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Abstract. We present here a new method for approximating functions defined on

superreflexive Banach spaces by differentiable functions with α-Hölder derivatives
(for some 0 < α ≤ 1). The smooth approximation is given by means of an explicit

formula enjoying good properties from the minimization point of view. For instance,

for any function f which is bounded below and uniformly continuous on bounded
sets this formula gives a sequence of ∆-convex C1,α functions converging uniformly

on bounded sets to f and preserving the infimum and the set of minimizers of f . The

techniques we develop are based on the use of extended inf-convolution formulas and
convexity properties such as the preservation of smoothness for the convex envelope

of certain differentiable functions.

0. Introduction and Preliminaries

This paper introduces an explicit regularization procedure for functions defined
on superreflexive Banach spaces. For any bounded below l.s.c. (resp. uniformly
continuous on bounded sets) function f on a superreflexive Banach space X we give
by means of a “standard” formula a sequence of C1,α-smooth functions converging
pointwise (resp. uniformly on bounded sets) to f (where 0 < α ≤ 1 only depends
on X). Under some additional conditions, the convergence of the sequence of
approximate functions is uniform on the whole space X . Moreover, the approximate
functions preserve the infimum and the set of minimizers of f . We remark that these
features altogether cannot be easily obtained from regularization methods like the
smooth partitions of the unity techniques (for a detailed study of this topic we refer
to Chapter VIII.3 of [DGZ], the references therein and [Fr]) or other results that
only ensure the existence of smooth approximates (for instance, see [DFH]).

In Hilbert spaces, our work is closely linked with the Lasry-Lions approximation
method (introduced in [LL] and subsequently studied by several authors, such as
[AA]) and its more general version given by T. Strömberg in [St2]. Actually, we
improve the results of [St2] in the superreflexive case by providing the best uniformly
smooth approximation possible for this setting. Nonetheless, we want to remark
that the approximate functions explained herein cannot be reduced to those of
Strömberg (or Lasry-Lions approximates in Hilbert spaces); we refer to the remark
after Proposition 8 for a more precise explanation. Our approach for smooth
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regularization in non-Hilbert spaces comes from two main facts: the density of the
linear span of the convex functions (studied in [C]) and the smoothness of the convex
envelope of a “somehow” smooth function. In this direction, we also present more
general versions of certain results in [GR] for infinite dimensional Banach spaces.

This paper is organized in the following way. Our main result of this paper,
Theorem 1, and several corollaries are explained in Section 1. The proof of
Theorem 1 is showed in Section 4 with the tools provided by sections 2 and 3.
Section 2 deals with the existence of approximates for a given function f using
some results on extended inf-convolution formulas. Section 3 develops a procedure
for regularizating certain ∆-convex approximates. This procedure is based on the
smoothness of the convex envelope of certain “somehow” smooth functions.

Notation: In what follows, X denotes a Banach space and ‖ · ‖ an equivalent
norm on X . By BX we mean the unit closed ball of X under the norm ‖ · ‖ and
by BX(r) the closed ball of radius r > 0. A function f : X → R ∪ {+∞} is called
proper if f 6≡ +∞ and SInf(f) is the (possibly empty) set {x ∈ X : f(x) = inf f}.
We will deal with the pointwise, compact, uniform on bounded sets and uniform
on X convergence in the set of lower semi-continuous (in short, l.s.c. ) functions on
X , abbreviated respectively by τp, τK , τb and τu.

A function defined on X is called ∆-convex if it can be expressed as the difference
of two continuous convex functions. The convex envelope co f of a function f : X →
R ∪ {+∞} is defined as the greatest proper convex l.s.c. function below f (if there
exists a convex minorant of f). The explicit value of the convex envelope of f at a
point x ∈ X is given by the formula

(co f)(x)= inf
n∈N

{

n
∑

i=1

λif(xi) : x=
n
∑

i=1

λixi,

n
∑

i=1

λi =1,
(

xi, λi

)n

i=1
⊂(X ×R+)

}

. (1)

Unless stated otherwise, differentiability will be understood in the Fréchet sense.
The following notation is used throughout this work. By C1,u(X) (respectively

C1,u
B (X)) we understand the set of differentiable functions defined on X with uni-

formly continuous (resp. uniformly continuous on bounded sets) derivative. Simi-

larly, C1,α(X) (resp. C1,α
B (X)) stands for the class of functions on X having α-Hölder

continuous (resp. α-Hölder continuous on bounded sets) derivative (0 < α ≤ 1).

1. The main result

We begin by stating the main result of this work.

Theorem 1. Let p > 1, X be a Banach space and ‖ · ‖ be an equivalent norm on
X which is locally uniformly convex and uniformly smooth. For any proper lower
semi-continuous bounded below function f : X → R∪{+∞}, consider the sequence
of ∆-convex functions given by the formula

∆p
nf := co gp

n − 2p−1n‖ · ‖p (n ∈ N),

where gp
n at a point x ∈ X is defined as

gp
n(x) := inf

y∈X

{

f(y) + 2p−1n‖x‖p + 2p−1n‖y‖p − n‖x + y‖p
}

+ 2p−1n‖x‖p.
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Then the following assertions are satisfied:
(i) For all n, inf f ≤ ∆p

nf ≤ f and SInf(∆
p
nf) = SInf(f).

(ii) (∆p
nf)n∈N ⊂ C1,u

B (X) and (∆p
nf)n∈N ⊂ C1,α

B (X) provided that the modulus of
smoothness of the norm ‖ · ‖ is of power type 1 + α; actually, we have that
(∆1+α

n f)n∈N ⊂ C1,α(X).

(iii) ∆p
nf

τp

−→
n

f pointwise and ∆p
nf

τK−−→
n

f if f : X → R is continuous.

If moreover the norm ‖ · ‖ is uniformly convex then

(iv) ∆p
nf

τb−→
n

f whenever f is uniformly continuous on bounded sets.

(v) ∆p
nf

τu−→
n

f provided that f is uniformly continuous on X (not necessarily

bounded below) and the modulus of convexity of the norm ‖ · ‖ is of power type
p (p ≥ 2).

