
EVOR-STACK: A label-dependent evolutive stacking on remote sensing 

d

Hybrid 

which
from r
have b
[5], Na

Alt
demo
ata fusion
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d use and land covers (LULC) maps are remote sensing products that are used to classify areas into 
rent landscapes. Data fusion for remote sensing is becoming an important tool to improve classical 

roaches. In addition, artificial intelligence techniques such as machine learning or evolutive computation 
often applied to improve the final LULC classification. In this paper, a hybrid artificial intelligence method 
d on an ensemble of multiple classifiers to improve LULC map accuracy is shown. The method works in 

 processing levels: first, an evolutionary algorithm (EA) for label-dependent feature weighting transforms 
feature space by assigning different weights to every attribute depending on the class. Then a statistical 
er from LIDAR and image data fusion is built following a pixel-oriented and feature-based strategy that 
 a support vector machine (SVM) and a weighted k-NN restricted stacking. A classical SVM, the original 

ricted stacking (R-STACK) and the current improved method (EVOR-STACK) are compared. The results 
w that the evolutive approach obtains the best results in the context of the real data from a riparian area 
outhern Spain.
                                   

                                                1. Introduction

Remote sensing is an important discipline for many tasks such as 
resource management [1], environmental monitoring [2] and disas-ter 
response [3]. For a long time, machine learning techniques have been 
used to improve remote sensing performance and applicability. In 
addition, the use of active sensors such as LIDAR (light detection and 
ranging) has recently spread to improve the classical remote sensing 
products [4], which were mainly based on images. This change 
involves a data complexity increase and makes artificial intelligence 
systems and data fusion techniques even more impor-tant for 
extracting meaningful information from remote sensing data.

Remote sensing knowledge can be gathered in several products, 
among which land use and land covers (LULC) maps are arguably one 
of the most important. LULC maps are based on a classification of the 
terrain depending on its morphologic or functional character-istics, 
and they are a very remarkable tool in the development of policies to 
manage the natural environment. Automatic pixel classi-fication, 
first step to extract maps 
s from machine learning 
ctory results, e.g., k-NN 

rning has been widely 
text, more research is
needed to fulfil the standard requirements of many remote 
sensing products, and especially for LULC maps [8]. Thus, the final 
classification has to maintain not only the global accuracy that is 
the general standard but also satisfactory partial accuracies for 
every label. Thus, some researchers [9,10] have started to exploit 
hybrid artificial intelligence systems [11] based on opti-mization 
techniques (genetic algorithms) and classical machine learning 
applied to remote sensing data.

Evolutionary computation is usually used to search optimal 
weighting for both structural and functional aspects to improve the 
predictive models for machine learning. In supervised machine 
learning, there are essentially three main areas of weighting applica-
tion: support vector machine optimization, artificial neural networks 
(training and topology) and feature weighting.

Support vector machines (SVMs) are learning algorithms proposed 
by Vapnik [12,13]. A SVM constructs one or more hyperplanes in a 
high-dimensional space by means of a kernel function. Therefore, the 
kernel function election and its proper parametrization are critical for 
the performance of the classifier. Many authors have used evolu-
tionary computation to solve this problem with pure [14] or real-coded 
[15] genetic algorithms. Other authors have also explored the use of 
genetic programming for kernel assembling [16] or developed hybrid 
algorithms [17], which usually have an evolutionary module in a first 
level and a SVM applied for classification in a second one.

Artificial neural networks (ANNs) consist of a simulation of the 
structures and behaviour of biological neural systems by means of 
mathematical models [18]. Evolutionary computation has been used to 
train the set of neural network parameters and to design its structure. 
From the viewpoint of training the network, the common
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Fig. 1. Study area.
approach is to create the genome by encoding the weights of the
connections. This may be done by typical bit-based encoding, but
there are also more efficient proposals [19]. The main problem with
the approaches based on genetic algorithms is the lack of efficient
crossover operators because it is difficult to establish which func-
tional parts of the network are to be exchanged. For this reason,
other techniques based on genetic programming have been more
successful [20]. There have also been several studies on evolution-
ary computation applied to the design of neural network architec-
ture and weighting optimization. In these cases, the fitness function
is usually multi-objective [21] because it must take into account
different aspects (structural and functional) of the network.

