,n/10) | 2.46 2.04 1.51 4.30 2.72 1.55 4.91 3.46 1.83 3.99 2.70 3.07 2.879
FF-FPE(n/10,1) 3.07 2.19 1.54 4.92 2.98 1.95 5.88 4.05 1.97 4.52 2.86 3.26 3.266
FF-FPE(n/10,n/10) | 2.54 2.04 1.53 4.57 2.95 1.56 5.10 3.60 1.83 3.99 2.71  2.93 2.945
FF-FPE(n/10,n) | 1.53 1.43 1.10 3.22 1.99 1.28 3.30 2.93 1.65 3.41 2.53 2.73 2.258
FF-FPE(n/m,n) 1.57 1.43 1.12 3.07 1.99 1.27 3.17 2.93 1.70 3.41 2.50 2.84 2.250
FF-FPE(n,n) 1.57 1.43 1.11 3.07 1.91 1.14 3.17 2.88 1.65 3.36 2.51  2.72 2.209
FF-ICH1 1.74 0.96 0.78 3.19 2.03 1.12 4.28 2.85 1.64 3.72 2.51 2.93 2.313
FF-ICH2 1.46 0.76 0.72 2.38 1.64 0.92 2.94 239 1.51 209 227 2.78 1.896
FF-ICH3 1.55 0.76 0.77 2.41 1.74 0.84 293 221 148 3.08 229 2.76 1.902
FF-NEH(5) 2.60 2.01 1.60 5.09 2.80 1.93 5.98 4.53 2.16 4.75 2.96 3.57 3.340
FF-NEH(10) 2.60 2.01 1.59 5.02 2.80 1.92 5.93 4.23 206 4.69 296 3.54 3.286
Raj 442 320 3.54 6.22 4.91 4.96 943 662 6.21 928 652 8.89 6.184
RZ 3.68 2.20 2.01 6.52 5.11 B3.46 9.07 7.48 5.40 10.33 7.62 9.83 6.066
RZ_LW 1.48 1.81 0.92 4.12 3.39 2.51 5.67 4.77 3.65 6.35 5.06 6.96 3.891
FF-PRI1(5) 0.59 0.65 0.29 2.37 1.35 0.60 4.02 298 1.55 3.78 2.36  3.19 1.978
FF-PR1(10) 0.43 0.39 0.22 2.05 1.31 0.42 3.85 2.60 1.38 3.53 2.26  3.17 1.801
FF-PR1(15) 0.37 0.36 0.21 2.05 1.09 0.41 3.57 2.38 1.31 3.51 2.22  3.17 1.720
NEH 6.26 5.27 3.69 11.27 8.53 6.51 12.93 10.74 8.09 13.83 9.87 11.55 | 9.043
FRB2 1.48 1.75 0.62 4.07 3.07 1.52 6.24 5.06 3.05 7.19 4.92 6.81 3.814
FRB3 1.30 0.88 0.71 2.73 1.58 1.15 3.82 257 1.87 4.05 2.88 4.31 2.321
FRB4y 1.95 1.67 1.65 3.40 2.92 1.71 5.27 3.58 3.02 6.13 4.17 5.95 3.452
FRB4, 1.62 1.16 1.13 3.10 2.43 1.73 4.65 3.62 247 524 3.69 5.46 3.025
FRB4g 1.49 1.23 0.75 2.96 2.37 1.52 4.23 3.07 252 487 3.46 5.21 2.807
FRB4g 1.31 1.02 0.86 2.90 1.84 1.41 4.32 3.01 2.28 4.84 3.49  4.93 2.684
FRB41( 1.30 0.96 0.77 2.93 1.75 1.40 4.22 2.81 2.08 4.49 3.28 5.01 2.584
FRB4]o 1.30 0.96 0.81 2.74 1.69 1.40 4.13 2.72 2.36 4.44 3.21  4.93 2.558
FRB5 1.25 0.94 0.69 2.58 1.63 0.79 3.87 2.56 1.76 4.13 2.86 4.16 2.269
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Table 11.3: Detailed values of CPU times for each size of the problem. The proposed set of heuristics is
indicated in bold.

o Size of the problem (n x m)
Heuristic 20x5 20x10 20x20 50x5 50x10 50x20 100x5 100x10 100x20 200x10 200x20 500x20 lacpu
NEH_WPT 0.00 0.00 0.00 0.00 0.00 0.0 0.0l 0.0l 0.02 0.07 0.16  2.89 0.264
MME 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.07 0.16 2.91 0.267
MME_A 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.07 0.16  2.90 0.266
MME_B 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.07 0.16  2.92 0.268
NEH-MK 0.00 0.00 0.01 0.03 0.06 0.11 0.39 0.72 1.53 10.39 24.24 1123.77 | 96.771
PF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.004
HPF1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.04 0.005
HPF2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.0l 0.04 0.005
NPF 0.00 0.00 0.00 0.00 0.00 0.01 0.0l 0.0l 0.03 0.08 0.17  3.02 0.277
NHPF1 0.00 0.00 0.00 0.00 0.00 0.01 0.0l 0.0l 0.03 0.08 0.17 3.02 0.277
NHPF2 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.0l 0.03 0.08 0.17 3.02 0.277
BS(2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.04 0.14 0.019
BS(5) 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.03 0.05 0.07 0.33 0.043
BS(15) 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.04 0.06 0.12 0.18 1.04 0.127
BS(n/10) 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.038 0.04 0.16 0.25  4.33 0.403
BS(n) 0.00 0.00 0.00 0.04 0.05 0.06 0.28 0.33 0.45 4.10 5.03 147.44 | 13.148
wPF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.05 0.007
PW 0.00 0.00 0.00 0.00 0.00 0.01 0.0l 0.01 0.02 0.07 0.14 1.92 0.182
PF-NEH(1) 0.00 0.00 0.00 0.00 0.00 0.01 0.0l 0.0l 0.02 0.03 0.07 0.48 0.051
PF-NEH(2) 0.00 0.00 0.00 0.00 0.00 0.01 0.0l 0.0l 0.03 0.05 0.13 0.96 0.101
PF-NEH(5) 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.07 0.13 0.32  2.39 0.250
wPF-NEH(1) 0.00 0.00 0.00 0.00 0.00 0.01 0.0l 0.01 0.02 0.03 0.06 0.41 0.044
wPF-NEH(2) 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.03 0.05 0.11  0.82 0.087
wPF-NEH(5) 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.06 0.12 0.28  2.05 0.216
PW-NEH(1) 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.09 0.19  2.27 0.219
PW-NEH(2) 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.06 0.18 0.37  4.58 0.439
PW-NEH(5) 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.07 0.15 0.44 0.91 11.41 1.091
PF-NEH; g(1) 0.00 0.00 0.00 0.01 0.02 0.04 0.06 0.11 0.23 1.00 2.37 50.74 | 4.548
PF-NEH] g(2) 0.00 0.00 0.01 0.02 0.03 0.07 0.11 0.23 0.48 1.84 5.07 106.19 | 9.504
PF-NEH7 g (5) 0.00 0.01 0.01 0.03 0.07 0.17 0.28 0.50 1.30 4.50 12.51 256.12 | 22.959
wPF-NEH[ g (1) 0.00 0.00 0.00 0.01 0.02 0.04 0.07 0.11 0.25 1.25 2.25 58.69 | 5.225
wPF-NEH[ g (2) 0.00 0.00 0.01 0.02 0.03 0.07 0.13 0.21 0.47 2.27 5.03 124.21 | 11.037
wPF-NEHTg (5) 0.00 0.01 0.01 0.04 0.08 0.16 0.34 0.55 1.28 5.75 13.88 327.12 | 29.102
PW-NEHp,g(1) 0.00 0.00 0.00 0.01 0.02 0.03 0.08 0.13 0.29 1.25 3.12 53.22 | 4.847
PW-NEHT g (2) 0.00 0.00 0.01 0.02 0.04 0.07 0.15 0.24 0.58 2.72 6.28 111.86 | 10.164
PW-NEHT.g(5) 0.00 0.01 0.01 0.04 0.08 0.16 0.37 0.59 1.43 6.35 14.57 314.74 | 28.197
LR(1) 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.07 0.14 1.95 0.184
FE(1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.05 0.006
FF(2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0l 0.01 0.02 0.10 0.012
FF(n/10) 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.0l 0.02 0.08 0.16 2.40 0.224
FF(n/m) 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.0l 0.0l 0.08 0.08 1.20 0.117
FF-FPE(2,n/10) 0.00 0.00 0.00 0.00 0.00 0.01 0.0l 0.02 0.04 0.14 0.38 9.01 0.801
FF-FPE(15,n/10) | 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.06 0.20 0.45 7.99 0.732
FF-FPE(n/10,1) 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.03 0.09 0.17  2.49 0.234
FF-FPE(n/10,n/10) | 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.22 0.49  0.86 0.890
FF-FPE(n/10,n) | 0.00 0.00 0.00 0.01 0.01 0.03 0.07 0.11 0.23 1.04 2.41 53.40 | 4.776
FF-FPE(n/m,n) 0.00 0.00 0.00 0.01 0.01 0.03 0.08 0.11 0.22 1.04 2.33 56.86 | 5.058
FF-FPE(n,n) 0.00 0.00 0.00 0.02 0.03 0.05 0.11 0.20 0.40 1.73 3.76 77.00 | 6.943
FE-ICH1 0.00 0.00 0.00 0.01 0.02 0.03 0.07 0.11 0.25 0.90 1.97 47.88 | 4.271
FF-ICH2 0.00 0.00 0.01 0.02 0.03 0.06 0.14 0.23 0.46 2.42 5.90 119.68 | 10.745
FF-ICH3 0.00 0.00 0.01 0.03 0.04 0.08 0.34 0.50 0.82 6.42 10.97 330.67 | 29.157
FF-NEH(5) 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.07 0.22 0.50 8.88 0.813
FF-NEH(10) 0.00 0.00 0.00 0.01 0.01 0.02 0.04 0.06 0.13 0.43 1.00 17.76 | 1.623
Raj 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.0l 0.02 0.04 0.67 0.063
RZ 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.08 0.06 0.20 0.47  8.71 0.792
RZ_LW 0.00 0.00 0.00 0.01 0.02 0.04 0.08 0.14 0.41 1.60 4.42 109.08 | 9.651
FF-PRI1(5) 0.00 0.01 0.01 0.04 0.07 0.15 0.26 0.55 1.20 4.97 12.14 208.32 | 26.477
FF-PR1(10) 0.01 0.01 0.02 0.08 0.14 0.31 0.54 1.13 2.44 10.20 23.93 372.53 | 34.279
FEF-PR1(15) 0.01 0.02 0.03 0.11 0.21 0.47 0.83 1.68 3.81 15.22 36.66 372.54 | 35.965
NEH 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.07 0.16 2.87 0.262
FRB2 0.00 0.00 0.01 0.01 0.03 0.14 0.06 0.23 0.97 1.67 8.19 153.68 | 13.749
FRB3 0.00 0.00 0.01 0.03 0.06 0.11 0.38 0.70 1.49 10.25 23.88 1121.64 | 96.546
FRB4g 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.11 0.38 0.89 16.60 | 1.509
FRB4, 0.00 0.00 0.00 0.01 0.01 0.03 0.04 0.08 0.17 0.59 1.41 26.29 | 2.386
FRB4g 0.00 0.00 0.00 0.01 0.02 0.03 0.06 0.11 0.23 0.77 1.86 35.38 | 3.205
FRB4g 0.00 0.00 0.00 0.01 0.02 0.04 0.07 0.13 0.28 0.95 2.29 43.56 | 3.946
FRB41( 0.00 0.00 0.01 0.01 0.02 0.04 0.08 0.15 0.32 1.12 2.69 52.23 | 4.723
FRB4]o 0.00 0.00 0.01 0.02 0.03 0.05 0.09 0.17 0.37 1.28 3.06 59.39 | 5.372
FRB5 0.00 0.00 0.01 0.04 0.08 0.17 0.62 1.11 2.61 17.50 41.14 2053.54 | 176.403
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i| H; p-value Mann-Whitney o/(k —i+ 1) Holm’s Procedure
1| BS(5) — PF-NEH(2) _ 0.000 R 0.0167 R
2 BS(15) = FF-ICH2 0.000 R 0.0250 R
3| BS(n) = PF-NEH_s(5) 0.000 R 0.0500 R

Table 11.4: Holm’s procedure.

Hypothesis p-value Mann-Whitney
HPF2 = HFP1 0.043 R
HPF2 = FF(2) 0.129

Table 11.5: Comparison of HPF2 against HPF1 and FF(2) using a Mann-Whitney non-parametric test.

] H3 BS(H) - PF—NEHL5(5)

We use a non-parametric Mann-Whitney test assuming a 0.95 confidence level (i.e. o = 0.05) to estab-
lish the p-value of each hypothesis (see e.g. [138] for similar statistical approach). In Holm’s procedure, a
hypothesis ¢ among a total of k (ordered in ascending order of p-values) is rejected if its p-value is lower
than a/(k — i+ 1). The results of the procedure are shown in Table 11.4. Each p-value is 0.000 and
therefore, each hypothesis can be rejected.

Regarding the fastest heuristics, i.e. HPF1, HPF2, PF, wPF, FF(1) and FF(2), the best ARPD1 is
found by HPF2. We perform again a Mann-Whitney test to establish the efficiency of HPF1 using the
same confidence. We compare it with both HPF2 and FF(2). Results are shown in Table 11.5. There is

no statistical significant difference between HPF2 and FF(2).