Remark. It is well-known that the existence of a uniformly smooth norm ‖ · ‖ on a
Banach space X implies the superreflexivity of X (and reciprocally, the articles [E]
of P. Enflo and [Pi] of G. Pisier tell us that any superreflexive Banach space admits
an equivalent uniformly smooth norm). Similarly, we want to point out that the
conclusions of Theorem 1 cannot be expected outside the superreflexive setting.

First, the τb-density of the set of ∆-convex functions defined on X in the set
of functions on X that are uniformly continuous on bounded sets is equivalent to
the superreflexivity of the Banach space X(as it was proved in [C]). On the other
hand, the existence of C1,α bump functions (for some 0 < α ≤ 1) on X implies the
existence of an equivalent norm ‖ · ‖ on X with modulus of smoothness of power
type 1 + α (see Theorem V.3.1. of [DGZ]).

Remark. The optimal application of Theorem 1 is achieved when we consider a
Hilbertian norm ‖ · ‖. In this case, taking p = 2 in Theorem 1 we obtain similar
approximation results as those given by the Lasry-Lions approximation method (see
[LL]). Nevertheless, the different sequences of approximates are not the same even
in this setting (see remark after Proposition 8).

We proceed to state some corollaries to Theorem 1. They are related with cer-
tain results known on a superreflexive Banach spaces from the existence of smooth

partitions of the unity (see Theorem VIII.3.2 in [DGZ]). Their proof is easily ob-
tained appealing to Theorem 1 and Pisier’s renorming Theorem (the original proof
can be found in [P]; we refer to [L] for a simpler and more geometrical proof).

The first corollary improves Corollary 1 of [St2] for superreflexive Banach spaces.

Corollary 2. Let X be a superreflexive Banach space. Then there exists some
0 < α ≤ 1 such that any non-empty closed set F of X is the set of zeros of a ∆-
convex C1,α-differentiable function on X. Moreover, F is the limit for the Hausdorff
distance of a sequence of sets Sn = {x ∈ X : fn(x) < σn ∈ R} (n ∈ N) where the

functions (fn)n are ∆-convex and in C1,α
B (X).

Proof of Corollary 2. For a superreflexive Banach space X , Pisier’s renorming The-
orem ensures the existence of an equivalent norm ‖·‖ on X with modulus of smooth-
ness of power type q (1 < q ≤ 2). Given a closed set F in X , consider the proper
function d defined at a point x ∈ X as d(x) := dist(x, F ) = infy∈F ‖x − y‖ (d is
proper because F is not empty). By Theorem 1(i)–(ii) we have that the function
∆q

1d is ∆-convex, C1,q−1-differentiable and satisfies that SInf(∆
q
1(d)) = SInf(d) =

F .
3



Moreover, using Asplund averaging technique (see Proposition IV.5.2 of [DGZ]),
we can assume that the modulus of convexity of the norm ‖·‖ is in addition of power
type p (for some p ≥ 2). Since d is Lipschitz continuous on X , from Theorem
1(iv) it follows for every n that F ⊆ {∆p

nd(x) < 1
n

: x ∈ X} := Sn, where ∆p
nd is a

∆-convex C1,q−1
B -differentiable function and (Sn)n converges to F for the Hausdorff

distance. �

The next corollary gives a slightly stronger version of some others approxima-
tion results obtained by using partition of the unity techniques (for instance, see
Theorem 1 of [NS]).

Corollary 3. For any superreflexive Banach space X there is 0 < α ≤ 1 so that
for every uniformly continuous on bounded sets (resp. uniformly continuous) func-
tion on X one has the following: f is the uniform limit on any fixed bounded set
B of X (resp. on X) of a sequence of ∆-convex C1,α-differentiable (resp. C1,α

B -
differentiable) functions having the same infimum and set of minimizers on B as
f .

Proof of the Corollary 3. Appealing again to Pisier’s renorming Theorem for su-
perreflexive Banach spaces, we can suppose that there is an equivalent norm ‖ · ‖
on X with modulus of smoothness of power type q (1 < q ≤ 2). Fix some bounded

set B of X and define f̃ := max{f, infB f}. Since f is uniformly continuous on B,

we have that infB f > −∞. Therefore, f̃ is uniformly continuous on bounded sets
and bounded below. Note that trivially f̃(x) = f(x) for all x ∈ B and then the

infimum and set of minimizers on B of f and f̃ are the same. Hence, Theorem
1(ii) and (vi) tell us that the sequence (∆q

nf̃)n satisfies the required conditions of
the claim for α = q − 1. If f is uniform continuous on X , the proof of Corollary
3 follows the same lines, using the existence on X of an equivalent norm ‖ · ‖ with
non-trivial moduli of convexity and smoothness and Theorem 1(v). �

The last corollary is an extension of Remark (viii) in [LL]. It deals with the
property of extending and regularizing functions defined on subsets of superreflexive
Banach spaces to the whole space.

Corollary 4. Let X be a superreflexive Banach space. The following holds true
for some 0 < α ≤ 1 depending only on X:

Let S be a subset of X and f : S → R be a function that is uniformly continuous
on bounded sets of S. Then for every r > 0 and ε > 0 there exists a ∆-convex
function Fr,ε : X → R satisfying the following conditions:

(i) infS f = infX Fr,ε and SInf(f) = SInf(Fr,ε),
(ii) Fr,ε ∈ C1,α(X), for some 0 < α ≤ 1, and
(iii) f(x) − ε ≤ Fr,ε(x) ≤ f(x) for every x ∈ S ∩ BX(r).

Proof of the Corollary 4. By the same argument as above, let ‖ · ‖ be an equivalent
norm on X with modulus of smoothness 1 + α (for some 0 < α ≤ 1). Consider the
following simple extension of f :

F (x) :=

{

f(x) for x ∈ S

+∞ otherwise.

Notice that SInf(F ) = SInf(f) ⊂ S. It is not hard to see using Proposition 8(i)
and the proof of Proposition 6(v) that the sequence (∆1+α

n F )n∈N, which satisfies
(i) and (ii) of Theorem 1, also converges uniformly on bounded sets of S to f . �
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The proof of Theorem 1 will be done in a general scheme involving two main
steps. First, we explain an extended inf-convolution formula that gives us a standard
way to approximate functions on X . Then, we develop some convexity techniques
in order to get smooth ∆-convex functions between the functions given by the
extended inf-convolution formula.

