
An evolutionary-weighted majority voting and support vector
machines applied to contextual classification of LiDAR and imagery
data fusion

Jorge García-Gutiérrez , Daniel Mateos-García, Mariano Garcia,
José C. Riquelme-Santos

Keywords:
Contextual classification
Data fusion
LiDAR
Machine learning
Multispectral
Remote sensing

a b s t r a c t

Data classification is a critical step to convert remotely sensed data into thematic information. Environmental researchers 
have recently maximized the synergy between passive sensors and LiDAR (Light Detection and Ranging) for land cover 
classification by means of machine learning. Although object-based paradigm is frequently used to classify high 
resolution imagery, it often requires a high level of expertise and time effort. Contextual classification may lead to similar 
results with a decrease in time and costs for non-expert users. This work shows a novel contextual classifier based on a 
Support Vector Machine (SVM) and an Evolutionary Majority Voting (SVM–EMV) to develop thematic maps from LiDAR 
and imagery data. Subsequently, the performance of SVM–EMV is compared to that achieved by a pixel-based SVM as 
well as to a contextual classified based on SVM and MRF. The classifiers were tested over three different areas of Spain 
with well differentiated environmental characteristics. Results show that SVM-EMV statistically outperforms the rest 
(SVM, SVM–MRF) for the three datasets obtaining a 77%, 91% and 92% of global accuracy for Trabada, Huelva and Alto 
Tajo, respectively.

1. Introduction

Light Detection and Ranging (LiDAR) technology is a remote 
sensing laser-based technology which can determine the distance 
to an object based on the round-trip time of an emitted pulse. 
LiDAR provides not only the x–y position but also the coordinate z 
for every impact. The main applications of LiDAR have been related 
to extraction of digital elevation models [1], estimation of forest 
variables [2] and development of forest inventories [3] or fuel 
models [4].

Accurate and consistent thematic information derived from 
remotely sensed data is crucial for better management and 
decision making of geographic areas. Although thematic maps 
such as land use/land cover maps have traditionally been gener-
ated from aerial and satellite images, the appearance of new

sensors such as LiDAR has led to an increasing interest in data
fusion with the aim of obtaining more accurate information. In this
way, LiDAR and imagery data fusion have been used to map fire
risk [5] or plant communities relations [6].

Machine learning has often been used to generate thematic
maps, specially supervised learning techniques such as Bayesian
techniques [6,7], Support Vector Machines (SVMs) [8] or decision
trees [9]. Regardless of the classification technique, the literature
has shown different paradigms according to the information unit
to be classified. If the information unit is a pixel, the classification
can be faster but also have problems related to mixed units (pixels
in the frontiers of two or more different classes which give rise to
subsequent “salt and pepper” noise [10]). Moreover, high resolu-
tion images can provide a much higher number of spectrally
different pixels which could contribute to an increase of the
complexity of the classification step. On the other hand, we can
find object-based classification which is built after an initial image
segmentation. Then, the resulting limited areas (objects) can be
used as information units in the classification avoiding the
problems of mixed pixels and labels compound by different
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spectral responses. Unfortunately the process of building objects
by segmentation is not easy and depends on the experience of the
user which usually follows a trial-and-error process [11].

Contextual classification [10] can be seen as a trade-off para-
digm between object and pixel orientation which, under certain
conditions, can outperform object-based classification [12]. It is
based on the use of the information of neighbors in addition to the
information unit itself (usually a pixel) to improve final classifica-
tion. It differs from ensembles such as Random Forest or Stacking
(e.g. EVOR-STACK [13]) by the fact that contextual classification is
usually applied in several steps (iterations) and each iteration
involves a process of complete classification of the scene. On the
other hand, ensembles are classification techniques that only
classify the scene completely once.

Contextual classification techniques are usually grouped in pre-
processing (e.g. [14]) and post-processing (e.g. [15,16]) techniques
depending on the moment at which neighbor information is used
in the classification process, i.e. before or after the classification,
respectively. Contextual classification has proved to be suitable not
only for land use/land cover mapping [13,17] but for urban
classification [18].

