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a b s t r a c t

Light Detection and Ranging (LiDAR) is a remote sensor able to extract three-dimensional information. Environmental 
models in forest areas have been benefited by the use of LiDAR-derived information in the last years. A multiple linear 
regression (MLR) with previous stepwise feature selection is the most common method in the literature to develop 
those models. MLR defines the relation between the set of field measurements and the statistics extracted from a 
LiDAR flight. Machine learning has emerged as a suitable tool to improve classic stepwise MLR results on LiDAR. 
Unfortunately, few studies have been proposed to compare the quality of the multiple machine learning approaches. 
This paper presents a comparison between the classic MLR-based methodology and regression techniques in machine 
learning (neural networks, support vector machines, nearest neighbour, ensembles such as random forests) with 
special emphasis on regression trees. The selected techniques are applied to real LiDAR data from two areas in the 
province of Lugo (Galizia, Spain). The results confirm that classic MLR is outperformed by machine learning techniques 
and concretely, our experiments suggest that Support Vector Regression with Gaussian kernels statistically 
outperforms the rest of the techniques.

1.Introduction

Light Detection and Ranging (LiDAR) is a remote laser-based 
technology which differs from optic sensors in its ability to deter-
mine heights of objects. LiDAR is able to measure the distance from 
the source to an object or surface providing not only x–y position, 
but also the coordinate z for every impact. The distance to the 
object is determined by measuring the time between the pulse 
emission and detection of the reflected signal taking into account 
the position of the emitter.

LiDAR sensors have transformed the way to perform many 
important tasks for the natural environment. The work previously 
done with expensive or not always-feasible fieldwork has partially 
been replaced by the processing of airborne LiDAR point cloud 
(initial product obtained from a LiDAR flight). Although the 
development of digital elevation models has traditionally been the 
main use of LiDAR [1,2], applications for other purposes can also be 
found in the literature. Thus, research work often aims to the 
extraction of descriptive variables from LiDAR and their use to 
develop products related to urban or environmental mapping and

forest management. For those tasks, machine learning and, more
precisely supervised learning, is usually the selected tool in the
form of both classification (used in most urban or environmental
mapping approaches) and regression (most common in estimation
of biophysical variables).

Regarding classification, we can find techniques such as Sup-
port Vector Machines or Random Forests (RF) applied to LiDAR
(isolated or fused with other information sources, e.g., multi-
spectral images) for the development of forest inventories [3,4]
or fuel models [5]. But even when classification has been also
important for LiDAR, researchers have specially focused on deriv-
ing variables related to the LiDAR's ability to extract vertical
information and then, worked on establishing relations with field
measurements. Hence, regression techniques have been paid a
greater attention to improve empirical models. Following this
philosophy, LiDAR can currently be found for different tasks such
as estimation of biomass in forest areas [6] or prediction of
building ages [7].

In the case of forest LiDAR-derived models, we can observe
multiple linear regression (MLR) has usually been the main tool for
the estimation of parameters regressed from LiDAR statistics. The
main advantage of using this type of methodology is the simplicity
and clarity of the resulting model. In contrast, the selected method
also has some drawbacks: this process provides a set of highly
correlated predictors with little physical justification [8] and, as a
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parametric technique, it is only recommended when assumptions
such as normality, homocedasticity, independence and linearity
are met [9].

With the previous in mind, it is important to outline that
methodologies to develop regression models between field-work
data and LiDAR are being reviewed [10]. As a consequence,
machine learning non-parametric regression techniques have
started to be applied with success.

Our aim in this work is to compare the most well-known
regression techniques of machine learning in a common frame-
work. Thus, we can establish a ranking when they are applied to
forest variable estimation to help environmental researchers for
the selection of the most suitable technique for their needs. The
different techniques have been tested and statistically validated on
two LiDAR datasets from two different areas of the province of
Lugo (Galizia, Spain).