2. The extended inf-convolution

In this section we explain the convergence results we need in the proof of The-
orem 1. First, we introduce the definition of extended inf-convolution. This defi-
nition generalizes the classical one of inf-convolution (see [St1] for a general survey
of the subject) and will be an important tool in our work.

Definition. For any application K : X × X → R ∪ {+∞} and any function
f : X → R ∪ {+∞} we define the extended inf-convolution of f by K as the
function

(

f � K
)

(x) := inf
y∈X

{

f(y) + K(x, y)
}

, x ∈ X.

K will be called the kernel of the extended inf-convolution.

Example. If for g : X → R ∪ {+∞} we consider the kernel Kg(x, y) := g(x − y),
then the extended inf-convolution

(

f � Kg

)

is nothing else but the classical inf-

convolution
(

f � g
)

.

Before the statement of the main result of this section, we need to define some
natural properties of kernels.

Definition. A kernel K is pointwise separating if for every x0 ∈ X and every δ > 0
there exists Cx0,δ > 0 such that K(x0, y) ≥ Cx0,δ whenever ‖x0 − y‖ ≥ δ.

A kernel K is called uniformly separating on bounded sets if for all r > 0 and
δ > 0 there exists Cr,δ > 0 so that K(x, y) ≥ Cr,δ provided ‖x‖ ≤ r and ‖x−y‖ ≥ δ.

A kernel K is uniformly separating if for every δ > 0 there is some βδ > 0 in
such a way that K(x, y) ≥ βδ‖x − y‖ whenever ‖x − y‖ ≥ δ.

Definition. Given a function f : X → R ∪ {+∞} and a kernel K, we define the
following sequences of functions:

IK,nf :=
(

f � nK
)

and SK,nf := −
(

− f � nK
)

(n ∈ N).

Remark. For any Hilbert norm ‖ · ‖ consider the kernel KL(x, y) = ‖x − y‖2.

Then, with our notation the sequence
(

SKL,m

(

IKL,nf
)

)

m>n
denotes the Lasry-

Lions approximates of f related to the norm ‖ · ‖.

Remark. Note that the Lasry-Lions approximates commutes with translations in
the same way as the classical inf-convolution also does. This is a consequence of
the following property of the kernel: KL(x − a, y) = KL(x, y + a) (for all x, y

and a). However, the problem of regularizing (not necessarily convex) functions
in a non-Hilbert space leads naturally to more general kernels which do not yield
translation-invariant approximates.

The next facts are easy to check.
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Facts 5. Let f : X → R ∪ {+∞} be a function.
1 For x ∈ X,

IK,nf = inf
y∈X

{

f(y) + nK(x, y)
}

,

SK,nf(x) = −IK,n(−f)(x) = sup
y∈X

{

f(y)− nK(x, y)
}

.

2 Let C be a constant. Then IK,n(f + C) = IK,nf + C, for any n.
3 Suppose that the kernel K is positive (i.e., K(x, y) ≥ 0 for all x, y ∈ X) then

(i)
(

IK,nf
)

n∈N
is an increasing sequence of functions bounded below by inf f .

(ii) If f ≤ g, then IK,nf ≤ IK,ng for any n.
(iii) IK,m

(

IK,nf
)

≤ IK,m

(

IK,mf
)

, for any m > n.

We now proceed to state and prove a technical proposition which is the main
result of this section.

Proposition 6. Let K : X × X → R a kernel satisfying the following conditions:
(1) K is positive and K(x, x) = 0 for all x ∈ X,
(2) K is symmetric (i.e., K(x, y) = K(y, x) for all x, y ∈ X),
(3) K(x, y) −−−→

y→∞
+∞ uniformly on bounded sets,

(4) K is uniformly continuous (resp. Lipschitz continuous) on bounded sets and
(5) K is pointwise separating.
Then for every proper l.s.c. bounded below function f : X → R ∪ {+∞} the

following statements hold:
(i) IK,nf ≤ SK,n

(

IK,nf
)

≤ f .
(ii) inf IK,nf = inf f and SInf(IK,nf) = SInf(f).
(iii) IK,nf is uniformly continuous (resp. Lipschitz continuous) on bounded sets.

(iv) IK,n

(

IK,nf
) τp

−−−→
n→∞

f and IK,n

(

IK,nf
) τK−−−→

n→∞
f when f is continuous.

If in addition K is uniformly separating on bounded sets then

(v) IK,n

(

IK,nf
) τb−−−→

n→∞
f whenever f is uniformly continuous on bounded sets.

Finally, when K is uniformly separating one has

(vi) IK,n

(

IK,nf
) τu−−−→

n→∞
f provided f is uniformly continuous on X (not necessar-

ily bounded below).

Remark. The sequence of functions IK,n

(

IK,nf
)

plays an important auxiliary rôle
in this work; namely, it provides a lower bound for the sequence (∆K,nf)n∈N in
Proposition 8(i).

Proof of the Proposition 6.
(i) Since K(x, x) = 0 we get that IK,nf ≤ f (take y = x in the infimal definition
of IK,nf at any point x ∈ X). Therefore we deduce that

SK,n(IK,n)f = −IK,n(−IK,nf) ≥ IK,nf.

