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Abstract

In this work we prove a new strong convergence result of the regularized successive
approximation method given by

yn+1 = qnz0 + (1− qn)Tnyn, n = 1, 2, ...,

where

lim
n→∞

qn = 0 and
∞∑

n=1

qn = ∞,

for T a total asymptotically nonexpansive mapping, i.e., T is such that

‖Tnx− Tny‖ ≤ ‖x− y‖+ k(1)
n φ(‖x− y‖) + k(2)

n ,

where k1
n and k2

n are real null convergent sequences and φ : R+ → R+ is continuous
and such that φ(0) = 0 and limt→∞

φ(t)
t ≤ C for a certain constant C > 0.

Among other features, our results essentially generalize existing results on strong
convergence for T nonexpansive and asymptotically nonexpansive. The convergence
and stability analysis is given for both self- and nonself-mappings.
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1 Introduction

Iterative procedures for nonlinear operators have been largely studied by many authors in
the last decades. One of the first results of this nature was obtained by Browder [5] for
nonexpansive self-mappings defined on Hilbert spaces. Here Browder studied the iterative
method:

xω = ωz0 + (1− ω)Txω. (1.1)

for Ω a closed and convex subset of H, z0 ∈ Ω an arbitrary point and T : Ω → Ω a
nonexpansive mapping with nonempty fixed point set N (T ) := {x ∈ Ω : Tx = x}.

In [5], Browder proved that lim
ω→0

xω exists and is a fixed point of T . This result was ex-

tended by Reich [17] to the case when X is a uniformly smooth Banach space. Furthermore,
he showed that the fixed point set of T is a sunny nonexpansive retract of Ω.

The recursive formula (explicit scheme)

y1 ∈ Ω, yn+1 = qnz0 + (1− qn)Tyn, n = 1, 2, ..., (1.2)

was introduced by Halpern [12] who discussed its convergence in the framework of Hilbert
spaces. Later it has been investigated in [12, 18, 19, 20] with different additional properties
on the sequence {qn}, the operator T and the space X.

Browder’s and Halpern’s iterative procedures have motivated different schemes to find
fixed points of asymptotically nonexpansive mappings (see Remark 1.2 for definition). In
this way, T.C. Lim and H.K. Xu [15] studied the algorithm for T asymptotically nonexpan-
sive which generates the sequence (implicit scheme)

xn = qnz0 + (1− qn)Tnxn. (1.3)

They showed that the sequence {xn} converges strongly to a fixed point of T in the frame-
work of a uniformly smooth Banach space, under suitable conditions on the coefficients.
Very recently, in [6], the strong convergence of the explicit scheme given by

y1 ∈ Ω yn+1 = qnz0 + (1− qn)Tnyn, n = 1, 2, ..., (1.4)

where z0 ∈ Ω, and

lim
n→∞

qn = 0 and
∞∑
n=1

qn = ∞, (1.5)

has been studied in uniformly smooth spaces. It is worthwhile to point out that the con-
vergence of the implicit scheme given by (1.3) is an important tool in order to prove the
strong convergence of explicit schemes as (1.2).

In this paper we will consider the class of the total asymptotically nonexpansive map-
pings which have been introduced very recently in [2].

Definition 1.1 (cf. [2]) A mapping T : Ω → Ω is called total asymptotically nonexpansive
if there exist nonnegative real sequences {k(1)

n } and {k(2)
n } with k

(1)
n , k

(2)
n → 0 as n → ∞,

and a continuous function φ : R+ → R+ with φ(0) = 0 such that

‖Tnx− Tny‖ ≤ ‖x− y‖+ k(1)
n φ(‖x− y‖) + k(2)

n . (1.6)
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Remark 1.2 If φ(λ) ≡ 0 then (1.6) takes the form

‖Tnx− Tny‖ ≤ ‖x− y‖+ k(2)
n .

Hence, if Ω is a bounded set and TN is continuous for some integer N ≥ 1 the mapping T
is of asymptotically nonexpansive type. If φ(λ) = λ then we can write

‖Tnx− Tny‖ ≤ (1 + k(1)
n )‖x− y‖+ k(2)

n .

In addition, if k(2)
n = 0 for all n ≥ 1 then we obtain the definition of asymptotically nonex-

pansive mapping:
‖Tnx− Tny‖ ≤ kn‖x− y‖, kn → 1.

If k(1)
n = 0 and k(2)

n = 0 for all n ≥ 1 then we obtain the class of nonexpansive mappings:

‖Tx− Ty‖ ≤ ‖x− y‖.

If k(2)
1 = 0 then it follows from (1.6) that T is uniformly continuous, however, it can be

uniformly continuous even if k(2)
1 6= 0.

To construct the strong convergent approximations to solutions of the equation

Tx = x (1.7)

with a total asymptotically nonexpansive mapping T, we apply the iterative scheme given
by (1.4).

For nonexpansive operators T, the algorithm (1.4) is written down in the following form:

y1 ∈ Ω, yn+1 = qnz0 + (1− qn)Tyn, n = 1, 2, ..., (1.8)

where lim
n→∞

qn = 0.
We show next that (1.8) is the regularized successive approximation method for (1.7).

As it is known, equation (1.7) is equivalent to

Ax = 0 (1.9)

with the accretive operator A = I − T : Ω → Ω. That is, in this case

〈Ax−Ay, J(x− y)〉 ≥ 0, (1.10)

where J stands for the normalized duality map. If x∗ is a solution of (1.7) then Ax∗ = 0.
In the sequel, we assume that the fixed point set N (T ) of T is not empty. We emphasize
that the problem (1.7) belongs to the class of ill-posed problems (for more on ill-posted
problems see [4]). Strongly convergent approximations to x∗ can be obtained only by using
some regularization procedure.

Let ω be a parameter such that 0 < ω < 1 and ω → 1. Obviously, if x∗ is a solution of
(1.9) then it is solution of the equation

ωAx = 0 (1.11)
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for any fixed ω > 0. Using the general theory (see for example [4], Section 2.7), construct
for (1.11) the operator regularization method with regularization parameter α = 1−ω → 0,
namely,

ωAx+ (1− ω)(x− z0) = 0, (1.12)

where z0 ∈ Ω. It is easy to see that (1.12) is equivalent to

x = (1− ω)z0 + ωTx. (1.13)

Denote
Tωx = (1− ω)z0 + ωTx.