Recently, most authors have put their efforts on the improvement
of Support Vector Machines (SVM) as an example of supervised
technique that has shown good results on remote sensing data [19].
Thus, researchers have developed contextual steps for the initial SVM
results obtaining promising results [20]. Tarabalka et al. [17] showed
one of the most recent examples of a post-processing contextual
classifier applied to remote sensing. The authors proposed a technique,
called SVM–MRF, for classification of hyperspectral images consisting
of two steps. In the first step, a probabilistic SVM was applied to
classify a hyperspectral image. In the second step, spatial contextual
information was used for refining the classification results with a
Markov Random Fields (MRF) regularization.

Although results obtained by SVM–MRF and other contextual
techniques proved to be suitable to work with imagery, these
techniques have been barely tested on LiDAR and imagery data
fusion. Furthermore, evolutionary computation have already been
applied to LiDAR with good results [13,21] and its power to
optimize processes may be an interesting way to improve con-
textual classification. Also, absence of statistical validation of the
results can be an another important issue to extract general
conclusions from previous studies in the literature.

This work presents a novel contextual classifier we called SVM–

EMV to develop land use/land cover maps from high resolution
LiDAR and imagery data fusion. SVM–EMV is based on a classical
majority voting scheme but taking advantage of a new evolu-
tionary adaptation which lets SVM–EMV improve classical con-
textual classification results. Subsequently, we compare the
performance of SVM–EMV with those of SVM and SVM–MRF after
testing on data from three sites in the Iberian peninsula, pre-
viously used in relevant publications. Finally, the results are
statistically validated and discussed.

This paper is organized in the following manner for a better
understanding: Section 2 provides a description of the methodol-
ogy and the main features of the data used in this work. Section 3
shows and analyzes the results achieved. Finally, Section 4
presents the main conclusions of the study and suggests future
lines of research.

2. Materials and methods

2.1. Data sites description

This study was based on data from three different areas in the
Iberian Peninsula (see Fig. 1). The first study site was located in

Trabada (hereafter site A) and covered a rectangle of about
0.6�0.45 km2 in the municipality of Vilapena (Galicia, NW Spain,
UTM29; 644637E 4808199N). The area was dominated by euca-
lyptus stands, with low intensity silvicultural treatments and the
presence of tall shrubs. In addition, three other labels were taken
into account: roads, crops and buildings.

The data for the second study site (hereafter site B) were
collected from a coastal area of the province of Huelva (SW Spain,
UTM30; 150960E 4124465N). The study site covered an area of
1.5�1.5 km2 in the mouth of the Tinto and Odiel rivers. This site
presented a mix of land uses and cover. Eight labels were selected
for the final classification: water, marshland, roads and railways,
low vegetation (pastures), middle vegetation (bushes), tall vegeta-
tion (mainly eucalyptus), buildings (industrial areas, port facilities)
and landfills.

LiDAR data and aerial orthophotography (with resolution 1 m
for site A and 0.5 m for site B and only visible spectrum bands: red,
green and blue) were provided for both data sites which had
already been presented and used in previous works after pre-
processing (see Garcia-Gutierrez et al. [9] for a deeper explanation
about the preprocessing techniques applied).

The last study site (hereafter site C) was located in the Natural
Park of the Alto Tajo in Guadalajara (central Spain, UTM30;
563385E 4533140N). This study covered an area of approximately
9�0.3 km2. The target labels studied comprised: roads, bare soil,
pine, poplar, two types of pasture, two types of old oak, young oak
and shrub.

For this site, Airborne Thematic Mapper (ATM) data (multi-
spectral images) with a resolution of 2 m along with LiDAR were
collected. From the ATM data, spectral bands covering the visible,
near infrared and shortwave infrared regions of the electromag-
netic spectrum were used. After studying the density of the LiDAR
data (1–2 pulses/m2), the image was resampled to 6 m using the
mean value of the pixels. Then four spectral indices were derived
to enhance the spectral response of vegetation and reduce the
effect of the ground on the signal. Subsequently, spectral indices
and multispectral layers were stacked into an image to be used
beside the LiDAR information. Further information on the proces-
sing of these data can be found in Garcia et al. [22].

