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Background: Ribosome biogenesis is tightly coupled to cell growth.
Results: The specific inhibition of RNA polymerases I or III leads to a G1/S delay in yeast, which occurs through the accumu-
lation of free ribosomal proteins.
Conclusion: The correct stoichiometry of ribosomal RNAs and proteins is necessary for accurate cell cycle progression.
Significance: From yeast to human, there are protective mechanisms that ensure cell cycle delay when ribosome biogenesis is
impaired.

Cell cycle regulation is a very accurate process that ensures
cell viability and the genomic integrity of daughter cells. A
fundamental part of this regulation consists in the arrest of
the cycle at particular points to ensure the completion of a
previous event, to repair cellular damage, or to avoid progres-
sion in potentially risky situations. In this work, we demon-
strate that a reduction in nucleotide levels or the depletion of
RNA polymerase I or III subunits generates a cell cycle delay
at the G1/S transition in Saccharomyces cerevisiae. This delay
is concomitant with an imbalance between ribosomal RNAs
and proteins which, among others, provokes an accumulation
of free ribosomal protein L5. Consistently with a direct
impact of free L5 on the G1/S transition, rrs1 mutants, which
weaken the assembly of L5 and L11 on pre-60S ribosomal
particles, enhance both the G1/S delay and the accumulation
of free ribosomal protein L5. We propose the existence of a
surveillance mechanism that couples the balanced produc-
tion of yeast ribosomal components and cell cycle progres-
sion through the accumulation of free ribosomal proteins.
This regulatory pathway resembles the p53-dependent nucle-
olar-stress checkpoint response described in human cells,
which indicates that this is a general control strategy
extended throughout eukaryotes.

Eukaryotic cells tightly regulate cell cycle transitions to
ensure viability and the correct transmission of genetic infor-
mation. A fundamental element of cell cycle regulation consists
of arrests at particular steps to guarantee the completion of a
previous cell cycle event, to repair cellular damage, or to resolve
a challenge situation (1). Failures in these processes reduce cell
survival and, in higher metazoans, lead to cancer and other
diseases (2–4).
Ribosome biogenesis is a highly resource-consuming process

and therefore involves the tight regulation and balanced syn-
thesis of all its constituents (5–7). This complicated pathway
requires the coordinated assembly of ribosomal RNAs (rRNAs),
synthesized by RNA polymerases I and III (RNA pol I and III),5
and ribosomal proteins (r-proteins), whose mRNAs are tran-
scribed by RNA polymerase II (RNA pol II).
6-Azauracil (6AU) and mycophenolic acid (MPA) are well

known nucleotide-depleting (NTP-depleting) drugs that inter-
fere with transcription elongation in vivo by strongly inhibiting
inosine monophosphate (IMP) dehydrogenase, a rate-limiting
enzyme in the novo synthesis of guanine nucleotides (8, 9).
Mycophenolate mofetil, a prodrug ofMPA, is widely used as an
immunosuppressive agent because it can effectively induce G1
arrest in lymphocytes (10, 11). Moreover, type 1 IMP dehydro-
genase has been identified as a MPA target in human cells (12).
Saccharomyces cerevisiae contains four closely paralogous
genes, IMD1, IMD2 (formerly known as PUR5), IMD3, and
IMD4, which encode IMP dehydrogenases. Interestingly, only
IMD2 provides resistance to NTP-depleting drugs. Twomech-
anisms are responsible for this resistance: (i) IMD2 is normally
repressed under guanine replete conditions, but is strongly
induced when guanine nucleotides are low (8, 13); (ii) Imd2
activity in vivo is intrinsically more resistant to MPA than that
of Imd3 or Imd4 (14, 15).
In human cells, MPA treatment results in both a drastic

reduction of pre-rRNA synthesis and the disruption of the

* This work was supported by the Spanish Ministry of Economy and Competitive-
ness and European Regional Development Fund (ERDF) Grants BFU2007-
67575-C03-02 and BFU2010-21975-C03-03 (to S. C.) and BFU2010-15690 (to
J. d. l. C.) and the Andalusian Government Grants P07-CVI-02623 and P08-CVI-
03508, and BIO-271.

□S This article contains supplemental Table 1.
1 Present address: Genome Damage and Stability Centre, University of Sus-

sex, Science Park Rd., Falmer, Brighton BN1 9RQ, United Kingdom.
2 Recipient of a Formación de Personal Investigador (FPI) fellowship. Present

address: Centro Andaluz de Biología Molecular y Medicina Regenerativa,
CABIMER, Avda. Américo Vespucio s/n, Parque Científico y Tecnológico
Cartuja 41092 Sevilla, Spain.

3 Recipient of a fellowship from the Andalusian Government. Present address:
Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR
1068, CNRS UMR 7258, Marseille, France.

4 To whom correspondence should be addressed: Departamento de Gené-
tica, Facultad de Biología, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
Tel.: 34-954550920; Fax: 34-954557104; E-mail: mcmunoz@us.es.

5 The abbreviations used are: pol I, II, and III, polymerase I, II, and III, respec-
tively; 6AU, 6-azauracil; MPA, mycophenolic acid; NTP, nucleotides triphos-
phate; r-protein, ribosomal protein; 1C, unreplicated DNA content value.

THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 288, NO. 44, pp. 31689 –31700, November 1, 2013
© 2013 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.

