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It is shown that a closed convex bounded subset of a Banach space is weakly

compact if and only if it has the generic fixed point property for continuous affine

mappings. The class of continuous affine mappings can be replaced by the class

of affine mappings which are uniformly Lipschitzian with some constant M > 1

in the case of c0, the class of affine mappings which are uniformly Lipschitzian

with some constant M >
√

6 in the case of quasi-reflexive James’ space J and

the class of nonexpansive affine mappings in the case of L-embedded spaces.

1. INTRODUCTION

P. K. Lin and Y. Sternfeld [10] gave the complete characterization of
norm compactness for convex subsets of a Banach space in terms of a fixed
point property. They proved that if a convex set K is not compact, then
there exists a Lipschitzian mapping f : K → K with inf{‖x− f(x)‖ : x ∈
K} > 0. It follows that a convex set in a Banach space has the fixed point
property for Lipschitzian mappings if and only if it is compact. In this
paper we study similar problems for weak compactness.

Let X be a Banach space. We say that a closed convex bounded subset
C of X has the generic fixed point property for a class of mappings, if every
mapping from a convex closed subset of C into itself belonging to this class
has a fixed point. We will show that weak compactness of convex sets can be
characterized in terms of the generic fixed point property for some classes

1The first and the second author were partially supported by project BFM 2000-0344
and FQM-127.

2The third author was partially supported by KBN grant NO 2P03A02915.
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of affine mappings. A continuous affine self-mapping of a closed convex
set is weakly continuous. The well-known Schauder-Tychonoff theorem
(see [4, p. 74]) shows therefore that a continuous affine self-mapping of a
convex weakly compact subset C of a Banach space X has a fixed point (see
also [14]). To complete the characterization, in a closed convex bounded
but not weakly compact set C we construct a closed convex subset K
which admits a continuous affine self-mapping without a fixed point. Thus,
in general a closed convex bounded subset of a Banach space is weakly
compact if and only if it has the generic fixed point property for continuous
affine mappings.

Moreover, in some spaces it is possible to replace the class of all contin-
uous affine mappings by a smaller one. For instance, in [3] convex weakly
compact subsets of the space L1[0, 1] are characterized as the only ones
which have the generic fixed point property for nonexpansive (i.e. Lips-
chitzian with constant 1) affine mappings. A similar result was proved for
the preduals of semi-finite von Neumann algebra equipped with a faithful
normal semi-finite trace.

In this paper we prove that a closed convex bounded subset C of c0 is
weakly compact if and only if C has the generic fixed point property for
affine mappings which are uniformly Lipschitzian. In fact, we prove that
these mappings can be chosen with Lipschitz constant arbitrarily close to 1.
As far as we know, it is an open problem if the constant can be chosen equal
to 1. Since B. Maurey [13] proved that convex weakly compact subsets of c0

have the generic fixed point property for nonexpansive mappings, a positive
answer to the above problem would give the inverse of Maurey’s result (see
[12] for related results).

The main tools for proving our results are basic sequences equivalent
to the summing basis of c0. We will show that such a sequence can be
extracted from any sequence (xn) in c0 which converges weak? in `∞ to
an element x ∈ `∞ \ c0. The summing basis can be also considered in
generalized James’ spaces Jp, 1 < p < ∞. Their definition extends that
of quasi-reflexive James’ space J , which is J2 in this notation. We will
show that a convex closed bounded subset C of Jp is weakly compact if
and only if there is M > 31/p21/q, where 1/p + 1/q = 1, such that C has
the generic fixed point property for uniformly Lipschitzian affine mappings
with constant M . In the last section we will extend the results given in [3]
to a larger class of spaces, the so-called L-embedded Banach spaces.

2. PRELIMINARIES

The notation and terminology used in this paper are standard. They
can be found for instance in [11] and [2]. For convenience of the reader
we recall the basic definitions. Let C be a nonempty subset of a Banach
space. The convex hull of C will be denoted by coC. Let us recall that a
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self-mapping T of a convex set C is said to be affine if

T (λx + (1− λ)y) = λTx + (1− λ)Ty

whenever x, y ∈ C and λ ∈ [0, 1]. A mapping T : C → C is nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖

for all x, y ∈ C. We say that T is uniformly Lipschitzian with a constant
M if

‖Tnx− Tny‖ ≤ M‖x− y‖
for every n ∈ N and all x, y ∈ C.