To see the other inequality, notice that from Fact 5-1 we obtain for x ∈ X the
expression

SK,n(IK,nf)(x) = sup
y∈X

inf
z∈X

{

f(z) + n
(

K(y, z) − K(x, y)
)

}

. (2)

6



For some fixed x, if we take z = x in (2) we conclude from the symmetry of K that
SK,n(IK,nf)(x) ≤ f(x).
(ii) From (i) and Fact 5-1(i) we have inf IK,nf = inf f and SInf(f) ⊆ SInf(IK,nf).
Consider any minimum x0 ∈ X of IK,nf . Then, there exists a sequence (yk)k∈N ⊂ X

so that
inf f = IK,nf(x0) ≤ f(yk) + nK(x0, yk) −−−→

k→∞
inf f. (3)

Hence, since K is positive it follows from (3) that

lim
k→∞

f(yk) = inf f and lim
k→∞

K(x0, yk) = 0. (4)

But K is pointwise separating, so the second part of (4) implies that yk −→ x0.
Using the lower-semicontinuity of f and the first part of (4) we conclude that

inf f ≤ f(x0) ≤ lim
k→∞

f(yk) = inf f.

and this proves assertion (ii).
Before proceeding with the rest of the proof, we set up the following useful

definition:

Ωn(x) :=
{

y ∈ X : f(y) + nK(x, y) ≤ IK,nf(x) + 1
}

(x ∈ X, n ∈ N) (5)

With these notations, we remark that for n ∈ N and x ∈ X

IK,nf(x) = inf
y∈Ωn(x)

{

f(y) + nK(x, y)
}

≥ inf
Ωn(x)

f (6)

(the last inequality coming from the positivity of K).
It is clear from (6) that the behaviour of IK,nf is directly linked with the size

of the sets
{

Ωn(x)
}

x∈X
. We shall see that the growth condition (3) ensures that

the sets Ωn(x) are not arbitrarily big when x runs on bounded sets of X . More
precisely, we claim the following.

Claim 6.1. For any r > 0, the set Ωr :=
⋃

n∈N

⋃

‖x‖≤r Ωn(x) is bounded.

The proof of this claim is based on the next simple fact.

Fact 6.2. For any r > 0, sup
{

IK,nf(x)
n

: x ∈ BX(r), n ∈ N

}

:= Mr < +∞.

Proof of the Fact 6.2. Since f is proper, take y0 such that f(y0) ≤ inf f +1 < +∞.
Then by definition of IK,nf it follows that for any x ∈ X

IK,nf(x)

n
≤

f(y0)

n
+ K(x, y0) ≤ inf f + 1 + sup

{

K(x, y0) : x ∈ BX(r)
}

,

and this expression is bounded above on bounded sets because K is uniformly
continuous (or Lipschitz continuous) on bounded sets. The proof of Fact 6.2 is
finished.

Proof of the Claim 6.1. For r0 > 0, let Mr0
> 0 be the upper bound defined in

Fact 6.2. Thus, for any x ∈ BX(r0) and n ∈ N if y ∈ Ωn(x) it follows from the
definition of Ωn(x), given in (5), that

K(x, y) ≤
1

n

(

IK,nf(x) + 1 − f(y)
)

≤ Mr0
+ 1 − inf f. (7)

7



But the growth condition on K given by (3) implies that the set of y satisfying (7)
is uniformly bounded for x ∈ BX(r0). The proof of Claim 6.1 is done.

We can now continue with the proof of Proposition 6.
(iii) Suppose the kernel K is Lipschitz continuous on bounded sets (the proof for the
uniformly continuous case is practically the same). For r0 > 0 take x, x′ ∈ BX(r0)
and let LK,r0

be the Lipschitz constant of K on BX(r0)×Ωr0
(Ωr0

being bounded by
Claim 6.1). Using the equality of (6) we can construct a sequence (yk)k∈N ⊂ Ωr0

in such a way that for every k ∈ N one has f(yk) + nK(x′, yk) ≤ IK,nf(x′) + 1
k
.

Therefore, we obtain

IK,nf(x′) − IK,nf(x) ≤ f(yk) + nK(x′, yk) − f(yk) − nK(x, yk) +
1

k

≤ nLK,r0
‖x′ − x‖ +

1

k
−−−→
k→∞

nLK,r0
‖x′ − x‖.

This concludes the proof of (iii).
We first prove (iv), (v) and (vi) for (IK,nf)n instead of

(

IK,n(IK,nf)
)

n
. We will

complete the proof afterwards.
(iv’) Fix x0 ∈ X . If limn→∞ IK,nf(x0) = supn IK,nf(x0) = +∞ then by (i) one has
f(x0) = +∞ and the result holds. Thus, suppose that Ix0

:= limn IK,nf(x0) < +∞.
By the infimal definition of IK,nf at x0, we can choose a sequence (yn)n∈N ⊂ X

such that

IK,nf(x0) ≤ f(yn) + nK(x0, yn) ≤ IK,nf(x0) +
1

n
−−−→
n→∞

Ix0
(8)

Hence, from (8) it follows for n ∈ N that

K(x0, yn) ≤
1

n

(

IK,nf(x0) − f(yn)
)

+
1

n2
≤

1

n

(

Ix0
− inf f

)

+
1

n2
−−−→
n→∞

0. (9)

But K is pointwise separating, so we have from (9) that (yn)n is norm converging
to x0. Using the lower-semicontinuity of f , the positivity of K in (8) and (i), we
get that

f(x0) ≤ lim inf
n→∞

f(yn) ≤ Ix0
≤ f(x0).

If f is continuous, since by Fact 5-3(i) and (iii) (IK,nf)n is an increasing se-
quence of continuous functions, Dini’s Theorem tell us that the pointwise conver-
gence of (IK,nf)n to f is actually uniform on compact sets.
(v’) Let f be an uniformly continuous function on bounded sets and Or0

be the
oscillation of f on the set BX(r0)∪Ωr0

, for some fixed r0 > 0. Then, for any n ∈ N,
x ∈ BX(r0) and y ∈ Ωn(x) after the first inequality of (7) and (i) we have that

K(x, y) ≤
1

n

(

IK,nf(x)+1−f(y)
)

≤
1

n

(

f(x)−f(y)+1
)

≤
1

n
(Or0

+1) −−−→
n→∞

0. (10)

Suppose that K is uniformly separating on bounded sets . Then, a direct con-
sequence of (10) is that limn diam(Ωn(x)) = 0 uniformly on BX(r0). Therefore, it
follows from (i), (6) and the uniform continuity of f on BX(r0) that

f(x) ≥ lim
n→∞

IK,nf(x) ≥ lim
n→∞

inf
Ωn(x)

f −−−→
n→∞

f(x) (11)

8



uniformly on x ∈ BX(r0).
(vi’) Suppose that f is uniformly continuous on X . Then f satisfy the following
fact (whose simple proof is left as an exercise to the reader):

there exists α > 0 such that f(x)−f(y) ≤ max{1, α‖x−y‖} for all x, y ∈ X. (12)