The rest of the paper is organized as follows. Section 2 provides
a general review of the state of the art and Section 3 shows a
description of the LiDAR data used in this work. The methodology
is presented in Section 4. The results achieved, their statistical
validation and the main findings are shown in Section 5. Finally,
Section 6 is devoted to summarize the conclusions and to discuss
future lines of work.

2. Related work

Researchers have already explored advanced regression techni-
ques for forest variables estimation and recent literature provides
examples which show their suitability in comparison with MLR.
Thus, Chen and Hay [11] used Support Vector Regression (SVR) to
estimate biophysical features of vegetation from LiDAR data and
multispectral images outperforming classical stepwise regression.
Their results were confirmed by Jachowski et al. [12] although SVR
was only applied to multispectral images in this case.

Decision trees in the form of ensembles such as RF have been
applied with good results. Thus, Latifi et al. showed [13] how they
could be used for biomass estimation and outperform classical
stepwise regression after an evolutionary feature selection. Even
without the evolutionary feature selection, similar results have
been also reported by other researchers [14]. Moreover, they were
not only used for onshore biomass estimation but also employed
to model and predict seafloor standing stocks [15] and for large
datasets where they showed a performance as good as that of
smaller ones [16].

In addition to SVR and RF as the most extended machine
learning regression techniques recently published in the literature,
other techniques have also been explored. Thus, Zhao et al. [17]
provided a comparison between Gaussian Processes (GP) and
stepwise MLR where the first ones clearly improved the results
after a set of composite features were extracted from a LiDAR point
cloud. Hudak et al. [18] applied nearest neighbours to extract
relations between LiDAR and fieldwork for several vegetation
species at plot level.

Although machine learning seems to be suitable to extract
meaningful information from LiDAR, few studies have been provided
to compare the quality of the regressions obtained by different sets
of techniques. For instance, Gleason and Im [19] showed a partial
comparison of methods where SVR outperformed RF and Li et al.
[20] established a deep comparison among machine learning
techniques where SVMs and boosted decision trees obtained the
best results though simple ordinary least squares approach per-
formed just as well as any advanced machine learning method.
Recently Gagliasso et al. [21] examined the predictive performance
of linear regression, geographic weighted regression, gradient near-
est neighbour, most similar neighbour, RF imputation, and k-Nearest

Neighbour (kNN) to estimate biomass and basal area. A combination
of ground inventory plots, LiDAR data, satellite imagery, and climate
data was analyzed, and the root mean square error (RMSE) and bias
were calculated to test the different methods. In this case, results
showed that for biomass prediction, the kNN (k¼5) had the lowest
RMSE and the least amount of bias. Although a statistical validation
of results is commonly required for a comparison of machine
learning techniques [22], no statistical study was provided for either
of the previous works which would have been desirable to general-
ize their conclusions.

Stojanova et al. [23] performed a comparison of the results of
different types of regression trees, in particular, isolated trees and
ensembles such as RF. The results confirmed the use of ensembles
improved the performance when the estimation of forest variables
was carried out. Although a deep statistical validation was applied
to the results, no regression technique from other families such as
kNN or SVR was compared with the regression trees.

After studying the possible improvements of the recent biblio-
graphy, we carried out a comparison of the most well-known
regression techniques of machine learning in a common frame-
work. Then we established a ranking when they were applied to
the estimation of forest variables after being tested and statisti-
cally validated on two LiDAR datasets from two different areas of
the province of Lugo (Galizia, Spain).

3. Materials

3.1. Study sites

Aerial LiDAR data in two forest areas in the northwest part of
the Iberian Peninsula (Fig. 1) were used for this study (more details
about both areas can be found in Goncalves-Seco et al. [24] and
Gonzalez-Ferreiro et al. [25], respectively).

The first study area (hereafter site A) was located in Trabada,
concretely in the municipality of Vilapena (Galicia, NW Spain;
boundaries 644800; 4806600 and 645800; 4810600 UTM). Euca-
lyptus globulus stands, with low intensity silvicultural treatments
and the presence of tall shrubs, dominated the forest type.

