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Abstract. We study the fixed point property with respect to general vector topologies
in L-embedded Banach spaces. Considering a class of topologies in l1 such that the
standard basis is convergent, we characterize those of them for which the fixed point
property holds. We show that in c0-sums of some Banach spaces the weak topology is
in a sense the coarsest topology for which the fixed point property holds.

1. Introduction

Every Banach space is equipped with the norm topology and the weak topology. Both
of them play important roles in the fixed point theory. In particular, it is possible to
characterize sets with the fixed point property for some class of mappings in terms of
the weak topology. Such characterization for the class of continuous affine mappings on
bounded convex sets in arbitrary Banach spaces can be found in [8] and for the class of
nonexpansive mappings on bounded convex subsets of c0 can be found in [1] and [2].

In the case of L1 spaces another topology was successfully applied. This is the topology
of convergence locally in measure (see [13]). As a generalization of this topology an
abstract measure topology in L-embedded Banach spaces was introduced (see [17]). Its
applications to the metric fixed point theory can be found in [10] and [11]. In this
paper we give another one. Our result concerns existence of fixed points of mappings
of asymptotically nonexpansive type in an L-embedded Banach space X endowed with
a vector topology satisfying the Kadec-Klee property. We study in details the special
case when X = l1. For a particular family of sets in l1 a characterization of the fixed
point property for nonexpansive mappings was found in [5]. Moreover, it is well known
that l1 has the fixed point property for nonexpansive mappings on convex sets which are
compact with respect to the weak∗ topology generated by the predual c0 and lacks this
property if we replace c0 by c. This leads to the problem of characterizing locally convex
topologies τ in l1 for which the fixed point property holds. We find a solution to this
problem in the case when the standard basis of l1 is τ -convergent.

In the last section of this paper we deal with c0-sums of reflexive spaces. Using an idea
from [1] we show that for some such spaces the weak topology is in a sense the coarsest
topology for which the fixed point property holds.

2. Preliminaries

Let X be a normed space. Its closed unit ball will be denoted by BX . By a vector
topology in X we mean a Hausdorff topology τ such that the vector operations are
continuous with respect to τ . Given a subspace Y of the dual space X∗, by σ(X, Y ) we
denote the coarsest topology in X for which all functionals f ∈ Y are continuous. Recall
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that Y is total if for every x ∈ X \ {0} there exists f ∈ Y such that f(x) 6= 0. In this
case σ(X, Y ) is a vector topology. Of course X∗ is total and σ(X, X∗) is just the weak
topology which we denote also by w. If X = Y ∗, then Y considered as a subspace of
X∗ is total and σ(X, Y ) is the weak∗ topology. Another examples can be obtained for
Banach spaces X which are not reflexive. Then ker F is total for every F ∈ X∗∗ \X.

We will also deal with the so-called abstract measure topologies. Let us recall that a
sequence (xn) in a Banach space X spans an asymptotically isometric copy of l1 if there
exists a nonincreasing sequence (δn) in [0, 1) tending to 0 such that

∞∑
n=1

(1− δn) |αn| ≤

∥∥∥∥∥
∞∑

n=1

αnxn

∥∥∥∥∥ ≤
∞∑

n=1

|αn|

for every sequence (αn) ∈ l1. In this case we write (xn) ∼ (asy)l1. We say that a topology
τ in a Banach space X is an abstract measure topology provided that a norm bounded
sequence (xn) in X converges to x with respect to τ if and only if every subsequence
(yn) of (xn − x) has a subsequence (ynk

) such that either (ynk
/‖ynk

‖) ∼ (asy)l1 or
limk→∞ ‖ynk

‖ = 0.
Some vector topologies are abstract measure topologies. Let X = L1(Ω, µ) where µ

is a σ-finite measure on a σ-field of subsets of Ω. Then the topology of convergence
locally in measure is an abstract measure topology (see [17]). In the particular case
when X = l1 this topology coincides with the topology of coordinatewise convergence.
On BX this is just the weak∗ topology σ(l1, c0). The Bergman space A1 provides another
such example. To recall the definition of A1 we put D = {z ∈ C : |z| < 1} and consider
the normalized Lebesgue measure µ on D. A1 is the subspace of L1(D, µ) consisting
of all analytic functions on D. It is a dual space and for bounded sequences weak∗

convergence is equivalent to uniform convergence on compact sets (see [16]). This shows
that the weak∗ topology is finer than the topology of convergence in measure on BA1

and consequently, these two topologies coincide on BA1 . The weak∗ topology in A1 is
therefore an abstract measure topology.