Basic sequences will be our main tool in this paper. Let (xn) be a
sequence in a Banach space X. Its closed linear span will be denoted by
[xn]. Let us recall that (xn) is a basic sequence if each x ∈ X has a unique
expansion of the form x =

∑∞
n=1 tnxn for some scalars t1, t2, . . . . Then the

projections Pn defined on [xn] by the formula

Pn

( ∞∑

i=1

tixi

)
=

n∑

i=1

tixi

are uniformly bounded and S = sup{‖Pn‖ : n ∈ N} is called the basis
constant of (xn) (see [11]). It is clear that

inf
{‖x− y‖ : x ∈ [xi]ni=1, ‖x‖ ≥ a, y ∈ [xi]∞i=n+1, n ∈ N} ≥ a

S
. (1)

for every a > 0. Additionally, we put Rn = Id[xn] − Pn and

S+({xn}) =

{
x =

∞∑
n=1

tnxn : tn ≥ 0 for every n ∈ N,

∞∑
n=1

tn = 1

}
.

In the sequel we will use the following fact.

Fact 2.1. Let (xn) be a bounded sequence in a Banach space X without
weak convergent subsequences. Then

(i) there exist a subsequence (xnk
) and a functional f ∈ X? such that

(xnk
) is a basic sequence and a = inf{f(xnk

) : k ∈ N} > 0. Consequently,
setting g = (1/a)f and yk = (a/f(xnk

))xnk
, we have g(yk) = 1 for every

k ∈ N.
(ii) co(yk) = S+({yk}).
Proof. (i) By [7], (xn) has a basic subsequence (xnk

). Our assumption
guarantees that (xnk

) does not weakly converge to zero. Passing to a
subsequence, we can therefore find f ∈ X? so that inf{f(xnk

) : k ∈ N} > 0.
(ii) is trivial.
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Remark 2.2. The reasoning in the proof of (i) works only for real spaces.
In the case of a complex space it is necessary to replace the functional f
by its real or imaginary part.

A sequence (yk) of nonzero vectors of X is said to be a block basic
sequence of a basic sequence (xn) if there exist a sequence (αn) of scalars
and an increasing sequence of integers 0 ≤ p1 < p2 < . . . such that

yk =
pk+1∑

i=pk+1

αixi

for every k. Clearly, (yk) is also a basic sequence and the basis constant of
(yk) does not exceed that of (xn).

Let (xn) and (yn) be basic sequences. We say that (xn) is equivalent to
(yn) provided that a series

∑∞
n=1 tnxn converges if and only if

∑∞
n=1 tnyn

converges. This is the case if and only if there exist constants M1,M2 ∈
(0,∞) such that

M1

∥∥∥∥∥
∞∑

n=1

tnxn

∥∥∥∥∥ ≤
∥∥∥∥∥
∞∑

n=1

tnyn

∥∥∥∥∥ ≤ M2

∥∥∥∥∥
∞∑

n=1

tnxn

∥∥∥∥∥ (2)

for every sequence (tn) of scalars such that the above series converge. We
say that (xn) is λ-equivalent to (yn) if M2/M1 ≤ λ. Clearly, the relation
of λ-equivalence is symmetric. We will apply the following result (see [11,
Proposition 1.a.9]).

Theorem 2.3. Let (xn) be a basic sequence with the basis constant K
in a Banach space X and let M = inf{‖xn‖ : n ∈ N} > 0. If (yn) is a
sequence in X such that

s =
∞∑

n=1

‖xn − yn‖ <
M

2K
,

then (2) holds with M1 = 1−2Ks/M and M2 = 1+2Ks/M . Consequently,
(yn) is a basic sequence (1 + 2Ks/M)(1− 2Ks/M)−1-equivalent to (xn).

3. CHARACTERIZATION OF WEAKLY COMPACT CONVEX SETS

Let (en) be the standard basis of the space c0. The sequence of vectors
σn =

∑n
k=1 ek = (1, . . . , 1, 0, 0 . . . ) is called the summing basis. It is easy

to see that ∥∥∥∥∥
∞∑

n=1

tnσn

∥∥∥∥∥ = sup
n∈N

∣∣∣∣∣
∞∑

k=n

tk

∣∣∣∣∣

for every sequence (tn) of scalars such that the series
∑∞

n=1 tn converges.
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Let 1 < p < ∞. By Jp we denote the space of all sequences x = (x(n))
of real numbers such that limn→∞ x(n) = 0 and

‖x‖ = sup

(
m−1∑

k=1

|x(qk)− x(qk+1)|p
)1/p

< ∞

where the supremum is taken over all finite sequences q1 < · · · < qm of
positive integers. In case p = 2 this gives us the well-known definition of
James’ space (see [6]). Let Pn be the projection associated to the standard
basis (en) of Jp. Then

Pnx = (x(1), . . . , x(n), 0, 0, . . . )

for every x ∈ Jp. Using this formula, we extend Pn to the linear space of
all sequences. For each p, the space Jp is not reflexive and J??

p is the space
of all convergent sequences x such that

‖x‖J??
p

= sup
n∈N

‖Pnx‖Jp

is finite (see [11, Proposition 1.b.2]). Moreover, Jp does not contain c0 and
`1 isomorphically.