Since Ω is convex and closed, we have that Tω : Ω → Ω, and (1.13) can be rewritten as

x = Tωx. (1.14)

Consequently, by Banach Contraction Principle, equation (1.12) has a unique solution
xω and the successive approximation method

x1 ∈ Ω xn+1 = (1− ω)z0 + ωTxn

converges strongly to xω. Let X be uniformly smooth and ωk → 1 as k →∞. Consider now
the regularized equation

ωkAx+ (1− ωk)(x− z0) = 0 (1.15)

with k fixed and denote by xk its unique solution. Then there exists x̄∗ ∈ N (T ) such that
xk → x̄∗ as k →∞. Moreover (see [4]), x̄∗ satisfies the inequality

〈x̄∗ − z0, J(x̄∗ − x∗)〉 ≥ 0 ∀x∗ ∈ N (T ).

It can be shown in the same way that (1.8) with Tn in place of T is the regularized
successive approximation method for the equation (1.7) with total asymptotically nonex-
pansive mapping. Indeed, if total asymptotically nonexpansive mappings are considered in
place of nonexpansive mappings, then

〈Anx−Any, J(x− y)〉 ≥ −k(1)
n φ(‖x− y‖)‖x− y‖ − k(2)

n ‖x− y‖, (1.16)

where An = I − Tn. It is clear that the analysis of strong convergence is more difficult in
this situation, moreover, very little is known about the structure of the solution set. In
particular the same holds for asymptotically nonexpansive mappings for which (1.16) is

〈Anx−Any, J(x− y)〉 ≥ −k(1)
n ‖x− y‖2. (1.17)

The main result of this paper, Theorem 3.1 in Section 3, states a strong convergence
result for the iterative scheme (1.4) in reflexive Banach spaces with a weakly continuous
duality map on unbounded domains. Notice that it is an open question wether a reflexive
Banach space admitting a weakly sequentially continuous duality mapping is uniformly
smooth. An implicit scheme convergence result is also proved. This result is used to
guarantee the existence of sunny nonexpansive retractions.

In Section 4 we study the same iterative scheme for total asymptotically nonexpansive
nonself-mapping. Finally, in Section 5, our last section we investigate the stability prob-
lem for iterative schemes with respect to perturbations of constraint sets for nonexpansive
nonself-mappings.
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2 Preliminaries

Let X be a real Banach space with norm ‖ · ‖, let X∗ be its dual space with the norm ‖ · ‖∗
and, as usual, denote the duality pairing of X and X∗ by 〈ϕ, x〉, where x ∈ X and ϕ ∈ X∗

(in other words, 〈ϕ, x〉 is the value of ϕ at x).
It is said that X is uniformly smooth if for any given ε > 0, there exists δ > 0 such that

for all x, y ∈ X with ‖x‖ = 1 and ‖y‖ ≤ δ, the inequality

2−1(‖x+ y‖+ ‖x− y‖)− 1 ≤ ε‖y‖

holds. The function

ρX(τ) = sup{2−1(‖x+ y‖+ ‖x− y‖)− 1 : ‖x‖ = 1, ‖y‖ = τ}

is called the modulus of smoothness of the space X.

This function is increasing and approaches to zero as τ → 0. Denote hX(τ) =
ρX(τ)
τ

.

Observe that the space X is uniformly smooth if and only if lim
τ→0

hX(τ) = 0.

Let ψ : [0,∞) → [0,∞) be a continuous strictly increasing function such that ψ(t) →∞
as t → ∞ and ψ(0) = 0. The generalized duality mapping Jψ : X → 2X

∗
associated to a

gauge function ψ is defined as

Jψ(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ψ(‖x‖)‖x‖, ‖x∗‖ = ψ(‖x‖)}, x ∈ X.

In the case that ψ(t) = t then Jψ = J which is the normalized duality map.
We say that a Banach space X has a weakly continuous duality map ([5]) if there exists

a gauge function ψ for which the generalized duality map Jψ is single-valued and weak-to-
weak* sequentially continuous.

It is well-known that Jψ is the subdifferential, in the sense of convex analysis, of the
convex function

Φ(t) =
∫ t

0
ψ(τ) dτ, for τ ≥ 0,

and that Jψ is single-valued if and only if X is smooth. We will need the following subdif-
ferential inequality which is known to hold in smooth spaces:

Φ(‖x+ y‖) ≤ Φ(‖x‖) + 〈y, Jψ(x+ y)〉

for any x, y ∈ X.
Next we introduce some definitions and auxiliary results that will be needed in the

sequel.

Definition 2.1 Let X be a Banach space and C a nonempty closed convex subset of X.
An operator T : C → X is demiclosed (at y) if T (x) = y whenever {xn} ⊆ C is a sequence
weakly convergent to x and T (xn) → y as n→∞.
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Definition 2.2 A Banach space X satisfies the Opial’s condition if for each sequence {xn}
in X, the relation xn ⇀ x implies that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖

for all y ∈ X with x 6= y.

Definition 2.3 A Banach space X satisfies the Generalized Gossez-Lami Dozo property
(GGLD-property) if

lim inf
n→∞

‖xn‖ < lim sup
m→∞

lim sup
n→∞

‖xm − xn‖

whenever {xn} is a weak null sequence which is not norm convergent.

The following demiclosedness principle can be found in [11].

Theorem 2.4 Let X be a Banach space with GGLD-property and Opial’s condition. Let
C be a weakly compact convex subset of X and T : C → C a uniformly continuous mapping
of asymptotically nonexpansive type. Then I − T is demiclosed at zero.

The following result is well-known (see [13] and [14]).

Proposition 2.5 If in a reflexive Banach space X the duality mapping J is weakly contin-
uous then X satisfies GGLD-property and Opial’s condition.