11.5 Conclusions

In this chapter, an efficient beam-search-based constructive heuristic is proposed. The heuristic constructs
a pool of partial sequences in each iteration appending jobs at the end of the most promising sequences. An
index based on the idle, blocking and completion times of the jobs is introduced to determine the selected
jobs in each iteration. Thereby, the heuristic adopts a beam-search-based strategy which successfully
combines the diversification of population-based algorithms and the speed of constructive heuristics.

The proposed heuristic is compared with the best known constructive and improvement heuristics
both for the problem under consideration and for related scheduling problems. A total of 36 heuristics are
tested in an exhaustive computational evaluation using the set of instances B, where each heuristic has
been reimplemented in C# to perform a fair comparison. Additionally, a speed up procedure has been
introduced to accelerate the insertion phases of each heuristic. This procedure has been included in each
insertion phase if applicable.

Among the implemented heuristics, the best ARPD1 are found by the proposed heuristic BS(x)
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(Vx € {5,15,n/10,n}). 33 new upper bounds for the well-known Taillard benchmark are found by
these heuristics (which means that new best-so-far solutions have been found for more than 27% of
these instances). The computational experience also highlights the good performance of several heuristics
adapted from related scheduling problems, particularly from the Fm/|block|C),q. problem. This fact may

speak for certain correlation between both problems and opens some avenues for further research.



Chapter 12

Parallel PFSP

Although the majority of scheduling problems in the literature assumes that the jobs have to be scheduled
in a single factory, the number of companies using this environment is decreasing ([121, 124, 205]). Instead,
a multi-factory environment is becoming more and more important, since it reduces production costs
and risks while increases the product quality (see e.g. [82]). As a consequence, distributed production
scheduling problems dealing with both the allocation of jobs to different factories and their subsequent
scheduling has been receiving an increasing attention in the literature (e.g. [79, 78, 13, 14, 26]). Among
this type of decision problems, [124] recently presented the so-called distributed permutation flowshop
scheduling problem, or DPFSP in the following. In this problem, a set of n jobs has to be processed in
one of F' identical factories, each one consisting of m machines that all jobs must visit in the same order.
The decisions involved in this problem are to simultaneously decide in which factory the jobs have to be
processed and which is the sequence of the jobs for each factory. If the objective sought for this problem
is the minimisation of the global makespan (i.e. the maximum makespan across the F' factories), then the
problem can be denoted as DF|prmu|Cinq, (see [124]) following the well-known notation of [58].

The problem under consideration can be seen as a generalization of the well-known Permutation
Flowshop Scheduling Problem since, once a set of jobs has been assigned to a factory, the remaining
decision problem is a PFSP. Since the latter problem is known to be NP-hard for more than two machines
[55], DF|prmu|Ciqq is also NP-hard for m > 2. Therefore, researchers have focused on finding methods
able to find good —but not necessarily optimal— solutions within a reasonable computational effort. Among
them, the works by [124, 53, 54, 205, 105] have provided increasingly better heuristics for the problem.

In this chapter, a new efficient approximate algorithm is proposed for the DPFSP. This algorithm is
based on one of the most efficient methods for the PFSP (i.e. the iterated greedy algorithm) and exploits

the specific structure of solutions of the problem, thus allowing an up-to 30% reduction of the search

215
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space. Furthermore, two new efficient local search methods are embedded in our proposal to improve the
so-found solutions. The results prove that the proposed algorithm is very effective, being the best one for
each size of the problems in the testbed of [124]. Indeed, new upper bounds are found for 27.6% of the
instances in this testbed.

The remainder of the chapter is organized as follows: in Section 12.1 the problem under consideration
is described along with its state-of-the-art; in Section 12.2 the proposed algorithm is detailed; in Section
12.3 the algorithm is compared with the rest of existing heuristics in the literature; and, finally, in Section

12.4 the main conclusions are presented.

12.1 Problem statement and state-of-the-art

The problem under consideration can be stated as follows: n jobs have to be scheduled in one of the F'
flowshop-factories consisting of m machines. Each factory is identical with the same set of m machines
and is able to process all jobs. Once a job is assigned to a factory, it has to be processed there without
being transferred to another factory. On each machine 4, each job j has a processing time denoted as t;;
regardless the factory f where the job is processed. The problem determines the sequence 7/, formed
by nys jobs, to be scheduled in each factory f. Therefore, a solution 7 is formed by the sequence in each
factory (m = [n',...,a/ ..., 7F]). Let us C{j be the completion time of job j in machine i when assigned
to factory f, and CJ .. = Cpae(7f) the makespan of factory f. Then Cruae = Crnaz () denotes the global
makespan. i.e. the completion time of the last job to be processed in any factory. Additionally, m/[i]
is employed to denote the element of factory f in position i. By using fja. to denote the factory with
maximum makespan, the global makespan can be also written as CJmas.

On one hand, the DPFSP can be seen as a special case of the distributed assembly permutation
flowshop scheduling problem (DAPFSP), see [69]. When each factory is formed by exactly two machines,
the problem has also been studied in the literature under the name of Parallel Flowline [196] or Parallel
Flowshops [9]. In this special case, the problem turns to be a pure assignment problem, since Johnson’s
rule [80] can be applied to find the optimal sequence for each shop (examples of heuristics can be found
in [219, 3]). On the other hand, it has been already mentioned that it is a generalization of the PFSP,
which is one of the main combinatorial optimization problems [220] and in consequence one of the most
studied scheduling problems [138]. As mentioned before, the PFSP was proved to be NP-complete for
more than three machines. In order to provide efficient approximate methods for this problem, numerous

contributions have been presented in the literature (see Chapter 4.2).

The first heuristics to solve the DPFSP were proposed by [124]. They suggested four constructive
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heuristics, denoted NEH1, NEH2, VND(a) and VND(b), following the ideas taken from the PFSP and
employing Taillard’s acceleration. More specifically, NEH1 and NEH2 are adaptations to the problem of
the original NEH by means of using two assignment rules to choose the factory where a job has to be

introduced were tried, i.e.:
1. To allocate the job to the factory with the lowest current makespan (included in the NEH1 heuristic).

2. To allocate the job to the factory that can process it at the earliest time (used in NEH2 algorithm).

On the other hand, VND(a) and VND(b) are composed of a first step in which the NEH2 heuristic is
performed, and then its solution is improved by means of a simple variable neighborhood descent consisting
of two different neighborhoods and two different acceptance criteria, one for VND(a) and another for
VND(b).

Using NEH2 and VND(a) as initial solutions, [53] were the first authors who proposed an iterated
optimization algorithm for the problem. More specifically, they presented a genetic algorithm with a
local search phase including mechanisms of exchange and insertion of jobs. Their proposal was later
outperformed by the tabu search algorithm (TS) by [54], in which partial sequences of two different
factories were iteratively exchanged and improved by means of several enhanced local search based also
on methods of exchange and insertion of jobs. Next, [205] implemented an Estimation of Distribution
Algorithm (EDA), although their proposal was not compared with the tabu search algorithm from [54],
arguing that no results were listed for direct comparisons. Finally, [105] proposed for the problem a
variation of the iterated greedy, denoted MIG, in which the size of the destruction was randomly chosen
between two bounds and the temperature of a simulated annealing-like acceptance criterion decreased
with the iterations. However, they do not include any local search phase in their algorithm to improve
the solution. Their algorithm was compared with algorithms implemented in [53, 54] concluding that the
MIG is the most efficient. However, the CPU times for each instance of the testbed were different for each
heuristic under comparison so there is up-to-now no comparison of the state-of-the-art algorithms under
the same exact conditions.

To summarise the state-of-the-art in the DPFSP problem, there are two types of algorithms available:

1. Very fast heuristics, i.e. NEHI1, NEH2, VND(a) and VND(b). They are simple or composite
heuristics (see notation of [49]) where the computational time is non controllable by the decision-

maker and the solutions can be quickly found even for large size of the problem.

2. Tterative improvement algorithms, i.e. TS, EDA, and MIG. The improvement phase of these algo-

rithms is performed iteratively improving the solutions —usually based on any of the aforementioned
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very fast heuristics— at the expense of substantially increasing the computation times. To the best
of our knowledge, there are no direct comparison among these algorithms under the same conditions

in the literature.

In this chapter, we focus in the second type of algorithms. Thereby, we first implement these algorithms
(MIG, TS and EDA) using the same computer and programming language and reporting the results in
Section 12.3. By doing so, a direct comparison among these algorithms is provided. Additionally, in
Section 12.2, we propose a new heuristic for the DPFSP that uses the specific structure of solutions of
the problem to reduce the search space and that improves the results obtained by existing algorithms, as

we show in a subsequent computational experience in Section 12.3.

12.2 The proposed bounded-search iterated greedy algorithm

In this chapter we propose an algorithm labeled Bounded-Search Iterated Greedy (BSIG) which can be
seen as a special case of the Iterated Greedy (IG) algorithm [174]. The IG starts with an initial solution
and then iteratively applies four steps. First, a number of jobs are taken out of the sequence. Then these
jobs are again inserted in the sequence, one by one, following a greedy procedure until no more job has to
be inserted. After that, a local search mechanism is performed in order to improve the solution. Finally, a
simulated annealing procedure decides if the actual sequence is kept as iteration sequence. IG is one of the
best algorithms for the PFSP (see e.g. [138]) and it has been successfully applied to a variety of scheduling
problem, such as the sequence dependent setup times problem [175], flowshop scheduling problem with
blocking [163], unrelated parallel machine scheduling [39], or the no-wait flowshop scheduling problem
[140].

BSIG also iteratively constructs and destructs a solution trying to improve it in each iteration by
means of three local search phases. In order to reduce the search space, two properties are derived in
Subsection 12.2. In Subsection 12.2, the main procedure of BSIG is described. Its construction phase is
detailed in Subsection 12.2, while in Subsections 12.2 and 12.2, two new local search phases are described.
Finally, in Section 12.2 a full factorial design of experiment is carried out in order to obtain the best

values of the parameters of the algorithm.

Problem properties

It is clear that, when a job is assigned to a specific factory in the DPFSP, the makespan of this factory is
increased by a certain value. The following properties serve us to define lower and upper bounds for this

makespan:
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Property 12.2.1. (Lower bound on makespan): The makespan of a factory with m machines must
increase at least min; (t;;)Vt;; > 0 with i € [1,--- ,m] when a new job I is assigned to this factory,

regardless its specific position in the schedule of this factory.

Proof. The proof of this property is obvious: Before assigning job [ in position k of the sequence, there
was a set H of machines (with |H| > 1 being at least one in the first machine) where there was no idle
time between positions k-1 and k (worst case). Hence, the new completion times of the jobs placed after
position k are increased at least the processing time t5,; in each machine h € H and at least minpep (th,)
in the rest of machines, with minnen (th) > minep,... m) (t1). This fact proves that the makespan of

the factory after introducing the job increases at least the minimum processing time of the job [. O

Property 12.2.2. (Upper bound of makespan): The makespan of a factory with n — 1 jobs and with
m machines must increase at most > .-, t;; with i € [1,---,m] when a new job I is assigned to this

factory, regardless its specific position in the schedule of the factory.
Proof. The proof of the property is obvious using the same reasoning as in Property 12.2.1. O

Both properties can be useful for the DPFSP and have been taken into account in the design of BSIG.
Since BSIG includes iterations where a job has to be assigned to one of the f factories, there are f possible
options. The idea is to discard the options where its lower bound (according to Property 12.2.1) is higher
than the current best value of the objective function. The effect in the reduction of the search space of
Property 12.2.1 will be explained in detail in Section 12.3. However, Property 12.2.2 was not found to be
significant for the algorithm and it has not been incorporated in the BSIG. Note that more sophisticated
(and tighter) lower bounds for the makespan of each factory have been tested, however they have not
resulted in a significant improvement of the objective function due to the increase in the CPU time when
the lower bound is calculated. In contrast, the simple lower bound of Property 12.2.1 can be calculated
without increasing the complexity of the algorithm, since the minimum processing time of each job is

obtained at the beginning of the algorithm.

Main procedure

The main procedure of the proposed algorithm is summarised in Figure 12.1. It starts with the imple-
mentation of the fast constructive heuristic NEH2 of [124]. Once an initial solution is so-obtained, it
is improved by using three different local search methods (LS1, RLS1 and RLS2) before entering in the
iterated procedure. The local search method LS1 was presented in [124] and is a simple iterative improve-

ment algorithm for each factory using a first-improvement type pivoting rule. This local search method
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has been successfully applied in numerous algorithms for PFSP to minimize makespan and total flowtime
(see e.g. [174, 96]). In Figure 12.2 the pseudo code of this method is shown.
When the solution cannot be further improved, the algorithm begins an iterative procedure composed

of the following four phases, which are repeated until the stopping criteria is reached:

e Destruction phase: This phase tries to perturb the solution and —together with the simulated anneal-
ing phase— its objective is to provide diversification of solutions. In this phase, d jobs are randomly

chosen to be removed of the sequence without repetition forming a new sequence denoted ;.

e Construction phase: Each one of the aforementioned d jobs is inserted, one by one, in the sequence
following a greedy procedure (ConstructionFunction, see subsection 12.2) using Taillard’s accel-
eration and Property 12.2.1 | i.e. when a job is to be inserted, there are f factories where the job
can be assigned. Property 12.2.1 is used to discard factories in which the insertion of the job does

not improve the current makespan.

e Improvement phase: It serves to implement the intensification of the algorithm. The sequence
constructed in the last phase is improved using three different local search methods: LS1, RLS1
and RLS2. The complexity of these local search methods are n? - m/F, n? - m/F and n® - m/F?
respectively being the RLS2 the procedure with highest complexity. This fact may cause a non-
efficient behaviour of the heuristic when n is very high in comparison with F since it could lead to
a low diversification. Therefore, RLS2 is used only when n/F is lower or equal than a parameter L.