NOVEMBER 1, 2013 • VOLUME 288 • NUMBER 44 JOURNAL OF BIOLOGICAL CHEMISTRY 31689

 at FA
C

 B
IO

L
O

G
IA

/B
IB

L
IO

T
E

C
A

 on July 27, 2016
http://w

w
w

.jbc.org/
D

ow
nloaded from

 
 at FA

C
 B

IO
L

O
G

IA
/B

IB
L

IO
T

E
C

A
 on July 27, 2016

http://w
w

w
.jbc.org/

D
ow

nloaded from
 

 at FA
C

 B
IO

L
O

G
IA

/B
IB

L
IO

T
E

C
A

 on July 27, 2016
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/
http://www.jbc.org/
http://www.jbc.org/


nucleolus, causing p53 activation, and consequently G1 arrest
through the inhibition of MDM2 by free r-proteins (16–22).
R-proteins L5 and L11 have been reported to bindMdm2, thus
inducing p53 stabilization by inhibiting theMdm2 E3 ubiquitin
ligase function (23–27). Other r-proteins, such as S7, S27a, and
L23, have also been described to provoke the induction of p53
and subsequent G1 arrest (26, 28–30). However, recent evi-
dence indicates that L5 and L11 are the r-proteinsmost directly
required for p53 induction (31, 32).
In this work, we used the eukaryote S. cerevisiae model to

investigate the effects ofNTP-depleting drugs on ribosomebio-
genesis and their consequences on cell cycle progression. We
show that these drugs also induce nucleolar stress and G1 delay
in yeast through the accumulation of free r-proteins. Yeast
r-proteins L11 and L5 (orthologues of human L11 and L5,
respectively) appear to play an important role in this phenom-
enon. Therefore, we postulate that the surveillance mechanism
that links ribosome integrity to cell cycle control via the induc-
tion of p53 in human cells may have evolved from a process
already present in lower eukaryotes.

EXPERIMENTAL PROCEDURES

Strains, Media, and Culture Reagents—All of the yeast
strains used in this study are derivatives of the W303 and BY
backgrounds. Genotypes are available in supplemental Table 1.
For the experiments requiringNTP-depleting drug treatments,
strains were first transformed with a centromeric plasmid that
harbors theURA3 gene and then grown in a complete minimal
medium lacking uracil (SC-URA). MPA and 6AU (Sigma) were
dissolved directly in growth media to the indicated concentra-
tions. Doxycycline (Sigma) was dissolved in distilled water in a
concentrated stock and was added at a final concentration of 5
�g/ml. To test growth, yeast cultures were diluted to the same
OD600 and serial dilutions (1:10) were spotted onto plates. At
least three independent experiments were carried out in all
cases. Standard procedures were followed for synchronization
at START and flow cytometry (33, 34).
Sucrose Gradient Centrifugation—Polysome and r-subunit

preparations and analyses were performed as described previ-
ously (35) using an ISCO UA-6 system equipped to continu-
ously monitor A254.
Protein Extractions and Western Blotting Analyses—Total

yeast protein extracts were prepared and analyzed by Western
blotting according to standard procedures (36). The following
primary antibodies were used: mouse monoclonal anti-Myc
(Santa Cruz Biotechnology), rabbit polyclonal anti-L1 (a gift
from F. Lacroute) (37), rabbit polyclonal anti-L5 (a gift from
S. R.Valentini) (38), and rabbit polyclonal anti-S8 (a gift fromG.
Dieci) (39).
RNA Extractions and Northern Hybridization—RNA extrac-

tion and Northern hybridization analyses were carried out
according to standard procedures (40, 41). In all of the experi-
ments, RNA was extracted from exponentially growing cells.
Equal amounts of total RNA were loaded onto gels. The oligo-
nucleotides used for the hybridizations have been described
previously (42). A phosphorimaging analysis was performed in
an FLA-5100 imaging system (Fujifilm) at the Biology Service
(CITIUS) of the University of Seville.

RESULTS

NTP-depleting Drugs Promote Transient Cell Cycle Delay at
G1—MPA and 6AU inhibit transcription elongation in vivo (8)
and have been previously described to activate p53 and to
induce p53-dependent G1 arrest in certain human cell lines. To
test whether MPA-induced G1 arrest is a generally shared fea-
ture in eukaryotes, we studied the effect of NTP-depleting
drugs on cell cycle progression in themodel organism S. cerevi-
siae. First, we treated an asynchronously growing wild-type
yeast culture with a sublethal dose of 6AU. As shown in Fig. 1A,
this treatment led to delay in G1/S transition, and most cells
became unbudded with a 1C DNA content. This G1 delay was
clearly visible 2 h after adding the drug, and by 6 h after this
addition, approximately 60% of cells remained unbudded with
the 1C DNA content (Fig. 1A). We also tested whether 6AU
promotes cell enlargement during G1 delay. Both the visual
observation of cells and the forward scattering measurements
in a flow cytometer showed a clear increase in cell size in the
presence of 6AU (Fig. 1B). The magnitude of this increase was
comparable with that which cdcmutants undergo when shifted
to restrictive conditions. Similar results were obtained when
cells were treated with MPA (Fig. 1A; data not shown). These
results suggest that the G1 delay caused by these drugs must be
mediated by specific mechanisms and cannot be simply
explained as a passive consequence of a growth defect due to a
general transcription impairment.
To further characterize the G1 delay caused by NTP-deplet-

ing drugs in yeast, a classical order-of-function analysis was
performed (43). Wild-type cells were arrested in START with
�-factor. When cells were released from the pheromone, a sig-
nificant delay took place in the presence of 6AU, indicating that
the delay inG1 produced by nucleotide depletion occurred in or
after the�-factor-sensitive step (START) (Fig. 1C). In the recip-
rocal experiment (Fig. 1D), an accumulation of wild-type
unbudded G1 cells was first generated by treatment with 6AU.
Further incubation of these cells in the absence of 6AU, but in
the presence of �-factor, did not increase the proportion of
budded cells, indicating that those cells arrested by 6AU were
blocked in or before the �-factor-sensitive step. These recipro-
cal-shift experiments indicate that 6AU induces an accumula-
tion of cells at START.
The Transient Delay in G1 Correlates with the Reduction of