Techniques that use genetic algorithms to find a set of weights
for the feature space, allowing greater accuracy in the classifica-
tion process, are common in the literature [22]. The usual
individual encoding is a set of real values that represent the
weights of each feature. The fitness is defined by the classification
process itself. Therefore, the search process can be viewed as a
global task in which the optimal weights are considered in terms
of their features regardless of the label assigned to each instance.
Moreover, the use of several evolutionary techniques (genetic
algorithms and evolutionary strategies) for both instance selec-
tion and feature weighting has proven possible [23], and an
optimal weight searching dependent on each label has recently
been tested [24] with good results in biomedicine.

With all this in mind, this work can be seen as a new application
of hybrid artificial intelligence system [25] which combined the
application of ensembles in remote sensing [26,27] that takes
advantage of contextual information from multi-source (LIDAR and
aerial images) data and the use of evolutive computation to improve
the separability of pixels for each label. Thus, we improve a method
called R-STACK [28] (based on the stacking of a SVM and multiple
k-NN classifiers) with a matrix of weights obtained in the pre-
processing stage [29] to give rise to a new method called EVOR-
STACK for the following three purposes:
�
 Improve the general accuracy of an automatically generated
LULC map.

�
 Show the quality of models when hybrid artificial intelligence

systems are applied to LIDAR and imagery fusion data.

�
 Obtain information about what features are the most important to

classify each landscape by studying the resulting weights per
label.

The rest of this paper is organized as follows: Section 2
presents the study area for this work and provides a brief
description of the different landscapes in the area. Section 3
provides a detailed description of the proposed method. The
results and discussion are presented in Sections 4 and 5, respec-
tively. Finally, Section 6 is devoted to summarizing the conclu-
sions and to discussing future lines of work.
2. Data description

A LIDAR system is a remote sensor technology that is able to
register object heights. The process starts with the emission of light
(usually laser). The light impacts on a surface and its reflected signal
is caught by the LIDAR system. Finally, the system measures the time
elapsed from emission to reception to establish the distance between
the emitter and the object that produced the return. This process
gives rise to a cloud point database in which for every point, it is
possible to obtain the following data: spatial position (i.e., x, y and z

coordinates), intensity of return and number of returns in a sequence
(if a pulse caused multiple impacts). These measurements and the
RGB values in an orthophoto are used in this work to obtain statistical
features on which the whole classification is based.
Our LIDAR data were collected in coastal areas of the province of
Huelva (Fig. 1). The pulses were geo-referenced and correctly
validated by the distributor of the data and included 1,384,875
records for an area of 1.5 km2. The reported precision indicates a
maximum error of 0.5 m in the x–y positions and 0.15 m in the z

position. Along with the LIDAR flight, aerial photographs were taken
of the area with a resolution of 0.5 m2. The study area is situated in
southern Spain at the mouth of the Tinto and Odiel rivers. This area is
near the city of Huelva and presents a mix of urban and natural areas.
The natural areas can be classified into five subclasses: watered
zones, marshland and vegetation (low, middle and high). The high
vegetation in the area consists of scarce trees of the genus eucalyptus.
The middle vegetation consists of different types of Mediterranean
bushes that principally surround roads and urban areas. Pastures are
classified as low vegetation and include bare earth areas. The urban
areas are also classified into three subclasses: roads and railways,
dumps and urban areas (buildings and industrial areas).
3. Method

The method proposed, called EVOR-STACK (steps 4–8 in
Algorithm 1), is a new contextual [30] hybrid method to improve
thematic maps by means of a remote sensing data fusion, evolu-
tionary computation and complex classifiers (ensembles) [31].