By doing so, we get a total complexity of n? - m/F for the local search phase of the algorithm.

e Simulated annealing phase: A simple simulated annealing criterion is introduced in the algorithm

with a constant Temperature which is a function of a parameter T' of the algorithm:

) ZW Zw tij

Temperature =T
n-m-10

ConstructionFunction

As Taillard’s acceleration allows performing the insertion phase with low complexity, 74 (the destructed
jobs) are inserted in the sequence using a similar procedure as in NEH2 (see ConstructionFunction in
Figure 12.3). The d destructed jobs are introduced, one by one, in the position of sequence w1 which
minimises the makespan. If we denote by CT¢f the reference makespan or best-known makespan, then

max

it is clear that it makes sense to assign the job to a factory only if its lower bound (calculated according
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7 := NEH2(decreasing sum of processing times) ;
for f=1to F do
| 7w = LS1(xf)
end
flag := true;
while flag do
7= RLS1(7) ;
if solution improved then
|  flag := false;
end
end
fn/F <L then
flag := true;
while flag do
7 = RLS2(7) ;
if solution improved then
| flag := false;
end

-

end
end
Ty 1= T,

while stopping criterion is not reach do
T o= T

for =1 to d do
| 7 := randomly remove a job from m; and insert it in 7p;
end
o := Construction Function(my, 7p)
for f=1to F do
| = 181(r]) ;
end
73 := RLS1(ma) ;
if n/F < L then
| w3 := RLS2(ms3) ;
end

if Cruaz(ms) < Cryaq(m) then
T i= T3

if C7rLtLa;(7T3) < Cmaa;(ﬂ-b) then
| Ty = T3

end

else if random < exp{—(Cpaz(m3) — Crnax(m))/Temperature} then
| =3

end

end
return

Figure 12.1: Main Procedure of the BSIG
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flag := true;

while flag do

flag := false;

for f=1to F do

C;zedfx = Craz (W‘f);

Remove job 7f[i] placed in position i of the factory f.

Test job 7/[i] in any possible position of 7/ (using Taillard’s accelerations) and place it in the
position with the lowest makespan

if Cran(n?) < Crel then

max

flag := true;
break;
end
end
end

Figure 12.2: Local Search LS1

to Property 12.2.1) is lower than the reference makespan. This mechanism serves to decrease the number
of factories where the jobs are tried (bounded search mechanism). The procedure of this bounded search
in each iteration is relative simple: First the job my is tried to be placed in the first factory and the
best makespan is kept as C7¢/ . Secondly, the job is tried to be assigned to factories f which satisfy
C ow +min; (tin,) < Cref . Cref is then updated when the new makespan (due to the insertion of job
74 in factory f) improves the actual CT¢f

max-”

Simple relative local search, RLS1

The relative local search RLS1 searches for better solutions by inserting jobs from one factory to another.
More specifically, each job of the factory with maximum makespan is tried to be scheduled in all positions
of each factory verifying Property 12.2.1. If the global makespan improves, then the job is scheduled in
the factory that minimises the makespan. The procedure then restarts first by looking for the new factory
with maximum makespan until each job assigned to the factory with maximum makespan is tried without

solution improvement. The pseudo code of RSL1 is shown in Figure 12.4.

Relative local search based in exchange, RLS2

The relative local search RLS2 exchanges jobs between factories. Thereby, each job of the factory with the
maximum makespan is tried to be exchanged with each job of the rest of the factories. In order to apply
Taillard’s acceleration, each of both jobs is removed of the sequences of the factories and inserted in the
other factory looking for the best position there. This procedure is repeated for each pair of jobs of both
factories choosing the pair of jobs and positions minimizing the makespan of the chosen factories. If the

new maximum makespan of both factories is lower than in the last iteration, the procedure begins again
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Function ConstructionFunction(m, 7p)

ford=1to D do

Test job 7pl[d] in any possible position of 7f=! (using Taillard’s accelerations) and denote Cr¢/,
the best makespan.

timin = minimum processing time of job wp[d] in any machine ¢;

for f =2 to F do

C/ = makespan of the factory f;

max
if C’rj:zax F tmin < C:ne(f, then

Test job mp[d] in any possible position of the factory f (using Taillard’s accelerations) and

denote €9, . the best makespan.
if CY .. <Crel then
end
end
end
7 = permutation obtained by inserting 7 p[d] in the factory and in the position with less makespan;
end
return m;
end

Figure 12.3: Procedure ConstructionFunction

Procedure RLSI(m)

h(f)y=1,for f=1---F;
i(fy=1for f=1---F;

mp = m being m = [71’1,'-' ol w

F]; l

Determine the factory fi,q. with maximum makespan (C,,,..)
while i(fraz) < ny,,,, do

Jj= h(fma:v) mod Nfmazs
7 := remove job w/maez[j] from mfmas;
CJmaz .— makespan of the sequence 7o;
tmin = minimum processing time of job 7/ma=[4] in any machine i;
for f=1to F do
CJ .. = makespan in the factory f;
if CJ .+ tmin < Chuw then
| Test job w/ma=[j] in each position of the factory f (using Taillard’s accelerations)
end
end
7 := permutation obtained by inserting mfme=[j] in the factory and in the position with less
makespan;
Determine the factory fia. with maximum makespan (Cinq.)
if Crnaw < Oy then
C':na;l; = Cmaw;
i(fmaw) - 17
Ty 1= T
else
‘ i(fvrzaw) + +;
end
A frmaz) + =+
end
return m;
end

Figure 12.4: Relative Local Search RLS1
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Source ‘Df Chi-Square Sig.
Parameter d | 4 43.453  0.000
Parameter T'| 4 4.353 0.360
Parameter L | 3 5.717 0.126

Table 12.1: Kruskal-Wallis for the parameters d, L and T

by the factory with maximum makespan. The procedure stops when each job of the factory of maximum
makespan is tested without improving the solution. The pseudo code of this relative local search is shown

in Figure 12.5.

Experimental parameter tuning

The proposed algorithm is composed of three parameters T',d, L. In order to find the best values of the
parameters, a full factorial design of experiment is performed for the BSIG with the following level of the

parameters:

e T €10.1,0.2,0.3,0.4,0.5]

o d€[3,4,5,6,7]

e L €[15,20,25,30]

The BSIG is evaluated by means of RPD3, see Expression (9.7), where Base is the solution obtained
by an alternative algorithm (VNDa).

Each combination of parameters has been tested for 96 combination of n, m and F, i.e. n € [20, 50, 100, 200],
m € [5,10,15,20] and F € [2,3,4,5,6,7] using 5 instances for each one representing a total of 480 in-
stances where the processing times of each job in each machine was uniformly distributed between 1 and
99. Note that we perform 5 runs of each instance due to the randomness of the algorithm. Each replicate
is stopped when the CPU time reaches a limit of n - m - F' - 1.5 milliseconds. Since the normality and
homoscedasticity assumptions were not confirmed, a non-parametric Kruskal-Wallis analysis is used to
determine statistically difference between the parameters. A summary of the results is shown in Table
12.1. It can be observed that there are statistically significant differences only between the levels of pa-
rameter d, being the level of all other parameters non-statistically significant. Additionally, the analysis
reveals that the best values for the parameters were found for d = 5, L = 20 and T = 0.4, so these are

the values used in the subsequent computational experience.
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Procedure RLS2(r)

h(fy=1,for f=1---F,

i(fy=1for f=1---F;

mp 1= T being ™ = [7r1,-~~ gl ,WF];

Determine the factory fimaz with maximum makespan (C,,q4)
while i(fmaz) < ny,,,, do
’

Craz = Cmags
flag := false;

J = h(fmaz) mod ny,,..;

for f =1to F do

for g =1 to ny do

if f # fmaz then

7o := remove job w/me=[j] from mfmas;
71 := remove job 7/ [g] from 7/;

chosen position (using Taillard’s acceleration).

chosen position (using Taillard’s acceleration).
if CL,. < C8 800, < C4T then

flag := true;

BestPosy,, ... == P0Sf,...;

BestPosy := Posy;

choseng = g;

choseny = f;
O3t = maz (Chae, Chas )
end
end
end

end

if flag then

nfmas .= permutation obtained by inserting m
BestPosy,,,.;

ﬂ_chosenf

choseny [

BestPosy;

Update 7 with 7/mas and wehosens .

Determine the factory fmas with maximum makespan (Crmas)
end

if Chnaz < Chvus then

/

Cmaac = Cmaz;
i(fmaz) = 15
T 1= T
else

‘ 'L(fma:c) + +;
end
h(fma,:c) + +,

end

return mp;
end

Figure 12.5: Relative Local Search with interchange RLS2

225

Best makespan Cl,,, due to testing job w/me=[j] in each position of 71 denoting Poss the

Best makespan C3,,, due to testing job 7rf[g] in each position of mg denoting Posy,,,, the

choseny| in the factory fma. and in the position

:= permutation obtained by inserting 7w/™e=[4] in the factory chosen; and in the position
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12.3 Computational evaluation

The proposed BSIG is compared with the best available algorithms for the DPFSP: MIG, EDA and TS.
In order to define the most efficient algorithm, the same computer conditions have to be used using a PC
with 2.80 GHz Intel Core i7-930 processor and 16 GBytes of RAM memory. The algorithms are evaluated
for all instances presented by [124] which are available in http://soa.iti.es. A total of 720 instances are
included in this testbed varying the number of jobs, machines and factories according to the following
values n € [20, 50, 100, 200, 500], m € [5,10,15,20] and F € [2,3,4,5,6,7] and using 10 instances for each
combination of parameters. In order to increase the power of the analysis, 5 runs have been performed per
instance for each algorithm. Regarding the stopping criteria, we have used three different stopping criteria
based on computation time for the heuristics: n-m-F-0.5, n-m-F -1 and n-m - F -2 milliseconds (see
e.g. [174, 105] for similar stopping criteria in the literature). Thereby, each heuristic has been stopped

when the computation time reaches these values.

The performance of the algorithms is again evaluated by means of ARPD2, where UB is the best

known solution taken from http://soa.iti.es.

The ARP D2 values are shown in Table 12.2 and 12.3 for the stopping criterion n-m-F'-0.5 milliseconds,
in Tables 12.4 and 12.5 for the stopping criterion n - m - F' - 1 and, finally, in Tables 12.6 and 12.7 for
for n-m - F - 2 milliseconds yielding e.g 1.43 for the BSIG heuristic, 3.11 for TS algorithm, 6.95 for the
EDA and 2.09 for the MIG heuristic according to the first stopping criterion. The results show that the
BSIG heuristic outperforms the rest of the heuristics for all stopping criteria. In fact, BSIG outperforms
MIG, TS and EDA for each size of the problem regardless the stopping criterion. Additionally, the BSIG
algorithm finds the best solution for 93.0% instances, while MIG, TS and EDA found the best solution for
1.9%, 3.0% and 12.6%, respectively. Comparing the results with the best known solution for the largest
CPU time, in 263 of the 720 instances (36.53%) new best solutions are found by BSIG. In contrast, only

0 new best solutions were found for TS, 38 instances for MIG and 0 for EDA.

Additionally, a paired samples t-test is carried out in order to compare the heuristics for each stopping
criterion. These tests can be applied since the random variables (ARPD2) are related (the same test bed
is used for each algorithm) and the hypothesis of independence can be rejected. The results of the tests
(see Tables 12.8, 12.9 and 12.10) show that BSIG statistically improves each other algorithm being the

maximum p-value 0.000.
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nxm |BSIG TS EDA MIG
20x5 | 494 875 599 5.34
20x 10 | 4.28 7.14 5.17 4.44
20x20 | 3.69 5.78 4.28 3.80
50x 5 | 0.50 2.63 4.77 1.64
50 x 10 | 0.92 3.46 5.48 1.73
50 x 20 | 0.85 3.01 4.59 1.32
100x5 | 0.14 0.90 5.81 1.02
100 x 10| 0.40 1.59 7.76 1.41
100x 20| 0.62 1.66 7.22 1.37
200 x 10| 0.23 0.69 9.58 0.93
200x 20| 0.44 0.97 10.27 1.18
500 x 20| 0.19 0.70 12.44 0.92
Average | 1.43 3.11 6.95 2.09

Table 12.2: ARPD2 (by n and m) of the heuristics BSIG, TS, MIG and EDA for the stopping criteria of
n-m - F - 0.5 milliseconds

BSIG TS EDA MIG
1.45 235 6.27 1.78
1.22 2.52 6.57 1.80
1.12 2.84 6.71 1.82
1.12 3.07 6.86 1.85
1.47 349 7.26 2.27
2.25 4.36 8.01 3.03

Average| 1.43 3.11 6.95 2.09

N O Ok W N~

Table 12.3: ARPD2 (by f) of the heuristics BSIG, TS, MIG and EDA for the stopping criteria of
n-m - F - 0.5 milliseconds.

nxm |BSIG TS EDA MIG
20x5 | 480 8.67 5.66 5.08
20x 10 | 4.18 7.20 4.93 4.29
20x20 | 3.60 5.81 4.19 3.69
50x5 | 0.21 2.64 3.70 0.97
50 x 10 | 0.55 3.53 4.72 1.10
50 x 20 | 0.55 3.06 3.96 0.89
100 x5 | -0.01 0.93 4.84 0.46
100 x 10| 0.11 1.56 6.83 0.72
100x 20| 0.32 1.69 6.55 0.71
200 x 10| -0.02 0.62 8.69 0.33
200x 20| 0.14 0.89 9.48 0.43
500 x 20| -0.09 0.54 11.95 0.23
Average | 1.20 3.10 6.29 1.58