The next corollary follows as a consequence of this proposition and a careful reading of
the original proof of Theorem 2.4.

Corollary 2.6 Let X be a reflexive Banach space with a weakly continuous duality mapping
J. Let C be a closed convex subset of X and T : C → C a uniformly continuous mapping
and total asymptotically nonexpansive with bounded orbits. Then I − T is demiclosed at
zero.

We will also use the concept of a sunny nonexpansive retraction [10] and, in particular,
its characterization by means of the duality map in a smooth Banach space.

Definition 2.7 Let C be a non-empty subset of a Banach space X and D a subset of C.
A mapping Q : C → D is said to be

(i) a retraction onto D if Q2 = Q;

(ii) a nonexpansive retraction if it also satisfies the inequality

‖Qx−Qy‖ ≤ ‖x− y‖, for all x, y ∈ C;

(iii) a sunny retraction if for all x ∈ C and for all 0 ≤ t <∞,

Q(Qx+ t(x−Qx)) = Qx, whenever Qx+ t(x−Qx) ∈ C.
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Proposition 2.8 Assume that C is a non-empty closed convex subset of a smooth Banach
space X and D is a subset of C. Then a nonexpansive mapping Q : C → D is a sunny
retraction if and only if for all x ∈ C and for all ξ ∈ D,

〈x−Qx, J(ξ −Qx)〉 ≤ 0.

In particular, there is at most one sunny nonexpansive retraction on D.

Remark 2.9 Proposition 2.5 and Corollary 2.6 remain still valid if the normalized duality
mapping J is replaced by the duality mapping Jψ with the gauge function ψ(t). Moreover,
we can use Jψ to characterize sunny nonexpansive retractions in a smooth Banach space
given by Proposition 2.8.

Let G1 and G2 be nonempty closed subsets of X. The Hausdorff distance between G1

and G2 is defined by the following formula:

H(G1, G2) = max{ sup
z1∈G1

inf
z2∈G2

‖z1 − z2‖, sup
z1∈G2

inf
z2∈G1

‖z1 − z2‖}.

We need the following lemma [3] in order to prove the main result of Section 5.

Lemma 2.10 If X is a uniformly smooth Banach space, Ω1 and Ω2 are closed convex
subsets of X such that the Hausdorff distance H(Ω1,Ω2) ≤ σ and QΩ1 and QΩ2 are the
(unique) sunny nonexpansive retractions onto the subsets Ω1 and Ω2, respectively, then

‖QΩ1x−QΩ2x‖2 ≤ 16R(2r + d)hX(16LR−1σ), (2.1)

where r = ‖x‖, d = max{d1, d2}, R = 2(2r + d) + σ and 1 < L < 1.7 is the Figiel constant
[1, 2, 9]. Here di = dist (θ,Ωi), i = 1, 2, and θ is the origin of the space X.

We will often apply the following lemma on numerical recurrent inequalities.

Lemma 2.11 Let {λn} and {γn} be nonnegative, {αn} be positive real numbers such that

λn+1 ≤ λn − αnλn + γn, ∀ n ≥ 1.

Let for all n > 1
γn
αn

≤ c1 and αn ≤ α. (2.2)

Then λn ≤ max{λ1,K∗}, where K∗ = (1 + α)c1. In addition, if

∞∑
1

αn = ∞ and
γn
αn

→ 0

then λn → 0 as n→∞.
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3 Convergence Analysis of Successive Approximation Method

The goal of this section is to prove strong convergence of the regularized successive approx-
imation method (1.4). Let us consider the explicit scheme (1.4) given by

y0 ∈ Ω, yn+1 = qnz0 + (1− qn)Tnyn, n = 1, 2, ...,

with

lim
n→∞

qn = 0 and
∞∑
n=1

qn = ∞. (3.1)

Theorem 3.1 Let Ω be a nonempty closed and convex subset of a smooth reflexive Banach
space X with a weakly sequentially continuous duality map Jψ, T : Ω → Ω a uniformly
continuous mapping which is total asymptotically nonexpansive with nonempty fixed point set
N (T ). Let N (T ) be such that there exists a sunny nonexpansive retraction Q : Ω → N (T ).

Let z0 ∈ Ω and {qn} ⊂ (0, 1] a sequence satisfying (3.1). Let the sequence {yn} be
generated by (1.4). Assume that

lim
n→∞

k
(1)
n + k

(2)
n

qn
= 0, (3.2)

and that there exist positive constants M0 and M1 such that φ(λ) ≤ M0λ for λ ≥ M1.
Suppose that lim

n
‖yn − Tyn‖ = 0, then {yn} converges strongly to the fixed point x̄∗ = Qz0

of T.

Proof. Firstly we observe that the sequence {yn} ⊂ Ω because Ω is convex. Take
x∗ ∈ N (T ). It follows from (1.4) that

‖yn+1 − x∗‖ ≤ qn‖z0 − x∗‖+ (1− qn)‖Tnyn − Tnx∗‖

≤ qn‖z0 − x∗‖+ (1− qn)
(
‖yn − x∗‖+ k(1)

n φ(‖yn − x∗‖) + k(2)
n

)
.

Denoting λn = ‖yn − x∗‖ we have

λn+1 ≤ (1− qn)λn + qn‖z0 − x∗‖+ (1− qn)
(
k(1)
n φ(λn) + k(2)

n

)
. (3.3)

Since φ is continuous it attains its maximum M on [0,M1]. Then it is easy to verify that
for all λ ∈ [0,∞)

φ(λ) ≤M +M0λ.

The inequality (3.3) is rewritten as

λn+1 ≤ λn −
(
qn − (1− qn)k(1)

n M0

)
λn + γn,

where
γn = (1− qn)

(
k(1)
n M + k(2)

n

)
+ qn‖z0 − x∗‖.
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Without loss of generality, in view of (3.2), we assume that there exist constants α ∈ (0, 1)
and M2 > 0 such that for all n ≥ 1

k
(1)
n

qn
≤ M0(1− α)

1− qn
, (3.4)

and
γn
qn

≤ αM2.

Then
λn+1 ≤ λn − αqnλn + γn.