The second study area (hereafter site B) was also located in
Galicia (NW Spain), in the municipality of Guitiriz, and covered
about 36 km2 of Pinus radiata forests (boundaries 586315;
4783000 and 595102; 4787130 UTM). P. radiata was the main
forest type in this area and its stands were also characterized by
low-intensity silvicultural treatments and by the presence of tall
shrubs.

3.2. Field data

Field data from the two study sites were collected to obtain the
dependent variables for the regressions in this work. Thus, 39
instances (one per training plot in the study site) were located and
measured on site A. On site B, a similar process was carried out for
a total of 54 plots. The plots were selected to represent the existing
range of ages, stand sizes, and densities in the studied forests.

For site A and B, the dry weight of the biomass fractions of each
tree was estimated using the equations for E. globulus in Galicia
reported by Dieguez-Aranda et al. [26]. In order to define the
dependent variables, the field measurements (heights and dia-
meters) and the estimated dry weight of the biomass fractions
were used to calculate the following stand variables in each plot:
stand crown biomass ðWcrÞ, stand stem biomass ðWstÞ, and stand
aboveground biomass ðWabgÞ.

In the case of site B, the field measurements (heights and
diameters) and the estimated volumes and dry weight of the
biomass fractions helped to estimate the following additional



stand variables in each plot: stand basal area ðGÞ, dominant height
ðHdÞ, mean height ðHmÞ, and stand volume ðV Þ.

3.3. LiDAR data

The LiDAR data from site Awere acquired in November 2004. The
first and last return pulses were registered. The whole study area
was flown over 18 strips and each strip was flown over three times,
which gave an average measurement density of about 4 pulses m�2.
The LiDAR data for site B were acquired in September 2007. An
averaged laser pulse density of 8 pulses m�2 was obtained. In order
to obtain two additional different resolutions, an artificial reduction
based on a random selection of LiDAR pulses in a grid cell of 1 m2

was carried out for each flight. They resulted in two new LiDAR
datasets with a pulse density of 0.5 pulses [25].

Intensity values in both study sites were normalized to eliminate
the influence of path height variations [3]. Filtering, interpolation,
and the development of Digital Terrain and Canopy Models (DTM/
DCM) were performed by FUSION software [27]. This software also
provided the variables related to the height and return intensity
distributions within the limits of the field plots in the four datasets
(original and reduced data from study sites A and B). Table 1 shows
the complete set of metrics and the corresponding abbreviations
used in this paper.

From field data and the statistics obtained from LiDAR we built
60 datasets. Each database was composed of the 48 independent
variables (COVERFP and RETURNS in Table 1 together with the rest
of the variables calculated for intensity and heights) extracted
from LiDAR data and a dependent variable (fieldwork-derived
forest variable), given a study site and a resolution. This procedure
gave a total of 20 datasets (4 and 8 forest variables for site A and B,
respectively, multiplied by 2 different resolutions). The remaining

40 datasets were obtained using two types of feature transforma-
tion (power and exponential) commonly used in the literature [25]
on the previous 20.

4. Regression techniques

4.1. Regression trees

Decision trees based on If–Then rules are one of the most
popular methods used in machine learning for classification since
they offer results that can be easily interpreted. Thus, this
approach obtains ordered sets of If–Then rules for prediction that
produces understandable models [28]. Regression trees thus offer

Fig. 1. Study sites located in the province of Lugo (NW of Spain). Top: study site of Guitiriz. Bottom: study site of Trabada.

Table 1
Statistics extracted from the LiDAR flights' heights and intensities used as
independent variables for the regression models.