As in the case of c0, the vectors σn = (1, . . . , 1, 0, 0, . . . ) form a basis of
Jp. If (tk) is a sequence of scalars such that the series

∑∞
k=1 tkσk converges

in Jp, then
∥∥∥∥∥
∞∑

k=1

tkσk

∥∥∥∥∥ = sup




m−1∑

k=1

∣∣∣∣∣∣

qk+1−1∑

i=qk

ti

∣∣∣∣∣∣

p


1/p

where the supremum is taken over all finite sequences q1 < · · · < qm of
positive integers.

Proposition 3.1. (a) Let C be a closed convex bounded set in a Ba-
nach space X and (en) be the natural basis of `1. If C is not weakly compact,
then C contains a basic sequence (yn) such that there is an affine homeo-
morphism φ : S+({yn}) → S+({en}) with φ(yn) = en for every n ∈ N.

(b) Let C be a closed convex bounded set in Jp and (σn) be the summing
basis of Jp. If C is not weakly compact, then C contains a basic sequence
(yn) equivalent to (σn). In particular, C contains a closed convex subset
K = S+({yn}) which is bi-Lipschitz homeomorphic to S+({σn}).

(c) Let C be a closed convex bounded set in c0 and (σn) be the summing
basis of c0. If C is not weakly compact, then C contains a basic sequence
(yn) equivalent to (σn). In particular, C contains a closed convex subset
K = S+({yn}) which is bi-Lipschitz homeomorphic to S+({σn}).

Proof. (a) Translating the set C, we can assume that 0 ∈ C. Then
Fact 2.1 gives a basic sequence (yn) in C and a functional g ∈ X? with
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g(yn) = 1 for every n ∈ N. Let K = S+({yn}) and φ : K → S+({en}) be
the affine mapping such that φ(yn) = en for every n ∈ N. We will check
that φ is a homeomorphism.

Take x =
∑∞

n=1 tnyn ∈ K and ε > 0. Fix an index m such that∑∞
n=m+1 tn < ε/4 and put δ = ε/(8m‖g‖(S + 1)) where S is the basis

constant of (yn). If u =
∑∞

n=1 bnyn ∈ K is such that ‖x − u‖ < δ, then
|tn− bn| < 2S‖g‖δ for every n ∈ N and hence,

∑m
n=1 |tn− bn| < ε/4. Next,

∣∣∣∣∣
∞∑

n=m+1

(bn − tn)

∣∣∣∣∣ = |g(Rm(u− x))| ≤ ‖g‖‖Rm‖‖u− x‖ <
ε

4
,

and therefore

∞∑
n=m+1

bn ≤
∣∣∣∣∣

∞∑
n=m+1

(bn − tn)

∣∣∣∣∣ +
∞∑

n=m+1

tn <
ε

2
.

Finally, we have

‖φ(u)− φ(x)‖`1 =
∞∑

n=1

|bn − tn| ≤
m∑

n=1

|bn − tn|+
∞∑

n=m+1

bn +
∞∑

n=m+1

tn < ε,

which shows that φ is continuous.
Clearly, ‖φ−1(u) − φ−1(v)‖ ≤ maxn∈N ‖yn‖‖u − v‖`1 for all u, v ∈

S+({en}). Thus φ−1 is continuous.
(b) Since C is not weakly compact, there exists a sequence (xn) in C

such that (xn) converges weak? in J??
p to some x ∈ J??

p \ Jp. Passing to a
subsequence, we can assume that (xn) is a basic sequence (see [7]). Let S
be its basis constant.

We put M1 = inf{‖xn‖ : n ∈ N}, M2 = sup{‖xn‖ : n ∈ N}. Since x is a
convergent sequence and x /∈ Jp, L = limk→∞ |x(k)| > 0. Given ε ∈ (0, 1),
we set M = (1− ε/16)L and γk = M1ε(S(ε + 16))−12−k−2 for k ∈ N. It is
easy to see that there exists m0 ∈ N such that if m0 ≤ q1 < · · · < qm, then

m−1∑

k=1

|x(qk)− x(qk+1)|p ≤
(

Lε

16

)p

. (3)