By Lemma 2.11, we conclude that

λn ≤ max{λ1, (1 + α)M2}.

Thus, the sequence {yn − x∗} is bounded, which, clearly, implies that {yn} is a bounded
sequence.

Applying the subdifferential inequality to

yn+1 −Qz0 = (1− qn)(Tnyn −Qz0) + qn(z0 −Qz0)

we deduce that

Φ(‖yn+1 −Qz0‖) ≤ Φ((1− qn)‖Tnyn −Qz0‖) + qn〈z0 −Qz0, Jψ(yn+1 −Qz0)〉.

Since T is total asymptotically nonexpansive and Qz0 ∈ N (T ), we have

‖Tnyn −Qz0‖ ≤ ‖yn −Qz0‖+ νn,

where νn = Mk
(1)
n + M0k

(1)
n ‖yn − Qz0‖ + k

(2)
n is bounded and vanishes as n → ∞. Now,

since Φ is a convex and nondecreasing, for n large enough we have

Φ(‖Tnyn −Qz0‖) ≤ (1− νn)Φ(‖yn −Qz0‖) + νnΦ(‖yn −Qz0‖+ 1)

≤ Φ(‖yn −Qz0‖) + νnM3

for M3 a suitable constant. Consequently

Φ(‖yn+1 −Qz0‖) ≤ (1− qn)Φ(‖yn −Qz0‖) + (1− qn)νnM3+ (3.5)

+qn〈z0 −Qz0, Jψ(yn+1 −Qz0)〉.

We claim that
lim sup
n→∞

〈z0 −Qz0, Jψ(yn −Qz0)〉 ≤ 0.

Indeed, since the sequence {yn} is bounded and the space X reflexive there exists a sub-
sequence {ynk

} which is weakly convergent in Ω. Let ȳ be its weak limit. We can fix this
subsequence so that

lim sup
n→∞

〈z0 −Qz0, Jψ(yn −Qz0)〉 = lim
k→∞

〈z0 −Qz0, Jψ(ynk
−Qz0)〉.
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But we know that ynk
− Tynk

→ 0 as k → ∞, so, from the demiclosedness principle, we
have that ȳ is a fixed point of T . From the weak continuity of Jψ and the characterization
of sunny nonexpansive retraction (Proposition 2.8), our claim follows in the following way

lim sup
n→∞

〈z0 −Qz0, Jψ(yn −Qz0)〉 = 〈z0 −Qz0, Jψ(ȳ −Qz0)〉 ≤ 0.

Let us consider now (3.5), which we rewrite as follows

λn+1 ≤ λn − qnλn + γ′n

where λn = Φ(‖yn −Qz0‖) and

γ′n = qn〈z0 −Qz0, Jψ(yn+1 −Qz0)〉+ (1− qn)νnM3.

If we make αn = qn and γn = max{0, γ′n}, we can apply Lemma 2.11 to deduce that λn → 0
as n→∞. Therefore {yn} converges strongly to Qz0 and the proof is complete.

Next we study different situations that guarantee the fulfillment of some of the conditions
imposed in Theorem 3.1. Observe first that if {yn} has a limit then

lim
n→∞

‖yn+1 − yn‖ = 0. (3.6)

Lemma 3.2 Condition (3.6) is sufficient to guarantee lim
n
‖yn − Tyn‖ = 0 in the previous

theorem.

Proof. Following the proof of Theorem 3.1, the sequence {yn − x∗} is bounded, say
‖yn − x∗‖ ≤ C1. It is clear that

‖yn‖ ≤ ‖yn − x∗‖+ ‖x∗‖ ≤ C1 + ‖x∗‖ = C.

Observe that if C1 ≤ M1 then φ(‖yn − x∗‖) ≤ M. At the same time, if C1 ≥ M1 then
φ(‖yn − x∗‖) ≤M0‖yn − x∗‖ ≤M0C1. Therefore,

φ(‖yn − x∗‖) ≤ max{M,M0C1} = M.

In addition,
‖Tnyn‖ ≤ ‖Tnyn − Tnx∗‖+ ‖x∗‖

≤ ‖yn − x∗‖+ k(1)
n φ(‖yn − x∗‖) + k(2)

n + ‖x∗‖. (3.7)

This means that the sequence {Tnyn} is bounded too. Then algorithm (1.4) yields the
following limit equality:

lim
n→∞

(yn+1 − Tnyn) = lim
n→∞

(
qn(z0 − Tnyn)

)
= 0. (3.8)

Since
‖yn+1 − Tnyn+1‖ ≤ ‖yn+1 − Tnyn‖+ ‖Tnyn − Tnyn+1‖,
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we deduce that

‖yn+1 − Tnyn+1‖ ≤ ‖yn+1 − Tnyn‖+ ‖yn − yn+1‖+ k(1)
n φ(‖yn − yn+1‖) + k(2)

n .

In addition, from (3.8) and the fact that, by hypothesis, ‖yn+1 − yn‖ → 0 as n → ∞, we
obtain that

lim
n→∞

(yn − Tn−1yn) = 0. (3.9)

Now,
‖yn − Tyn‖ ≤ ‖yn − Tnyn‖+ ‖Tnyn − Tyn‖. (3.10)

In view of (3.8),

‖Tnyn − yn‖ ≤ ‖Tnyn − yn+1‖+ ‖yn+1 − yn‖ → 0 as n→∞. (3.11)

Since T is uniformly continuous, there exists a continuous increasing function ω : R → R
with ω(0) = 0 satisfying the relations

‖Tnyn − Tyn‖ = ‖T (Tn−1yn)− Tyn‖ ≤ ω(‖Tn−1yn − yn‖).

By (3.9), it is easy to see that

‖Tnyn − Tyn‖ → 0 as n→∞.

Now (3.10) and (3.11) complete the proof.

The next two propositions give conditions for the fulfillment of condition (3.6).