Algorithm 1. LULC classification method.

input
l: LIDAR data
o: Orthophotograhy data
output
m: LULC map
begin
1. Build a matrix raster in which every cell involves a physical
position with the corresponding statistics from l and o

2. Select a training set from raster, called train

3. Label each pixel in train using expert knowledge
4. Execute a multi-label EA to extract the matrix W

5. Let svm be a SVM model from train

6. Use svm to classify every pixel in raster

7. For each pixel p in raster

7.1. Collect the neighborhood of p in a set s

7.2. Use W to modify every pixel from s

7.3. Build a weighted-distance k-NN model, knn, from s

7.4. Use knn to classify p

8. Return a map m with every pixel spatial position and
its label
end



The first step is the generation of a raster with a set of statistics
to obtain a feature-based data fusion representation. It is impor-
tant to set up a resolution according to each data source. For our
study area, we work with a 3 m2 resolution. To extract the object
heights, a digital elevation model is needed to construct the real
heights from the coordinate z. For our area, the method described
in Gonc-alves et al. [33] is selected.

The second step is done by an EA (evolutionary algorithm),
which is used to obtain a multi-label weighting matrix [29]. This
matrix provides an optimized set of weights to improve the final
classification, as will be seen later.

Finally, an R-STACK [28] method is applied to obtain the final
map. The set of weights from the previous phase is used to modify
the feature space on the second level of the R-STACK method. In
this way, a more accurate separation among neighbours is
possible. In the following subsections, a detailed description is
presented for every step.

3.1. Feature extraction and pre-process

The process presented in this article is a feature-based approach
that fuses information from aerial images and LIDAR to generate
high quality and detailed thematic maps. In this way, the first step is
to calculate a set of variables from the image RGB values, LIDAR
intensity, heights and their distributions for each pixel. Thus, 70
different features are calculated for every pixel which are mostly
extracted from the literature [34,35]. In Table 1, a summary of these
features can be seen. To the best of our knowledge, the use of some
of them for data fusion is original work, e.g., the number of empty
neighbours (NEMP) or the features based on the simulated normal-
ized difference vegetation index (SNDVI). The NEMP feature is
extracted from LIDAR and represents the absence of information,
which is useful to detect watery areas because LIDAR is not able to
reflect off of water. The SNDVI has proven useful for simulation of
the classical normalized difference vegetation index (NDVI). The
NDVI value is generated from the near infrared band (NIR) and the
red band (R), as can be seen in Eq. (1). In our case, it cannot be
Table 1
Candidate variables. In bold, the final selected features. Variables with n are

calculated for each band of a pixel: height (H), intensity (I), red (R), green (G),

blue (B) and simulated NDVI (SNDVI).

Variable Description

CRR Canopy relief ratio

CV n Coefficient of variation

MIN n Minimum

MAX n Maximum

STD n Standard deviation

AVG n Average

NEMP Number empty neighbours

VAR n Variance

SKEW n Skewness

KURT n Kurtosis

RANGE n Range

NOTFIRST Second or later return

INTRASLP Intra-pixel slope

EXTRASLP Inter-pixel slope

PEC Penetration coefficient

TOTALR Total of returns

PCTN1 Unique return percentage

PCTN2 Double return percentage

PCTN3 Three or more returns percentage

PCTR1 First return percentage

PCTR2 Second return percentage

PCTR3 Third or later return percentage

PCTR31 PCTR3 over PCTR1

PCTR21 PCTR2 over PCTR1

PCTR32 PCTR3 over PCTR2
calculated because the NIR band is not available in LIDAR or
orthophotography. Thus, the new band SNDVI is used to simulate
the NDVI using the intensity (I) from LIDAR (Eq. (2)) as a near-
infrared value that approximates the real NIR value.