Let τ be a vector topology in a Banach space X. A function f : X → R is sequentially
lower semicontinuous with respect to τ (τ -SLSC for short) if

f(x) ≤ lim inf
n→∞

f(xn)

for every sequence (xn) in X which converges to x with respect to τ . Observe that
‘lim inf’ may be replaced by ‘lim sup’ in this definition. The space X has the Kadec-Klee
property with respect to τ (KK(τ) for short) provided that if (xn) is a sequence in X
without a norm convergent subsequence and (xn) converges to x with respect to τ , then

‖x‖ < lim sup
n→∞

‖xn‖.

If τ is coarser than the norm topology, then the KK(τ) property implies that the norm
‖·‖ is τ -SLSC.

Let C be a nonempty subset of X. A mapping T : C → C is nonexpansive if

‖T (x)− T (y)‖ ≤ ‖x− y‖

for all x, y ∈ C. In the case when strict inequality holds in the above condition whenever
x 6= y, we say that T is contractive. A mapping T : C → C is of asymptotically
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nonexpansive type if TN is continuous for some N ∈ N and

lim sup
n→∞

(sup {‖T n(x)− T n(y)‖ − ‖x− y‖ : y ∈ C}) ≤ 0

for every x ∈ C. The space X has the τ -fixed point property (τ -FPP for short) provided
that if C is a nonempty bounded convex and τ -sequentially compact subset of X and
T : C → C is nonexpansive, then T has a fixed point. A mapping T : C → C is said to
satisfy the (P )τ -fixed point property if T has a fixed point in every nonempty convex τ -
sequentially closed subset D of C such that if x ∈ D, then each τ -limit of a subsequence
of (T n(x)) belongs to D.

Let τ be a vector topology in a space X. In the sequel τBX
will denote the restriction

of the topology τ to the ball BX . We say that τ is coarser than the weak topology on
the unit ball if τBX

is coarser than wBX
.

We will consider mainly locally convex topologies, i.e. vector topologies which admit
local bases consisting of convex sets. Let τ be such a topology in a space X and E be
the space dual to (X, τ). Given nonempty sets A ⊂ X, D ⊂ E, we consider the polar
sets

A◦ =

{
f ∈ E : sup

x∈A
|f(x)| ≤ 1

}
and

D◦ =

{
x ∈ X : sup

f∈D
|f(x)| ≤ 1

}
.

Proposition 1. Let X be a normed space and Y = (X, τ) where τ is a locally convex
topology in X coarser than the weak topology on the unit ball. Then a bounded sequence
(xn) converges to x with respect to the topology σ(X, Y ∗) if and only if (xn) converges to
x with respect to τ .

Proof. Our assumption guarantees that τ is coarser than the norm topology. This shows
in particular that Y ∗ ⊂ X∗. Let U be a convex, balanced and τ -closed neighborhood
of zero. There is r > 0 such that rBX ⊂ U . It follows that the polar U◦ of U in Y ∗ is
bounded.

By our assumption for each ε > 0 there is a finite set F ⊂ X∗ such that F◦∩BX ⊂ εU .
We put Z =

⋂
x∗∈F ker x∗. Then Z ⊂ F◦ which yields

1

ε
U◦ = (εU)◦ ⊂ (Z ∩BX)◦ = (BZ)◦.

Moreover, if g ∈ (BZ)◦, then we can find y∗ ∈ X∗ so that ‖y∗‖ =
∥∥g|Z∥∥ ≤ 1 and y∗|Z = g|Z .

Thus h|Z = 0 where h = g − y∗. It follows that h ∈ span(F ). We therefore see that
(BZ)◦ ⊂ span(F ) + BX∗ . Hence

U◦ ⊂ span(F ) + εBX∗ .

Using this fact, one can easily show that the set U◦ is relatively compact in the norm
topology.

Let now (xn) be a bounded sequence in X converging to x with respect to σ(X,Y ∗).
We can assume that x = 0 and (xn) is contained in BX . For every convex balanced
τ -closed neighborhood U of zero we find a finite 1/2-net {f1, . . . , fm} in U◦. There exists
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n0 ∈ N such that max1≤k≤m |fk(xn)| ≤ 1/2 for every n ≥ n0. Given f ∈ U◦, we choose k
for which ‖f − fk‖ ≤ 1/2. Then

|f(xn)| ≤ |fk(xn)|+ ‖f − fk‖ ≤ 1

which shows that xn ∈ (U◦)◦ for every n ≥ n0. But by the bipolar theorem (see [12]),
(U◦)◦ = U . We therefore see that (xn) converges to x with respect to τ . The remaining
part of the conclusion is obvious. �

Corollary 2. Let X be a normed space and Y = (X, τ) where τ is a locally convex
topology in X coarser than the weak topology on the unit ball. If (xn) is a bounded
sequence in X converging to x with respect to σ(X, Y ∗), then the set

C =

{
t0x +

∞∑
n=1

tnxn :
∞∑

n=0

tn = 1, tn ≥ 0, n = 0, 1, 2, . . .

}
is τ -sequentially compact.

Proof. Consider the mapping Φ : l1 → X given by the formula

Φ(λ1, λ2, . . . ) = λ1x +
∞∑

j=2

λjxj.