Proposition 3.3 Let Ω be a closed convex subset of a Banach space X, T : Ω → Ω a total
asymptotically nonexpansive mapping with nonempty fixed point set N (T ). Take z0 in Ω,
x∗ ∈ N (T ) and {qn} a decreasing sequence in (0, 1) satisfying (3.1). Let the sequence {yn}
be generated by (1.4). If the sequence {Tnyn} is bounded and

lim
n→∞

‖Tnyn − Tn−1yn−1‖ = 0

then (3.6) holds.

Proof. We have from (1.4)

yn+1 − yn = (qn − qn−1)z0 + (1− qn)Tnyn − (1− qn−1)Tn−1yn−1.

Then

‖yn+1 − yn‖ ≤ |qn − qn−1|(‖z0‖+ ‖Tnyn‖) + (1− qn)‖Tnyn − Tn−1yn−1‖.

The assumptions of the Proposition imply the claim.
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Proposition 3.4 Let Ω be a closed convex subset of a Banach space X, T : Ω → Ω a total
asymptotically nonexpansive mapping with a nonempty fixed point set N (T ). Take z0 some
point in Ω, x∗ ∈ N (T ) and {qn} a decreasing sequence in (0, 1) satisfying (3.1). Let the
sequence {yn} be generated by (1.4). If (3.2) holds, there exist positive constants M0 and
M1 such that φ(λ) ≤M0λ for λ ≥M1, and, if additionally, we assume that lim

qn−1

qn
exists

and

lim
n→∞

‖Tnyn−1 − Tn−1yn−1‖
qn

= 0 (3.12)

then (3.6) holds.

Proof. It is not difficult to state the following difference:

yn+1 − yn = (1− qn)(Tnyn − Tnyn−1) + (qn − qn−1)(z0 − x∗)

+ (qn−1 − qn)(Tn−1yn−1 − Tnx∗) + (1− qn)(Tnyn−1 − Tn−1yn−1).

We have

‖Tnyn − Tnyn−1‖ ≤ ‖yn − yn−1‖+ k(1)
n M + k(1)

n M0‖yn − yn−1‖+ k(2)
n .

Further,
‖(qn − qn−1)(z0 − x∗) + (qn−1 − qn)(Tn−1yn−1 − Tn−1x∗)‖

≤ |qn − qn−1|(‖z0 − x∗‖+ ‖yn−1 − x∗‖+ k
(1)
n−1M + k

(1)
n−1M0‖yn−1 − x∗‖+ k

(2)
n−1).

Let
µn = ‖z0 − x∗‖+ ‖yn − x∗‖+ k(1)

n M + k(1)
n M0‖yn − x∗‖+ k(2)

n .

Since, by Theorem 3.1, {yn} is bounded, there exists a constant M4 > 0 such that µn ≤M4

for all n ≥ 1. Then, since in (3.4) we can chose α so close to 1 as needed,

‖yn+1 − yn‖ ≤ ‖yn − yn−1‖ − kqn‖yn − yn−1‖+ (1− qn)(k(1)
n M + k(2)

n )

+ |qn − qn−1|M4 + ‖Tnyn−1 − Tn−1yn−1‖

for a certain positive constant k. Denoting λn = ‖yn − yn−1‖ one gets

λn+1 ≤ λn − kqnλn + (1− qn)(k(1)
n M + k(2)

n ) + |qn − qn−1|M4 + ‖Tnyn−1 − Tn−1yn−1‖.

Since lim
qn−1

qn
exists and

∑∞
1 qn = ∞ we conclude that lim

qn−1

qn
= 1 and so

lim
|qn − qn−1|

qn
= 0. (3.13)

Now (3.2), (3.12), (3.13) and Lemma 2.11 complete the proof.

The second part of this section is devoted to the study of the convergence of the im-
plicit scheme (1.3) for asymptotically nonexpansive mappings and the existence of sunny
nonexpansive retractions as those in Theorem 3.1.
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Theorem 3.5 Let X be a smooth reflexive Banach space which has a weakly sequentially
continuous duality map Jψ associated to a gauge function ψ, let Ω be a nonempty closed and
convex subset of X, and T : Ω → Ω an asymptotically nonexpansive mapping with nonempty
fixed point set N (T ). Let z0 ∈ Ω and {qn} ⊆ (0, 1] be a sequence such that limn qn = 0 and

lim
n

k
(1)
n

qn
= 0. Then,

(i) for n ∈ N large enough, there is a unique xn ∈ Ω such that

xn = qnz0 + (1− qn)Tnxn. (3.14)

If additionally we suppose that limn→∞ ‖xn − Txn‖ = 0, then

(ii) the sequence {xn} strongly converges to a fixed point of T and N (T ) is a sunny
nonexpansive retract of Ω.

Proof. It is not hard to check that for n large enough the mapping Tnx = qnz0 +
(1− qn)Tnx is a contraction. Therefore the Banach Contraction Principle implies that the
sequence {xn} is well-defined. Next we show that this sequence is bounded. Let x∗ ∈ N (T ),
then

‖xn − x∗‖ = ‖qn(z0 − x∗) + (1− qn)(Tnxn − x∗)‖ ≤ qn‖z0 − x∗‖+ (1− qn)‖Tnxn − x∗‖

≤ qn‖z0 − x∗‖+ (1− qn)(1 + k(1)
n )‖xn − x∗‖.

Henceforth
‖xn − x∗‖ ≤ qn

qn − (1− qn)k
(1)
n

‖z0 − x∗‖.

The boundedness of {xn} follows from the condition lim
n→∞

k
(1)
n

qn
= 0. Since X is reflexive,

there exists a weakly convergent subsequence {xnk
} of the sequence {xn}. Let ȳ ∈ Ω its

weak limit, then the demiclosedness principle implies that ȳ = T ȳ. Further we will see that
{xnk

} strongly converges to ȳ. Indeed,

xnk
− ȳ = qnk

(z0 − ȳ) + (1− qnk
)(Tnkxnk

− ȳ),

from the subdifferential inequality, we obtain

Φ(‖xnk
− ȳ‖) ≤ Φ((1− qnk

)‖Tnkxnk
− ȳ‖) + qnk

〈z0 − ȳ, Jψ(xnk
− ȳ)〉.