NDVI¼
NIR�R

NIRþR
ð1Þ

SNDVI¼
I�R

IþR
ð2Þ

Before generation of the model, a pre-process has to be carried
out. Three different filters are executed. First, every missing
attribute value is replaced with the corresponding average value.
Then the data are normalized. Finally, a Correlation Feature Selec-
tion method (CFS from Weka [36]) with default parameters is
applied to reduce the search space (see variables in bold in Table 1).
With the selected features already generated, the next phase is the
execution of the EA, which is characterized in the next subsection.

3.2. Evolutionary weighting algorithm

The basic structure of an EA can be seen in Algorithm 2: first, a
random initial population of solutions is built, and the individual
fitness of each solution is evaluated. Then each generation is formed
from the previous one by crossing and mutation. Thus, the best
solution is determined step by step through natural selection.

Algorithm 2. Evolutionary algorithm.
Build the initial population of individuals
Evaluate the fitness of each individual and save the best
individual
while not termination do

Select several individuals for reproduction according to a
criterion
Create new individuals through crossover and mutation
operations
Evaluate the fitness of new individuals and save the best
individual
Replace the population with the new individuals

end while
The goal of the proposed EA is to find an optimal matrix of real
values to weight the features selected in the previous phases.
Thus, the matrix has a row for each label and a column for each
feature, and each cell contains a weight that is used to complete
the classification process in three steps:
1.
 The weights are applied to the training instances according to
their label.
2.
 Given a test instance, the weighting matrix is utilized to define
a per-label weighted distance.
3.
 Then the test instance is classified by the nearest neighbour
label calculated using the distance defined in the previous step.

A deeper description of the EA and its characteristics is
provided in the next paragraphs.

3.2.1. Individual codification

To execute the evolutive algorithm, an individual description is
required. In this case, an individual of the population is a matrix
whose cells each represent a weight for a label and a feature. Hence,
for a training set, there is a row for each label that has as many
columns as features, so the initial population is a set of matrices of b

rows and f columns, where b is the total number of labels and f is the
total number of features. In addition, the initial population is built by
initializing each cell of every matrix with a value randomly chosen
from the interval [�1, 1].



3.2.2. Fitness function

The training data consist of a matrix P with t rows (each
representing a normalized feature instance, from now on a pixel)
and f columns (one per feature). A class label is assigned with the
label function on each instance of P. For simplicity, we assume that
the label is an integer between 1 and b. Thus, a pixel pi is a row of
P (a vector of [0, 1]f such that labelðpiÞ ¼ lAf1: :bg). A transformation
is given by an individual W ¼ ½wij�b�f . Thus, a pixel p can be
transformed to pl by a label l according to the following equation:

8j¼ 1 . . . f : pl
j ¼wljnpj ð3Þ

A particular case can be seen when the label of the instance to
transform is known. In this case, we denote p0 as the transformed
pixel, and thus, p0 is defined as

p0 ¼ plabelðpÞ ð4Þ

As seen in Algorithm 3, the training set P is divided into n bins
(step 3). The weights of the individual that are being evaluated are
applied to n�1 bins (step 5), obtaining the set P0 by means of Eq. (3),
and the remaining bag is used as the initial test (step 6 et seq.). The
nearest pixel from P0 to each pixel e from the test bin Bk is calculated
(steps 6–9) according to the distance dW defined in Eq. (5).

dW ðe,p0Þ ¼ dEuclideanðe
labelðp0 Þ,p0Þ ð5Þ

Algorithm 3. Fitness function.
input

W: Weight matrix

P: Pixel matrix

label: a function that returns a pixel label for every pixel.

output

fitness: classification error which is the objective function
to be minimized.

begin
1:
 fitness¼0

2:
 for all i¼1 to m do

3:
 We divide P into n bags: B1, . . . ,Bn
4:
 for all bag Bk do

5:
 According to Eq. (4), we apply the W transformation

to every pixel from the remaining n�1 bags,
obtaining the set of pixels P0
6:
 for all pixel pi in Bk do

7:
 for all label lAf1: :bg do

8:
 We construct the transformed pixel pl

i according
to Eq. (3)
9:
 We calculate dl ¼ minimum distance from pl
i to

the pixels of P0 according to Eq. (5)