Then, in the same way as in (10) before, using this time (12), we deduce that
for n ∈ N, x ∈ X and any y ∈ Ωn(x)

K(x, y) ≤
1

n
(f(x) − f(y) + 1) ≤ max

{ 1

n
,
α

n
‖x − y‖

}

+
1

n
. (13)

For 1 > δ > 0, since K is uniformly separating there is some βδ > 0 so that from
(13) we deduce for x ∈ X and y ∈ Ωn(x) that

‖x − y‖ ≤ max
{ 1

nβδ

,
α

nβδ

‖x − y‖
}

+
1

nβδ

whenever ‖x − y‖ > δ. (14)

Hence, taking n big so that max
{

2
nβδ

, 2α
nβδ

}

≤ δ < 1, (14) shows for every x ∈ X

that diam
(

Ωn(x)
)

≤ 2δ.

That is, we have shown that diam
(

Ωn(x)
)

→ 0 uniformly on x ∈ X . Therefore,
as f is uniformly continuous on X we can repeat the same reasonings of (11) to
conclude that (IK,nf)n converges to f uniformly on X .

(iv) and (v) are straightforward corollaries of (iv’) and (v’) if we remark the
following.

Suppose that for ε > 0 there exists n0 ∈ N so that f − ε
2 ≤ IK,n0

f on some set S

(S being a singleton, or a compact set or a bounded set of X). By Fact 5-3(i) and
(iii), we can then apply (iv’) (or (v’)) to the bounded below, uniformly continuous
function IK,n0

f to obtain m > n0 such that IK,n0
f − ε

2 ≤ IK,m

(

IK,n0
f
)

on the
same S. Thus, by Fact 5-3(iii) and (i) it follows that

f − ε ≤ IK,n0
f −

ε

2
≤ IK,m

(

IK,n0
f
)

≤ IK,m

(

IK,mf
)

≤ f on S.

(vi) is also easily deduced from (vi’) through the following argument.
If f − ε ≤ IK,nf ≤ f , for some ε > 0 and n ∈ N, then applying Facts 5-2 and

5-3(ii) we get that

f − 2ε ≤ IK,nf − ε = IK,n(f − ε) ≤ IK,n

(

IK,nf
)

≤ IK,nf ≤ f. �

Remark. With the above techniques it is not difficult to check that
(

IK,n(IK,nf)
)

n

converges to f for the epigraphical distance (see [AW] for the definition). We refer
to the proof of Lemma 3(v) in [St2] for details.

3. Convexity techniques and smoothness results

In this section we shall show a procedure to obtain smooth functions from the
operators IK,n(·) and SK,n(·). We will need to impose some additional conditions
of convexity and smoothness on the kernel K to achieve the smooth regularization.
The interesting feature of these convexity arguments is the preservation of the
approximating properties obtained in the previous section.

The main tool we shall use to get smooth regularization is explained in the next
theorem. It deals with the smooth properties inherited by the convex envelop of a
“somehow” smooth function.

9



Theorem 7. Let c : X → R be a differentiable function, and d : X → R be a
convex function. Denote by h their difference h := c − d and assume that co h

makes sense. Then the following statements are fulfiled.
(i) If c ∈ C1,u(X) (resp. c ∈ C1,α(X), for some 0 < α ≤ 1) then coh ∈ C1,u(X)

(resp. coh ∈ C1,α(X)).

(ii) If c ∈ C1,u
B (X) (resp. c ∈ C1,α

B (X), for some 0 < α ≤ 1) and h is uniformly

continuous on bounded sets and strongly coercive (i.e., lim
x→∞

h(x)
‖x‖

= +∞) then

co h ∈ C1,u
B (X) (resp. coh ∈ C1,α

B (X)).

Remark. A proof for the finite dimensional version of Theorem 7(ii) with d ≡ 0
can be found in [GR]. Our more general proof does not require local compactness
and relies upon ideas of the work [Fa]. The fact that the convex envelope of a smooth
function c “perturbed” by a non-smooth concave function −d is still smooth will be
crucial later (namely, when we check the smoothness of the sequence (∆K,nf)n∈N

in Proposition 8).
Notice that the uniform continuity hypothesis on the derivative of c cannot

be weakened in the infinite dimensional setting. There are bounded below C∞-
differentiable functions on ℓ2 whose convex envelope is not even Gâteaux differen-
tiable (see Example II.5.6(a) in [DGZ]).

Proof of the Theorem 7. Denote by ν := co h = co (c − d).
(i) Suppose that c ∈ C1,α(X) (the proof for the other case is similar). Since ν

is convex, a necessary and sufficient condition for ν ∈ C1,α(X) is that for every
x, y ∈ X one has

ν(x + y) + ν(x − y) − 2ν(x) ≤ L‖y‖1+α, for some L > 0. (15)

(see Lemma V.3.5 of [DGZ]). We shall check this condition for ν.
For ε > 0 and x ∈ X , by the expression of the convex envelope of a function

given in (1), we can choose x1, . . . , xn ∈ X and λ1, . . . , λn > 0 so that
n
∑

i=1

λi = 1,

n
∑

i=1

λixi = x and
n
∑

i=1

λih(xi) ≤ ν(x) +
ε

2
. (16)

Note that from the two first parts of (16) we also have

x ± y =

( n
∑

i=1

λixi

)

±

( n
∑

i=1

λiy

)

=
n
∑

i=1

λi(xi ± y). (17)

Thus, it follows from (1) and (17) that

ν(x ± y) ≤

n
∑

i=1

λih(xi ± y). (18)

Let L > 0 be the α-Hölder continuity constant of the derivative of c. Putting
together the last part of (16), (18) and using the convexity of d, we get

ν(x+y)+ν(x−y)−2ν(x) ≤

n
∑

i=1

λih(xi +y)+

n
∑

i=1

λih(xi −y)−2

n
∑

i=1

λih(xi)+ ε =

n
∑

i=1

λi

(

c(xi +y)+c(xi−y)−2c(xi)
)

+2
n
∑

i=1

λi

(

d(xi)−
d(xi + y) + d(xi − y)

2

)

+ε ≤

n
∑

i=1

λi

(

c(xi+y)−c(xi)+c(xi−y)−c(xi)
)

+ε ≤
n
∑

i=1

λi2
αL‖y‖1+α+ε=2αL‖y‖1+α+ε,

10



because c ∈ C1,α(X) (and therefore satisfy (15) for L′ = 2αL). As ε is arbitrary,
the condition (15) holds for ν.
(ii) can be proved reproducing the same lines as before, bearing in mind that the lack
of uniformity for the derivative of c on X can be replaced by the next “localization”
property of the convex envelope of a strongly coercive function h.