Using Proposition 1, one can easily show that Φ is σ(l1, c) to τ sequentially continuous.
It suffices now to observe that C = Φ(K) where

K =

{
(λ1, λ2, . . . ) ∈ l1 :

∞∑
n=1

λn = 1, λn ≥ 0, n = 1, 2, . . .

}
is sequentially compact with respect to σ(l1, c). �

Let τ be a locally convex topology in a space X. A modification of the reasoning used
in the proof of Proposition 1 shows that if a convex balanced τ -closed neighborhood U of
zero contains an open weak neighborhood of zero, then span(U◦) is a finite dimensional
subspace of Y ∗. Since U◦ is bounded, it is contained in an absolute convex hull of a
finite set A ⊂ Y ∗. Consequently, A◦ ⊂ (U◦)◦ = U . This shows that if a locally convex
topology τ in X is coarser than the weak topology, then τ = σ(X, Y ∗).

The assumption of Proposition 1 does not guarantee this conclusion. Indeed, let X
be an infinite dimensional normed space and B be the family of all polar sets A◦ where
A is a nonempty compact subset of X∗. Then B is a local basis at zero of a locally
convex topology τ in X which is finer than the weak topology. Consequently, X∗ is the
dual space of (X, τ). If A ⊂ X∗ is a compact set which is not contained in any finite
dimensional subspace of X∗, then A◦ does not contain any open weak neighborhood of
zero. This shows that τ does not coincide with the weak topology. On the other hand,
it is easy to see that τBX

coincides with wBX
.

3. L-embedded spaces

Let us recall that X is an L-embedded Banach space if there exists a closed subspace
Z of X∗∗ such that X∗∗ = X ⊕ Z and ‖x + z‖ = ‖x‖ + ‖z‖ for all x ∈ X and z ∈ Z.
In particular every space L1(Ω, µ) is an L-embedded space. For thorough study of
L-embedded spaces the reader may consult the monograph [6]. In [11], the following
property of L-embedded spaces was established.
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Proposition 3. Let X be an L-embedded Banach space. If a bounded sequence (xn)
converges to 0 in an abstract measure topology, then

lim sup
n→∞

‖x + xn‖ = ‖x‖+ lim sup
n→∞

‖xn‖

for every x ∈ X.

Proposition 3 will be used many times in this paper. As the first application we obtain
the following lemma.

Lemma 4. Let τ be a vector topology in an L-embedded Banach X, (xn) be a bounded
sequence in X such that the set {xn} is relatively sequentially compact in an abstract
measure topology and

r(x) = lim sup
n→∞

‖xn − x‖

where x ∈ X.
(i) If the norm of X is τ -SLSC, then the function r is τ -SLSC.
(ii) If X has the KK(τ) property and (zn) is a sequence in X such that (zn) converges
to z with respect to τ and (zn) does not have a norm convergent subsequence, then

r(z) < lim sup
n→∞

r(zn).

Proof. Let a sequence (zn) converge to z with respect to τ . We find a sequence (nk) so
that r(z) = limk→∞ ‖xnk

−z‖ and (xnk
) converges to some y with respect to the abstract

measure topology. Then using Proposition 3, we obtain

r(z) = ‖y − z‖+ lim sup
k→∞

‖xnk
− y‖

≤ lim sup
m→∞

‖y − zm‖+ lim sup
k→∞

‖xnk
− y‖

= lim sup
m→∞

lim sup
k→∞

‖xnk
− zm‖

≤ lim sup
m→∞

r(zm).

This completes the proof of (i) and the proof of (ii) is similar. �

We can now prove our general fixed point results for L-embedded spaces.

Theorem 5. Let X be an L-embedded Banach space and τ be a vector topology in X
coarser than the norm topology such that every τ -sequentially compact subset of X is τ -
compact and X has the KK(τ) property. Let a nonempty bounded convex set C ⊂ X be τ -
sequentially compact and relatively sequentially compact in an abstract measure topology.
Then every mapping T : C → C of asymptotically nonexpansive type has the (P )τ -fixed
point property.

Proof. We follow a reasoning form [18]. Let T : C → C be a mapping of asymptotically
nonexpansive type. We put

rx(y) = lim sup
n→∞

‖T n(x)− y‖

where x, y ∈ C. Clearly,

‖T n(x)− Tm(y)‖ =
∥∥Tm(y)− Tm

(
T n−m(x)

)∥∥− ‖y − T n−m(x)‖+ ‖y − T n−m(x)‖
≤ sup{‖Tm(y)− Tm(v)‖ − ‖y − v‖ : v ∈ C}+ ‖T n−m(x)− y‖
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for all x, y ∈ C and n > m. Hence

(1) lim sup
m→∞

lim sup
n→∞

‖T n(x)− Tm(y)‖ ≤ rx(y).