On the other hand,

Φ((1− qnk
)‖Tnkxnk

− ȳ‖) ≤ Φ((1− qnk
)(1 + k(1)

nk
)‖xnk

− ȳ‖).

Since (1− qnk
)(1+ k

(1)
nk ) < 1 for nk large enough, we also have from the convexity of the

function Φ,

Φ((1− qnk
)‖Tnkxnk

− ȳ‖) ≤ (1− qnk
)(1 + k(1)

nk
)Φ(‖xnk

− ȳ‖).
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Hence
(qnk

+ qnk
k(1)
nk
− k(1)

nk
)Φ((‖xnk

− ȳ‖) ≤ qnk
〈z0 − ȳ, Jψ(xnk

− ȳ)〉. (3.15)

Now, since xnk
⇀ ȳ and Jψ is w-w∗ continuous,

〈z0 − ȳ, Jψ(xnk
− ȳ)〉 → 0 as k →∞.

It is easy to check that
qnk

qnk
+ qnk

k
(1)
nk − k

(1)
nk

→ 1 as k →∞, so taking limit in (3.15),

lim
k→∞

Φ(‖xnk
− ȳ‖) ≤ 0,

the continuity of Φ finally implies that xnk
→ ȳ.

Next we show that {xn} is convergent. Let xnk
→ z and xnp → z′, we will see that

z = z′. Let x∗ ∈ N (T ), then

〈xn − Tnxn, Jψ(xn − x∗)〉 = 〈xn − x∗, Jψ(xn − x∗)〉+ 〈x∗ − Tnxn, Jψ(xn − x∗)〉 ≥

≥ ‖xn − x∗‖ψ(‖xn − x∗‖)− ‖x∗ − Tnxn‖‖Jψ(xn − x∗)‖∗

≥ ‖xn − x∗‖ψ(‖xn − x∗‖)− (1 + k(1)
n )‖xn − x∗‖ψ(‖xn − x∗‖)

= −k(1)
n ‖xn − x∗‖ψ(‖xn − x∗‖).

Since ‖xn − x∗‖ is bounded and

xn − Tnxn =
qn

1− qn
(z0 − xn),

we have that
〈z0 − xn, Jψ(xn − x∗)〉 ≥ 0,

where K is a positive number. Then, since z and z′ are both fixed points of T , one gets

lim sup
p→∞

〈xnp − z0, Jψ(xnp − z)〉 ≤ 0 and lim sup
k→∞

〈xnk
− z0, Jψ(xnk

− z′)〉 ≤ 0.

Now, since Jψ is w-w∗ continuous, we may conclude that

〈z − z′, Jψ(z − z′)〉 ≤ 0

and so z = z′.
We will finish the proof if we show that the mapping Q, defined as Qz0 := limn xn, is

a sunny nonexpansive retraction from Ω onto N (T ). Indeed, we know that if x∗ ∈ N (T )
then

〈xn − z0, Jψ(xn − x∗)〉 ≤ (1− qn)k
(1)
n

qn
‖xn − x∗‖φ(‖xn − x∗‖).

Taking limit it follows that

〈Qz0 − z0, Jψ(Qz0 − x∗)〉 ≤ 0,

which states, by Proposition 2.8, that Q is as required.
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Remark 3.6 If Ω is bounded in the previous theorem then N (T ) 6= ∅ [15].

Remark 3.7 In [6] similar results to Theorems 3.1 and 3.5 are stated, however techniques
are different from those used in this section. Moreover we do not require the domain Ω to
be bounded.

Remark 3.8 The existence of the sunny nonexpansive retraction in Theorem 3.1 is not
guaranteed in general. Theorem 3.5 implies however that such a retraction exists if the
mapping is asymptotically nonexpansive. Moreover if Ω is supposed to be bounded and
N (T ) 6= ∅, then there exists a nonexpansive retraction from Ω onto N (T ) (see [8]).

Remark 3.9 It is worthwhile to note that when T is a nonexpansive mapping and Tn is
replaced by T , Theorem 3.5 coincides with a result in a recent paper by H. K. Xu in [21].
The convergence of the explicit scheme in Theorem 3.1 seems to be new even for the case
of nonexpansive mappings.

4 Successive Approximation Method for Nonself-mappings

We consider now the case of total asymptotically nonexpansive nonself-mappings T : Ω →
X. In place of (1.4), we investigate the iterative process in the form

y1 ∈ Ω yn+1 = qnz0 + (1− qn)(QΩT )nyn, n = 1, 2, ..., (4.1)

where QΩ is a nonexpansive retraction of X onto Ω. A modification on the definition of
total asymptotically nonexpansive mapping is, however, needed.

Definition 4.1 (cf. [2, 7]) An operator T : Ω → X is said to be total asymptotically non-
expansive if there exist a nonexpansive retraction QΩ : X → Ω, nonnegative real sequences
{k(1)

n } and {k(2)
n } with k(1)

n , k
(2)
n → 0 as n→∞, and a continuous functions φ : R+ → R+

with φ(0) = 0 such that

‖T (QΩT )n−1QΩx− T (QΩT )n−1QΩy‖ ≤ ‖x− y‖+ k(1)
n φ(‖x− y‖) + k(2)

n . (4.2)

Theorem 4.2 Let Ω be a closed convex subset of a smooth reflexive Banach space X with
a weakly sequentially continuous duality map Jψ, T : Ω → X a total asymptotically nonex-
pansive mapping with nonempty fixed point set N (T ). Under the conditions of Theorem 3.1
replacing limn→∞ ‖yn − Tyn‖ = 0 by limn→∞ ‖yn − yn+1‖ = 0, the sequence {yn} gener-
ated by (4.1) strongly converges to the fixed point x̄∗ = Qz0 given that there exists a sunny
nonexpansive retraction Q : Ω → N (QΩT ).