10:
 We apply the W transformation to pi according to

its nearest neighbour label, and we add it to P0
11:
 end for

12:
 We calculate the minimum from the distances dl. Let

hAf1: :bg, the label of the pixel of P0 that gives rise
to dl.
13:
 if the original test label of piah then

14:
 fitness¼fitnessþ1

15:
 end if

16:
 end for

17:
 end for

18:
 end for
end
The nearest neighbour of each test pixel according to the distance
defined in Eq. (5) is returned. If its assigned label does not match its
original test label, its fitness is increased (steps 13–14). In addition,
once a test pixel has been transformed with the nearest neighbour
weights, it becomes part of P0, reinforcing the training (step 10).

3.2.3. Crossover and mutation

In the design of an EA, it is always important to establish a
coherent search criterion in the space of possible solutions,
especially if the encoding of the individuals belongs to R. This
can only be achieved with a proper selection of crossover and
mutation operators.

A crossover operation for two individuals selected by the
roulette-wheel method is applied to every corresponding row
(the ith row of an individual is crossed with the ith row of the
other one) because they have the same label.

In addition, two techniques have been selected for the gen-
eration of the new individuals: the uniform crossover and the
BLX-a crossover [37]. Both techniques are mutually exclusive and
one of them is randomly chosen to generate each new individual.

The mutation operator has been defined to increase or
decrease the value of a weight according to a probability p. The
increase or decrease is a random value d that satisfies

d¼ r=z

where

rA ½0,1�

chosen randomly and

zAN

In this case, z is a decreasing value selected empirically for the
evolutive process so that the variation is higher in the first
generations and lower in the latest ones.

3.3. R-STACK method

Once the weighting matrix is obtained (step 4 in Algorithm 1),
the R-STACK method is applied. R-STACK is based on a modified
stacking of two well-known classifiers (SVM and k-NN). To
generate the SVM model, the SMO [38] Weka implementation is
used. The second level of the R-STACK method is implemented by
means of an ad hoc k-NN.

In this way, the stacking general scheme is modified to adapt it
to geographic data. The classification task is then done in two
steps: first, the SVM takes every non-weighted feature from the
pixels in the training area to build an initial model that classifies
every pixel from the study zone (steps 5 and 6 in Algorithm 1). At
that point, a classical SVM application to the images is obtained.
Later, a specific model is built for each pixel taking the feature
values of its neighbours in the pixel raster as a training set, which
involves a strong relationship (contextual dependence) among
the training pixels and the current pixel (step 7 Algorithm 1).
In the end, the k-NN classifies the current pixel using the model
built by its weighted neighbours according to the distance
described in Eq. (5). This step has been modified from the original
R-STACK method.

The number of neighbours and the level of adjacency are
selected empirically. For the study area, we work with k¼3 and
8-adjacency, i.e., each 3-NN is developed with just eight instances
of the pixel surrounding area.
4. Results

To establish the accuracy of EVOR-STACK, it is compared with
two other classifiers: classical SVM and R-STACK. This comparison
is based on two well-known testing strategies: a hold-out process
and a 10-fold cross-validation (10-FCV).



Table 2
Per-class results of the hold-out test for every method.

Class SVM R-STACK EVOR-STACK

TP-Rate F-Mea. TP-Rate F-Mea. TP-Rate F-Mea.

Water 0.999 0.988 1 0.991 0.999 0.998

Marsh 0.925 0.847 0.952 0.886 0.897 0.939

Roads 0.888 0.886 0.916 0.91 0.912 0.949

Low. veg. 0.834 0.854 0.851 0.868 0.894 0.942

Middle veg. 0.668 0.697 0.735 0.776 0.845 0.916

High veg. 0.711 0.69 0.781 0.74 0.851 0.917

Buildings 0.816 0.871 0.843 0.9 0.881 0.934

Dumps 0.679 0.807 0.818 0.898 0.976 0.988

Minimum 0.668 0.69 0.735 0.74 0.845 0.917

Average 0.815 0.83 0.862 0.871 0.907 0.948

Global average

Accuracy (%) 88.1 90.8 92.21

Table 3
Per-class results of the 10-FCV for every method.