Table 12.4: ARPD2 (by n and m) of the heuristics BSIG, TS, MIG and EDA for the stopping criteria of
n-m - F -1 milliseconds
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BSIG TS EDA MIG
1.16 2.34 5.63 1.45
0.95 250 583 1.34
0.88 2.79 6.00 1.28
0.87 3.04 6.23 1.31
1.27 3.50 6.64 1.67

7 2.05 4.40 7.43 241

Average| 1.20 3.10 6.29 1.58
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Table 12.5: ARPD?2 (by f) of the heuristics BSIG, TS, MIG and EDA for the stopping criteria of n-m-F'-1
milliseconds.

nxm |BSIG TS EDA MIG
20x5 | 472 874 5.55 4.92
20x 10 | 4.11 7.16 4.88 4.19
20x 20 | 3.57 5.76 4.19 3.64
50x 5 | 0.00 2.65 2.99 0.43
50 x 10 | 0.26 3.50 4.01 0.70
50 x 20 | 0.31 3.03 3.45 0.60
100 x 5 | -0.18 0.89 3.92 0.10
100 x 10| -0.14 1.61 6.04 0.20
100 x 20| 0.01 1.66 5.99 0.24
200 x 10| -0.22 0.66 7.81 -0.01
200 x 20| -0.12 0.88 8.86 -0.02
500 x 20| -0.34 0.43 11.44 -0.13
Average | 1.00 3.08 5.76 1.24

Table 12.6: ARPD2 (by n and m) of the heuristics BSIG, TS, MIG and EDA for the stopping criteria of
n-m - F -2 milliseconds

BSIG TS EDA MIG
0.96 2.30 4.96 1.15
0.74 2.50 5.26 0.98
0.65 2.74 5.46 0.94
0.67 3.05 5.72 0.94
1.06 3.52 6.18 1.32

7 1.89 4.39 6.99 2.09
Average| 1.00 3.08 5.76 1.24
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Table 12.7: ARPD?2 (by f) of the heuristics BSIG, TS, MIG and EDA for the stopping criteria of n-m-F-2
milliseconds.

Algorithm  Mean SEM IC - Lower IC - Upper t Significance

TS vs BSIG 1.672 1.525 1.561 1.784 29.452 0.000
EDA vs BSIG 5.511 3.715 5.240 5.783 39.839 0.000
MIG vs BSIG 0.656 0.457 0.623 0.690 38.548 0.000

Table 12.8: Paired samples t-test for stopping criterion of n - m - F'- 0.5 milliseconds.

Algorithm  Mean SEM IC - Lower IC - Upper t Significance

TS vs BSIG 1.899 1.522 1.788 2.011 33.504 0.000
EDA vs BSIG 5.096 3.607 4.832 5.359 37.930 0.000
MIG vs BSIG 0.379 0.315 0.356 0.402 32.329 0.000

Table 12.9: Paired samples t-test for stopping criterion of n - m - F - 1 milliseconds.
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Algorithm  Mean SEM IC - Lower IC - Upper t Significance

TS vs BSIG 2.084 1.500 1.974 2.194 37.306 0.000
EDA vs BSIG 4.763 3.497 4.507 5.019 36.572 0.000
MIG vs BSIG 0.239 0.247 0.221 0.258 26.077 0.000

Table 12.10: Paired samples t-test for stopping criterion of n - m - F - 2 milliseconds.

I Average Discarded Factories (%) Decrease in the number of iterations (%)
2 30.71% 14.74%
3 33.05% 12.71%
4 32.99% 13.93%
5 32.48% 9.01%
6 32.31% 9.85%
7 32.33% 9.86%
Average 32.31% 11.68%

Table 12.11: Impact of the bounded search mechanism with the number of factories.

Impact of reduction of the search space

The proposed BSIG includes a mechanism (using Property 12.2.1) to reduce the number of solutions to be
evaluated. In this section, the impact of this mechanism on the effectiveness of the heuristic is analysed by
comparing the performance of the proposed algorithm with and without the bounded search mechanism
for each stopping criterion. The results are shown in Table 12.11 and in Table 12.12 aggregated by the
number of factories, and by n and m, respectively. In both tables, the second column indicates the
average percentage of branches (factories) discarded in the functions that use this mechanism, whereas
the third column shows the average reduction in the number of iterations in the BSIG when employing
this mechanism. Additionally, the results have been calculated averaging for the three stopping criteria.
Summarizing, it was obtained that a 32.31% of the branches (factories) are discarded in the construction
phase and in the RLS1 of the proposed iterated algorithm. Note that there is a substantial decrease of the
discarded factories with the increase in the number of machines of the problem for the same number of
jobs. This is due to the fact that the chosen lower bound is min; (¢;;) with ¢ € [1,--- ,m] and it therefore
less tight as m increases. Furthermore, the number of iterations of the proposed BSIG for each analysed
stopping criterion is increased an 11.7% in average. The difference between this value for large and small
size instances is due to RLS2, which does not include the bounded search and needs large computational
time when used. Both the number of discarded factories and the decrease in the number of iterations

stress the importance of the bounded search mechanism in the algorithm.
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n xm Average Discarded Factories (%) Decrease in number of iteration (%)

20x 5 40.42% 8.50%
20 x 10 25.73% 5.07%
20 x 20 19.54% 4.04%
50 x 5 45.79% 6.13%
50 x 10 30.94% 4.79%
50 x 20 19.30% 3.16%
100 x 5 51.90% 21.11%
100 x 10 35.80% 12.65%
100 x 20 21.64% 8.58%
200 x 10 40.27% 27.47%
200 x 20 25.18% 14.86%
500 x 20 31.22% 23.84%
Average 32.31% 11.68%

Table 12.12: Impact of the bounded search mechanism order with the problem size n and m.

12.4 Conclusions

The Distributed Permutation Flowshop Scheduling Problem (DPFSP) consists of two interrelated decision
problems: First, jobs are assigned to be processed in one of the f identical factories of the company.
Secondly, the sequence of jobs in each factory is determined taking into account that each job has the
same manufacturing flow through each one of the m machines. To solve the problem, we have presented a
new algorithm (BSIG) consisting of an iterative destruction and greedy construction of the solution with
three local search phases. BSIG employs a property of the problem to estimate the makespan of a factory
when a new job is inserted, so the search space can be reduced. The evaluation of the performance of
BSIG was compared with that of the existing algorithms TS, EDA and MIG using the instances presented
by [124] for three different stopping criteria. Each algorithm was implemented under the same conditions.
Furthermore, paired samples t-tests were carried out to determine statistically differences between the
heuristics. The comparison shows that the proposed BSIG outperforms existing heuristics, thus being the
most efficient iterative improvement algorithm for the problem (with a p value of 0.000). On the one hand,
comparing the four heuristics, the best solution of the four heuristics was found by BSIG 2008 times out
of a total of 2160 instances (summarising results of the three stopping criteria). On the other hand, using
the proposed heuristic, a new best known solution was found in 263 of the 720 instances (36.5%) using
the stopping criterion of n-m- F -2 milliseconds. Additionally, the effect of the bounded search method in

the algorithm was analysed reporting a decrease in the computational times of 32.31% whenever applied.
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Chapter 13

Conclusions, results and future research

lines

13.1 Conclusions

In this Thesis, we have addressed the permutation flowshop scheduling problem, which is one of the most
studied scheduling problem in the literature due to its direct application to real manufacturing layouts,
and deals with establishing the sequence of jobs in the shop according to a specific objective function.
Due to the high complexity of this type of scheduling problems, most of the research has traditionally be
focused in proposing approximate algorithms to solve the problem. The goal of this Thesis is therefore to
provide a further insight into this important problem, both deeply analysing the influence of the different
input parameters and developing new efficient techniques to solve it. In order to deal with this goal,
several general research objectives were identified in Section 1.1, which have been addressed along the five

parts of this Thesis as follows:

GO1. To review the PFSP for the most common objectives, t.e. makespan, total completion

time and due-date-based objectives (total tardiness, and total earliness and tardiness).

The PFSP for makespan minimisation was considered in Section 4.2. For this problem, many heuristic
and metaheuristic methods have been published, including several review papers. This chapter covers the
last 10 years of highly effective procedures for the problem. Firstly, heuristics implemented for the problem
were reviewed. Most of them are variants of the traditional NEH. In addition, we proposed a classification

to identify these variants, which depends on three fields: initial order; tie-breaking mechanism; and
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reversibility property. Regarding the metaheuristics, several fields were identified for each contribution
(e.g. the set of instances used, the average relative percentage deviations and the average CPU times of
the proposed heuristics,...). However, it was pointed out that frequently new methods are not properly
compared with the existing state-of-the-art solutions and misleading conclusions might be obtained.
Regarding the PFSP to minimise total flowtime and due-date related objectives, they were addressed
in Sections 4.3 and 4.4, respectively. On the one hand, for total flowtime, the 14 efficient heuristics were
extensively reviewed and described. On the other hand, regarding due-date related objectives, we focused
in the Fm|prmu| )" T; and Fm|prmu| > E; + T; problems, where the most relevant heuristics for these

problems are reviewed.

GO2. To analyse the influence of the processing times and due dates of the jobs on the

PFSP.

In Chapter 5, we analysed in detail the problem depending on the processing times and due dates of the
jobs. Several properties, theorems and dominance rules were proposed to better understand the structures
of the problem under consideration. Firstly, several properties were presented for the Fm|prmu| > T; and
Fmlprmu| > E; + T}, as well as the generations of due dates are analysed. It was shown that under
several conditions of the due dates of the jobs, the Fm|prmul| > T; can be reduced to the Fm|prmu|}_ C;,
to a problem where the EDD rule is optimal or even, to a trivial problem where each sequence is optimal.
Analogously, the Fm|prmul| " E; + > T; can be reduce to the Fm|prmu| — > C; (Fm|prmu| ) C;) in
case of extremely loose (tight) due dates.

Additionally, in Section 5.3, we addressed the boundary lines between the PFSP and the SMSP. It
was shown that the Fm|prmul| )" C; (Fm|prmu|Cpae) problem is equivalent to the 1|[>° C; (1||Craz)
when several conditions of the processing times of the most loaded machine are fulfilled. Additionally,
several approximate boundary lines were presented to define when the PFSP tends to turn to a SMSP,
given an instance of a problem. These lines give an idea to the decision makers to better identify their
manufacturing layouts.

Finally, we identified the advantages and disadvantages of different functions to measure the relation-

ship between the processing time of an operation and the amount of resources assigned to that operation.

GO3. To provide the schedulers with fasters and more efficient heuristics and metaheuris-
tics to solve the PFSP for the makespan, total completion time, total tardiness, and

total earliness and tardiness minimaisation.

We developed several heuristics and metaheuristics in order to minimise the above objectives. The

algorithms were compared under the same conditions with the best algorithms in the literature for each
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decision problem. FEach proposed algorithm was shown to be efficient for the problem in which is proposed.

The main proposed approximate procedures are summarised as follows:

e In Chapter 6, a new tie-breaking mechanism was proposed for the Fm|prmu|Cy,q, problem. The
mechanism is included in the NEH and IG algorithms, which results in a significant improvement
in the quality of the solutions. The proposed algorithm was compared with the best 26 algorithms

found for the problem in the literature.

e Two new constructive heuristics were proposed for the Fm|prmu| ) C; problem in Chapter 7. The
heuristics were compared with the so-far-efficient heuristics of the problem. As a result, the proposed

algorithms clearly statistically outperformed each constructive heuristic for the problem.

e In Chapter 8, several tie-breaking mechanisms were proposed for the F'm|prmu| )" T; problem which
improved the most efficient constructive heuristic without increasing the computational effort. These
mechanisms also resulted in a significant improvement when they were included in one of the best

metaheuristic for the problem.

e In Chapter 9, several efficient constructive and improvement heuristics were proposed for the
Fm|prmu| Y E; + 3 T; problem taking advantage of the special properties, proposed for the prob-

lem.

GO/4. To demonstrated the efficiency and good performance of the solution procedures de-

veloped in GO3.

In this Thesis, each proposed approximate procedure was always compared with the state-of-the-art
algorithms for that problem. To address it, in Chapter 3, a new indicator to measure the computational
effort required by the procedures was proposed, as well as the conditions to carry out a fair comparison
were explained in detail (such as recoding of all algorithms in C#, the use of the same computer, among
others). Nevertheless, for some scheduling problems, either the state-of-the-art algorithms cannot been
well defined or there are many algorithms among the efficient ones. As a consequence, several extensive
computational evaluations were also carried out to validate the efficiency of the proposed algorithms.

More specifically:

e A computational evaluation of heuristics and metaheuristic for the F'm|prmu|Chyqs (see Section 6.4).
The proposed tie-breaking mechanism was compared in a computational evaluation which include

a total of 25 approximate algorithms.
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o A computational evaluation of heuristics for the Fm/|prmul )" C; (see Section 7.5). The two proposed

heuristics for that problem were compared with the set of 14 efficient heuristics. After that, the

resulting efficient heuristics was compared against the best metaheuristic for the problem.

A computational evaluation of heuristics for the Fm|prmu| )" E; + T;. The proposed heuristics for
that problem were compared against the efficient heuristics implemented for the Fm|prmu| > E;+T;
and adaptations of related scheduling problems. As a result, 10 algorithms were compared under

the same conditions.

A computational evaluation of heuristics for the F'm|block|)  C;. This computational evaluation
was composed of all heuristics implemented for the problem so far, as well as efficient algorithms
of related scheduling problem. As a consequence, a total of 36 heuristics was fully recoded and

exhaustively compared under the same conditions.