2.2. Feature set extraction

A vector of features (numerical attributes) was attached to each
cell (pixel) in the matrix that would give rise to each thematic
layer. Vectors were calculated as a stack of image bands (red, green

Fig. 1. Study areas: Trabada in the north, Huelva in the south, and Alto Tajo in the
center of Spain.



and blue bands for orthophotos; see Table 1 for a description of the
multispectral bands), spectral indexes calculated from the avail-
able bands (multispectral only) and LiDAR-derived statistics.

Before extracting the LiDAR statistics, a resolution had to be set
up. It was selected according to the resolution of the images and
the density of the LiDAR pulses. The resolution was set at 1 m2 for
site A, 4 m2 for site B and 6 m2 for site C. Table 2 shows the LiDAR
statistics. All of them were calculated from both LiDAR intensity
and normalized-height distributions which gave rise to a set of 24
new attributes. After the stacking of the LiDAR and image features,
each pixel finally included 27 numeric attributes for sites A and B
and 38 for site C.

2.3. SVM classification

Two subsets of pixels were selected to be the training and test
sets for each site. After the extraction of the two sets of pixels,
three types of filters (from Weka [23] with default parameters)
were applied. First, the missing values were replaced by the
corresponding mean value. Second, the data were normalized.
Finally, to avoid problems with dimensionality, a feature selection
based on correlations was applied (CFS filter). Using the filtered
training set, a SVM with a Gaussian kernel was developed. The
parameters of the SVM were optimized by an evolutionary algo-
rithm according to the guidelines given in the literature [24].

2.4. SVM–EMV

Our classification method (called SVM–EMV) consisted of a
SVM in a first level of classification and a post-processing step
based on an Evolutionary Majority Voting in a second one. Thus,
once the initial classification was done by the SVM referred in the
previous subsection, the pixel instances were transformed into a
new type of data, i.e. the set of Euclidean distances from each pixel
to its neighbors. A vote systemwas then applied to reclassify every
pixel. The vote system selected the most common label among the
neighbors taking into account that each neighbor vote was
weighed according to the distance to the pixel to be reclassified.
This process is applied to every pixel in several iterations (5 in our
case since this number assures convergency for MRF [10]). Follow-
ing Tarabalka et al. [17] neighbor pixels were selected using a 8-
pixel adjacency criterion.

The optimal weights for each position in the vector of distances
were obtained by an evolutionary procedure which tried to
optimized the reclassification of the training instances. To deter-
mine an evolutionary algorithm, it is necessary to define an
individual encoding, genetic operators, a fitness function and a
rule to carry out the generational replacement. These aspects are
described in the following subsections.

2.4.1. Individual encoding
In this work, an individual was a set of weights or relative vote

coefficients and was represented by a vector with a real value for
each neighbor and also for the pixel to be reclassified. Therefore,
each vector comprised 9 elements. We included the pixel to be
classified as another neighbor with distance 0.0 to represent the
probability of having reached an optimal classification by a
previous step (initially by SVM).

Each element of the individual was a real value whose initial
lower and upper bounds were customizable. In our case, the
chosen range was [0,1] but it was possible to reach values above
one through the crossover and mutation operators. The initial
population consisted of N (in our case, 100 individuals) real-valued
vectors with 9 random values between 0 and 1. The identity
individual (every weight with a value of 1) was always included in
the initial population.

2.4.2. Genetic operators
The crossover operation between two individuals was carried

out uniformly (random selection of the i-th coefficient from the
two i-th values in the parents). The mutation operator was
designed to randomly increase or decrease the value of a gene w
in a value δnw with probability p. Initially, δA ½0;1�, but for a better
fit, every g generations, the upper bound was reduced by g=G,
where G is the total number of generations. By a trial-and-error
procedure, we selected G¼100 and g¼10; therefore, during the
first ten generations, the upper bound for δ was 1, in the following
ten it was 0.9, in the next ten 0.8, etc.

2.4.3. Fitness function
Fig. 2 shows the Evaluate procedure used in the fitness function

of the evolutionary method. Each individual (vector of weights)
was represented by the W input parameter (line 1). Every training
instance comprised the eight labels of the neighbors of the pixel to
be classified and the one of the pixel itself at that moment,
increasingly sorted by their distances to the latter. The parameter
lab stands for the real label of the pixel to be classified according to
the training set.