Let F be the family of all nonempty convex τ -sequentially closed subsets K of C such
that if y ∈ K and z is a limit with respect to τ of a subsequence of (T n(y)), then z ∈ K.
We fix D ∈ F . From the Zorn lemma it follows that there exists K0 ∈ F which is
minimal with respect to inclusion in the family {K ∈ F : K ⊂ D}. Let x ∈ K0. We will
show that the set {T n(x)} is relatively compact in the norm topology. Let K1 be the set
of all z ∈ K0 at which the function rx attains its infimum on K0. Lemma 4 shows that
K1 is nonempty and τ -sequentially closed. Obviously it is also convex. Let z ∈ K1 and
(nk) be an increasing sequence such that (T nk(z)) converges to some u with respect to
τ . By Lemma 4 and (1)

rx(u) ≤ lim sup
k→∞

rx (T nk(z)) ≤ rx(z).

This shows that u ∈ K1 and we see that K1 ∈ F . Consequently, K1 = K0 and in
particular rx attains at x its infimum on K0.

Suppose that there exists an increasing sequence (nk) such that (T nk(x)) does not
have a norm convergent subsequence. We can assume that (T nk(x)) converges to some
u ∈ K0 with respect to τ . Then Lemma 4 and (1) show that

rx(u) < lim sup
k→∞

rx (T nk(x)) ≤ rx(x)

which is a contradiction. Now it suffices to use the reasoning from the proof of Lemma 2
in [18]. �

If the norm of X is not only τ -SLSC, but τ -lower semicontinuous, then the assumptions
of Theorem 5 actually guarantee that there exists a nonexpansive retraction R from C
onto the set Fix(T ) of all fixed points of T such that R ◦ T = R and every convex
τ -sequentially closed T -invariant subset of C is also R-invariant (see [15] or [14] where
only the case of τ = w is considered).

The formulation of Theorem 5 can be simplified if the space X admits an abstract
measure topology such that bounded sets are relatively sequentially compact. Further
simplification is possible if X is separable. Then τ -sequentially compact sets are τ -
compact (see [10]). Both remarks apply for instance to the spaces A1 and l1.

Corollary 6. Let τ be a vector topology in l1 coarser than the norm topology such that
l1 has the KK(τ) property. If a nonempty bounded convex set C ⊂ X is τ -sequentially
compact, then every mapping T : C → C of asymptotically nonexpansive type has the
(P )τ -fixed point property. In particular l1 has the τ -FPP.

In Corollary 6 we obtained a condition sufficient for the τ -FPP in l1. Our next result
gives a necessary condition. Before passing to this theorem we establish some notation.
Let Γ be a nonempty set. Given x ∈ l1(Γ), we write x = (x(i))i∈Γ where x(i) are scalars.
If x 6= 0, we set supp x = {i ∈ Γ : x(i) 6= 0}. Even if Γ is uncountable, this set is at most
countable.

Theorem 7. Let Γ be an infinite set and τ be a locally convex topology in l1(Γ) coarser
than the weak topology on the unit ball. If the standard norm of l1(Γ) is not τ -SLSC,
then there exist a bounded convex τ -sequentially compact set C ⊂ l1(Γ) and a contractive
mapping T : C → C which does not have a fixed point.
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Proof. By the assumption there exists a sequence (xn) in l1(Γ) such that (xn) converges
to x with respect to τ and

‖x‖ > lim
n→∞

‖xn‖.

We can assume that (xn) converges coordinatewise to some y. Setting un = xn − y
and u0 = x − y, we obtain a sequence (un) which converges to u0 with respect to τ
and converges coordinatewise to 0. Then (un) does not converge to 0 in norm and by
Proposition 3

‖u0‖ ≥ ‖x‖ − ‖y‖ > lim
n→∞

‖xn‖ − ‖y‖ = lim
n→∞

‖un‖.

We can assume that An = supp un is finite, ‖un‖ = 1 for every n ≥ 1 and the sets An

are pairwise disjoint. Then ‖u0‖ > 1+ ε for some ε > 0 and there are vectors u′0, u′′0 such
that u0 = u′0 + u′′0, ‖u′0‖ − ‖u′′0‖ > 1 + ε, A = supp u′0 is finite and A ∩ supp u′′0 = ∅. We
can also assume that A ∩ An = ∅ for every n ≥ 1.

We put vk = (1 + ε/k)uk for k ≥ 1 and

C =

{
λ0u0 +

∞∑
j=1

λjvj :
∞∑

j=0

λj = 1, λj ≥ 0, j = 0, 1, 2, . . .

}
.

Clearly, C is bounded and convex. Corollary 2 shows that C is τ -sequentially compact.
We now set

T

(
λ0u0 +

∞∑
j=1

λjvj

)
=

∞∑
j=0

λjvj+1.