Description Abbreviation Description Abbreviation

Percentage of first 25th percentile P25
returns over 2 m COVER_FP 50th percentile P50
Number of returns above 2 m RETURNS 75th percentile P75
Minimum MIN 5th percentile P05
Maximum MAX 10th percentile P10
Mean MEAN 20th percentile P20
Mode MODE 30th percentile P30
Standard deviation SD 40th percentile P40
Variance V 60th percentile P60
Interquartile distance ID 70th percentile P70
Skewness SKW 80th percentile P80
Kurtosis KURT 90th percentile P90
Average absolute deviation AAD 95th percentile P95



to LiDAR scientist the power of a non-parametric regression
technique, which is frequently higher than MLR's when parametric
conditions are not met, with an open-box (understandable) model
which is often required by environmental users with no expertise
in machine learning.

In this work, eight kinds of novel regression tree structures
have been applied to forest variables prediction from LIDAR data.
What makes them different from each other are the regression
models considered in the leaf nodes. Specifically, we consider the
following models:

Model MEAN-LM: This model is a constant linear model. This
constant value is the mean of the target variable for all instances of
the training set that reach the leaf.

Model MED-LM: This model is also a constant linear model, but
the constant value is the median instead of the mean.

Model LM: Linear model in which the coefficients are computed
by minimizing the mean square error.

Model MDL-LM: Linear model in which the coefficients are
computed based on a minimum description length principle.

Model RLM: This model is a reduced linear model. Once the
linear model is obtained by the least square method, it is
simplified as in M50 algorithm [29]. In particular, a greedy search
is used to determine which variables of the linear function can be
removed by minimizing the estimated error.

Model kNN-LM: This model is a local non-linear model, based
on the k-NN algorithm. In this case, the forecasting is divided into
two steps clearly differentiated. In a first step, the k nearest
neighbours are searched for between the instances of the training
set that reach the leaf, and secondly, the mean of the target
variable of the k nearest neighbours is computed. Thus, the
previously computed mean is the prediction.

Model WkNN-LM: This model is also a local non-linear model
based on the weighted k nearest neighbours. The prediction is the
weighted mean of the target variable of the k nearest neighbours
and the weights wi are given by a Gaussian kernel:

wi ¼ exp
dðxi;nðxiÞÞ

σ

� �
ð1Þ

where d is the Euclidean distance between a point xi and its i-th
nearest neighbour nðxiÞ, σ is the width of the Gaussian kernel and
expð�Þ is the exponential function.

Model LWLR: This model is a local linear model based on a
locally weighted linear regression, in which the coefficients are
computed by minimizing the weighted mean square error and the
weights are given by a distance function.

Summarizing, six linear models (five global and one local) and
two non-linear local models are considered to construct regression
trees. In general, the linear models present some limitations since
when models in leaves are too simple, some functions cannot be
approximated. On the other hand, global models have a lower
computational cost than local models, since the latter have to be
rebuilt for each point of the test set. In this work, the package
CORElearn [30] (available in software R) has been used to generate
the different regression trees described above.

4.2. Other techniques

With the goal of comparing the results of the regression trees
above with several families of machine learning techniques applied
to LiDAR data for estimation of forest variables, we selected the
most extended machine learning algorithms in the literature such
as support vector machines for regression, artificial neural net-
works, nearest neighbour rule and ensembles of regression trees
among others. Namely, we included in the study the algorithms
implemented in the open source software for data mining WEKA
[31]: M5P (another implementation of the M5' regression tree),

SMOreg (SVR with polynomial, SMO-p, and Gaussian, SMO-g,
kernels), LinearRegression (classical MLR), MultilayerPerceptron
(MLP, a type of neural network), Gaussian processes (with Gaussian,
GP-g, and polynomial, GP-p, kernels) and IBk (an implementation of
kNN). On the other hand, we developed an ad hoc RF which consists
in replacing its random trees by M5P trees. This change was
necessary because the original implementation in WEKA only
allows its use for classification and not for regression.

4.3. Comparison framework

The regression trees and the M5P, SMO-p, SMO-g, MLP, IBk, GP-
g, GP-p, MLR and RF techniques described in Sections 4.1 and 4.2,
respectively, were applied to the 60 testing datasets.