Next, we choose two increasing sequences (mk) and (nk) so that m1 ≥ m0,

‖Pmk
(xnk

− x)‖ < γk, ‖Rmk+1(xnk
)‖ < γk+1,

and |x(j)| > M for every j ≥ m1.
We put uk = Pmk

x, vk = (Pmk+1 −Pmk
)(xnk

) and wk = uk + vk. Then

‖wk − xnk
‖ ≤‖Pmk

(uk − xnk
)‖+ ‖Rmk

(vk − xnk
)‖

=‖Pmk
(x− xnk

)‖+ ‖Rmk+1(xnk
)‖ < 2γk
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for every k. Applying Theorem 2.3, we see that (wk) is a basic sequence
(1+ε/8)-equivalent to (xnk

). Let K1 denote the basis constant of (wk). We
choose a sequence (pn) of nonnegative integers such that ∆k > 2(M2K12k+1

(ε + 16)/(Mε))q for every k where ∆k = pk+1 − pk and 1/p + 1/q = 1. Let

zk =
1

∆k

pk+1∑

i=pk+1

ui, z′k =
1

∆k

pk+1∑

i=pk+1

wi.

Then ‖z′k‖ ≥ |z′k(mpk+1)| > M and it is easy to see that

‖z′k − zk‖ =
1

∆k

∥∥∥∥∥∥

pk+1∑

i=pk+1

vi

∥∥∥∥∥∥
≤ 2

1
q

∆k




pk+1∑

i=pk+1

‖vi‖p




1/p

<
Mε

K1(ε + 16)2k+1

for every k. Theorem 2.3 shows that (zk) is a basic sequence (1 + ε/8)-
equivalent to (z′k). Consequently, (zk) is (1 + ε/8)2-equivalent to a block
basic sequence (yn) of (xnk

) whose terms belong to co{xnk
}.

We will show that (zk) is equivalent to (σk). To this end let us fix
a sequence (tk) such that the series

∑∞
k=1 tkσk converges and put N =

‖∑∞
k=1 tkσk‖, y =

∑∞
k=1 tkzk. We take a finite sequence q1 < · · · < qm of

positive integers. By A1 we denote the set of all 1 ≤ j < m such that there
exists k ≥ 2 with qj ≤ mpk

< qj+1 and let A2 be the set of the remaining
indices. Given j ∈ A1, we find k ≥ 1, 0 ≤ i1 ≤ ∆k − 1, l ≥ 2 and 0 ≤ i2 ≤
∆l − 1 such that mpk+i1 < qj ≤ mpk+i1+1 < mpl+i2 < qj+1 ≤ mpl+i2+1.
Then

|y(qj)− y(qj+1)| =
∣∣∣∣∣x(qj)

(
λtk +

l−1∑

i=k+1

ti + (1− µ)tl

)

+ (x(qj)− x(qj+1))

(
µtl +

∞∑

i=l+1

ti

)∣∣∣∣∣

≤|x(qj)|max

{∣∣∣∣∣
l−υ∑

i=k+ν

ti

∣∣∣∣∣ : ν, υ = 0, 1

}

+ |x(qj)− x(qj+1)| sup
n∈N

∣∣∣∣∣
∞∑

i=n

ti

∣∣∣∣∣ .

where λ = 1− i1/∆k, µ = 1− i2/∆l. This gives us the estimate

|y(qj)− y(qj+1)| ≤ M2

∣∣∣∣∣∣

lj∑

i=kj

ti

∣∣∣∣∣∣
+ |x(qj)− x(qj+1)|N (4)

for some k ≤ kj ≤ lj ≤ l. Observe that

∑

j∈A1

∣∣∣∣∣∣

lj∑

i=kj

ti

∣∣∣∣∣∣

p

≤ 2Np. (5)
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Let us now consider the set A2. We decompose it into disjoint intervals
Ak

2 where A1
2 = {j ∈ A2 : 1 ≤ qj < qj+1 ≤ mp2} and Ak

2 = {j ∈ A2 : mpk
<

qj < qj+1 ≤ mpk+1} for k ≥ 2. Assume that Ak
2 is not empty. It is easy to

see that if j ∈ Ak
2 , then

|y(qj)− y(qj+1)| ≤ λk
j |x(qj)tk|+ |x(qj)− x(qj+1)|N (6)

for some nonnegative λk
j such that

∑
j∈Ak

2
λk

j ≤ 1. Clearly,

∞∑

k=1

∑

j∈Ak
2

(λk
j |tk|)p ≤

∞∑

k=1

|tk|p ≤ Np. (7)

Here we regard sums over the empty set as zero. Using (4), (5), (6), and
(7), we obtain




m−1∑

j=1

|y(qj)− y(qj+1)|p



1/p

≤ M2

(
2Np +

∞∑

k=1

|tk|p
)1/p

+ N‖x‖

≤ M2(31/p + 1)N.