This formula defines a mapping T : C → C without a fixed point. Moreover,∥∥∥∥∥
∞∑

j=0

γjvj+1

∥∥∥∥∥ =
∞∑

j=0

|γj|
(

1 +
ε

j + 1

)

< |γ0|(‖u′0‖ − ‖u′′0‖) +

∥∥∥∥∥
∞∑

j=1

γjvj

∥∥∥∥∥
=

∥∥∥∥∥γ0u
′
0 +

∞∑
j=1

γjvj

∥∥∥∥∥− ‖γ0u
′′
0‖

≤

∥∥∥∥∥γ0u0 +
∞∑

j=1

γjvj

∥∥∥∥∥
for every nonzero (γn) ∈ l1, which shows that T is contractive. �

Theorem 7 may be extended to spaces of the form
(∑

i∈Γ Xi

)
l1(Γ)

where Xi are finite

dimensional.
Assume that τ is a vector topology in l1 such that if (yn) converges to y with respect

to τ and converges to 0 coordinatewise, then

‖y‖ ≤ lim sup
n→∞

‖yn‖.

Then the norm ‖·‖ is τ -SLSC. Indeed, let a bounded sequence (xn) converge to x with
respect to τ . Passing to a subsequence, we can assume that (xn) converges coordinatewise
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to some z. By our assumption and Proposition 3

‖x‖ ≤ ‖x− z‖+ ‖z‖ ≤ lim sup
n→∞

‖xn − z‖+ ‖z‖ = lim sup
n→∞

‖xn‖.

A similar remark applies to the KK(τ) property.
Under an additional assumption we can give a simple characterization of topologies τ

for which l1 has the τ -FPP. By (en) we denote the standard basis of l1.

Theorem 8. Let τ be a locally convex topology in the real space l1 coarser than the weak
topology on the unit ball. Assume that (en) converges to some e ∈ l1 with respect to τ .
Then l1 has the τ -FPP if and only if one of the following conditions holds
(i) ‖e‖ < 1
(ii) ‖e‖ = 1 and the set N+ = {n ∈ N : e(n) ≥ 0} is finite.

Proof. Given z = (z(k))k∈N ∈ l1 we set

s(z) =
∞∑

k=1

z(k).

Moreover, we put

Pn(z) =
n∑

k=1

z(k)ek

where n ∈ N.
Consider a bounded sequence (xn) in l1 which converges to x with respect to τ and

converges to 0 coordinatewise. If additionally the limit s = limn→∞ s(xn) exists, then
x = se. Indeed, let Y be the space dual to (l1, τ). If x∗ ∈ Y , then

|x∗(xn)− s(xn)x∗(e)| =

∣∣∣∣∣
∞∑

k=1

xn(k)(x∗(ek)− x∗(e))

∣∣∣∣∣
≤ ‖x∗‖(1 + ‖e‖)‖Pm(xn)‖+ sup

k>m
|x∗(ek)− x∗(e)|‖xn‖

for every m. It follows that

|x∗(x− se)| = lim
n→∞

|x∗(xn)− s(xn)x∗(e)| ≤ lim
m→∞

sup
k>m

|x∗(ek)− x∗(e)| lim sup
n→∞

‖xn‖ = 0.

The subspace Y is total, so we obtain the desired formula x = se.
Assume now that (i) or (ii) holds. Then ‖e‖ ≤ 1. Let (xn) be a bounded sequence in

l1 which converges to x with respect to τ and converges to 0 coordinatewise. Passing to
a subsequence, we can assume that the limit s = limn→∞ s(xn) exists. Then

‖x‖ ≤ |s| = lim
n→∞

|s(xn)| ≤ lim sup
n→∞

‖xn‖.

This shows that the norm of l1 is τ -SLSC.
Assume that l1 does not have the τ -FPP. Lemma 4 enables us to use a generalized

Goebel-Karlovitz lemma (see [7, Lemma 1] and [9, Lemma 2.6]) and obtain a sequence
(xn) such that it converges to x0 with respect to τ and limn→∞ ‖u − xn‖ = 2 for every
u ∈ conv{xn : n ≥ 0}. We can assume that (xn) converges coordinatewise to some
y ∈ l1. Then the vectors yn = xn − y tend to z = x0 − y with respect to τ and tend to 0
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coordinatewise. We can also assume that the limits limn→∞ ‖yn‖ and s = limn→∞ s(yn)
exist. Using Proposition 3, we see that

2 = lim
n→∞

‖x0 − xn‖ = lim
n→∞

‖z − yn‖

= ‖z‖+ lim
n→∞

‖yn‖

≤ lim
m→∞

‖ym‖+ lim
n→∞

‖yn‖

= lim
m→∞

lim
n→∞

‖ym − yn‖ = 2.