The comparison was defined from the coefficients of correla-
tion, R, as was done in recent bibliography [17]. Also we included
an analysis of the results in terms of root mean square error
(RMSE). In our case, the coefficients obtained in a process of Leave-
One-Out Cross-Validation (LOOCV) on each dataset since the
number of instances was too small for a more adequate n-fold
cross-validation. The best and mean values in 100 executions were
recorded for each technique and dataset in order to obtain robust
results (independent from parameterization).

All algorithms were used after applying a preprocessing phase of
normalization and elimination of missing values. Moreover, feature
selection to avoid the Hughes phenomenon [32] was also applied.
The feature selection based on the well-known Correlation Feature
Selection (CFS) filter from Weka was used. Since most techniques
implement a feature selection phase in their own building (e.g.,
regression trees, support vector machines and RF) we decided to
carry out each experiment with and without the CFS feature
selection. Thus, we could obtain the best result regardless of whether
the algorithms could obtain better results with their own feature
selection.

As we said, all the considered algorithms were tested on every
dataset 100 times using different configuration setups. Moreover,
each tuple 〈〈configuration setup; algorithm; dataset〉〉 was carried
out twice: one with feature selection (CFS) and one without. Then,
we selected the best of the two to be part of the 100 partial results.

Regarding each algorithm setups, they were defined as random
values for each parameter needed to execute the algorithm. Thus, a
random value between 1 and 20 was selected for the number of
neighbours in IBk, kNN-LM andWkNN-LM models and a σ parameter
in the interval [1, number of instances] was also used forWkNN-LM. In
the case of the support vector machines, the parameter C was defined
in the interval [1,20]. In addition, SVM-g uses a Gaussian kernel which
depends on a parameter g defined in the interval [0.01,1]. For SVM-p,
which uses a polynomial kernel, the exponent for the polynomial was
set up with a value between 1 and 3. Our RF only has two parameters:
the number of trees and the number of predictors used per tree. They
were in the intervals [1,20] and [1,100], respectively. Finally, the MLP
performance is controlled by three parameters: number of hidden
layers, momentum and learning rate. They were in the intervals [1,20],
[0.01,1] and [0.01,1], respectively.

5. Results

This section provides the results obtained by the application of
all the examined algorithms described in Section 4. Results for all
the algorithms in terms of maximum and mean R and improve-
ment of RMSE regarding the worst technique for each dataset are
reported in Section 5. Tests to determine whether the results can
be considered statistically different or not have been carried out in
Section 5.2. Discussion of the results obtained can be found in
Section 5.3.



5.1. Performance of the algorithms

Fig. 2 shows the influence of each statistic on the automatic
selections made by the CFS algorithm. Refer to Table 2 to check
how variables are mapped into the columns, where Column #1 is
associated with the leftmost column in the figure, and Column
#48 with the rightmost one. In this sense, a zero value (black)
means that the variable was not selected, whereas a one value
(white) means just the opposite, that is, the variable was selected.

Figs. 3 and 4 illustrate the maximum and mean of R. For visual
purposes, Figs. 5 and 6 do not provide RMSE but the percentage of
improvement regarding the RMSE of the worst regressor for each
dataset when best and mean RMSE are studied, respectively. This
representation has been chosen since RMSE is not a dimensionless
measure which involves very different values if we are dealing
with forest variables such as canopy biomass (kg/ha) or basal area
(m2). Each row of the figures identifies one dataset whereas the
columns identify each of the seventeen algorithms. Refer to
Table 3 to check how algorithms are mapped into the columns
where Column #1 is associated with the leftmost column in the
four figures, and Column #17 with the rightmost one. In addition,
due to the high number of datasets studied, we provide

Tables 4 and 5 which summarize the main statistics for every
technique regarding R and the percentage of improvement of
RMSE, respectively.

Fig. 2. Selection of LiDAR-derived features by the CFS method through the 60
datasets. A value of 1 means a feature was selected; otherwise, the value is 0.

Table 2
Correspondence between features and columns for Fig. 2. Variable names starting
by H and I were obtained from height and intensity distributions, respectively.