Cellular NTP Pools—The G1 delay described above was a tran-
sient phenomenon as wild-type cells started recovering normal
cell cycle profiles at 6 h after drug addition (Fig. 1A). The reduc-
tion of intracellular NTP pools after 6AU or MPA treatment
has been reported to also be transient as wild-type cells sense
intracellular NTP depletion and compensate for it by inducing
the transcription of IMD2. IMD2 transcript levels dramatically
increase in the presence of NTP-depleting drugs during a
period in which the levels of GTP and total RNA synthesis are
low. Themost notable induction has been observed 2 h after the
drugs challenge, and at this level, it declines to the base line by
10 h after treatment (8, 13).
We reasoned that if the transient G1 delay correlates with the

reduction in the cellular NTP pools, we could predict that the
inactivation of IMD2 would lead to a more enduring cell cycle
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delay as loss of IMD2 suffices to manifest NTP-depleting drug
sensitivity (9). As shown in Fig. 1A, the cells lacking IMD2 pre-
sented a continued G1 delay after 6AU or MPA treatment,
which caused an increase in the 1C unbudded cells, which was
still observed by 10 h after treatment. This result indicates that
the G1/S transient impairment induced by these drugs corre-
lates with the reduction in the NTP pools.
Cell Cycle Regulatory Elements Are Involved in This G1 Delay—

To understand the cell cycle regulatory mechanismsmediating
the observed G1 delay, we investigated the effect of NTP-de-
pleting drugs on the different regulatory elements involved in
the G1/S transition. First, we analyzed the consequences of
NTP depletion on the expression of G1 cyclins CLN1, CLN2,

andCNL3. Cells were treated for 2 hwith�-factor to arrest cells
at START, and then for 15 min in either the presence or
absence of 6AU, but in the continuous presence of the phero-
mone, as schematized in Fig. 2A. Next, we released the cells
from the arrest and analyzed themRNAs levels ofCLN1,CLN2,
and CNL3 by Northern blotting. The CLN3mRNA levels were
clearly lower in the pheromone-treated cells in the presence of
6AU than in its absence (Fig. 2B). It should be noted that 6AU-
treated cells remained arrested at G1 after removing the �-fac-
tor, which reveals that this treatment impaired G1/S transition
(Fig. 2A). In contrast, the mRNA levels of ACT1, a constitutive
noncycling gene, were not significantly affected after the 6AU
treatment. The START-specific induction of CLN1 and CLN2

FIGURE 1. Asynchronous cultures accumulate in G1 (START) under NTP-depleting drug treatment. A, asynchronously growing wild-type and imd2� cells
were treated with 100 �g/ml 6AU or MPA. Samples were taken at different time points to analyze DNA content by flow cytometry and the proportion of
unbudded cells by microscopy. B, a representative microscopic (100�) image shows wild-type cultured cells before and after a 6-h 6AU treatment. Average cell
size was also measured by flow cytometry. C, an �-factor-synchronized culture at START was incubated for a 15-min period with or without 6AU. Cells were then
released, and samples were taken at the indicated times for the DNA content analysis by flow cytometry. D, an exponentially growing asynchronous culture was
treated with 6AU (100 �g/ml) for 2 h. After three washes, half the culture was incubated with the �-factor for synchronization at START. The percentages of
unbudded and small-budded cells were scored.
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was strongly delayed until IMD2 induction overcame NTP
scarcity (Fig. 2B). We also analyzed the levels of the Sic1 pro-
tein, the inhibitor of the Cdc28-Clb complexes, which regulates
entry into S phase (44). As expected, an abnormal accumulation
of Sic1 was observed in the 6AU-treated cells (Fig. 2C). These

results suggest the existence of a control mechanism causing
the down-regulation of CLN3 expression and a subsequent
delay in CLN1 and CLN2 induction. This mechanism might
protect cells from the deleterious effect of replicating the
genome under NTP depletion conditions. To test this scenario,
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we forced the entry into the S phase of NTP-depleted cells. To
do so, we overexpressed CLN3 with a TET-off::CLN3 construct
(negatively regulated by doxycycline and kindly provided byM.
Aldea), which suppressed the accumulation of the treated cells
in G1 and slightly increased 6AU sensitivity (Fig. 2D). Similar
results were obtained in cells lacking Sic1 (Fig. 2E). These data
indicate that the forced progression of the 6AU-treated cells
into the S phase is deleterious, and, therefore, the G1 delay
triggered by NTP depletion is cell-protective.
NTPDepletionDifferentially Impacts the RNAProducts of the