GO5. To extend the proposals to constrained PFSP, based on real manufacturing environ-

ments.

This objective was extensively addressed in Part IV which can be summarised as follows:

e A non-population metaheuristic was proposed for the Fm|prmule(Craz/Tmaz) problem in Chapter

10. The algorithm includes an adaptation of the known Taillard’s accelerations, originally proposed
for the Fm|prmu|Cypqq problem. As a result, the proposed metaheuristic clearly outperformed each

other metaheuristic proposed for the problem.

A beam-search-based constructive heuristic for the F'm|block|)_ C; problem as well as a speed-up
procedure were proposed in Chapter 11. The heuristic was compared in an extensive computational
evaluation as established above. Results showed the excellent performance of the proposed algorithm
in terms of quality of the solution and computational effort. In fact, the proposed algorithm improved
the so-far best metaheuristic for the problem as well as new upper bounds are found for 27.6% of

the instances.

A variation of the iterated greedy algorithm was proposed for the parallel PFSP in Chapter 12, which
exploits the specific structure of solutions by means of two dominance rules. The use of these prop-
erties reported a decrease in the computational times of 32.31% whenever applied. Computational
results showed that the proposed metaheuristic obtained the best result among the implemented

heuristics for the 93% of the instances.
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13.2 Results

SCI indexed journals

Parts of this Thesis have been published in SCI indexed journals. The following publications are directly

derived from this Thesis.

1. Fernandez-Viagas, V., Framinan, J.M., (2015). Efficient non-population-based algorithms for the
permutation flowshop scheduling problem with makespan minimisation subject to a maximum tar-

diness. Computers & Operations Research, 64, 86 - 96 (2014 Impact Factor: 1.861, Q1, T1).

2. Fernandez-Viagas, V., Framinan, J.M., (2015). NEH-based heuristics for the permutation flowshop
scheduling problem to minimise total tardiness. Computers & Operations Research, 60, 27 - 36 (2014
Impact Factor: 1.861, Q1, T1).

3. Fernandez-Viagas, V., Framinan, J.M., (2015). A new set of high-performing heuristics to minimize
flowtime in permutation flowshops. Computers € Operations Research, 53, 68 - 80 (2014 Impact
Factor: 1.861, Q1, T1).

4. Fernandez-Viagas, V., Framinan, J.M., (2015). A bounded-search iterated greedy algorithm for
the distributed permutation flowshop scheduling problem. International Journal of Production Re-

search, 53, 1111 - 1123 (2014 Impact Factor: 1.477, Q2, T1).

5. Fernandez-Viagas, V., Framinan, J.M., (2015). Controllable Processing Times in Project and Pro-
duction Management: Analysing the Trade-Off between Processing Times and the Amount of Re-

sources. Mathematical Problems in Engineering, 1 - 19 (2014 Impact Factor: 0.762, Q3, T2).

6. Fernandez-Viagas, V., Framinan, J.M., (2014). On insertion tie-breaking rules in heuristics for the
permutation flowshop scheduling problem. Computers & Operations Research, 45, 60 - 67 (2014
Impact Factor: 1.861, Q1, T1).

7. Fernandez-Viagas, V., Leisten, R., Framinan, J.M. A computational evaluation of constructive and
improvement heuristics for the blocking flow shop to minimise total flowtime. Under review in

Expert Systems with Applications.

8. Fernandez-Viagas, V., Ruiz, R., Framinan, J.M. A new vision of approximate methods for the
permutation flowshop to minimise makespan: state-of-the-art and computational evaluation. Under

review in European Journal of Operational Research.
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9.

10.

11.
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Fernandez-Viagas, V., Framinan, J.M. Reduction of Permutation Flowshop Problems to Single

Machine Problems. Under review in Computers & Operations Research.

Fernandez-Viagas, V., Framinan, J.M. Efficient constructive and composite heuristics for the Permu-
tation Flowshop to minimise total earliness and tardiness. Under review in Computers & Operations

Research.

Fernandez-Viagas, V., Framinan, J.M. A beam-search-based constructive heuristic for the PFSP to

minimise total lowtime. Under review in International Journal of Production Economics.

Additionally, during the development of this Thesis, the following papers on related scheduling prob-

lems have been published in SCI indexed journals:

12.

13.

14.

Dios, M., Molina-Pariente J.M., Fernandez-Viagas, V., Andrade-Pineda J.L., Framinan, J.M.,
(2015). A decision support system for operating room scheduling. Computers and Industrial Engi-

neering. Computers & Industrial Engineering, 88, 430-443 (2014 Impact Factor: 1.783, Q2, T1).

Molina-Pariente, J. M., Fernandez-Viagas, V., Framinan, J.M., (2015). Integrated operating room
planning and scheduling problem with assistant surgeon dependent surgery durations. Computers

& Industrial Engineering, 82, 8-20 (2014 Impact Factor: 1.783, Q2, T1).

Fernandez-Viagas, V., Framinan, J.M., (2014). Integrated Project Scheduling and Staff Assignment
with Controllable Processing Times. Scientific World Journal, 1 - 16 (2013 Tmpact Factor: 1.219,
Q2, T1).

Papers in conference proceedings

Regarding contributions in international conferences, we below mention the most related ones:

1.

Fernandez-Viagas, V., Framinan, J.M. A constructive heuristic for the permutation flowshop to
minimise total earliness and tardiness. 15th International Conference on Project Management and

Scheduling (PMS 2016). Valencia (Spain), April 19 - 22, 2016.

Fernandez-Viagas, V., Framinan, J.M. Boundary lines between permutation flowshop problems and
single machine problems. Proceedings of 2015 International Conference on Industrial Engineering

and Systems Management (IESM 2015). Seville (Spain), October 21-23, 2015.

Perez-Gonzalez P., Dios M., Fernandez-Viagas, V., Framinan, J.M. Heuristic Methods for Single Ma-
chine Scheduling with Periodic Maintenance. Multidisciplinary International Scheduling Conference

(Mista 2015). Prague (Czech Republic), August 25-28, 2015.
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4. Fernandez-Viagas, V., Dios M., Perez-Gonzalez P., Framinan, J.M. A framework of constructive
heuristics for permutation-type scheduling problems. Multidisciplinary International Scheduling

Conference (Mista 2015). Prague (Czech Republic), August 25-28, 2015.

5. Dios M., Fernandez-Viagas, V., Perez-Gonzalez P., Framinan, J.M. Manufacturing Scheduling Sys-
tems: What are they made of 7. Multidisciplinary International Scheduling Conference (Mista 2015).
Prague (Czech Republic), August 25-28, 2015.

6. Fernandez-Viagas, V., Framinan, J.M. A new fast heuristic to minimize flowtime in permutation
flowshops. 14th International Conference on Project Management and Scheduling (PMS 2014).
Munich (Germany), March 30 - April 2, 2014.

7. Fernandez-Viagas, V., Framinan, J.M. Approximate algorithms for simultaneous project scheduling
and resource allocation with controllable processing times. 25th European Conference on Opera-

tional Research. Vilnius (Lithuania), July 8-11, 2012.

Research projects

Finally, this Thesis has been carried out carried out under grant “Predoctoral Research Fellow (FPU12/01935)”
funded by the Ministry of Education, Culture and Sport, and has been developed within the framework

of several manufacturing scheduling research projects:

e ADDRESS - “Advanced design of dynamic robust extended scheduling systems” funded by the

Spanish The Ministry of Economy and Competitiveness (reference DPI-2013-44461-P).

“e-Fabrica” funded by the Technological Corporation of Andalusia (reference PI-1366/2014).

SEAMAR funded by the Industrial Technology Development Center (reference PI-1031,/2012).

SCORE - Scheduling and Control for Customer Responsive Production funded by the Interminis-
terial Commission for Science and Technology, CICYT, (reference DP12010- 15573).

SCOPE funded by Regional Government of Andalusia (reference P08-TEP-03630).

PUVENSA funded by IMP Consultores (reference P08-TEP-03630).

13.3 Future research lines

In this section, the main future research lines of this Thesis are discussed.
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In this Thesis, the mechanism for due date generation proposed by [147] has been chosen to build
the testbed. However, some deficiencies were found in the generation of due dates, since some range of
values of indicator v (loose due dates) are not included, as well as most of instances are generated for
v € [0.15,0.35]. As a consequence, further analysis could be conducted to develop more extensive testbeds,
including bigger and more uniform intervals for indicator v.

Regarding the analysis of the processing times in the PFSP, although the presented Thesis represents
an important point in the study of the relationship between both the PFSP and the SMSP problem, the
boundary lines between them are not yet completely defined. Further enhancements may focus on the

following issues:

e The variance of the processing times on the saturated machine probably plays an important role in

the relationship between both problems.

e The presented study has used an uniform distribution for the processing times. Further analyses

can use of several different distributions, extending the boundary lines between the problems.
e The presented analysis may probably be extended to other scheduling layouts.

e The PFSP has been compared with the SMSP of the most saturated machine. Further analysis may

compare the PFSP with a SMSP combining the processing times of different machines.

Additionally, new relations may be considered for discrete resources since there are almost no papers
using them. To the best of our knowledge, only the hyperbola has been used to represent the inverted
U-shaped of the productivity in project management. Due to the difficulties to determine the constants
of this relation, new relations may be considered in order to represent the excess of communication and
the lack of specialization together.

Regarding the approximate procedures proposed in this Thesis, we have found that for the PFSP to
minimise makespan, the best metaheuristics and heuristics include special characteristics of the problem
as Taillard’s accelerations and tie-breaking mechanisms. In our opinion, these facts highlight that future
advances in this field will come from a better understanding of the problem and its properties, which
should also be extended to other objective functions.

Finally, several of the proposed approximate procedures can easily be adapted to both other manu-
facturing scheduling problems and related scheduling problems outside production management, such as

[40], [32] and [119], which were also developed during this Thesis as explained in Section 13.2.



Bibliography

[1] A. Agarwal, S. Colak, and E. Eryarsoy. Improvement heuristic for the flow-shop scheduling problem:
An adaptive-learning approach. Furopean Journal of Operational Research, 169(3):801-815, 2006.

[2] F. Ahmadizar. A new ant colony algorithm for makespan minimization in permutation flow shops.
Computers and Industrial Engineering, 63(2):355-361, 2012.

[3] A. Al-Salem. A heuristic to minimize makespan in proportional parallel flow shops. International
Journal of Computing & Information Sciences, 2(2):98-107, 2004.

[4] K. R. Baker and G. D. Scudder. Sequencing with earliness and tardiness penalties. a review.
Operations Research, 38(1):22-36, 1990.

[5] Y. Bao, L. Zheng, and H. Jiang. An improved hs algorithms for the blocking flow shop schedul-
ing problems. Proceedings - 2012 International Conference on Computer Science and Information
Processing, CSIP 2012, pages 1289-1291, 2012.

[6] R. M. Belbin. Management Teams. Butterworth-Heinemann, Amsterdam; Oxford, 2010.
[7] R. A. Bilas. Microeconomic theory. McGraw-Hill, 1971.

[8] J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz. Handbook on Scheduling: From
Theory to Applications. Springer, 2007.

[9] D. Cao and M. Chen. Parallel flowshop scheduling using tabu search. International Journal of
Production Research, 41(13):3059-3073, 2003.

[10] J. Carlier. Ordonnancements a contraintes disjonctives. RAIRO Recherche Operationnelle,
12(4):333-350, 1978.

[11] O. Cepek, M. Okada, and M. Vlach. Nonpreemptive flowshop scheduling with machine dominance.
European Journal of Operational Research, 139(2):245-261, 2002.

[12] K. Chakravarthy and C. Rajendran. Heuristic for scheduling in a flowshop with the bicriteria of
makespan and maximum tardiness minimization. Production Planning and Control, 10(7):707-714,
1999.

[13] F.T.S. Chan, S.H. Chung, and P.L.Y. Chan. An adaptive genetic algorithm with dominated genes
for distributed scheduling problems. Ezpert Systems with Applications, 29(2):364-371, 2005.

[14] H.K. Chan and F.T.S. Chan. Comparative study of adaptability and flexibility in distributed
manufacturing supply chains. Decision Support Systems, 48(2):331-341, 2010.

[15] P. Chandra, P. Mehta, and D. Tirupati. Permutation flow shop scheduling with earliness and
tardiness penalties. International Journal of Production Research, 47(20):5591-5610, 2009.

[16] P.-C. Chang and M.-H. Chen. A block based estimation of distribution algorithm using bivariate
model for scheduling problems. Soft Computing, 18(6):1177-1188, 2014.

241



242

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

BIBLIOGRAPHY

P.-C. Chang, M.-H. Chen, M.K. Tiwari, and A.S. Iquebal. A block-based evolutionary algorithm
for flow-shop scheduling problem. Applied Soft Computing Journal, 13(12):4536-4547, 2013.

P.-C. Chang, S.-H. Chen, C.-Y. Fan, and C.-L. Chan. Genetic algorithm integrated with artificial
chromosomes for multi-objective flowshop scheduling problems. Applied Mathematics and Compu-
tation, 205(2):550-561, 2008.

P.-C. Chang, S.-H. Chen, C.-Y. Fan, and V. Mani. Generating artificial chromosomes with proba-
bility control in genetic algorithm for machine scheduling problems. Annals of Operations Research,
180(1):197-211, 2010.

P.-C. Chang, J.-C. Hsieh, S.-H. Chen, J.-L. Lin, and W.-H. Huang. Artificial chromosomes embedded
in genetic algorithm for a chip resistor scheduling problem in minimizing the makespan. Fxpert
Systems with Applications, 36(3 PART 2):7135-7141, 2009.