Column Variable Column Variable

#1 COVER_FP #25 IAAD
#2 HAAD #26 IID
#3 HID #27 IKURT
#4 HKURT #28 IMAX
#5 HMAX #29 IMEAN
#6 HMEAN #30 IMIN
#7 HMIN #31 IMODE
#8 HMODE #32 IP05
#9 HP05 #33 IP10
#10 HP10 #34 IP20
#11 HP20 #35 IP25
#12 HP25 #36 IP30
#13 HP30 #37 IP40
#14 HP40 #38 IP50
#15 HP50 #39 IP60
#16 HP60 #40 IP70
#17 HP70 #41 IP75
#18 HP75 #42 IP80
#19 HP80 #43 IP90
#20 HP90 #44 IP95
#21 HP95 #45 ISD
#22 HSD #46 ISKW
#23 HSKW #47 IV
#24 HV #48 RETURNS
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Fig. 3. Maximum R values after 100 executions for the 60 datasets each.
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Fig. 4. Mean R values after 100 executions for the 60 datasets each.
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Fig. 5. Maximum percentage of improvement regarding the best RMSE reached by
the worst competitor after 100 executions for the 60 datasets.
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Fig. 6. Mean percentage of improvement regarding the mean RMSE reached by the
worst competitor after 100 executions for the 60 datasets.



5.2. Statistical analysis

After the generation of the quality results for the different
models, a statistical analysis was applied by using the open-source
platform StatService [33] to check the significance in the differences
among multiple methods in terms of R. ANOVA is usually used for
multiple comparison of results if parametric conditions (homosce-
dasticity, independence, normality) are met [22]. However, Levene
test rejected the homoscedasticity hypothesis of the results with a
p-value under 0.001 for an α¼ 0:05, and therefore, a non-parametric
procedure was selected. This procedure, firstly, obtained the average
ranks taking into account the position of the compared results with
respect to each other. Thus, a value of 1 for a rank would mean a
method was the best for a test case, while a rank of n would mean
that it was the worst of the n compared methods. Finally, the chosen
procedure used the Friedman test and the Holm post hoc procedure
(see [34] for a complete description of both non-parametric meth-
ods) to statistically validate the differences in the mean ranks.

Table 6 summarizes the rankings obtained for maximum R and
mean R when Friedman's test was applied. The statistics for
Friedman with control method were 815.17 and 854.02, all of
them distributed according to a chi-square distribution with 16
degrees of freedom. The p-value for the Friedman test were less
than 0.0001 so it rejected the null hypothesis (all the techniques

behave in a similar way) with a level of significance of α¼ 0:05.
Then, the Holm post hoc procedure was applied.

Table 7 shows the p-values, z-value and α, using SMO-g as
control algorithm since it obtained the best ranking in terms of
maximum R. Note that Holm procedure rejects all the algorithm
except for SMO-p, whose α value was greater than the required by
Holm. In other words, differences between kernels applied to SVM
did not provide results statistically different, which was expected,
given that both of them were SVMs and the similar results they had
obtained on average and that had been previously reported in
Table 4.

The same information can be found in Table 8 using again
SMO-g as control algorithm since it also obtained the best ranking
in terms of mean R. As can be seen, the null hypothesis is rejected
for the rest of the 16 algorithms, thus concluding that SMO-g
generated the best results and they were statistically different
from those of the other algorithms.

5.3. Discussion

Through the analysis of the results of the experimentation, it
was possible to draw some interesting findings.

Regarding the attribute selection technique used, we may observe
that there is a pattern in the selected set. This pattern is consistent

Table 3
Correspondence between algorithms and columns
for Figs. 3–6.

Column Algorithm

#1 MEAN-LM
#2 MED-LM
#3 LM
#4 MDL-LM
#5 RLM
#6 kNN-LM
#7 WkNN-LM
#8 LWLR
#9 MLR
#10 IBk
#11 SMO-p
#12 SMO-g
#13 M5P
#14 GP-g
#15 GP-p
#16 RF
#17 MLP

Table 4
Averaged best and mean R for the 60 datasets after 100 executions. The best values
in bold.