Three RNA Polymerases—As the described transient G1delay
correlates with the reduction in the cellular nucleotide pools,
two different scenarios can be hypothesized: (i) the low NTP
levels are per se the signal for G1 delay, or (ii) a subsequent
consequence of nucleotide reduction triggers the effect on cell
cycle progression. To distinguish between these possibilities,
we investigated the effect of 6AU on the RNA products speci-
fied by RNA pol I, II, and III. In a wild-type strain, cells were
collected at different times after 6AU addition; total RNA was
extracted and analyzed by Northern blotting (Fig. 3). RNA pol I
transcripts were followed by studying the steady-state levels of
all pre- andmature rRNAs byNorthern hybridization (Fig. 3A).
A strong and early reduction in the levels of pre-rRNA 35S was
observed in the cells after 15 min of 6AU treatment. The pre-
rRNA 35S is the first detected precursor of rRNAs (41); there-
fore, this result indicates that 6AU strongly inhibits RNA pol I
transcription. Consistent with this result, a similar reduction
pattern was presented by other pre-rRNA species transcribed
byRNApol I; i.e. 32S, 27SA, 27SB and 20S. The levels of 27S and
20S pre-rRNAs, however, decreased more slowly than those of
35S pre-rRNA, reflecting that these are downstreamprecursors
of the pre-rRNA processing pathway. No drop in the levels of
mature 18S and 25S rRNA was observed (Fig. 3A), which most
likely corresponds to pre-existing stable ribosomes in this 2-h
time course of 6AU treatment.
RNA pol III activity was followed by analyzing the short-life

primary transcript of SUP56, which encodes a tRNALeu. The
SUP56 pre-tRNA levels lowered drastically after 15min of 6AU
treatment (Fig. 3B). No drop, however, was observed in the
levels of 5S rRNA which, as above, is consistent with the stabil-
ity of mature ribosomes through the 2-h time course of the
experiment.
RNA pol II-dependent gene expression was followed by

assessing the mRNA levels of r-protein genes RPL5 and RPS3
and the ribosome-unrelatedADH1 gene. In contrast to the pre-
vious results, themRNA levels showed a very slight reduction at
early time points after 6AU addition (Fig. 3C). These results
demonstrate that, even though NTPs are essential substrates

for all three RNA polymerases, the effect of NTP-depleting
drugs is faster and stronger in the RNA pol I and RNA pol III
transcript levels than on the RNA pol II ones (see Fig. 3D).
Therefore, NTP-depleting drugs generate a clear imbalance
between pre-rRNAs and mRNAs.
We speculate that this imbalance might trigger the transient

G1 delay observed after NTP depletion. To further explore this
possibility, we reproduced the imbalance between pre-rRNAs
and mRNAs through the selective depletion of essential sub-
units of RNApol I or III.We first analyzed a conditional allele of
RPA43 (encoding an RNA pol I subunit), which harbors this
gene under the control of aTET-off promoter. In the absence of
doxycycline, this strain behaves similarly to the wild type in
terms of its doubling time, levels of 35S pre-rRNA, and cell
cycle profile (Fig. 4,A–C). However, depletion of RPA43 clearly
diminished the 35S pre-rRNA, whereas the levels of the RNA
pol II RPL5 and ADH1 transcripts were not affected (Fig. 4, A
and B). Strikingly, depletion of RPA43 also led to a delay in the
G1 phase of the cell cycle (Fig. 4C).
We performed similar experiments with a conditional allele

for RPC17 (encoding an RNA pol III subunit), which also har-
bors this gene under the control of theTET-off promoter. In the
absence of doxycycline, this strain behaved similarly to the wild
type in terms of its doubling time, levels of SUP56 pre-tRNA,
and cell cycle profile (Fig. 4,D–F). TheNorthern blot analysis of
the SUP56 tRNAs from RPC17-depleted cells showed normal
stationary levels for theRNApol I andRNApol II products (35S
pre-rRNA, and RPL5 and ADH1mRNAs), but sharply lowered
the levels of SUP56 pre-tRNA, thus reflecting a deficit of RNA
pol III products (Fig. 4, D and E). As above, a pronounced G1
cells accumulation correlated with RNA pol III inactivation
(Fig. 4F). In conclusion, the deficit of newly synthesized RNA
pol I and III products affectsG1/S transition similarly to theway
NTP depletion does.
Deficit of Pre-rRNAs Leads toAccumulation of Free r-Proteins—

The synthesis of rRNAs and r-proteins are two parallel, coordi-
nated pathways that lead to ribosome biosynthesis (for review,
see Refs. 5, 6). In mammalian cells, it has been previously dem-
onstrated that MPA treatment results in the drastic reduction
of pre-rRNA synthesis and the disruption of the nucleolus; this
situation brings about the accumulation of free r-proteins,
including L5 and L11 (16). Above, we describe that both NTP-
depleting drug treatments and RNA pol I and III inactivation in
S. cerevisiae cause an imbalance between pre-rRNAs and r-pro-
tein mRNAs. This situation led us to test whether free r-pro-
teins are accumulated in yeast under NTP depletion.
To do so, wild-type and imd2� cells were treated with 6AU