P.-C. Chang, W.-H. Huang, and C.-J. Ting. A hybrid genetic-immune algorithm with improved
lifespan and elite antigen for flow-shop scheduling problems. International Journal of Production
Research, 49(17):5207-5230, 2011.

C.-L. Chen, Y.-R. Tzeng, and C.-L. Chen. A new heuristic based on local best solution for permu-
tation flow shop scheduling. Applied Soft Computing Journal, 29:75-81, 2015.

R.-M. Chen and F.-R. Hsieh. An exchange local search heuristic based scheme for permutation flow
shop problems. Applied Mathematics and Information Sciences, 8(1 L):209-215, 2014.

S.-H. Chen, P.-C. Chang, T.C.E. Cheng, and Q. Zhang. A self-guided genetic algorithm for permu-
tation flowshop scheduling problems. Computers & Operations Research, 39(7):1450-1457, 2012.

M. Cheng, S. Sun, and Y. Yu. A note on flow shop scheduling problems with a learning effect on
no-idle dominant machines. Applied Mathematics and Computation, 184(2):945-949, 2007.

S.H. Chung, F.T.S. Chan, and H.K. Chan. A modified genetic algorithm approach for scheduling
of perfect maintenance in distributed production scheduling. Engineering Applications of Artificial
Intelligence, 22(7):1005-1014, 2009.

R.L. Daniels and R.J. Chambers. Multiobjective flow-shop scheduling. Nawval Research Logistics,
37(6):981-995, 1990.

P. Dasgupta and S. Das. A discrete inter-species cuckoo search for flowshop scheduling problems.
Computers and Operations Research, 60(0):111 — 120, 2015.

E. Demeulemeester, B. De Reyck, and W. Herroelen. The discrete time/resource trade-off prob-
lem in project networks: A branch-and-bound approach. IIE Transactions (Institute of Industrial
Engineers), 32(11):1059-1069, 2000.

E. Demirkol, S. Mehta, and R. Uzsoy. Benchmarks for shop scheduling problems. European Journal
of Operational Research, 109(1):137-141, 1998.

G. Deng, 7. Xu, and X. Gu. A discrete artificial bee colony algorithm for minimizing the total flow
time in the blocking flow shop scheduling. Chinese Journal of Chemical Engineering, 20(6):1067—
1073, 2012.

M. Dios, J.M. Molina-Pariente, V. Fernandez-Viagas, J.L. Andrade-Pineda, and J.M. Framinan.
A decision support system for operating room scheduling. Computers and Industrial Engineering,
88:430-443, 2015.

B. Dodin and A.A. Elimam. Audit scheduling with overlapping activities and sequence-dependent
setup costs. European Journal of Operational Research, 97(1):22-33, 1997.



BIBLIOGRAPHY 243

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

X. Dong, P. Chen, H. Huang, and M. Nowak. A multi-restart iterated local search algorithm for
the permutation flow shop problem minimizing total flow time. Computers & Operations Research,
40(2):627-632, 2013.

X. Dong, H. Huang, and P. Chen. An improved NEH-based heuristic for the permutation flowshop
problem. Computers & Operations Research, 35(12):3962-3968, December 2008.

A. Drexl. Scheduling of project networks by job assignment. Management Science, 37(12):1590—
1602, 1991.

B. Eksioglu, S.D. Eksioglu, and P. Jain. A tabu search algorithm for the flowshop scheduling problem
with changing neighborhoods. Computers and Industrial Engineering, 54(1):1-11, 2008.

O. Etiler, B. Toklu, M. Atak, and J. Wilson. A genetic algorithm for flow shop scheduling problems.
Journal of the Operational Research Society, 55(8):830-835, 2004.

L. Fanjul-Peyro and R. Ruiz. Iterated greedy local search methods for unrelated parallel machine
scheduling. Furopean Journal of Operational Research, 207(1):55-69, 2010.

V. Fernandez-Viagas and J.M. Framinan. Integrated project scheduling and staff assignment with
controllable processing times. Scientific World Journal, 2014, 2014.

V. Fernandez-Viagas and J.M. Framinan. A new set of high-performing heuristics to minimise
flowtime in permutation flowshops. Computers € Operations Research, 53:68-80, 2015.

J. M. Framinan, R. Leisten, and C. Rajendran. Different initial sequences for the heuristic of Nawaz,
Enscore and Ham to minimize makespan, idletime or flowtime in the static permutation flowshop
sequencing problem. International Journal of Production Research, 41(1):121-148, 2003.

J.M. Framinan, J.N.D. Gupta, and R. Leisten. A review and classification of heuristics for permu-
tation flow-shop scheduling with makespan objective. Journal of the Operational Research Society,
55(12):1243-1255, 2004.

J.M. Framinan and R. Leisten. An efficient constructive heuristic for flowtime minimisation in
permutation flowshops. OMEGA, The International Journal of Management Science, 31:311-317,
2003.

J.M. Framinan and R. Leisten. A heuristic for scheduling a permutation flowshop with makespan
objective subject to maximum tardiness. International Journal of Production Economics, 99(1-
2):28-40, 2006.

J.M. Framinan and R. Leisten. Total tardiness minimization in permutation flow shops: A simple
approach based on a variable greedy algorithm. International Journal of Production Research,
46(22):6479-6498, 2008.

J.M. Framinan, R. Leisten, and R. Ruiz. Manufacturing Scheduling Systems: An Integrated View
on Models, Methods, and Tools. Springer, 2014.

J.M. Framinan, R. Leisten, and R. Ruiz-Usano. Efficient heuristics for flowshop sequencing with
the objectives of makespan and flowtime minimisation. European Journal of Operational Research,
141(3):559-569, 2002.

J.M. Framinan, R. Leisten, and R. Ruiz-Usano. Comparison of heuristics for flowtime minimisation
in permutation flowshops. Computers € Operations Research, 32(5):1237-1254, 2005.

J.M. Framinan and R. Pastor. A proposal for a hybrid meta-strategy for combinatorial optimization
problems. Journal of Heuristics, 14(4):375-390, 2008.

L. Fried. Team size and productivity in systems development. bigger does not always mean better.
Journal of Information Systems Management, 8:27-35, 1991.



244

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

BIBLIOGRAPHY

Y. Gajpal and C. Rajendran. An ant-colony optimization algorithm for minimizing the completion-
time variance of jobs in flowshops. International Journal of Production Economics, 101(2):259-272,
2006.

J. Gao and R. Chen. A hybrid genetic algorithm for the distributed permutation flowshop scheduling
problem. International Journal of Computational Intelligence Systems, 4(4):497-508, 2011.

J. Gao, R. Chen, and W. Deng. An efficient tabu search algorithm for the distributed permutation
flowshop scheduling problem. International Journal of Production Research, 51(3):641-651, 2013.

M.R. Garey, D.S. Johnson, and Ravi Sethi. Complexity of flowshop and jobshop scheduling. Math-
ematics of Operalions Research, 1(2):117-129, 1976.

Ludo F. Gelders and Narayanasamy Sambandam. Four simple heuristics for scheduling a flow-shop.
International Journal of Production Research, 16(3):221-231, 1978.

H. Gong, L. Tang, and C.W. Duin. A two-stage flow shop scheduling problem on a batching machine
and a discrete machine with blocking and shared setup times. Computers & Operations Research,
37(5):960-969, 2010.

R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and Approx-
imation in Deterministic Sequencing and Scheduling: A Survey. Annals of Discrete Mathematics,
5:287-326, 1979.

N.G. Hall and C. Sriskandarajah. A survey of machine scheduling problems with blocking and
no-wait in process. Operations Research, 44(3):510-525, 1996.

S. Hamed Hendizadeh, H. Faramarzi, S.A. Mansouri, J.N.D. Gupta, and T. Y ElMekkawy. Meta-
heuristics for scheduling a flowline manufacturing cell with sequence dependent family setup times.
International Journal of Production Economics, 111(2):593-605, 2008.

Y.-Y. Han, J.-H. Duan, Y.-J. Yang, M. Zhang, and B. Yun. Minimizing the total flowtime flowshop
with blocking using a discrete artificial bee colony. Lecture Notes in Computer Science (includ-

ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6839
LNAT:91-97, 2011.

Y.-Y. Han, J.J. Liang, Q.-K. Pan, J.-Q. Li, H.-Y. Sang, and N.N. Cao. Effective hybrid discrete
artificial bee colony algorithms for the total flowtime minimization in the blocking flowshop problem.
International Journal of Advanced Manufacturing Technology, 67(1-4):397-414, 2013.

Y.-Y. Han, Q.-K. Pan, J.-Q. Li, and H.-Y. Sang. An improved artificial bee colony algorithm
for the blocking flowshop scheduling problem. International Journal of Advanced Manufacturing
Technology, 60(9-12):1149-1159, 2012.

A.N. Haq, T.R. Ramanan, K.S. Shashikant, and R. Sridharan. A hybrid neural network-genetic
algorithm approach for permutation flow shop scheduling. International Journal of Production
Research, 48(14):4217-4231, 2010.

R. Hariharan and R.J. Golden Renjith Nimal. Solving flow shop scheduling problems using a hybrid
genetic scatter search algorithm. Middle - East Journal of Scientific Research, 20(3):328-333, 2014.

S. Hartmann and D. Briskorn. A survey of variants and extensions of the resource-constrained
project scheduling problem. European Journal of Operational Research, 207(1):1-14, 2010.

S. Hasija and C. Rajendran. Scheduling in flowshops to minimize total tardiness of jobs. Interna-
tional Journal of Production Research, 42(11):2289-2301, 2004.

T. E. Hastings and A. S. M. Sajeev. A vector-based approach to software size measurement and
effort estimation. IFEE Transactions on Software Engineering, 27:337-350, 2001.



BIBLIOGRAPHY 245

[69]

[70]

[71]

[72]

73]

[74]

73]

[76]

[77]

[78]

[79]

[80]

[81]
[82]

[83]

[84]

[85]

[86]

87]

S. Hatami, R. Ruiz, and C. Andrés-Romano. The distributed assembly permutation flowshop
scheduling problem. International Journal of Production Research, 2013.

C. Heimerl and R. Kolisch. Work assignment to and qualification of multi-skilled human resources
under knowledge depreciation and company skill level targets. International Journal of Production
Research, 48(13):3759-3781, 2010.

J. Heller. Some numerical experiments for an m x j flow shop and its decision-theoretical aspects.
Operations Research, 8(2):178-184, 1960.

J.C. Ho and J.N.D. Gupta. Flowshop scheduling with dominant machines. Computers and Opera-
tions Research, 22(2):237-246, 1995.

S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics,
6:65—-70, 1979.

W.J. Hopp and M.L. Spearman. Factory Physics. McGraw-Hill /Trwin, Boston, Massachusetts, 2000.

C.-Y. Hsu, P.-C. Chang, and M.-H. Chen. A linkage mining in block-based evolutionary algorithm
for permutation flowshop scheduling problem. Computers and Industrial Engineering, 83:159-171,
2015.

W.Q. Huang and L. Wang. A local search method for permutation flow shop scheduling. Journal
of the Operational Research Society, 57(10):1248-1251, 2006.

B. Jarboui, S. Ibrahim, P. Siarry, and A. Rebai. A combinatorial particle swarm optimisation
for solving permutation flowshop problems. Computers and Industrial Engineering, 54(3):526-538,
2008.

H.Z. Jia, J.Y.H. Fuh, A.Y.C. Nee, and Y.F. Zhang. Integration of genetic algorithm and gantt
chart for job shop scheduling in distributed manufacturing systems. Computers and Industrial
Engineering, 53(2):313-320, 2007.

H.Z. Jia, A.Y.C. Nee, J.Y.H. Fuh, and Y.F. Zhang. A modified genetic algorithm for distributed
scheduling problems. Journal of Intelligent Manufacturing, 14(3-4):351-362, 2003.

S.M. Johnson. Optimal two- and three-stage production schedules with setup times included. Nawval
Research Logistics Quarterly, 1(1):61-68, 1954.

J. Jozefowska. Just-in-time Scheduling. Springer, New York, 2007.

K.B. Kahn, G.A. Castellion, and A. Griffin. The PDMA Handbook of New Product Development:
Second Edition. Wiley, 2004.

P. J. Kalczynski and J. Kamburowski. On the NEH heuristic for minimizing the makespan in
permutation flow shops. OMEGA, The International Journal of Management Science, 35(1):53-60,
February 2007.

P. J. Kalczynski and J. Kamburowski. An improved NEH heuristic to minimize makespan in per-
mutation flow shops. Computers & Operations Research, 35(9):3001-3008, September 2008.

P. J. Kalczynski and J. Kamburowski. An empirical analysis of the optimality rate of flow shop
heuristics. European Journal of Operational Research, 198(1):93 — 101, 2009.

P. J. Kalczynski and J. Kamburowski. On recent modifications and extensions of the NEH heuristic
for flow shop sequencing. Foundations of Computing and Decision Sciences, 36(1):17-34, 2011.

Y. Kara, C. Ogiiven, N. Yalcin, and Y. Atasagun. Balancing straight and u-shaped assembly lines
with resource dependent task times. International Journal of Production Research, 49(21):6387—
6405, 2011.



246 BIBLIOGRAPHY

[88] Y.-D. Kim. Heuristics for flowshop scheduling problems minimizing mean tardiness. Journal of the
Operational Research Society, 44(1):19-28, 1993.