This shows that limn→∞ ‖yn‖ = 1 = ‖z‖ and consequently, |s| ≤ 1.
But z = se. It follows that ‖e‖ = 1 and |s| = 1. We therefore see that (i) does not

hold, so by our assumption the set N+ is finite. Consider the case when s = 1. We
choose n for which s(yn) > 1/2 and ‖Pm(yn)‖ < 1/4 where m = max N+. Then the set
B = {k ∈ N : e(k)yn(k) < 0} is nonempty. It is easy to see that

|a + b| = |a|+ |b| − 2 min{|a|, |b|}
whenever a, b ∈ R, ab < 0. Consequently,

‖e + yn‖ = ‖e‖+ ‖yn‖ − 2c

where c =
∑

k∈B min{|e(k)|, |yn(k)|} > 0. Applying Proposition 3, we therefore obtain

lim
m→∞

∥∥∥∥1

2
(x0 + xn)− xm

∥∥∥∥ = lim
m→∞

∥∥∥∥1

2
(z + yn)− ym

∥∥∥∥
=

1

2
‖z + yn‖+ lim

m→∞
‖ym‖

=
1

2

(
lim

m→∞
‖z − ym‖+ lim

m→∞
‖yn − ym‖

)
− c

= 2− c < 2

which is a contradiction. The case when s = −1 is similar.
We have proved that if (i) or (ii) holds, then l1 has the τ -FPP and from Theorem 7

we know that if ‖e‖ > 1, then l1 does not have this property. To complete the proof
it therefore remains to show that if ‖e‖ = 1 and the set N+ is infinite, then l1 lacks
the τ -FPP. Let (nk) be an infinite sequence in N+ such that w0 = e − u0 6= 0 where
u0 =

∑∞
k=1 e(nk)enk

. We set w = 1
‖w0‖w0 and

C =

{
µ1e + µ2w +

∞∑
k=1

µk+2enk
:

∞∑
j=1

µj = 1, µj ≥ 0, j = 1, 2, . . .

}
.

The set C is bounded and convex. By Corollary 2 it is also τ -sequentially compact.
Moreover, if

∑∞
j=1 µj = 1 and µj ≥ 0 for all j ∈ N then

µ1e + µ2w +
∞∑

k=1

µk+2enk
= (µ1‖w0‖+ µ2) w +

∞∑
k=1

(µ1e(nk) + µk+2) enk

and

µ1‖w0‖+ µ2 +
∞∑

k=1

(µ1e(nk) + µk+2) = µ1 (‖w0‖+ ‖u0‖) +
∞∑

k=1

µk+1 = 1.
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It follows that

C =

{
λ0w +

∞∑
k=1

λkenk
:

∞∑
j=0

λj = 1, λj ≥ 0, j = 0, 1, 2, . . .

}
.

Now, given x = λ0w +
∑∞

k=1 λkenk
∈ C, we put

T (x) =
∞∑

k=0

λkenk+1
.

It is easy to see that T : C → C is an isometry and does not have a fixed point in C. �

The reasoning in the first part of the proof can be also used to show that if ‖e‖ < 1,
then l1 has the KK(τ) property. By Corollary 6, in this case l1 has the fixed point prop-
erty for mappings of asymptotically nonexpansive type on bounded convex τ -sequentially
compact sets. The standard example of such topology is τ = σ(l1, c0). The sequence (en)
converges to 0 with respect to this topology. Observe in turn that if τ = σ(l1, c), then
(en) converges to the vector (1, 0, 0, . . . ). Changing the basis of l1, we can generalize the
last example. Namely, given e ∈ l1, e 6= 0, we set m = min supp e, e′m = e and e′k = ek

if k 6= m. Then the sequence (e′n) is a basis of l1 equivalent to (en). It follows that the
subspace

Y =
{

x∗ ∈ l∗1 : x∗(e) = lim
n→∞

x∗(en)
}

is total. Consequently, τ = σ(l1, Y ) is a Hausdorff topology and clearly e is the τ -limit
of (en).

Let now Γ be an arbitrary infinite set. By (ei)i∈Γ we denote the standard basis of the
real space l1(Γ). Assume that τ is a locally convex topology in X = l1(Γ) such that τBX

is coarser than wBX
. The reasoning from the last part of the proof of Theorem 8 can

be used to show that if some sequence (ein) converges with respect to τ to a norm-one
element e ∈ l1(Γ) and the set N+ = {n ∈ N : e(in) ≥ 0} is infinite, then l1(Γ) does not
have the τ -FPP. Actually we obtain a fixed point free isometry, but using the reasoning
from the proof of Theorem 7, we can also get a fixed point free contractive mapping.

As an example consider a scattered compact topological space Γ (see [3, p. 398]). Then
C(Γ)∗ can be identified with l1(Γ) with the duality formula

x(f) =
∑

i∈supp x

x(i)f(i)

where x ∈ l1(Γ) is not zero and f ∈ C(Γ). The space Γ is sequentially compact (see
[3, p. 419]), so if it is infinite, then there exists a sequence (γn) of distinct points of
Γ converging to some γ ∈ Γ. Clearly, (eγn) converges to eγ with respect to the weak∗

topology τ = σ(l1(Γ), C(Γ)). We therefore see that l1(Γ) does not have the τ -FPP.