Algorithm Maximum R Mean R

MEAN-LM 0.717 0.711
MED-LM 0.716 0.711
LM 0.785 0.780
MDL-LM 0.786 0.781
RLM 0.796 0.791
kNN-LM 0.765 0.699
WkNN-LM 0.768 0.696
LWLR 0.687 0.562
MLR 0.916 0.913
IBk 0.959 0.845
SMO-p 0.976 0.944
SMO-g 0.979 0.974
M5P 0.891 0.891
GP-g 0.946 0.851
GP-p 0.970 0.929
RF 0.906 0.898
MLP 0.969 0.711

Table 5
Averaged improvement regarding maximum and mean RMSE obtained by the
worst regressor for each of the 60 datasets after 100 executions. The best values
in bold.

Algorithm % Maximum RMSE % Mean RMSE

MEAN-LM 19.811 48.737
MED-LM 20.015 48.726
LM 28.163 40.740
MDL-LM 27.458 40.487
RLM 30.207 50.106
kNN-LM 23.443 47.409
WkNN-LM 23.373 46.670
LWLR 4.517 25.344
MLR 57.019 73.572
IBk 78.055 61.647
SMO-p 86.751 84.174
SMO-g 91.224 91.981
M5P 51.769 70.443
GP-g 55.472 42.376
GP-p 77.752 62.911
RF 51.703 69.255
MLP 70.682 29.988

Table 6
Rankings from maximum and mean R for the 17 algorithms after 100 executions.
The best in bold.

Algorithm Maximum R Mean R

MEAN-LM 15.408 13.658
MED-LM 15.433 13.717
LM 12.175 10.325
MDL-LM 12.025 10.258
RLM 11.258 9.625
kNN-LM 12.900 14.167
WkNN-LM 12.967 14.167
LWLR 15.300 16.233
MLR 7.533 4.783
IBk 3.975 8.117
SMO-p 2.533 2.400
SMO-g 1.450 1.200
M5P 8.467 5.283
GP-p 3.883 4.133
GP-g 5.542 7.733
RF 7.450 4.683
MLP 4.700 12.517



with that seen in other studies regarding the prevalence of variables
related to heights (specially high percentiles) as key elements to
extract knowledge from LiDAR [20]. The contribution of the intensity
is mostly based on the use of minimum intensity, skewness and
kurtosis. The number of returns was also a key factor to consider
according to the output of the CFS method in certain databases.
Selection of height percentiles is not novel but the fact that intensity
variables appeared should be considered. In any case, the variables
related to the intensity that were selected seem to be those most
resistant to the effect of multiple returns (well-known issue in the
literature [35]) since they work with the shape of their distributions
(skewness, kurtosis) rather than specific values. In any case, most of
the techniques used in this study had its own variable selection and
the best performance (with or without previous CSF) was selected to
establish the comparison with the rest of the competitors so that the
importance of CFS selection should be relatively taken into account.

If we focus on the performance of the regression techniques and
as can be inferred from the analysis of Fig. 3 and the subsequent
statistical analysis, SMO-g (column #13) obtained the best results
regarding R, with an averaged maximum value of 0.979. Moreover,
from all the 100 executions with different configuration setups, it
reached an R of 0.974 on average. In addition, most of the rest of the

studied machine learning techniques obtained high R values. SMO-p
even obtained non-statistically different results in terms of maximum.
This involves that parameterization was adequate although, in some
cases, this point can be difficult to deal with. Specially difficult was
the parameterization of MLP (as can be seen comparing maximum
and mean values) which suffered from a higher number of para-
meters than the rest which makes it harder to optimize. On the other
hand, regression trees (including their ensembles, RF), which are
easier to parameterize, did not get as good results showing a limited
prediction power. Among them, our results show that M5P obtained
the best results and its use in ensembles (RFs) increase the quality of
its results even though they could not compete against SVR.