for 15 min; extracts were performed and subjected to centrifu-

FIGURE 2. Cell cycle regulators actively mediate the G1 delay promoted by NTP-depleting drugs. A, experimental design and flow cytometry analysis of
the yeast cultures used in B. Cells were synchronized with �-factor for 135 min. For those treated with 6AU, the drug was added during the last 15 min of
synchronization and was maintained after the �-factor wash and release. Samples were taken after 120 min of synchronization (ST) and after the �-factor
release at the indicated times. B, the mRNA levels of the RNA pol II-transcribed genes ACT1, IMD2, and the G1 cyclins CLN1 (empty, �6AU, and filled, �6AU,
triangles), CLN2 (empty, �6AU, and filled, �6AU, squares), and CLN3 are shown. A.U., arbitrary units. C, a SIC1::MYC strain was synchronized, treated with 6AU,
and released as described above. Extracts from equal amounts of cells were loaded in SDS-polyacrylamide gels and analyzed by Western blotting with an
anti-Myc antibody. D, effect of the CLN3 overexpression on cell cycle progression and cell viability during 6AU treatment. Wild-type cells containing a
TET-off:CLN3-expressing plasmid were incubated for 6 h in the presence of 6AU for the flow cytometry analysis. The same strain was incubated in SC-URA with
or without doxycycline (Dox) and with or without 6AU for the growth test by serial dilutions. E, effect of SIC1 deletion on cell cycle progression and cell viability
in the presence of 6AU. A sic1::KAN strain was incubated for 6 h in 6AU and cells analyzed by flow cytometry. The same strain was assayed in a growth test in the
presence of increasing concentrations of 6AU.
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gation through polysome sucrose gradients. Proteins were
extracted from each fraction and analyzed byWestern blotting
with specific antibodies against r-proteins L1, L5, and S8 (yeast
S8 is the orthologue of human S8). However, no free r-proteins
were detected (data not shown). Because efficient degradation
of unassembled r-proteins has been described in both yeast and
mammalian cells when either r-protein genes are amplified (45,
46) or rRNA synthesis is inhibited (47–49), we reasoned that
free r-proteins can be detected only under conditions where
protein degradation is partially impaired. Therefore, we
repeated the experiments in a cim3-1mutant (kindly provided
by C.Mann) because CIM3 encodes a regulatory subunit of the
26S proteasome involved in the degradation of ubiquitinated
substrates (50). Experiments were carried out at the semiper-
missive temperature of 30 °C and in G1-synchronized cells to
avoid any influence of theCim3 function onG2/M transition. In

this genetic background, the clear presence of L1 and L5, but
not of S8, was detected in the lowmolecular weight fractions of
the polysome profile after 6AU treatment (Fig. 5A). This free
r-protein accumulation was observed at 15min after treatment
in parallel to a drastic reduction in the rRNA levels. Impor-
tantly, wild-type polysome profile was observed for this strain
at this time point, indicating that translation is still not affected
(Fig. 5A). Taken together, these results demonstrate that the
imbalance between pre-rRNAs and r-protein mRNAs, caused
by 6AU treatment, generates an accumulation of free r-pro-
teins, including L5.
In mammalian cells, it has been demonstrated that only free

L11 and L5 r-proteins are directly required for p53 induction
(31, 32). To investigate whether yeast L5 and L11 also play a key
role in the G1 delay caused by NTP depletion, we forced the
accumulation of free r-protein L5 in the absence of L11 and

FIGURE 3. NTP-depleting drugs differentially affect the levels of the three RNA polymerase transcripts. Exponentially growing cells were treated with 100
�g/ml 6AU. Samples were taken at the indicated times, and the RNA levels of RNA pol I, pol II, and pol III transcribed genes were analyzed. A, Northern blot
analysis of high molecular mass pre- and mature rRNAs. Specific probes were used to reveal the different pre- and mature rRNAs shown in each panel. Mature
rRNA 18S was used as the loading control. Signal intensities of Northern blot analysis of the pre- and mature rRNAs presented in A were measured by
phosphorimaging; values were normalized to those obtained for the wild-type control before 6AU addition and arbitrarily set at 1.0. B, Northern blot analysis
of SUP56 pre-tRNA and mature 5S rRNA. The first precursor transcript of SUP56 is indicated (*). C, Northern blot analysis of RNA pol II transcribed RPL5, RPS3, and
ADH1 mRNAs. Mature rRNA 18S was used as the loading control. D, quantification of the relevant RNA species shown in A, B, and C. 35S pre-rRNA and RPL5
mRNA were normalized against the 18S rRNA signal, whereas the first precursor of SUP56 (*) was normalized against 5S rRNA. All the data have been obtained
in relation to the untreated cells levels (time 0 h) and are expressed as the average of at least three independent experiments � S.D. (error bars).

Coupling Ribosome Production to the Cell Cycle

31694 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 288 • NUMBER 44 • NOVEMBER 1, 2013

 at FA
C

 B
IO

L
O

G
IA

/B
IB

L
IO

T
E

C
A

 on July 27, 2016
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/


assessed theG1/S delay response of the 6AU-treated cells. It has
been previously described that the amount of L5 not assembled
into ribosomes increases upon depletion of L11 (51). Thus, we
performed flow cytometry analyses with the strains carrying
either rpl11A� or rpl11B� deletions. The asynchronous cul-
tures of cells lacking r-protein L11A or L11B exhibited a longer
accumulation of G1 cells compared with the wild type after
adding NTP-depleting drugs (Fig. 5B). This enhancement
became especially clear after 4 or 6 h of treatment. The same
result was obtainedwhen cells were treatedwithMPA (data not
shown).
We anticipate that those conditions impairing the expression