[89] Y.-D. Kim, J.-G. Kim, B. Choi, and H.-U. Kim. Production scheduling in a semiconductor wafer
fabrication facility producing multiple product types with distinct due dates. IEEE Transactions
on Robotics and Automation, 17(5):589-598, 2001.

[90] Y.-D. Kim, H.-G. Lim, and M.-W. Park. Search heuristics for a flowshop scheduling problem in a
printed circuit board assembly process. European Journal of Operational Research, 91(1):124-143,
1996.

[91] B. Kitchenham and E. Mendes. Software productivity measurement using multiple size measures.
IEEE Transactions on Software Engineering, 30:1023-1035, 2004.

[92] I.-H. Kuo, S.-J. Horng, T.-W. Kao, T.-L. Lin, C.-L. Lee, T. Terano, and Y. Pan. An efficient flow-
shop scheduling algorithm based on a hybrid particle swarm optimization model. FEzpert Systems
with Applications, 36(3 PART 2):7027-7032, 2009.

[93] D. Laha and U.K. Chakraborty. An efficient hybrid heuristic for makespan minimization in permu-
tation flow shop scheduling. International Journal of Advanced Manufacturing Technology, 44(5-
6):559-569, 2009.

[94] V. Lauff and F. Werner. Scheduling with common due date, earliness and tardiness penalties for
multimachine problems: A survey. Mathematical and Computer Modelling, 40(5-6):637—-655, 2004.

[95] R. Leisten and C. Rajendran. Variability of completion time differences in permutation flow shop
scheduling. Computers € Operations Research, 54:155-167, 2014.

[96] X. Li, Q. Wang, and C. Wu. Efficient composite heuristics for total flowtime minimization in
permutation flow shops. Omega, 37(1):155-164, February 2009.

[97] X. Li and C. Wu. An efficient constructive heuristic for permutation flow shops to minimize total
flowtime. Chinese Journal of Electronics, 14(2):203-208, 2005.

[98] X. Liand M. Yin. A discrete artificial bee colony algorithm with composite mutation strategies for
permutation flow shop scheduling problem. Scientia Iranica, 19(6):1921-1935, 2012.

[99] X. Li and M. Yin. A hybrid cuckoo search via Lévy flights for the permutation flow shop scheduling
problem. International Journal of Production Research, 51(16):4732-4754, 2013.

[100] X. Li and M. Yin. An opposition-based differential evolution algorithm for permutation flow shop
scheduling based on diversity measure. Advances in Engineering Software, 55:10-31, 2013.

[101] Z. Lian, X. Gu, and B. Jiao. A similar particle swarm optimization algorithm for permutation
flowshop scheduling to minimize makespan. Applied Mathematics and Computation, 175(1):773—
785, 2006.

[102] Z. Lian, X. Gu, and B. Jiao. A novel particle swarm optimization algorithm for permutation flow-
shop scheduling to minimize makespan. Chaos, Solitons and Fractals, 35(5):851-861, 2008.

[103] C.-J. Liao, Chao-Tang Tseng, and P. Luarn. A discrete version of particle swarm optimization for
flowshop scheduling problems. Computers € Operations Research, 34(10):3099-3111, 2007.

[104] Q. Lin, L. Gao, X. Li, and C. Zhang. A hybrid backtracking search algorithm for permutation
flow-shop scheduling problem. Computers and Industrial Engineering, 2015.

[105] S.-W. Lin, K.-C. Ying, and C.-Y. Huang. Minimising makespan in distributed permutation flow-
shops using a modified iterated greedy algorithm. International Journal of Production Research,
51(16):5029-5038, 2013.



BIBLIOGRAPHY 247

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

B. Liu, L. Wang, and Y.-H. Jin. An effective pso-based memetic algorithm for flow shop scheduling.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 37(1):18-27, 2007.

H. Liu, L. Gao, and Q. Pan. A hybrid particle swarm optimization with estimation of distribution
algorithm for solving permutation flowshop scheduling problem. Ezpert Systems with Applications,
38(4):4348-4360, 2011.

J Liu and CR Reeves. Constructive and composite heuristic solutions to the P|| > ¢; scheduling
problem. FEuropean Journal of Operational Research, 132:439-452, 2001.

R. Liu, C. Ma, W. Ma, and Y. Li. A multipopulation pso based memetic algorithm for permutation
flow shop scheduling. The Scientific World Journal, 2013, 2013.

Y. Liu, M. Yin, and W. Gu. An effective differential evolution algorithm for permutation flow shop
scheduling problem. Applied Mathematics and Computation, 248:143-159, 2014.

Y.-F. Liu and S.-Y. Liu. A hybrid discrete artificial bee colony algorithm for permutation flowshop
scheduling problem. Applied Soft Computing Journal, 13(3):1459-1463, 2013.

C. Low, J.-Y. Yeh, and K.-I. Huang. A robust simulated annealing heuristic for flow shop scheduling
problems. International Journal of Advanced Manufacturing Technology, 23(9-10):762-767, 2004.

A. MacCormack, C. F. Kemerer, M. Cusumano, and B. Crandall. Trade-offs between productivity
and quality in selecting software development practices. IEEE Software, 20:78-85, 2003.

N. Madhushini, C. Rajendran, and Y. Deepa. Branch-and-bound algorithms for scheduling in
permutation flowshops to minimize the sum of weighted flowtime/sum of weighted tardiness/sum
of weighted flowtime and weighted tardiness/sum of weighted flowtime, weighted tardiness and
weighted earliness of jobs. Journal of the Operational Research Society, 60(7):991-1004, 2009.

Y. Marinakis and M. Marinaki. Particle swarm optimization with expanding neighborhood topology
for the permutation flowshop scheduling problem. Soft Computing, 17(7):1159-1173, 2013.

S.T. McCormick, M. L. Pinedo, S. Shenker, and B. Wolf. Sequencing in an assembly line with
blocking to minimize cycle time. Operations Research, 37(6):925-935, 1989.

R. M’Hallah. An iterated local search variable neighborhood descent hybrid heuristic for the
total earliness tardiness permutation flow shop. International Journal of Production Research,
52(13):3802-3819, 2014.

R. M’Hallah. Minimizing total earliness and tardiness on a permutation flow shop using vns and
mip. Computers and Industrial Engineering, 75(1):142-156, 2014.

J.M. Molina-Pariente, V. Fernandez-Viagas, and J.M. Framinan. Integrated operating room plan-
ning and scheduling problem with assistant surgeon dependent surgery durations. Computers and
Industrial Engineering, 82:8-20, 2015.

C. L. Monma and A. H. G. Rinnooy Kan. A concise survey of efficiently solvable special cases
of the permutation flow-shop problem. RAIRO - Operations Research - Recherche Opérationnelle,
17(2):105-119, 1983.

C. Moon, J. Kim, and S. Hur. Integrated process planning and scheduling with minimizing total
tardiness in multi-plants supply chain. Computers and Industrial Engineering, 43(1-2):331-349,
2002.

G. Moslehi and D. Khorasanian. Optimizing blocking flow shop scheduling problem with total
completion time criterion. Computers & Operations Research, 40(7):1874-1883, 2013.

G. Moslehi, M. Mirzaee, M. Vasei, M. Modarres, and A. Azaron. Two-machine flow shop scheduling
to minimize the sum of maximum earliness and tardiness. International Journal of Production
Economics, 122(2):763-773, 2009.



248 BIBLIOGRAPHY

[124] B. Naderi and R. Ruiz. The distributed permutation flowshop scheduling problem. Computers &
Operations Research, 37(4):754-768, 2010.

[125] M.S. Nagano and J.V. Moccellin. A high quality solution constructive heuristic for flow shop
sequencing. Journal of the Operational Research Society, 53(12):1374-1379, 2002.

[126] M.S. Nagano, R. Ruiz, and L.A.N. Lorena. A constructive genetic algorithm for permutation flow-
shop scheduling. Computers and Industrial Engineering, 55(1):195-207, 2008.

[127] M. Nawaz, Jr. E. E. Enscore, and I. Ham. A Heuristic Algorithm for the m-Machine, n-Job Flow-
shop Sequencing Problem. OMEGA, The International Journal of Management Science, 11(1):91—
95, 1983.

[128] A.C. Nearchou. The effect of various operators on the genetic search for large scheduling problems.
International Journal of Production Economics, 88(2):191-203, 2004.

[129] A.C. Nearchou. Flow-shop sequencing using hybrid simulated annealing. Jouwrnal of Intelligent
Manufacturing, 15(3):317-328, 2004.

[130] A.C. Nearchou. A novel metaheuristic approach for the flow shop scheduling problem. Engineering
Applications of Artificial Intelligence, 17(3):289-300, 2004.

[131] V. F. Nieva, E. A. Fleishman, and A. Rieck. Team Dimensions: Their Identity, their Measurement
and their Relationships. Advanced Research Resources Organizations, Washington, DC, 1985.

[132] E. Nowicki and C. Smutnicki. Some aspects of scatter search in the flow-shop problem. FEuropean
Journal of Operational Research, 169(2):654-666, 2006.

[133] E. Nowicki and S. Zdrzalka. A survey of results for sequencing problems with controllable processing
times. Discrete Applied Mathematics, 26(2-3):271-287, 1990.

[134] G. Onwubolu and D. Davendra. Scheduling flow shops using differential evolution algorithm. Eu-
ropean Journal of Operational Research, 171(2):674-692, 2006.

[135] I. Osman and C. Potts. Simulated annealing for permutation flow-shop scheduling. Omega,
17(6):551-557, 1989.

[136] Q.-K. Pan and R. Ruiz. Local search methods for the flowshop scheduling problem with flowtime
minimization. Furopean Journal of Operational Research, 222(1):31-43, 2012.

[137] Q.-K. Pan and R. Ruiz. A comprehensive review and evaluation of permutation flowshop heuristics
to minimize flowtime. Computers & Operations Research, 40(1):117-128, 2013.

[138] Q.-K. Pan, M.F. Tasgetiren, and Y.-C. Liang. A discrete differential evolution algorithm for the
permutation flowshop scheduling problem. Computers and Industrial Engineering, 55(4):795-816,
2008.

[139] Q.-K. Pan and L. Wang. Effective heuristics for the blocking flowshop scheduling problem with
makespan minimization. Omega, 40(2):218-229, 2012.

[140] Q.-K. Pan, L. Wang, and B.-H. Zhao. An improved iterated greedy algorithm for the no-wait flow
shop scheduling problem with makespan criterion. International Journal of Advanced Manufacturing
Technology, 38(7-8):778-786, 2008.

[141] S.S. Panwalkar, R.A. Dudek, and M.L. Smith. Sequencing research and the industrial problem. In
Symposium on the Theory of Scheduling. Springer, Berlin, 1973.

[142] S.S. Panwalkar, M.L. Smith, and A. Seidmann. Common due date assignment to minimize total
penalty for the one machine scheduling problem. Operations Research, 30(2):391-399, 1982.



BIBLIOGRAPHY 249

[143] P. C. Pendharkar and J. A. Rodger. An empirical study of the impact of team size on software
development effort. Information Technology and Management, 8:253-262, 2007.

[144] P. Perez-Gonzalez and J.M. Framinan. Scheduling permutation flowshops with initial availability
constraint: Analysis of solutions and constructive heuristics. Computers and Operations Research,
36(10):2866-2876, 2009.

[145] R. S. Pindyck and L. D. Rubinfeld. Microeconomics. Prentice Hall, 2008.
[146] M. Pinedo. Scheduling: Theory, Algorithms and Systems. Prentice Hall, 1995.

[147] C.N. Potts and L.N. Van Wassenhove. A decomposition algorithm for the single machine total
tardiness problem. Operations Research Letters, 1(5):177-181, 1982.

[148] G. Prabhaharan, B.S.H. Khan, and L. Rakesh. Implementation of grasp in flow shop scheduling.
International Journal of Advanced Manufacturing Technology, 30(11-12):1126-1131, 2006.

[149] B. Qian, L. Wang, R. Hu, W.-L. Wang, D.-X. Huang, and X. Wang. A hybrid differential evolution
method for permutation flow-shop scheduling. International Journal of Advanced Manufacturing
Technology, 38(7-8):757-777, 2008.

[150] S. F. Rad, R. Ruiz, and N. Boroojerdian. New high performing heuristics for minimizing makespan
in permutation flowshops. OMEGA, The International Journal of Management Science, 37(2):331—
345, April 2009.

[151] C. Rajendran. Heuristic algorithm for scheduling in a flowshop to minimize total flowtime. Inter-
national Journal of Production Economics, 29(1):65-73, February 1993.

[152] C. Rajendran and H. Ziegler. An efficient heuristic for scheduling in a flowshop to minimize total
weighted flowtime of jobs. Furopean Journal of Operational Research, 103:129-138, 1997.

[153] C. Rajendran and H. Ziegler. Scheduling to minimize the sum of weighted flowtime and weighted tar-
diness of jobs in a flowshop with sequence-dependent setup times. Furopean Journal of Operational
Research, 149(3):513-522, 2003.

[154] C. Rajendran and H. Ziegler. Ant-colony algorithms for permutation flowshop scheduling to mini-
mize makespan/total flowtime of jobs. Furopean Journal of Operational Research, 155(2):426-438,
2004.

[155] R. Rajkumar and P. Shahabudeen. An improved genetic algorithm for the flowshop scheduling
problem. International Journal of Production Research, 47(1):233-249, 2009.

[156] N. Raman. Minimum tardiness scheduling in flow shops: Construction and evaluation of alternative
solution approaches. Journal of Operations Management, 12(2):131-151, 1995.

[157] T.R. Ramanan, R. Sridharan, K.S. Shashikant, and A.N. Haq. An artificial neural network based
heuristic for flow shop scheduling problems. Journal of Intelligent Manufacturing, 22(2):279-288,
2011.