Class SVM R-STACK EVOR-STACK

TP-Rate F-Mea. TP-Rate F-Mea. TP-Rate F-Mea.

Water 0.997 0.986 0.994 0.985 0.994 0.993

Marsh 0.939 0.902 0.967 0.932 0.992 0.983

Roads 0.909 0.906 0.928 0.909 0.978 0.969

Low. veg. 0.958 0.906 0.966 0.919 0.984 0.985

Middle veg. 0.77 0.767 0.792 0.827 0.948 0.966

High veg. 0.882 0.883 0.915 0.912 0.98 0.969

Buildings 0.861 0.914 0.887 0.934 0.979 0.985

Dumps 0.476 0.611 0.564 0.706 0.92 0.954

Minimum 0.476 0.611 0.564 0.706 0.92 0.954

Average 0.738 0.799 0.779 0.846 0.972 0.976

Global average

Accuracy (%) 91.38 93.09 98.23

Table 4
Average rankings of the algorithms.

Algorithm Ranking

SVM 2.645

R-STACK 1.96

EVOR-STACK 1.395
A hold-out process is the traditional testing in remote sensing.
Thus, every algorithm is trained with 618 instances (training set)
and the accuracies are checked with a test set (7501 non-training
instances) with both sets extracted by visual inspection. Due to its
random origin, multiple execution for an EA is recommended to
establish its quality [39]. In our case, the results shown for EVOR-
STACK are the average case obtained over three evolutive processes.

Table 2 shows the per-class detailed accuracies for every
method. Concretely, it shows each class value for the true positive
rate (TP-Rate) and the harmonic mean of the precision and recall
(F-measure), which is described in Eq. (8). The F-measure is based
on the values of TP, FP and FN, which are the total positives, false
positives and false negatives, respectively, calculated from the
confusion matrix. It also provides the per-class average and
minimum across the different partial results and the global
accuracy attained by each algorithm. It is important to underline
that every SVM is obtained by the SMO algorithm with its default
parameters in Weka so that the differences among EVOR-STACK,
R-STACK and classical SVM are due to underlying structural
characteristics and not to different parameterizations.

recall¼
TP

TPþFN
ð6Þ

precision¼
TP

TPþFP
ð7Þ

F-measure¼
2nprecisionnrecall

precisionþrecall
ð8Þ

The second type of testing is a 10-FCV. We select all the
classified pixels as the data set (training and test sets, 8120
instances). The per-class and averaged accuracy results from the
10-FCV for every approach can be seen in Table 3, in which the
average instance of EVOR-STACK obtains the best results.

A comparison based on algorithm ranks is also established to
complete the comparison among the approaches. For this purpose,
we need a set of results for every approach on several distinct data
sets. Because remote sensing data are expensive to generate, the
comparison has to rely on an artificial data split. In our case, 10
splits are created from the original test data so that each split
contains about 812 instances. Then a 10-FCV process is made for
every split. The results (100 partial values) are then registered. In
this way, a fair comparison of the algorithms can be obtained by
average ranks. According to the 100 registered partial results, our
evolutive approach ranks first as can be seen in Table 4, which
shows the average ranking for each classifier. In this case, a value of
1 for a rank means that a classifier is the best for a split, while a
rank of 3 implies that it is the worst. Therefore, the ideal objective
for our approach is to reach an average ranking value of 1, which
would mean EVOR-STACK would be the best for every split.