of r-protein genes, particularly RPL5, should suppress the G1

delay caused by NTP depletion. We have previously described
that the transcription of r-protein genes under NTP-depleting
conditions requires the transcription factor TFIIS (52). More-
over, in a dst1� strain, a mutant lacking TFIIS, we showed that
35S pre-rRNA accumulates after 60 min in the presence of
6AU, whereas the mRNA levels of L5 drops (52). According to
ourmodel, this deficit of L5mRNA should impede the cell cycle
response of dst1� cells to NTP depletion. The FACS analysis
confirmed this prediction as the dst1� cells treated with 6AU
exhibited no accumulation of cells in G1 for as long as 4 h in the
presence of 6AU (Fig. 5C).
We also analyzed twomutant alleles affected in the Rrs1 pro-

tein, rrs1-84 and rrs1-1 (kindly provided byKeikoMizuta). Rrs1

FIGURE 4. Depletion of selected RNA pol I or RNA pol III subunits reproduces NTP-depleting drug-mediated RNA imbalance and induces G1 cell
accumulation. A, doubling time progression of a strain with the gene of the RNA pol I subunit RPA43 under the control of a TET-off promoter plus/minus
doxycycline (Dox.). B, Northern blot analysis of RNA pol I-transcribed 35S pre-rRNA and of the mRNAs of RNA pol II-transcribed genes ADH1 and RPL5 during
Rpa43 depletion. C, flow cytometry analysis, at the indicated times, of cell cycle progression during Rpa43 depletion after treatment with 100 �g/ml 6AU. D,
doubling time progression of a strain with the gene of the RNA pol III subunit RPC17 under the control of a TET-off promoter with or without doxycycline. E,
Northern blot analysis, during Rpc17 depletion, of the RNA pol III-transcribed pre-tRNA SUP56 (the first precursor is indicated *) and 5S rRNA, the mRNAs of the
RNA pol II-transcribed genes RPL5 and ADH1, and the RNA pol I-transcribed 35S pre-rRNA. F, flow cytometry analysis, at the indicated times, of cell cycle
progression during Rpc17 depletion in cells treated with 100 �g/ml 6AU.
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is necessary for the assembly of L11 and the L5–5S rRNA com-
plex on pre-60S ribosomal particles (Fig. 6A) (53, 54). Higher
levels of free L5 and L11 have been predictedwhen compromis-
ing the Rrs1 function (54). Interestingly, and as expected, the
extracts prepared from rrs1-84 cells showed the presence of
free r-protein L5, even in the absence of the drug, a fact that is
not observed when extracts from isogenic wild-type cells are

prepared (Fig. 6B). The presence of free r-protein L5 in the
mutant strain was exacerbated in the presence of NTP-deplet-
ing drugs (Fig. 6B); free L1, but not free S8 r-proteins, was also
detected in thismutant in response to 6AU (data not shown). In
this genetic background, the extracts prepared from wild-type
cells after 15 min of 6AU treatment also showed free L5 (Fig.
6B). Accordingly, we found an enhanced accumulation of G1

FIGURE 5. NTP-depleting drugs induce the appearance of free L5 r-protein which correlates with the G1 response. A, a proteasome-deficient cim3-1 strain
was grown in SC-URA at 30 °C (permissive temperature) and harvested at an A600 of 0.5 after �-factor synchronization and with or without 15 min of 100 �g/ml
6AU treatment. Cell extracts were prepared, and 10 A260 of each extract was resolved in 7–50% sucrose gradients. A254 was continuously measured. Sedimen-
tation is from left to right; 40S, 60S, 80S, and polysome peaks are indicated. Fractions were collected from the gradients, and proteins were extracted from an
equal volume of each fraction and analyzed by Western blotting with the indicated specific antibodies. B, asynchronously growing wild-type, rpl11A�, and
rpl11B� cells were treated with or without 100 �g/ml 6AU. Samples were taken at different time points, and the DNA content was analyzed by flow cytometry.
C, wild-type and dst1� asynchronous cultures were treated, or not, with 100 �g/ml 6AU. Samples were taken at different time points and the DNA content
analyzed by flow cytometry.
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cells in the rrs1-84 mutant when treated with NTP-depleting
drugs (Fig. 6C).
The strong accumulation of free L5 in rrs1-84 in response to

6AUpredicts a protective effect of thismutation for the cell.We
analyzed the relative sensitivity of rrs1 mutants to 6AU and
found that both rrs1-84 and rrs1-1 were more resistant to this
drug than the wild type (Fig. 6D). In summary, the transient G1
delay triggered by NTP-depleting drugs in yeast is a cell-pro-
tective mechanism that seems to be mediated by the accumu-
lation of free L5 r-protein.