[158] C.R. Reeves. A genetic algorithm for flowshop sequencing. Computers & Operations Research,
22(1):5-13, 1995.

[159] G.V. Reklaitis. Review of scheduling of process operations. AIChE Symposium Series, 78(214):119-
133, 1982.

[160] S. Reza Hejazi and S. Saghafian. Flowshop-scheduling problems with makespan criterion: A review.
International Journal of Production Research, 43(14):2895-2929, 2005.

[161] I. Ribas and R. Companys. Efficient heuristic algorithms for the blocking flow shop scheduling
problem with total flow time minimization. Computers and Industrial Engineering, 87:30-39, 2015.



250 BIBLIOGRAPHY

[162] I. Ribas, R. Companys, and X. Tort-Martorell. Comparing three-step heuristics for the permutation
flow shop problem. Computers & Operations Research, 37(12):2062-2070, December 2010.

[163] I. Ribas, R. Companys, and X. Tort-Martorell. An iterated greedy algorithm for the flowshop
scheduling problem with blocking. Omega, 39(3):293-301, 2011.

[164] I. Ribas, R. Companys, and X. Tort-Martorell. A competitive variable neighbourhood search algo-
rithm for the blocking flow shop problem. European Journal of Industrial Engineering, 7(6):729-754,
2013.

[165] I. Ribas, R. Companys, and X. Tort-Martorell. An eflicient discrete artificial bee colony algorithm for
the blocking flow shop problem with total flowtime minimization. Ezpert Systems with Applications,
42(15-16), 2015.

[166] A.H. G. Rinnooy Kan. Machine Scheduling Problems: Classification, Complexity and Computations.
Martinus Nijhoff, The Hague, 1976.

[167] D. Rodriguez, M.A. Sicilia, E. Garcia, and R. Harrison. Empirical findings on team size and
productivity in software development. Journal of Systems and Software, 85(3):562-570, 2012.

[168] D. P. Ronconi and E. G. Birgin. Mixed-integer programming models for flowshop scheduling prob-
lems minimizing the total earliness and tardiness. In Roger Z. Rios-Mercado and Yasmin A. Rios-
Solis, editors, Just-in-Time Systems, Springer Optimization and Its Applications, pages 91-105.
Springer New York, 2012.

[169] D.P. Ronconi. A note on constructive heuristics for the flowshop problem with blocking. Interna-
tional Journal of Production Economics, 87(1):39-48, 2004.

[170] R. Ruiz and A. Allahverdi. No-wait flowshop with separate setup times to minimize maximum
lateness. International Journal of Advanced Manufacturing Technology, 35(5-6):551-565, 2007.

[171] R. Ruiz and A. Allahverdi. Minimizing the bicriteria of makespan and maximum tardiness with an
upper bound on maximum tardiness. Computers & Operations Research, 36(4):1268-1283, 2009.

[172] R. Ruiz and C. Maroto. A comprehensive review and evaluation of permutation flowshop heuristics.
European Journal of Operational Research, 165(2):479-494, 2005.

[173] R. Ruiz, C. Maroto, and J. Alcaraz. Two new robust genetic algorithms for the flowshop scheduling
problem. Omega, 34(5):461-476, 2006.

[174] R. Ruiz and T Stiitzle. A simple and effective iterated greedy algorithm for the permutation flowshop
scheduling problem. European Journal of Operational Research, 177(3):2033-2049, 2007.

[175] R. Ruiz and T. Stiitzle. An iterated greedy heuristic for the sequence dependent setup times flow-
shop problem with makespan and weighted tardiness objectives. Furopean Journal of Operational
Research, 187(3):1143-1159, 2008.

[176] M. Saravanan, A. Noorul Haq, A.R. Vivekraj, and T. Prasad. Performance evaluation of the scatter
search method for permutation flowshop sequencing problems. International Journal of Advanced
Manufacturing Technology, 37(11-12):1200-1208, 2008.

[177] M.K. Sayadi, R. Ramezanian, and N. Ghaffari-Nasab. A discrete firefly meta-heuristic with local
search for makespan minimization in permutation flow shop scheduling problems. International
Journal of Industrial Engineering Computations, 1(1):1-10, 2010.

[178] J. Schaller. Scheduling a permutation flow shop with family setups to minimise total tardiness.
International Journal of Production Research, 50(8):2204-2217, 2012.

[179] J. Schaller and J.M.S. Valente. A comparison of metaheuristic procedures to schedule jobs in a
permutation flow shop to minimise total earliness and tardiness. International Journal of Production
Research, 51(3):772-779, 2013.



BIBLIOGRAPHY 251

[180] T. Sen and S.K. Gupta. A state-of-art survey of static scheduling research involving due dates.
Omega, 12(1):63-76, 1984.

[181] S.P. Sethi, C. Sriskandarajah, G. Sorger, J. Blazewicz, and W. Kubiak. Sequencing of parts and
robot moves in a robotic cell. International Journal of Flexible Manufacturing Systems, 4(3-4):331—
358, 1992.

[182] D. Shabtay and G. Steiner. A survey of scheduling with controllable processing times. Discrete
Applied Mathematics, 155(13):1643-1666, 2007.

[183] D. Shabtay and G. Steiner. Scheduling to maximize the number of just-in-time jobs: A survey. In
Roger 7. Rios-Mercado and Yasmin A. Rios-Solis, editors, Just-in-Time Systems, Springer Opti-
mization and Its Applications, pages 3-20. Springer New York, 2012.

[184] R. Slowinski. Two approaches to problems of resource allocation among projet activities - a com-
parative study. Journal of the Operational Research Society, 31(8):711-723, 1980.

[185] K. G. Smith, K. A. Smith, J. D. Olian, H. P. Sims Jr., D. P. O’'Bannon, and J. A. Scully. Top
management team demography and process: The role of social integration and communication.
Administrative Science Quarterly, 39:412-438, 1994.

[186] M. Solimanpur, P. Vrat, and R. Shankar. A neuro-tabu search heuristic for the flow shop scheduling
problem. Computers & Operations Research, 31(13):2151-2164, 2004.

[187] T Stiitzle. Applying iterated local search to the permutation flow shop problem. Technical report,
AIDA-98-04, FG Intellektik, FB Informatik, TU Darmstadt, 1998.

[188] Y. Sun, C. Zhang, L. Gao, and X. Wang. Multi-objective optimization algorithms for flow shop
scheduling problem: A review and prospects. International Journal of Advanced Manufacturing
Technology, 55(5-8):723-739, 2011.

[189] E. Taillard. Some efficient heuristic methods for the flow shop sequencing problem. Furopean Journal
of Operational Research, 47(1):65-74, 1990.

[190] E. Taillard. Benchmarks for basic scheduling problems. European Journal of Operational Research,
64(2):278-285, 1993.

[191] K.-C. Tan, R. Narasimhan, P.A. Rubin, and G.L. Ragatz. A comparison of four methods for
minimizing total tardiness on a single processor with sequence dependent setup times. OMEGA,
The International Journal of Management Science, 28(3):313-326, 2000.

[192] M.F. Tasgetiren, Y.-C. Liang, M. Sevkli, and G. Gencyilmaz. A particle swarm optimization al-
gorithm for makespan and total flowtime minimization in the permutation flowshop sequencing
problem. FEuropean Journal of Operational Research, 177(3):1930-1947, 2007.

[193] V. T’Kindt and J.-C. Billaut. Multicriteria Scheduling: Theory, Models and Algorithms. Springer,
New York, second edition, 2006.

[194] L.-Y. Tseng and Y.-T. Lin. A hybrid genetic local search algorithm for the permutation flowshop
scheduling problem. European Journal of Operational Research, 198(1):84-92, 2009.

[195] Y.-R. Tzeng and C.-L. Chen. A hybrid eda with acs for solving permutation flow shop scheduling.
International Journal of Advanced Manufacturing Technology, 60(9-12):1139-1147, 2012.

[196] G. Vairaktarakis and M. Elhafsi. The use of flowlines to simplify routing complexity in two-stage
flowshops. IIE Transactions (Institute of Industrial Engineers), 32(8):687—699, 2000.

[197] E. Vallada and R. Ruiz. Genetic algorithms with path relinking for the minimum tardiness permu-
tation flowshop problem. Omega, 38(1-2):57-67, 2010.



252 BIBLIOGRAPHY

[198] E. Vallada, R. Ruiz, and J.M. Framinan. New hard benchmark for flowshop scheduling problems
minimising makespan. Furopean Journal of Operational Research, 240:666-677, 2015.

[199] E. Vallada, R. Ruiz, and G. Minella. Minimising total tardiness in the m-machine flowshop prob-
lem: A review and evaluation of heuristics and metaheuristics. Computers € Operations Research,
35(4):1350-1373, 2008.

[200] V. Valls, A. Pérez, and S. Quintanilla. Skilled workforce scheduling in service centres. FEuropean
Journal of Operational Research, 193(3):791-804, 2009.

[201] D. Vasiljevic and M. Danilovic. Handling ties in heuristics for the permutation flow shop scheduling
problem. Journal of Manufacturing Systems, 35:1-9, 2015.

[202] T. E. Vollman, W. L. Berry, and D. C. Wybark. Manufacturing Planning and Control Systems.
McGraw-Hill, New York, 1997.

[203] J.-B. Wang, F. Shan, B. Jiang, and L.-Y. Wang. Permutation flow shop scheduling with domi-
nant machines to minimize discounted total weighted completion time. Applied Mathematics and
Computation, 182(1):947-954, 2006. cited By 9.

[204] L. Wang, Q.K. Pan, and M.F. Tasgetiren. Minimizing the total flow time in a flow shop with blocking
by using hybridm harmony search algorithms. Expert Systems with Applications, 37(12):7929-7936,
2010.

[205] S.-Y. Wang, L. Wang, M. Liu, and Y. Xu. An effective estimation of distribution algorithm for solv-
ing the distributed permutation flow-shop scheduling problem. International Journal of Production
Economics, 145(1):387-396, 2013.

[206] J.P. Watson, L. Barbulescu, L.D. Whitley, and A.E. Howe. Contrasting structured and random
permutation flow-shop scheduling problems: Search-space topology and algorithm performance.
INFORMS Journal on Computing, 14(2):98-123, 2002.

[207] H.-S. Woo and D.-S. Yim. A heuristic algorithm for mean flowtime objective in flowshop scheduling.
Computers & Operations Research, 25(3):175-182, 1998.

[208] Z. Xie, C. Zhang, X. Shao, W. Lin, and H. Zhu. An effective hybrid teaching-learning-based
optimization algorithm for permutation flow shop scheduling problem. Advances in Engineering
Software, 77:35—47, 2014.

[209] B. Yagmahan and M.M. Yenisey. Ant colony optimization for multi-objective flow shop scheduling
problem. Computers and Industrial Engineering, 54(3):411-420, 2008.

[210] K.-C. Ying and C.-J. Liao. An ant colony system for permutation flow-shop sequencing. Computers
& Operations Research, 31(5):791-801, 2004.

[211] K.-C. Ying and S.-W. Lin. A high-performing constructive heuristic for minimizing makespan in
permutation flowshops. Journal of Industrial and Production Engineering, 30(6):355-362, 2013.

[212] S.H. Zanakis, J.R. Evans, and A.A. Vazacopoulos. Heuristic methods and applications: A catego-
rized survey. European Journal of Operational Research, 43(1):88-110, 1989.

[213] S.H. Zegordi, K. Itoh, and T. Enkawa. A knowledgeable simulated annealing scheme for
the early/tardy flow shop scheduling problem. International Journal of Production Research,
33(5):1449-1466, 1995.

[214] C. Zhang, J. Ning, and D. Ouyang. A hybrid alternate two phases particle swarm optimization
algorithm for flow shop scheduling problem. Computers and Industrial Engineering, 58(1):1-11,
2010.

[215] C. Zhang and J. Sun. An alternate two phases particle swarm optimization algorithm for flow shop
scheduling problem. Expert Systems with Applications, 36(3 PART 1):5162-5167, 2009.



BIBLIOGRAPHY 253

[216] C. Zhang, J. Sun, X. Zhu, and Q. Yang. An improved particle swarm optimization algorithm for
flowshop scheduling problem. Information Processing Letters, 108(4):204-209, 2008.

[217] J. Zhang, C. Zhang, and S. Liang. The circular discrete particle swarm optimization algorithm for
flow shop scheduling problem. Ezpert Systems with Applications, 37(8):5827-5834, 2010.

[218] L. Zhang and J. Wu. A pso-based hybrid metaheuristic for permutation flowshop scheduling prob-
lems. The Scientific World Journal, 2014, 2014.

[219] X. Zhang and S. Van De Velde. Approximation algorithms for the parallel flow shop problem.
European Journal of Operational Research, 216(3):544-552, 2012.

[220] Y. Zhang, X. Li, and Q. Wang. Hybrid genetic algorithm for permutation flowshop scheduling
problems with total flowtime minimization. European Journal of Operational Research, 196(3):869—
876, 2009.

[221] T. Zheng and M. Yamashiro. Solving flow shop scheduling problems by quantum differential evolu-
tionary algorithm. International Journal of Advanced Manufacturing Technology, 49(5-8):643-662,
2010.

[222] G.I. Zobolas, C.D. Tarantilis, and G. Ioannou. Minimizing makespan in permutation flow shop
scheduling problems using a hybrid metaheuristic algorithm. Computers & Operations Research,
36(4):1249-1267, 2009.

[223] G. Zéapfel, R. Braune, and M. Bogl. Metaheuristic Search Concepts. Springer, 2010.