Claim 7.1. Let h : X → R be a function which is uniformly continuous on bounded
sets and strongly coercive. Then for every r > 0 there exists ρr > 0 so that for all
‖x‖ ≤ r one has

co h(x) = inf

{ n
∑

i=1

λih(xi) : (xi)
n
i=1 ⊂ BX(ρr), λi > 0,

n
∑

i=1

λi = 1, x =

n
∑

i=1

λixi

}

.

Proof of the Claim 7.1. First, note that under the hypothesis of Claim 7.1, h is
bounded below, so that coh makes sense. Fix r0 > 0 and let mr0

be the infimum
of h on X and Mr0

be the supremum of h on BX(r0 + 1) (Mr0
< +∞, because

of the uniform continuity of f on BX(r0 + 1)). Consider the following family of
hyperplanes:

Hr0
:=

⋃

x∈BX (r0)
v∈BX , v∗∈BX∗

{

Hx,v(z) = mr0
+
(

h(x+v)−mr0

)

v∗(z−x) : v∗(v) = 1
}

. (19)

Notice that for ‖x‖ ≤ r0 and v ∈ BX we have the following

Hx,v(x) = mr0
≤ coh(x) and Hx,v(x + v) = h(x + v) ≤ Mr0

. (20)

Since h is strongly coercive, we get from (19) that

sup
H∈Hr0

H(z) ≤ mr0
+ (Mr0

− mr0
)(‖z‖ + r0) < h(z) provided ‖z‖ > ρr0

, (21)

for some ρr0
> 0. Let us show that ρr0

satisfy the conclusion of the claim.
The strategy is to replace any convex combination that appears in the definition

of the convex envelope (1) by another smaller convex combination with “uniformly
bounded vertices”. This idea is formally explained in the next fact.

Fact 7.2. For ‖x‖ ≤ r0, consider any finite convex combination (x1, . . . , xn ∈ X,
λ1, . . . , λn > 0 and

∑n
i=1 λi = 1) such that

∑n
i=1 λixi = x. If ‖xi0‖ > ρr0

, for some
1 ≤ i0 ≤ n, then there exists x′

i0
∈ BX(ρr0

) and λ′
1, . . . , λ

′
n > 0 so that

∑n
i=1 λ′

i = 1,

n
∑

i=1
i6=i0

λ′
ixi + λ′

i0
x′

i0
= x and

n
∑

i=1
i6=i0

λ′
ih(xi) + λ′

i0
h(x′

i0
) ≤

n
∑

i=1

λih(xi).

Proof of the Fact 7.2. For simplicity, take i0 = 1. Since ‖x1‖ > ρr0
, it follows

from (21) that Hx,vx1
(x1) < h(x1), where we take vx1

:= x1−x
‖x1−x‖

. But by the first

part of (20) we also have Hx,vx1
(x) = mr0

≤
∑n

i=1 λih(xi). Hence, the segment
11



Ix,x1
:=
[

(

x,
∑n

i=1 λih(xi)
)

,
(

x1, h(x1)
)

]

⊂ X × R belongs to the upper half-space

define by Hx,vx1
. Therefore, the equality in the second part of (20) implies that

Ix,x1
∩
{

(x + vx1
, t) : t ∈ R

}

=
{

(x + vx1
, s)
}

where h(x + vx1
) ≤ s. (22)

If we define x′ :=
∑n

i>1
λi

1−λ1

xi (so that we have x = λ1x1 + (1 − λ1)x
′), using

barycentric coordinates on the segment
[

(

x′,
∑n

i>1
λi

1−λ1

h(xi)
)

,
(

x1, h(x1)
)

]

we can

compute some µ ≥ 0 in such a way that

(

x,

n
∑

i=1

λih(xi)

)

= µ

(

x′,

n
∑

i>1

λi

1 − λ1
h(xi)

)

+ (1 − µ)(x + vx1
, s) =

(

n
∑

i>1

µλi

1 − λ1
xi,

n
∑

i>1

µλi

1 − λ1
h(xi)

)

+ (1 − µ)(x + vx1
, s).

(23)

But (22) and (23) together give that x =
∑n

i>1
µλi

1−λ1

xi + (1 − µ)(x + vx1
) and

n
∑

i>1

µλi

1 − λ1
h(xi) + (1 − µ)h(x + vx1

) ≤
n
∑

i>1

µλi

1 − λ1
h(xi) + (1 − µ)s =

n
∑

i=1

λih(xi).

This concludes the proof of Fact 7.2.

Then the proof of Claim 7.1 is done and, therefore, Theorem 7 is proved. �

Remark. Claim 7.1 is false for functions h failing the strong coerciveness condition

lim inf
x→∞

h(x)
‖x‖ = +∞. For instance, consider h : R → R defined by h(x) =

√

|x|.

Theorem 7 can be applied as an useful tool to regularize functions on infinite
dimensional Banach spaces. Our next proposition, which provides the smoothness
assertions we need for proving Theorem 1, is a good example of this feature. We
keep the notation used in Section 2.

Proposition 8. Let K : X×X → R be a kernel satisfying the following conditions:
(1) K is positive and K(x, x) = 0 for all x ∈ X,
(2) K is symmetric,
(3) K(x, y) −−−→

y→∞
+∞ uniformly on bounded sets,

(4) K is uniformly continuous on bounded sets and
(5) K(x, y) = cK(x)− dK(x, y) where dK(·, y) is a lower semi-continuous convex

function, for all y ∈ X.
Let f : X → R ∪ {+∞} a proper lower semi-continuous function and consider

the sequence of ∆-convex functions ∆K,nf defined as follows

∆K,nf := co (IK,nf + ncK) − ncK (n ∈ N).