4. c0-sums of reflexive spaces

In [1] and [2], it was proved that if a closed bounded convex subset C of c0 is not
weakly compact, then there is a nonexpansive mapping T : C → C without a fixed
point. We will use an idea from the first of these papers to obtain the following result.

Theorem 9. Let (Xn) be a sequence of reflexive Banach spaces and X = (
∑∞

i=1 Xi)c0. If
τ is a locally convex topology in X such that τBX

is strictly coarser than wBX
, then there
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exist a bounded convex τ -sequentially compact set C ⊂ X and a contractive mapping
T : C → C which does not have a fixed point.

Proof. Let X ′ be the space of all x∗ ∈ X∗ such that x∗|BX
is τBX

-continuous. It is easy

to see that X ′ is a norm closed subspace of X∗ and since τBX
is strictly coarser than

wBX
, X ′ 6= X∗. We can therefore find z∗∗ ∈ X∗∗ such that z∗∗ 6= 0 and z∗∗(f) = 0 for

every f ∈ X ′. Since τ is a Hausdorff topology, the subspace X ′ is total. Consequently,
z∗∗ /∈ X. Notice that

X∗∗ =

(
∞∑
i=1

Xi

)
l∞

so z∗∗ = (z(i)) where zi ∈ Xi for every i ∈ N and ‖z∗∗‖ = supi∈N ‖z(i)‖Xi
< +∞.

Given n ∈ N and v∗∗ = (v(i)) ∈ X∗∗, we put Pn(v∗∗) = (v(1), . . . , v(n), 0, 0, . . . ) and
Rn(v∗∗) = v∗∗ − Pn(v∗∗). In addition, we set R0(v

∗∗) = v∗∗ and n0 = 0. We find n1 ∈ N
so that (4/5)‖z∗∗‖ ≤ ‖Pn1(z

∗∗)‖. Next, having n1 < · · · < nk, we choose nk+1 > nk such
that

4k+1

1 + 4k+1
‖Rnk

(z∗∗)‖ < ‖Pnk+1
(Rnk

(z∗∗))‖.

This inductive procedure gives us an increasing sequence (nk). We set x1 = Pn1(z
∗∗) and

xk = Pnk
(Rnk−1

(z∗∗)) if k > 1. Then

(2) ‖xi‖ ≤ ‖Rnk−1
(z∗∗)‖ ≤

(
1 +

1

4k

)
‖xk‖

for every i > k.
We also put wk = Pnk

(z∗∗) =
∑k

i=1 xi. It is easy to see that

(3)

∥∥∥∥∥
∞∑

k=1

αkwk

∥∥∥∥∥ = sup
i∈N

∣∣∣∣∣
∞∑
j=i

αj

∣∣∣∣∣ ‖xi‖

for each sequence of scalars (αk) such that the series
∑∞

n=1 αn converges. This shows
that (wn) is a basic sequence in X equivalent to the summing basis of c0.

Consider now the following subset of X

C =

{
∞∑

n=1

tnwn :
∞∑

n=1

tn ≤ 1, tn ≥ 0, n = 1, 2, . . .

}
.

It is clear that C is convex and bounded. In order to prove that C is τ -sequentially
compact observe that (wn) converges to z∗∗ with respect to the topology σ(X∗∗, X∗). If
f is a linear functional on X continuous with respect to τ , then f ∈ X ′ and consequently,
limn→∞ f(wn) = z∗∗(f) = 0. We therefore see that (wn) converges to 0 with respect to
τ . This and Corollary 2 show that C is τ -sequentially compact.

To construct a fixed point free nonexpansive mapping T : C → C we follow an idea
from [1]. Namely, we put

un =
∞∑

j=1

1

2j
wn+j
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for n = 0, 1, . . . . Next, given u =
∑∞

k=1 tkwk ∈ C, we set

T (u) =

(
1−

∞∑
n=1

tn

)
u0 +

∞∑
n=1

tnun.

It is easy to see that

T (u) =
1

2

(
1−

∞∑
n=1

tn

)
w1 +

∞∑
k=2

(
1

2k

(
1−

∞∑
n=1

tn

)
+
∑

i+j=k

1

2i
tj

)
wk

This shows that T is well defined. Moreover, if T (u) = u, then 1
2
(1−

∑∞
n=1 tn) = t1,

so t2 = 1
4
(1−

∑∞
n=1 tn) + 1

2
t1 = t1 and similarly, tk = t1 for every k. Thus tk = 0 for all

k, which means that u = 0. But T (0) = u0 6= 0. This contradiction shows that T does
not have a fixed point.