16

Proof. First of all, we note that N (QΩT ) is non-empty because N (T ) ⊆ N (QΩT ).
We show next that {yn} ⊆ Ω is bounded. Take x∗ ∈ N (T ). In view of the inequalities

‖yn+1 − x∗‖ ≤ qn‖z0 − x∗‖+ (1− qn)‖(QΩT )nyn − (QΩT )nx∗‖

≤ qn‖z0 − x∗‖+ (1− qn)‖QΩT (QΩT )n−1yn −QΩT (QΩT )n−1x∗‖

≤ qn‖z0 − x∗‖+ (1− qn)‖T (QΩT )n−1yn − T (QΩT )n−1x∗‖

≤ qn‖z0 − x∗‖+ (1− qn)
(
‖yn − x∗‖+ k(1)

n φ(‖yn − x∗‖) + k(2)
n

)
,

we conclude, by analogy with Theorem 3.1, that there exist positive constants C,C1 and
M̄ such that ‖yn‖ ≤ C, ‖yn − x∗‖ ≤ C1 and φ(‖yn − x∗‖) ≤ M̄. Since QΩ is a nonex-
pansive mapping, it is not difficult to verify that there exists a constant C̄ > 0 such that
‖(QΩT )nyn‖ ≤ C̄.

It follows from (4.1) that

lim
n→∞

(
yn+1 − (QΩT )nyn

)
= 0. (4.3)

On the other hand, we can show that

lim
n→∞

(
yn+1 − (QΩT )nyn+1

)
= 0. (4.4)

Indeed,

‖yn+1 − (QΩT )nyn+1‖ ≤ ‖yn+1 − (QΩT )nyn‖+ ‖(QΩT )nyn − (QΩT )nyn+1‖.

Due to the total asymptotical nonexpansiveness of T , we obtain

‖(QΩT )nyn − (QΩT )nyn+1‖ ≤ ‖T (QΩT )n−1yn − T (QΩT )n−1yn+1‖

≤ ‖yn − yn+1‖+ k(1)
n φ(‖yn − yn+1‖) + k(2)

n .

Now the boundedness of {(QΩT )nyn}, the fact that ‖yn − yn+1‖ → 0 and (4.3) prove
(4.4).

Further, we have

‖yn −QΩTyn‖ ≤ ‖yn − yn+1‖+ ‖yn+1 − (QΩT )nyn‖+ ‖(QΩT )nyn −QΩTyn‖.

From the uniform continuity of T , we estimate the last term in the form:

‖QΩT (QΩT )n−1yn −QΩTyn‖ ≤ ‖T (QΩT )n−1yn − Tyn‖ ≤ ω(‖(QΩT )n−1yn − yn‖).

By (4.3) and (4.4), one gets

lim(yn −QΩTyn) = 0.



17

Notice that QΩT is a mapping as required in Theorem 3.1 and then we can apply
Theorem 3.1 to the sequence {yn}. Indeed, we write

yn+1 −Qz0 = (1− qn)((QΩT )nyn −Qz0) + qn(z0 −Qz0).

we use the subdifferential inequality as in Theorem 3.1, and the rest of the proof follows the
pattern with the only difference that we obtain that {yn} strongly converges to Qz0 = x̄∗

which is a fixed point of QΩT .

5 Stability Analysis for Nonexpansive Nonself-mappings

Next we study the stability problem for iterative processes with respect to perturbations
of constraint sets. Specifically, we consider a process which involves nonexpansive nonself-
mappings in the following form:

y1 ∈ Ω1, yn+1 = qnz0 + (1− qn)QΩn+1Tyn, n = 1, 2, ..., (5.1)

where QΩn : X → Ωn is a sunny nonexpansive retraction, and the proximity between the
original set Ω and Ωn with n = 1, 2, ... is given by the Hausdorff distance:

H(Ωn,Ω) ≤ σn. (5.2)

Let G = ∩nΩn and Ḡ = Ω ∩G 6= ∅.

Theorem 5.1 Let X be a uniformly smooth Banach space which has a weakly sequentially
continuous duality map Jψ. Assume that D ⊂ X is a closed convex set, Ω ⊂ D and
Ωn ⊂ D, n = 1, 2, ... are closed convex subsets of X with property (5.2). Let T : D → X be
a nonexpansive mapping with fixed point set N (T ) such that N (T ) ∩ Ω 6= ∅. Take z0 some
point in Ḡ, x∗ ∈ N (T ) ∩ Ω, {qn} a sequence in (0, 1) satisfying (3.1) and a non-increasing
sequence σn ≤ σ, such that σn → 0 as n→∞. Let the sequence {yn} be generated by (5.1).
We suppose that the sequence {Tyn} is bounded,

lim
n→∞

|qn − qn−1|
qn

= 0 (5.3)

and

lim
n→∞

√
hX(σn)
qn

= 0. (5.4)

Then {yn} converges strongly to the fixed point x̄∗ = Qz0 of QΩT, where Q : Ω → N (QΩT )
is the unique sunny nonexpansive retraction onto N (QΩT ).

Proof. We show first that {yn} is bounded. It is not difficult to see that

‖yn+1 − x∗‖ = ‖qnz0 + (1− qn)QΩTyn −QΩTx
∗ + (1− qn)(QΩn+1Tyn −QΩTyn)‖

≤ qn‖z0 − x∗‖+ (1− qn)‖QΩTyn −QΩTx
∗‖+ (1− qn)‖QΩn+1Tyn −QΩTyn‖.
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Since {Tyn} is bounded and due to Lemma 2.10, there exist positive constants M5 and M6

such that
‖QΩn+1Tyn −QΩTyn‖ ≤M5

√
hX(M6σn).

This implies

‖yn+1 − x∗‖ ≤ qn‖z0 − x∗‖+ (1− qn)‖yn − x∗‖+M5

√
hX(M6σn).

Denoting λn = ‖yn − x∗‖ we obtain

λn+1 ≤ (1− qn)λn + qn‖z0 − x∗‖+M5

√
hX(M6σn).