A comparison alone is not enough to show the superiority of a
given approach, as has been noted by several authors [40]. We
have to demonstrate that the differences among the rankings of the
algorithms are significant. Our purpose is to compare our approach
with the other two classifiers in terms of accuracy. Since the results
are not normally distributed (this condition is certified by the
D’Agostino-Pearson test [41]), it is not possible to apply a para-
metric test like ANOVA. Therefore, we utilize a non-parametric
procedure for robustly comparing classifiers across multiple data
sets [42] to evaluate the statistical significance of the measured
differences in algorithm ranks. The chosen procedure involves the
use of the Friedman test and the Holm post hoc procedure (see [41]
for a complete description of both non-parametric approaches).

The null hypothesis for the Friedman test is that the ranks are
not significantly different (their averages are not sufficiently differ-
ent from the mean rank r¼2). When the test is applied to assure
the significance level of the results, its p-value is lower than
7.27E�11, so the null hypothesis is rejected. The next step is the
use of the Holm method. This procedure is specially indicated for
rigorous comparisons to detect significant pair-wise differences
among all the classifiers. Thus, for our study, the null hypothesis is
that there exists a pair-wise comparison between an algorithm and
our control method, EVOR-STACK, that does not show significant
differences. The p-value obtained is lower than the required value
for every pair-wise comparison (see column Holm in Table 5), so
the null hypothesis is rejected. Having found that the measured
average ranks are significantly different (at a¼ 0:05), our analysis
based on ranks reveals that the accuracy of EVOR-STACK is
significantly better than that of the other approaches.

The label-dependent feature-weighting evolutive algorithm pro-
vides the weights for every feature according to each class. This
information also permits us to select the best possible features to
distinguish among classes. For the study area, the three features
with the highest weights by class can be seen in Table 6.

Finally, the resulting thematic maps for every classifier can be
seen in Fig. 2 beside the LIDAR intensity image used for this study,



the original orthophoto of the area and the official LULC map of
the Regional Ministry of Andalusia.
5. Discussion

This study provides important facts that have to be taken into
account. The first is related to global accuracy (see Table 2). For
our study area, the three methods obtain overall accuracies over
85%, which suggests that a feature-based approach is very
suitable for thematic map generation. Moreover, the average
accuracy for the EVOR-STACK is 92.21%, which is 1.45% better
than the original R-STACK, which obtains a 90.76% accuracy for
the hold-out process. Both methods improve the results of the
Table 5
Results of the Holm procedure comparison when EVOR-STACK is compared with

each other algorithm for a¼ 0:05.

i Algorithm
z¼

R0�Ri

SE

p Holm

2 SVM 8.839 9.7E�19 0.025

1 R-STACK 3.995 6.5E�5 0.05

Table 6
Three most important features according to their weights for every label in the

study zone.

Class Features

1 HRANGE GKURT INTRASLP

2 HMAX INTRASLP RMIN

3 IAVG GKURT RMIN

4 HAVG RVAR IAVG

5 INTRASLP TOTALR HMAX

6 HMAX SNDVIAVG INTRASLP

7 SNDVIAVG GCV SNDVIMAX

8 RVAR INTRASLP TOTALR

Fig. 2. First row: orthophoto, LIDAR intensity image and official LULC map. Second ro

Colour legend: blue for water, grey for roads and railways, brown for marshland, yellow

purple for dumps and red for buildings and other human-impacted areas. (For interpre

web version of this article.)
classical SVM, which provides near 88% accuracy. These differ-
ences are even greater if we focus on the 10-FCV results.

A deeper study of the results shows that the most problematic
classes are middle and high vegetation. The differences among
them can be slight in some cases (high bushes vs. low trees), and
some intensity values can falsify the classification because multi-
impact intensity can be affected by noise hard to deal with [32]. In
this context, the intensity is modified and the actual value is
unknown. To avoid this problem, some authors do not consider
the multi-impact returns and instead delete them from the final
study. Because we are working with low-resolution LIDAR data
(0.5 pulses/m2 approx.), such a solution is not possible for us.
Thus, correction of the LIDAR intensity is still an important issue,
and for our feature-based approach, the only possible way to
solve this problem is the definition of vegetation indexes that are
not so dependent on LIDAR intensity or the addition of new bands
provided by other sensors (e.g., infrared cameras). Dumps have
also been detected as another problematic class specially when
we analyze the 10-FCV results. This class produces worse results
for this test than for the hold-out process, which leads us to
consider the problem of imbalance data. This problem will be
discussed later and may also affect the case of high and middle
vegetation in the same way, although its effects are less visible.