It remains to prove that T is nonexpansive. We fix elements x =
∑∞

n=1 tnwn, y =∑∞
n=1 snwn in C and set α0 =

∑∞
n=1(sn − tn) and αk = tk − sk for k ≥ 1. Then∑∞

n=0 αn = 0. Easy calculations give

‖Pn1(T (x)− T (y))‖ = ‖x1‖

∣∣∣∣∣
∞∑

n=0

αn

∣∣∣∣∣ = 0

and

‖Pnm(Rnm−1(T (x)− T (y)))‖ = ‖xm‖

∣∣∣∣∣
∞∑

k=m

(
1

2k
α0 +

∑
i+j=k

1

2i
αj

)∣∣∣∣∣
= ‖xm‖

∣∣∣∣∣
(

1− 1

2m−1

) ∞∑
k=1

αk −
m−2∑
i=1

(
1− 1

2m−1−i

)
αi

∣∣∣∣∣
= ‖xm‖

∣∣∣∣∣
m−1∑
k=1

1

2m−k

∞∑
i=k

αi

∣∣∣∣∣
for every m > 1. This, (2), and (3) show that

‖Pnm(Rnm−1(T (x)− T (y)))‖ ≤
m−1∑
k=1

1

2m−k

(
1 +

1

4k

)
‖xk‖

∣∣∣∣∣
∞∑

i=k

αi

∣∣∣∣∣
≤ ‖x− y‖

and the first inequality becomes strict if αk 6= 0 for some 1 ≤ k ≤ m− 2. Hence

‖T (x)− T (y)‖ = max
m>1

‖Pnm(Rnm−1(T (x)− T (y)))‖ < ‖x− y‖

for all x, y ∈ C with x 6= y. �

Let X be a Banach space. The geometric coefficient R(X) is defined as

R(X) = sup
{

lim inf
n→∞

‖xn + x‖
}

where the supremum is taken over all x ∈ BX and all weakly null sequences (xn) in BX .
This coefficient is related to existence of fixed points of nonexpansive mappings in the
following way (see [4]):

Theorem 10. Let X be a Banach space. If R(X) < 2, then X has the w-FPP.
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Using R(X) we can give a positive result concerning fixed point property for nonex-
pansive mappings for c0-sums of Banach spaces.

Theorem 11. Let Γ be an infinite set, (Xi)i∈Γ be a collection of Banach spaces and
X =

(∑
i∈Γ Xi

)
c0(Γ)

. Then R(X) = supi∈Γ R(Xi).

Proof. It is clear that R(X) ≥ R(Xi) for every i ∈ Γ. So we only need to prove that
R(X) ≤ supi∈Γ R(Xi). We fix ε > 0, x ∈ BX and a weakly null sequence (xn) in BX .
Thus xn = (xn(i))i∈Γ and x = (x(i))i∈Γ where xn(i) and x(i) belong to Xi for every
i ∈ Γ. Since x ∈ X, there exists some finite subset F ⊂ Γ such that ‖x(i)‖Xi

≤ ε if
i ∈ Γ \F . Clearly, supi∈Γ\F ‖xn(i) + x(i)‖Xi

≤ 1 + ε ≤ supi∈Γ R(Xi) + ε for every n ∈ N.
We can assume that the limits limn→∞ ‖xn + x‖ and limn→∞ ‖xn(i) + x(i)‖Xi

exist for
every i ∈ F . Then we can find n0 ∈ N such that

‖xn(i) + x(i)‖Xi
≤ lim

n→∞
‖xn(i) + x(i)‖Xi

+ ε ≤ R(Xi) + ε ≤ sup
i∈Γ

R(Xi) + ε

for every n ≥ n0 and for every i ∈ F . Thus supi∈F ‖xn(i) + x(i)‖Xi
≤ supi∈Γ R(Xi) + ε

for every n ≥ n0. Passing to limits when n goes to infinity, we obtain

lim
n→∞

‖xn + x‖ = lim
n→∞

sup
i∈Γ

‖xn(i) + x(i)‖Xi
≤ sup

i∈Γ
R(Xi) + ε

and since ε > 0 is arbitrary, we get the desired inequality. �

Corollary 12. Let (Xn) a sequence of reflexive Banach spaces such that supi∈N R(Xi) <
2. Then X = (

∑∞
n=1 Xi)c0 has the w-FPP and fails to have the τ -FPP for every locally

convex topology τ in X such that τBX
is strictly coarser than wBX

.

We have R(lp) = 2
1
p for every 1 < p < +∞ (see [4]). Let (pn) be a sequence in (1, +∞)

such that infn∈N pn > 1 and X = (
∑∞

n=1 lpn)c0
. Then from Corollary 12 we see that X

has the w-FPP and fails to have the τ -FPP for every locally convex topology τ in X
such that τBX

is strictly coarser than wBX
.
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