DISCUSSION
Yeast Cells Delay the Cell Cycle in G1 in Response to NTP

Depletion—In thiswork,we dissected the process leading to cell
cycle delay after adding NTP-depleting drugs in the yeast S.
cerevisiae.We show that these drugs provoke a transient deficit
of pre-rRNAs that originates the accumulation of free r-pro-
teins, including L5, which should act as a specific stress signal to
trigger this delay of the cell cycle in G1.
S. cerevisiae wild-type cells transiently accumulate at G1 after

NTP-depleting drug treatment (Fig. 1, A and B). This G1 delay
suggests that NTP depletion inhibits the performance of START.
This issue has been confirmed by reciprocal-shift experiments,

demonstrating that this arrest occurs at START (Fig. 1, C andD),
the equivalent to the restriction point in metazoan cells (55).
To coincide with this fact, we found that the regulatory ele-

ments controlling the G1/S transition participate in the delay
provoked by MPA and 6AU. We detected that NTP depletion
causes CLN3 mRNA down-regulation which, in turn, avoids
CLN1 and CLN2 induction at START and, by stabilizing Sic1,
prevents cell entrance into the S phase. In agreement with this
prediction, NTP-depleted cells underwent decreased viability
when forced to enter the S phase by either overexpressing
CLN3 or deleting SIC1, demonstrating that the G1 arrest pro-
voked by NTP depletion is cell-protective (Fig. 2).
In S. cerevisiae, both NTP depletion and the observed G1

arrest are transient phenomena (8, 13). We observed that the
time course of NTP recovery fits well with G1 transient arrest.
Accordingly, bothNTPdepletion andG1 arrest becomeperma-
nent in the absence of IMD2 (Fig. 1A), indicating a correlation
between these two events.
Free Ribosomal Proteins and Cell Cycle in Yeast—As we have

demonstrated that progression through the S phase seems to be
dependent on NTP levels, the first objective of this work was to
elucidate whether the yeast cell cycle responds to NTP levels

FIGURE 6. Mutations in Rrs1 exacerbate both free L5 accumulation and G1 delay in the presence of NTP-depleting drugs. A, Rrs1 is required for the incorpora-
tion of the L11 r-protein and the L5–5S r-protein-rRNA complex into pre-60S ribosomal particles. B, isogenic wild-type and rrs1-84 strains were synchronized as
described in Fig. 5A in the absence or presence of 100 �g/ml 6AU. Cell extracts were prepared, and a 10 A260 of each extract was resolved in 7–50% sucrose gradients.
A254 was continuously measured. Sedimentation is from left to right. Free, 40S, 60S, 80S, and polysome fractions are indicated. Fractions were collected from the
gradients, and proteins were extracted from equal volume of each fraction and analyzed by Western blotting with anti-L5 and anti-PGK antibodies. C, asynchronous
growing cells were treated with 100 �g/ml 6AU, and samples were taken every 2 h to analyze DNA content by flow cytometry. D, growth test of mutant alleles rss1-1,
rss1-84, and their isogenic wild-type strain is shown. Serial dilutions were performed on SC-URA plates with or without MPA.
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per se or to the consequence of their depletion. In higher
eukaryotes, G1 arrest has been previously described to be a con-
sequence of nucleolar stress, which can be elicited by different
external or internal stimuli, such as the inhibition of RNA pol I
activity by actinomycin D (56), genetic disruption of RNA pol I
transcription initiation factor TIF-IA (57), inhibition of rRNA
processing by the loss-of-function mutations of rRNA process-
ing factor Bop1 (58), treatment of cells with 5-fluorouracil (18),
inhibition of overall ribosomal biogenesis by serum starvation
(25), and genetic inactivation of r-protein S6 (59). In all cases,
p53 can be induced and activated, leading to cell cycle arrest at
the G1 phase. As NTP depletion in yeast affects the three RNA
polymerases, it was intriguing to compare the impact on them
all. Fig. 3 clearly shows that MPA treatment results in a drastic,
faster reduction of the pre-rRNAs transcribed by RNApol I and
the pre-tRNAs transcribed by RNA pol III, whereas mRNAs,
transcribed by RNA pol II, undergo a slower decline, likely due
to their higher stability. Having genetically achieved the
decrease in the levels of RNA pol I- and III-dependent RNA
products, by inactivating polymerase subunits, the conse-
quences on the cell cycle were similar, indicating that NTP
depletion itself is not the signal for G1 delay (Fig. 4).
Ribosomal biogenesis requires the coordinated function of

RNA pol I, II, and III to produce rRNAs and r-proteins. Cells
manage a balanced production of r-proteins as they are
required in equimolar quantities. Indeed, regulation exists at all
gene expression levels, from transcription to protein turnover
(for review, see Ref. 60). Both treatment with NTP-depleting
drugs and inactivation of RNA pol I or RNA pol III essential
subunits led to the accumulation of r-protein mRNAs com-
pared with pre-rRNAs. In this situation, an excess of r-proteins
is expected.We detected such free r-proteins in a specific yeast
background (Fig. 6), although in the backgroundmostly used in
this work, it was necessary to impair the proteasome to stabilize
the free r-proteins accumulated (Fig. 5A).
The key role of mammalian r-proteins L5 and L11 for this

essential response has been demonstrated very well (31, 32).
Thus, we focused on the role of these two r-proteins in yeast.
Our results show a clear accumulation of free L5 after NTP
depletion treatment (Figs. 5 and 6).
The free r-protein accumulation shown in yeast might act as

a signal for modulating cell cycle progression through the G1/S
transition, which is precisely the case for L5 and L11 in mam-
malian cells (31, 32). According to this model, if free signaling
protein levels increased, we would expect a more drastic G1
arrest after the NTP-depleting drug challenge. We have
obtained evidence for free yeast L5 as a key signaling protein for
the G1 delay using L11-depleted strains. It has been previously
described that depletion of L11A brings about an increase of
free L5 r-protein (51). Interestingly, our data demonstrate that
deletion of L11 genes (rpl11A� and rpl1B1�) extends the
length of the G1 response to NTP-depleting drugs (Fig. 5B). On
the contrary, impairment of RPL5 transcription by deleting the
gene encoding transcription factor TFIIS (52) suppresses G1
delay in response toNTPdepletion (Fig. 5C). All of these results
are consistent with a major role of free L5 in signaling G1 arrest
in response to NTP depletion. Clearly, further genetic and bio-
chemical experiments will be required to unravel the precise

function of free L5 and L11 r-proteins during progression of
yeast cell cycle.
The analysis of rrs1 mutants further confirmed this model.