The insufficiency of a global accuracy of only 85% when
attempting to generate a good thematic map is well-known [8].
Thus, every class has to be over the 85%, but this condition is barely
satisfied even for official maps. In this context, another important
conclusion extracted from our study is that EVOR-STACK is useful to
fulfil this requirement. Looking at the true positive rate of each
method, it is possible to recognize that only the EVOR-STACK
method shows an accuracy above 84.5% for each class, whilst the
other methods have classes with below 80% accuracy. Looking at
the 10-FCV results, this finding is even clearer (Table 3).

It is also important to underline that although the tests per-
formed obtain good results, the post-classification visual inspection
of the resulted map is not completely satisfactory. Salt and pepper
noise is still a problem that undermines the visual quality of the
w: final classification obtained by SVM, R-STACK and EVOR-STACK, respectively.

for low vegetation, lighter green for middle vegetation, green for high vegetation,

tation of the references to color in this figure legend, the reader is referred to the



Table 7
Number of training instances for every class.

Class Training size

Water 2167

Marsh 1246

Roads 1077

Low vegetation 682

Middle vegetation 484

High vegetation 403

Buildings 1239

Dumps 204
map. This behaviour is possibly caused by imbalance problems. The
three problematic classes (dumps, middle and high vegetation)
have a very low number of training instances compared with other
classes like water or buildings (see Table 7). The imbalance problem
has also been detected by other authors in the context of remote
sensing [43–45] and some interesting approaches have recently
appeared in the literature [46–48] which will have to be taken into
account in future research.

Lastly, after the application of the EA, every class has its own
set of features that best determine its label. This information
provides an important feature selection tool and allows us to
establish a more accurate class separation. The importance of a
sensor can be evaluated easily by noting which features are more
important for each class. In our case, LIDAR has the greatest
significance level for almost every class, as expected. Table 2
contains three features per label with the highest coefficients. For
our study area, INTRASLP and HMAX are the most frequent in the
list because the classification relies mainly on heights and
differences among neighbouring heights. The proportion between
LIDAR and image variables is also important. In our case, it is
almost the same (four image features, six LiDAR features and two
mixed indexes). In addition, note that two of the most important
selected features are derived from SNDVI, which demonstrates
the importance of this band in the final classification.
6. Conclusions

In this paper, we presented a hybrid artificial intelligence
method called EVOR-STACK based on a multiple-classifier ensem-
ble to improve LULC map accuracy. The method worked at two
processing levels. First, a label-dependent feature-weighting EA
transformed the feature space, assigning different weights to
every attribute depending on each class. Then the second level
constructed a statistical raster from LIDAR and image fusion data
following a pixel-oriented and feature-based strategy. Finally, the
data were classified using an ensemble of a SVM and a weighted
k-NN. A classical SVM, the original restricted stacking (R-STACK)
and the current improved method (EVOR-STACK) were compared.
The results showed the evolutive approach obtained the best
results in the context of the real data from a riparian area of
Huelva (Spain).

Even though the results are satisfactory, there are still impor-
tant problems to fix. Imbalanced data is the most important one.
Remote sensing data provide a clear example in which the risk of
dealing with imbalanced data is very high. Therefore, specific
approaches for this problem will have to be taken into account to
improve the final results. Finally, some problems are inherent in
pixel-oriented approaches, such as the detection of partial artifi-
cial structures. In the future, it would be very interesting to apply
a prior phase in which, at low addition to the computational cost,
an object-oriented segmentation and classification could be
carried out. In this way, the most difficult structures could be
extracted and classified by means of recognition techniques from
the computer vision world.
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