The fitness value for an individual is the accumulated Evaluate
return for each instance of the training set. Thus, for each i-th label
in a given instance the relative i-th vote from the vector W was

Table 1
Features obtained from the ATM image (bands and
spectral indexes).

Band Spectral range (nm)

B1 420–450
B2 450–520
B3 520–600
B4 600–620
B5 630–690
B6 690–750
B7 760–900
B8 910–1050
B9 1550–1750
B10 2080–2350

Spectral index Definition

NDVI ðB7�B5Þ=ðB7þB5Þ
SAVI ðB7�B5Þ � 1:5=ðB7þB5Þ
NDII1 ðB7�B9Þ=ðB7þB9Þ
NDII2 ðB7�B10Þ=ðB7þB10Þ

Table 2
LiDAR-based textures calculated for both LiDAR
intensities and normalized heights.

Symbol Description

MAX Maximum
MIN Minimum
RANG Range
STD Standard deviation
VAR Variance
MEAN Mean
KURT Kurtosis
CV Coefficient of variation
SKEW Skewness
MED Median
ENT Entropy
WRFR Weighted rank fill ratio



accumulated by Evaluate if the label coincides with the reference
one (lab). Otherwise, the vote is subtracted as penalization. Finally,
the method Evaluate returned the accumulated value. The final
fitness of an individual W may therefore be defined as the sum of
the well-classified weights minus the misclassified ones of the
neighbors of the pixels in the training set.

2.4.4. Generational replacement
For the replacement of individuals from one generation to the

next, we chose an elitist design where the best individual went to
the next generation without being affected by the mutation
operator and the rest were the result of the application of the
genetic operators. To select the individuals that would be involved
in the crossover operation we used a tournament method.

2.5. Statistical analysis

Classification results were obtained for SVM, SVM–MRF and
SVM–EMV and a statistical comparison was established after-
wards. The statistical analysis was used to check the significance
in the differences among the studied methods in terms of the
global accuracy. To this end, we applied a Cochran's Q test which is
an extension of the McNemar's test for multiple classifiers [25].

3. Results

Table 3 shows the number of training and test samples used in
this work for each site. Furthermore, Table 4 shows the final set of
features for each site after the analysis of separability by the
remote sensing experts who provided the data and the later
preprocessing and feature selection phase on the training data.
Finally, we provide the selected parameters used to optimize the
SVM performance in Table 5.

We evaluated the performance of SVM, SVM–MRF and SVM–EMV
on the test set referred in Table 3. Due to the random nature of the
evolutionary algorithms, the EMV results were those obtained by the
run which obtained the median result in 5 repetitions.

We provide a summary of the confusion matrices after a hold-out
validation (common validation in remote sensing) in Tables 6–8. For
every site, SVM–EMV obtained the best results. Tables show global
accuracy, Kappa index and F-measure. F-measure is a well-known
statistic in machine learning to evaluate commission and omission
errors which enables a comparison of the per-class results of the three

algorithms. As can be seen, SVM–EMV obtained the best results again.
Only in sites B and C, the two contextual algorithms interchanged
positions in four cases though SVM–EMV mostly reached the best
result per label.

Finally, to validate our study, a Cochran's Q test was applied to
the results obtained by each algorithm in sites A, B and C. The test
provided a p-value lower than 0.001, 0.01 and 0.001, respectively.
The null hypothesis for Cochran's Q test was that the algorithms
did not behave significantly different. The p-values thus rejected
the null hypothesis for each site with a level of significance of
α¼ 0:05.

Although a hold-out validation is the most extended technique
to test remote sensing classification, even with smaller datasets

1: Evaluate(instance,W, lab) : error
2: result = 0.0
3: for i = 0 to size(instance) − 1 do
4: key = instance[i]
5: if key == lab then
6: result = result + W[i]
7: else
8: result = result − W[i]
9: end if
10: end for
11: return result

Fig. 2. Fitness function.

Table 3
Number of training and test instances for each site.

Site Training Test

A 1664 306
B 4013 616
C 1209 532

Table 4
Attributes selected after feature selection phase.

Site Features

A R, B, HMEAN, HMIN, HMAX, HMED,
HENT, IMEAN, IMIN, IRANGE, ICV.