The results in terms of RMSE (Figs. 5 and 6, Table 5) also outline
the previous finding. Light differences were found between the
use of R and RMSE for validation. This may be explained by the fact
that RMSE is very sensitive to extreme values. This issue is well-
known in the literature [36] and in an environment in which
databases are very small (in our case, less than 60 instances), the
LOOCV procedure makes certain instances very difficult to deal
with. This situation specially affects those algorithms prone to
overfitting though potentially more powerful. By contrast, regres-
sion trees seem to be more resistant to overfitting although they
globally do not fit as well as other techniques such as SVMs or GPs.

Finally, the most important point of this study was maybe that
SVMs and GP-p outperformed MLR results according to the ranking
obtained in Table 6. This fact concurs with that previously reported
[11,12,17,19,20] and shows machine learning as an important tool
which must be taken into account for LiDAR-derived estimation of
forest variables such as the ones studied in this work.

6. Conclusions

This paper presented a comparison between common regres-
sion techniques in machine learning (neural networks, support
vector machines, nearest neighbour, Gaussian processes, several
types of regression trees, and ensembles such as Random Forest)
and the classic MLR-based methodology for the estimation of
forest variables from LiDAR data. The selected techniques were
applied to real LiDAR data from two areas in the province of Lugo
(Galizia, Spain). The results showed that SVMs statistically out-
performed the rest of the techniques. Nevertheless, results con-
firmed recent bibliography since machine learning techniques
(SVMs, GPs) obtained better results than those of classic MLR.

Future work should address gaps not covered in this work.
Thus, we must complete the framework with an ad hoc feature
selection for each specific method specially for those techniques
that do not have it in their own building. For those techniques CFS
could obtain a non-optimal subset of features when comparing
with an ad hoc feature selection specially designed for them. In the
same line, automatic parameterization could make the use of the
most powerful techniques available for the general LiDAR users.
Both problems can be solved at the same time with the application
of evolutionary computation although a trade-off between opti-
mization and run time should be reached for industrial use.
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Table 7
Post hoc analysis using Holm test and SMO-g as the control algorithm, in terms of
maximum R.

Algorithm p z Holm H0 rejected

MEAN-LM 0 15.1399 0.0033 √
MED-LM 0 15.1671 0.0031 √
LM 0 11.6329 0.0045 √
MDL-LM 0 11.4702 0.005 √
RLM 0 10.6386 0.0056 √
kNN-LM 0 12.4193 0.0042 √
WkNN-LM 0 12.4916 0.0038 √
LWLR 0 15.0224 0.0036 √
MLR 0 6.5983 0.0071 √
IBk 0.0062 2.7387 0.0167 √
SMO-p 0.24 1.175 0.05
GP-p 0.0083 2.6393 0.025 √
GP-g 0 4.438 0.01 √
M5P 0 7.6106 0.0063 √
MLP 0.0004 3.5251 0.0125 √
RF 0 6.5079 0.0083 √

Table 8
Post hoc analysis using Holm test and SMO-g as control algorithm, in terms of
mean R.

Algorithm p z Holm H0 rejected

MEAN-LM 0 13.513 0.0042 √
MED-LM 0 13.5762 0.0038 √
LM 0 9.8975 0.005 √
MDL-LM 0 9.8251 0.0056 √
RLM 0 9.1382 0.0063 √
kNN-LM 0 14 .0643 0.0033 √
WkNN-LM 0 14.0643 0.0036 √
LWLR 0 16.3059 0.0031 √
MLR 0 .0001 3.8867 0.0125 √
IBk 0 7 .5022 0.0071 √
SMO-p 0.1931 1.3016 0.05 √
M5P 0 4.429 0.01 √
MLP 0 12.2746 0.0045 √
GP-p 0.0015 3.1816 0.025 √
GP-g 0 7.0864 0.0083 √
RF 0.0002 3.7782 0.0167 √
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