Then the following assertions hold.
(i) IK,n

(

IK,nf
)

≤ ∆K,nf ≤ f .

(ii) If cK ∈ C1,u(X) (resp. cK ∈ C1,α(X), for some 0 < α ≤ 1), then one has
(∆K,nf)n∈N ⊂ C1,u(X) (resp. (∆K,nf)n∈N ⊂ C1,α(X)).

12



(iii) If cK ∈ C1,u
B (X) (resp. cK ∈ C1,α

B (X), for some 0 < α ≤ 1) and cK is strongly

coercive then (∆K,nf)n∈N ⊂ C1,u
B (X) (resp. (∆K,nf)n∈N ⊂ C1,α

B (X)) provided
f is bounded below.

Remark. For every pair of function f, g on X , denote by fNg := co (f + g) − g.
Suppose that ‖ · ‖ is a Hilbert norm and consider the kernel KL(x− y) := ‖x− y‖2.
The Lasry-Lions approximates of a function f by the norm ‖·‖ satisfy the following
relation for m > n (see Proposition 2(i) of [St2])

(

SKL,m

(

IKL,nf
)

)

= IKL,m−n

(

fNnc
)

.

Compare with the expression given by Proposition 8

∆KL,nf =
(

IKL,nf
)

Nnc.

Proof of the Proposition 8. For any function g : X → R ∪ {+∞}, denote by

Dng(x) := sup{g(y) + ndK(x, y) : y ∈ X}.

Since dK(·, y) is a l.s.c. convex function, we have that Dng is l.s.c. and convex too.
Note that by Fact 5-1 we also have the following decomposition:

SK,ng = sup
y∈X

{

g(y)− n
(

cK(x) − dK(x, y)
)

}

= Dng(x) − ncK(x). (24)

On the other hand, (1) and (2) ensure that (i) of Proposition 6 holds true.
Hence, for all n ∈ N from (24) we get that

IK,n(IK,nf) ≤ SK,n

(

IK,n(IK,nf)
)

= Dn

(

IK,nIK,nf
)

− ncK ≤ IK,nf ≤ f (25)

Now, we make the next simple but crucial observation.

Fact 8.1. Let c, d and e be three functions such that d − c ≤ e and suppose that d

is l.s.c. and convex. Then we have that d − c ≤ co (e + c) − c ≤ e.

Proof of the Fact 8.1. It suffices to note that the convexity of d implies the equiv-
alent inequality d ≤ co (e + c) ≤ e + c.

Applying Fact 8.1 to the inequality (25) we obtain that

IK,nIK,nf ≤ Dn

(

IK,nIK,nf
)

− ncK ≤ co (IK,nf + ncK) − ncK = ∆K,nf ≤ IK,nf.

At this point, another important remark turns up. By definition of IK,nf at any
point x ∈ X one has

(IK,nf+ncK)(x) = 2ncK(x)+ inf
y∈X

{

f(y)−dK(x, y)
}

= 2ncK(x)−Dn(−f)(x), (26)

where Dn(−f) is a convex function.
Therefore, if cK ∈ C1,u(X) (or cK ∈ C1,α(X)) Theorem 7(i) can be applied to

co (IK,nf(x) + ncK(x)) because of (26). This shows Proposition 8(ii).

The proof for the case of cK ∈ C1,u
B (X) (or cK ∈ C1,α

B (X)) can be done in a
similar way from Theorem 7(ii). Notice that the function IK,nf+ncK is uniformly
continuous on bounded sets since K satisfies (1)–(4) and therefore Proposition
6(iii) holds. On the other hand, the strong coerciveness of cK implies for a bounded
below function f that

IK,nf(x) + ncK(x)

‖x‖
≥

inf f

‖x‖
+ n

cK(x)

‖x‖
−−−→
x→∞

+∞. �
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4. The proof of the main result

With the tools shown in Section 2 and Section 3, we are now ready to prove
our main result.

Proof of the Theorem 1. Let f : X → R∪{+∞} be a bounded below l.s.c. function.
For p > 1, we define the following kernel Kp : X × X → R as

Kp(x, y) := 2p−1‖x‖p + 2p−1‖y‖p − ‖x + y‖p. (27)

Let us first check the following two basic properties of Kp.
(1) Clearly, Kp(x, x) = 0 (for all x ∈ X). Also, Kp is positive since one has that

‖x + y‖p ≤
(

‖x‖ + ‖y‖
)p

≤ 2p−1
(

‖x‖p + ‖y‖p
)

.

(2) Kp is obviously symmetric.
If we set cKp

(x) := 2p−1‖x‖p and dKp
(x, y) := ‖x + y‖p − 2p−1‖y‖p (x, y ∈ X),

we have Kp(·, y) = cKp
(·) − dKp

(·, y).
With this notation and the definition of gp

n given in Theorem 1, one has

(IKp,nf + ncKp
) = gp

n for every n ∈ N. (28)

Hence, using again the notation of Theorem 1 and Proposition 8(i), it follows
that

IKp,n

(

IKp,nf
)

≤ ∆Kp,nf = co gp
n − 2p−1n‖ · ‖p = ∆p

nf ≤ f. (29)

Therefore, by (29) the statements (i), (iii), (iv) and (v) of Theorem 1 hold true
if we check that Kp satisfies the assumptions of Proposition 6.

We proceed to show the following growth property of Kp, that trivially implies
the condition (3) of Proposition 6.

Claim 1.1. For any p > 1 there exists γp > 0 and ηp > 1 so that Kp(x, y) ≥ γp‖y‖
p

whenever ‖y‖ ≥ ηp‖x‖.

Proof of Claim 1.1. Take η > 1 and x, y ∈ X such that η‖x‖ ≤ ‖y‖. After the
computation

Kp(x, y) ≥ ‖y‖p

(

2p−1
∣

∣

∣

‖x‖

‖y‖

∣

∣

∣

p

+ 2p−1 −
∥

∥

∥

y

‖y‖
+

x

‖y‖

∥

∥

∥

p
)

≥

‖y‖p
(

2p−1 −
∣

∣

∣
1 +

‖x‖

‖y‖

∣

∣

∣

p)

≥ ‖y‖p
(

2p−1 −
(

1 +
1

η

)p
)

.