B R, G, B, HMEAN, HVAR, HSTDV,
HMIN, HMAX, HSKEW,
HMED, HCV, HENT, IMIN,
IKUT, IMED, IENT.

C B2, B6, B7, B8,
B10, SAVI, NDII1,
HMAX, HMED, HSTDV, HRANGE.

Table 5
Parameters selected to optimize each SVM.

Site C γ

A 205.33 9.1
B 823.16 0.01
C 183.66 0.2

Table 6
Summary of the hold-out test on dataset A. F-measure obtained for every label and
global statistics (accuracy and kappa index). In bold, best values.

Labels SVM SVM–MRF SVM–EMV

Dataset A confusion matrix
Roads 0.50 0.56 0.61
Crops 0.73 0.76 0.78
Eucalyptus 0.78 0.83 0.85
Buildings 0.69 0.74 0.79

Global accuracy 0.69 0.74 0.77
Kappa 0.57 0.63 0.67

Table 7
Summary of the hold-out test on dataset B. F-measure obtained for every label and
global statistics (accuracy and kappa index). In bold, best values.

Labels SVM SVM–MRF SVM–EMV

Dataset B confusion matrix
Water 1.0 1.0 1.0
Marshland 0.93 0.95 0.96
Roads 0.83 0.83 0.84
Low vegetation 0.87 0.90 0.88
Middle vegetation 0.75 0.86 0.88
High vegetation 0.91 0.95 0.99
Buildings 0.80 0.81 0.83
Dumps 0.90 0.97 0.97

Global accuracy 0.90 0.91 0.92
Kappa 0.88 0.89 0.90



than those used in this work [17], its use can potentially bias the
conclusions given the small size of the datasets used. For this
reason, we established a second level of validation based on a 10-
fold cross-validation (10FCV) after fusing both training and test
sets for each site. Results can be seen in Table 9. For every site,
SVM–EMV obtained the best results in terms of averaged global
accuracy and lower standard deviation which involves a higher
level of stability across the 10 folds.

For the concrete case of SVM–EMV, we provide some learning
curves (Fig. 3) showing the evolutionary process. Also Fig. 4 shows
the evolution during the 5 iterations for both contextual techni-
ques (SVM–MRF and SVM–EMV) in terms of relative improvement

regarding SVM. Finally, the results obtained by SVM–EMV can be
seen in Fig. 5 where a sample of the maps developed is shown.

After analyzing the results obtained, we should outline some
important findings. First, feature selection phase draws the importance
of LiDAR when the spectral information is limited in the images. Thus,
we find that for sites A and B, where only RGB was available, the
process selected intensity-derived features to include near-infrared
information in the classification process. For site C, the intensity was
ignored because ATM had already provided that information. Further-
more, every selection included statistics related to heights which
reinforce the LiDAR role in the final classification.

Regarding the parameters selected for the SVM, note that the
gamma value for the site A was very high in comparison with the rest
of sites. This parameter intuitively indicates how far the influence of a
single training example reaches and, beside a high penalization value
for each error (C), resulted in a possible overfitting situation. This fact
is closely linked to the discrepancies found between the hold-out
validation and the 10FCV. The 10FCV results show a much better
performance which can be due to a validation technique less
potentially biased. All in all, both validations showed SVM–EMV as
the best technique regardless the concrete results.

The results of SVM–EMV showed good overall results for the
fusion of LiDAR and imagery. They were better for the more
complex datasets with more classes than for site A where there
were only 4 labels but this may be caused by an insufficient
number of examples for the classification of the complete scene
and or overfitting problems. Regarding the results for the other
sites (B and C), EMV obtained good results comparable with those
from object-based approaches. Even when it is possible to find
higher accuracies in the literature [26] for similar classification by
object orientation, development time is another key factor to take
care of. In our case, the classification was done in less than 1 h for
every site in a personal computer (four I7 processors at 2.7 GHz
and 8 GB RAM). Since evolutionary computation was responsible
for the parameterization, SVM–EMV showed its potential as an
industrial tool for faster thematic map generation (object-oriented
maps can take even months of work [27]).