From Lemma 2.11 it follows that {yn − x∗} is bounded. Let ‖yn − x∗‖ ≤ C1 for all n.
Next we evaluate the following difference:

yn+1 − yn = (1− qn)(QΩn+1Tyn −QΩnTyn−1) + (qn − qn−1)(z0 − x∗)

+(qn−1 − qn)(QΩnTyn−1 −QΩTx
∗)

= (1− qn)(QΩn+1Tyn −QΩn+1Tyn−1) + (1− qn)(QΩn+1Tyn−1 −QΩnTyn−1)

+(qn − qn−1)(z0 − x∗) + (qn−1 − qn)(QΩnTyn−1 −QΩnTx
∗)

+(qn−1 − qn)(QΩnTx
∗ −QΩTx

∗).

Using the following estimates

‖QΩn+1Tyn −QΩn+1Tyn−1‖ ≤ ‖yn − yn−1‖,

‖QΩnTyn−1 −QΩnTx
∗‖ ≤ ‖yn−1 − x∗‖,

‖QΩnTx
∗ −QΩTx

∗‖ ≤M7

√
hX(M8σn),

and
‖QΩn+1Tyn−1 −QΩnTyn−1‖ ≤M9

√
hX(M10σn),

for suitable constants M7, ...,M10 (see Lemma 2.10), we obtain

‖yn+1 − yn‖ ≤ (1− qn)‖yn − yn−1‖+ (1− qn)M9

√
hX(M10σn)

+|qn − qn−1|
(
‖z0 − x∗‖+ C1) +M7

√
hX(M8σn)

)
.

Denoting λn = ‖yn − yn−1‖ one has

λn+1 ≤ (1− qn)λn + γn,

where
γn = |qn − qn−1|(‖z0 − x∗‖+ C1) + |qn − qn−1|M7

√
hX(M8σn)

+ (1− qn)M9

√
hX(M10σn).
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Now, by (5.3), (5.4) and Lemma 2.11, we conclude that ‖yn − yn−1‖ → 0.
Next we show that

lim
n→∞

‖yn −QΩTyn‖ = 0. (5.5)

Indeed,

‖yn −QΩTyn‖ ≤ ‖yn −QΩnTyn−1‖+ ‖QΩnTyn−1 −QΩTyn−1‖
+‖QΩTyn−1 −QΩTyn‖

≤ ‖yn −QΩnTyn−1‖+M7

√
hX(M8σn) + ‖yn−1 − yn‖,

which states our claim since ‖yn − yn−1‖ → 0 and
√
hX(M8σn) → 0 as n→∞, and

‖yn −QΩnTyn−1‖ = qn(z0 −QΩnTyn−1)

which, from the boundedness of {QΩnTyn−1}, also tends to 0.
Now we write

yn+1 −Qz0 = (1− qn)(QΩn+1Tyn −Qz0) + qn(z0 −Qz0),

and apply the subdifferential inequality to Jψ as in Theorem 3.1 to deduce that

φ(‖yn+1 −Qz0‖) ≤ φ((1− qn)‖QΩn+1Tyn −Qz0‖) + qn〈z0 −Qz0, Jψ(yn+1 −Qz0)〉.

Since Qz0 ∈ N (QΩT ) ⊆ Ω,

‖QΩn+1Tyn −Qz0‖ ≤ ‖QΩn+1Tyn −QΩn+1TQz0‖+ ‖QΩn+1TQz0 −QΩTQz0‖

≤ ‖yn −Qz0‖+ νn,

where νn = M7

√
hX(M8σn+1) is bounded and vanishes as n → ∞. From (5.4) we can

follow the same reasoning as in Theorem 3.1 to obtain (for n large enough)

φ(‖yn+1 −Qz0‖) ≤ (1− qn)φ(‖yn −Qz0‖) + (1− qn)νnM11+ (5.6)

+qn〈z0 −Qz0, Jψ(yn+1 −Qz0)〉.

for M11 a suitable constant. We claim that

lim sup
n→∞

〈z0 −Qz0, Jψ(yn −Qz0)〉 ≤ 0. (5.7)

Since {yn} is bounded there exists a subsequence {ynk
}, ynk

∈ Ωnk
for each k, which

weakly converges to some point ȳ and

lim sup
n→∞

〈z0 −Qz0, Jψ(yn −Qz0)〉 = lim
k→∞

〈z0 −Qz0, Jψ(ynk
−Qz0)〉.

Now we apply the following result:
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Lemma 5.2 [16] If the set Ω is convex and closed set in reflexive Banach space X and the
sequence of sets Ωn ⊆ X satisfy the limit relation H(Ωn,Ω) → 0 as n→∞ then every weak
limit point u of any sequence {un}, un ∈ Ωn, belongs to the subset Ω.

To deduce that ȳ ∈ Ω. The rest of the proof follows the pattern of Theorem 3.1 once we
prove that ȳ is a fixed point of QΩT . To prove this we make use of Opial’s condition used
in the following form:

lim inf
l→∞

‖ynl
− ȳ‖ < lim inf

l→∞
‖ynl

−QΩT ȳ‖

≤ lim inf
l→∞

(‖ynl
−QΩTynl

‖+ ‖QΩTynl
−QΩT ȳ‖)

≤ lim inf
l→∞

‖QΩTynl
−QΩT ȳ‖ ≤ lim inf

l→∞
‖ynl

− ȳ‖.

Remark 5.3 Notice that in this theorem we do not obtain convergence to a fixed point
of T . Convergence to a fixed point of T can be obtained if we impose certain boundary
conditions on T as, for instance, that T (∂Ω) ⊆ Ω. It is not hard to see that in this case
N (QΩT ) = N (T ).

Remark 5.4 The sunny nonexpansive retraction onto N (QΩT ) always exists in this case
since QΩT is a nonexpansive self-mapping [8].

Remark 5.5 If the condition Ḡ = Ω∩G 6= ∅ does not hold we prove the previous theorem in
the following way. Instead of Ωn we consider the collection of sets Ω′n = co(Ω ∪Ωn), where
co(A) stands for the closed convex closure of a set A. It is easy to see that H(Ω,Ω′n) → 0
as n→∞. Now it suffices to follow the same proof.

Remark 5.6 The sequence {Tyn} is bounded if, for instance, {yn} is bounded. This obvi-
ously holds if, for instance, Ω is bounded.
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