The rrs1 mutant cells treated with NTP-depleting drugs at a
semipermissive temperature showed a marked rise in free L5,
accompanied by a strongly enhanced G1 response and cell via-
bility (Fig. 6). To summarize, G1 delay is enhanced only for
conditions under which the levels of free L5 increase. Taken
together, these results reveal that changes in the levels of free L5
alter the G1/S response. In all the cases tested, the viability of
NTP-depleted cells behaves in accordance with the protective
role for this G1 delay.

The accumulation of free r-proteins under ribosomal stress
may result after the release from intact ribosomes, which has
been proposed inmammalian cells (18, 25), ormay be the result
of defects in ribosomal biogenesis after a drastic reduction in
the pre-rRNAs supply. The high r-protein mRNA/35S pre-
rRNA ratio detected in yeast cells after NTP depletion and the
fact that free r-proteins are detected quite early after 6AU addi-
tion without translation being affected, support the second
scenario.
The results of this study emphasize the fine coordination of

cell cycle progression with ribosome biogenesis and suggest
that free r-proteins negatively regulate G1/S transition in yeast.
We propose a model where the proper coordination of pre-
rRNA and r-proteins levels is required for accurate cell cycle
progression. This coordination is critical for an effective utili-
zation of cell resources and requires a balanced function of the
RNA pol I, II, and III transcription activities. Our group has
recently described a new cell cycle phenomenon that allows
cells to respond to the free histones evicted from transcription
by arresting cells at START before starting DNA replication
(61). Thus, the detection of abnormal locations of relevant cell
elements (such as histones evicted from nucleosomes or r-pro-
teins from ribosomes) seems a general cellular strategy to
ensure the progression of division with optimal viability
prospects.
Finally, it is important to stress that this work indicates the

parallelism between the mechanisms responding to nucleolar
stress in yeast and metazoa, suggesting that it is a general con-
trol strategy extended throughout eukaryotes. Considering the
advantage of using S. cerevisiae as a model organism, this study
opens up new perspectives to examine the antiproliferative
effects of a diverse group of metabolic inhibitors, including
many clinically important anticancer drugs which strongly
inhibit rRNA synthesis or processing (62–66). Likewise, nucle-
olar stress and ribosome biogenesis are the base of a group of
human diseases called ribosomopathies (67, 68). Yeastmay also
help the molecular study of these pathologies.
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SUPPLEMENTAL DATA (Gómez-Herreros et al.) 

 
  
 

Yeast strain Relevant genotype Reference 
BY4741 MAT a  his3∆1 leu2∆0 met15∆0 ura3∆0 Euroscarf 

FGY41.41 BY4741 imd2::hphMX4 Gomez-Herreros, F. et 
al. (2012) Nucleic Acids 
Res 40, 6508-6519 

MMY9.2  BY4741 dst1::kanMX4  Gomez-Herreros, F. et 
al. (2012) Nucleic Acids 
Res 40, 6508-6519 

CMY763 cim3-1  ura3-52  leu2∆1 Ghislain, M. et al. (1993) 
Nature 366, 358-362 

YPH499 MAT a ade2-101 lys2-80 ura3-52 trp1∆63 his3∆200 leu2∆1 Sikorski, R. S., and 
Hieter, P. (1989) 
Genetics 122, 19-27 

YMLF2 MAT α ade2-11 lys2-801 ura3-52 trp1∆63 his3∆200 leu2∆1 
rpc17::HIS3 pCM185::RPC17 

Siaut, M. et al (2003) 
Mol Cell Biol 23, 195-
205 

YFN25 MAT a ade2-1 lys2-801 ura3-52 trp1∆63 his3∆200 leu2∆1 
rpa43::LEU2 pCM185::RPA43 

Zaros, C. et al. (2007) 
Nucleic Acids Res 35, 
634-647 

W303-1A MAT a ade2-1 can1-100 ura3-1 leu2-3,112          his3-11,15 
trp1-1 

Thomas, B. J. et al. 
(1989) Cell 56, 619-630 

KM370 W303-1A rrs1::LEU2 RRS1::TRP1 Miyoshi, K et al. (2004) 
FEBS Lett 565, 106-110 

KM921 W303-1A 1 rrs1::LEU2 rrs1-84::TRP1 Miyoshi, K et al. (2004) 
FEBS Lett 565, 106-110 

KM923 W303-1A rrs1::LEU2 rrs1-124::TRP1 Miyoshi, K et al. (2004) 
FEBS Lett 565, 106-110 

FGY70 BY4741 ydr007w(trp1)::kanMX4 SIC1::MYC::TRP1 This work 

Y02435          MATa his3∆1 leu2∆0 met15∆0 ura3∆0  sic1::KAN  Euroscarf 
Y04715 BY4741 ygr085c(rpl11B)::kanMX4 Euroscarf 
FGY73 BY4741 ypr102c(rpl11A)::hphMX4 This work 
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