The claim is proved by choosing ηp > 1 such that γp :=
(

2p−1 − (1+ 1
ηp

)p
)

> 0. �

It is clear that Kp is Lipschitz continuous on bounded sets. The next claim takes
care of the separating properties of Kp.

Claim 1.2. Suppose that the norm ‖ · ‖ is l.u.c. at x0 ∈ X (resp. UC) then for
every ε > 0 there exists Cε,x0

> 0 such that Kp(x0, y) ≥ Cε,x0
‖x0 − y‖p whenever

‖x0 − y‖ ≥ ε (resp. for all r > 0 and ε > 0 there exists Cε,r > 0 such that
Kp(x,y) ≥ Cε,r‖x − y‖p provided ‖x − y‖ ≥ ε and ‖x‖ ≤ r).

Proof of the Claim 1.2. We only prove the claim under the uniform convexity
assumption. The proof for the l.u.c. case is completely similar. We proceed by
contradiction.
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Suppose that the claim is false. Then by definition of Kp (see (27)), there are two
sequences (xn)n∈N and (yn)n∈N in X so that (xn)n is bounded, ‖xn − yn‖ ≥ ε0 > 0
for all n ∈ N and

Kp(xn, yn) = 2p−1‖xn‖
p + 2p−1‖yn‖

p − ‖xn + yn‖
p ≤

1

n
‖xn − yn‖

p. (30)

Moreover, without loss of generality we can suppose that ‖yn‖ ≥ ‖xn‖ > 0 for all

n. We then consider 0 < βn = ‖xn‖
‖yn‖ ≤ 1. From (30) it follows

0 ≤ 2p−1
(

βn
p + 1

)

−
(

βn + 1
)p

≤
1

n

(

βn + 1
)p

−−−→
n→∞

0.

Hence,

2p−1 βn
p + 1

(βn + 1)p
−−−→
n→∞

1. (31)

From (31) it follows that, limn→∞ βn = limn→∞
‖xn‖
‖yn‖

= 1. Then, since the

sequence (xn)n is bounded, so is (yn)n and therefore we have that limn→∞

(

‖xn‖−

‖yn‖
)

= 0. But using (30) again, we obtain that the bounded sequences (xn)n and
(yn)n verify

lim
n→∞

(

‖xn‖ −
∥

∥

xn + yn

2

∥

∥

)

= lim
n→∞

(

‖xn‖ − ‖yn‖
)

= 0.

Nonetheless, by hypothesis we have that ‖xn − yn‖ ≥ ε0 > 0 for all n. That is a
contradiction with the uniform convexity of the norm ‖ · ‖. �

Another important fact is that Kp is uniformly separating when the modulus of
convexity of the norm ‖ · ‖ is of power type p. This is a consequence from results
of [H]. Indeed, for any pair x, y ∈ X we have the following stronger inequality

Kp(x, y) = 2p−1‖x‖
p

+ 2p−1‖y‖
p
− ‖x + y‖

p
≥ C‖·‖‖x − y‖

p
,

for some 0 < C‖·‖ ≤ 1 (for instance, see [C] Lemma 3.1).
Hence, using Proposition 6 together with the inequality (29) we deduce (i),

(iii), (iv) and (v) of Theorem 1. It remains to prove the assertion (ii), for which
we use Proposition 8.

More precisely, we observe that in the decomposition (28) dK(·, y) is a convex
function for every y ∈ X . Moreover, for p > 1 is easy to verify that cKp

is strongly
coercive; that is,

cKp
(x)

‖x‖
= 2p−1‖x‖p−1 −−−→

x→∞
+∞.

Therefore, by Proposition 8(iii) the regularity of ∆p
nf = ∆Kp,nf can be de-

duced from the regularity of cKp
= 2p−1‖ · ‖p.

Recall now that for any norm ‖ · ‖ on X , the fact of being US (resp. with
modulus of smoothness of power type 1 + α) is equivalent to ‖ · ‖ ∈ C1,u(X) (resp.

‖·‖ ∈ C1,α(X)). Therefore, cKp
= 2p−1‖·‖p ∈ C1,u

B (X) (or cKp
∈ C1,α

B (X)) whenever
the norm ‖ · ‖ is US (or with modulus of smoothness of power type 1 + α).

In the last case of (ii), for a norm ‖ ·‖ with modulus of smoothness of power type
1 + α (or equivalently ‖ · ‖ ∈ C1,α(X)), we can achieve a smoother behaviour of the
sequence (∆p

nf) by choosing the proper value of p: (∆1+α
n f)n ⊂ C1,α(X). This is a

corollary of Proposition 8(ii) and the next lemma.
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Lemma 1.3. If ‖ · ‖ ∈ C1,α(X) then ‖ · ‖1+α ∈ C1,α(X).

Proof of the Lemma 1.3. This fact relies strongly in the convexity and homogeneity
of a norm. Since it is clear that ‖ · ‖1+α ∈ C1,α

B (X), let C > 0 be the α-Hölder
continuity constant of the derivative of the norm ‖ · ‖ in BX . We shall show that
the condition (15) holds true for ‖ · ‖1+α. Take any x, y ∈ X and denote by ω the
maximum of ‖x‖ and ‖y‖. The lemma is proved by the next computation.

‖x + y‖1+α+‖x − y‖1+α − 2‖x‖1+α =

ω1+α
(

∥

∥

x

ω
+

y

ω

∥

∥

1+α
−
∥

∥

x

ω

∥

∥

1+α
+
∥

∥

x

ω
−

y

ω

∥

∥

1+α
−
∥

∥

x

ω

∥

∥

1+α
)

≤

ω1+α2αC
∥

∥

y

ω

∥

∥

1+α
= 2αC‖y‖1+α.

By the above, this concludes the proof of Theorem 1. �
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[St2] T. Strömberg, On regularization in Banach spaces, Ark. Mat. 34 (1996), 383–406.

Equipe d’Analyse, Université Pierre et Marie Curie–Paris 6, Paris.
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