Analyzing the results from site C, we found that EMV obtained
similar accuracies than those obtained in the original work (e.g. original
global accuracy around 91.4%). However those similar results had been
obtained after grouping spectral classes into informational classes, i.e.
one type of grass, one of holm oak, etc. This step had increased the

Table 8
Summary of the hold-out test on dataset C. F-measure obtained for every label and
global statistics (accuracy and kappa index). In bold, best values.

Labels SVM SVM–MRF SVM–EMV

Dataset C confusion matrix
Young oak 0.74 0.86 0.88
Bare soil 0.98 0.99 0.96
Roads 0.77 0.88 0.91
Bushes 0.75 0.85 0.86
Poplar 0.84 1.0 1.0
Old holm oak 1 0.77 0.92 0.92
Old holm oak 2 0.90 0.97 0.96
Pasture 1 0.77 0.84 0.85
Pasture 2 0.97 0.98 0.98
Pine 0.92 0.96 0.98

Global accuracy 0.84 0.91 0.92
Kappa 0.81 0.90 0.91

Table 9
Mean and standard deviation obtained by each technique for each dataset on a 10-
fold cross-validation. In bold, the best values.

Method Site A Site B Site C

Mean Stdv Mean Stdv Mean Stdv

SVM 91.97 1.49 91.75 8.46 83.13 2.24
SVM–MRF 94.35 1.61 93.26 8.99 91.24 2.31
SVM–EMV 94.88 1.37 93.49 7.29 91.63 1.99

Fig. 3. Genetic learning curves across the 5 iterations for every site.



global accuracy and therefore the fact that EMV obtained an even
greater accuracy with 10 classes (92.2%) instead of 6 classes should be
taken into account.

Another interesting point is how SVM–EMV evolves over time.
In Fig. 3, we can see how the fitness improved over time except
when EMV passed from one iteration to the next. As the contextual

Fig. 4. Percentage of relative improvement from SVM results.

Fig. 5. Samples of the final classification developed by SVM–EMV, from left to right sites A, B and C.



algorithm completely changes (classifies) the scene, the fitness of
the next evolutionary step may be affected, specially when the
elitism does not propagate to the next execution (something to be
tested in future work). Furthermore, it is assumed that contextual
algorithms (at least MLR) tend to stabilize at a number of
iterations though, it can be seen that supposed stabilization has
no effect on the accuracy obtained (see Fig. 4) because this type of
classification tends to eliminate smallest details. For the contextual
algorithm completely changes the scene, the accuracy of the next
iteration may be affected giving rise to oscillations across the
iterations. Anyway, SVM–EMV obtained better results regardless
the iteration selected apart from the first one though future work
should also pay special attention to the selection of its stopping
criterion.

Even taking into account the previous problems, our approach
obtained the best global and per-label results (with some minor
exceptions in sites B and C) and it should therefore be taken into
account as a valid technique to improve the general results
obtained by SVMs with similar or better accuracies than the best
contextual techniques. The global accuracies reached were also
comparable with the results of the classification with object-
oriented techniques (except for site A) but with a considerable
decrease in the time of development a1nd minimal previous
knowledge required about the classifier selected (SVM).

4. Conclusions

This research compared the performance of SVMs and other two
contextual classifiers (SVM–MRF and a novel classifier called SVM–

EMV) to categorize land cover on LiDAR and optical data fusion in
three areas of Spain (Trabada, Huelva and Alto Tajo). The results
showed that SVM–EMV outperformed the rest and obtained accura-
cies over 91% for the Huelva and Alto Tajo sites. The statistical tests
confirmed the better performance of the SVM–EMV classifier com-
pared with the other classifiers tested. Although there were little
difference between the contextual classifiers, they were still statisti-
cally significant.

Future work should compare pixel-oriented, contextual and object-
oriented approaches [28]. Contextual classifiers and object-oriented
approaches could solve some pixel-inherent problems, including salt-
and-pepper noise using pixel neighborhood or objects as instances to
classify, respectively. The high suitability level shown by contextual
classifiers in this study should be confirmed after a more extensive
comparison against those different paradigms. New test sites could
reinforce the results obtained in this study and therefore confirm SVM–

EMV as an adequate technique for multisource classification. Finally,
imbalance in datasets is a problem not covered in this work which can
seriously affect the final per-label results. A further analysis of the
imbalance problem and its effects on our approach will also be carried
out in future work.
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