(8)

We now set rk = mpk+1 for k ∈ N. If i < j, then

|y(ri)− y(rj)| =
∣∣∣∣∣∣
x(ri)

(
j−1∑

k=i

tk

)
+ (x(ri)− x(rj))




∞∑

k=j

tk




∣∣∣∣∣∣

≥ |x(ri)|
∣∣∣∣∣
j−1∑

k=i

tk

∣∣∣∣∣− |x(ri)− x(rj)|
∣∣∣∣∣∣

∞∑

k=j

tk

∣∣∣∣∣∣

≥ M

∣∣∣∣∣
j−1∑

k=i

tk

∣∣∣∣∣− |x(ri)− x(rj)|N.

This and (3) show that

‖y‖ ≥
(

m−1∑

k=1

|y(rqk
)− y(rqk+1)|p

)1/p

≥ M




m−1∑

k=1

∣∣∣∣∣∣

qk+1−1∑

i=qk

ti

∣∣∣∣∣∣

p


1/p

− Lε

16
N

for every sequence q1 < · · · < qm of positive integers. Hence

‖y‖ ≥ N

(
M − Lε

16

)
= NL

(
1− ε

8

)
. (9)

This completes the proof of (b).
(c) To prove (c) we can apply an argument similar to that in the proof

of (b) (now L = lim supk→∞ |x(k)| > 0). In this way it is not difficult to
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construct a basic sequence (zk) which is M2/M equivalent to the summing
basis (σn) of c0 and such that (zk) is (1 + ε/8)2 equivalent to a block basic
(yn) of (xnk

) whose terms belong to co{xnk
}.

In the special case when C is the unit ball of a nonreflexive space part (a)
of Proposition 3.1 was obtained in [14] (see also [15]). We will generalize
another result from [14].

Let C 6= ∅ be a convex subset of a Banach space and T : C → C be an
affine mapping. We put

θ(T ) = inf
{

lim inf
n→∞

‖x− Tny‖ : x, y ∈ C
}

.

From the first part of the proof of [14, Theorem 3] we see that inf{‖x−Tx‖ :
x ∈ C} = 0. In spite of this fact, if C is not weakly compact, it is possible
to construct a set K ⊂ C and a continuous affine mapping T : K → K
such that θ(T ) > 0. In particular, T fails to have fixed points.

Let (xn) be a bounded basic sequence. The right shift T0 with respect
to (xn) is the mapping defined by the formula

T0

( ∞∑
n=1

tnxn

)
=

∞∑
n=1

tnxn+1.

By the bilateral shift T1 with respect to (xn) we in turn mean the mapping

T1

( ∞∑
n=1

tnxn

)
= t2x1 +

∞∑

k=1

t2k−1x2k+1 +
∞∑

k=2

t2kx2k−2.

Clearly, T0 and T1 are affine self-mappings of S+({xn}) and T1 is onto.

Theorem 3.2. (a) Let C be a closed convex bounded set in a Banach
space X. If C is not weakly compact, then there are a closed convex subset
K ⊂ C and an affine continuous mapping T : K → K such that T (K) = K
and θ(T ) > 0.

(b) Let C ⊂ Jp be a closed convex bounded set. If C is not weakly com-
pact, then there are a closed convex subset K ⊂ C and an affine uniformly
Lipschitzian mapping T : K → K such that θ(T ) > 0.

(c) Let C ⊂ c0 be a closed convex bounded set. If C is not weakly com-
pact, then there are a closed convex subset K ⊂ C and an affine uniformly
Lipschitzian mapping T : K → K such that θ(T ) > 0.

Proof. (a) Let (en) be the standard basis of `1 and T1 : S+({en}) →
S+({en}) be the bilateral shift. Fact 2.1 gives us a sequence (yn) in C and a
functional g ∈ X?. Let S be the basis constant of (yn) and K = S+({yn}).
The proof of Proposition 3.1 (a) shows that the affine mapping φ : K →
S+({en}) such that φ(yn) = en is a homeomorphism. Define T : K → K
by the formula T = φ−1T1φ. Let x =

∑∞
n=1 tnyn and y =

∑∞
n=1 bnyn

9



belong to K. We fix ε > 0 and find m such that ‖Rmx‖ < ε. It is not
difficult to see that ‖PmTny‖ < ε for n large enough. By (1) we obtain

‖x− Tny‖ ≥ ‖Pmx−RmTny‖ − ‖Rmx‖ − ‖PmTny‖ ≥ ‖Pmx‖
S

− 2ε

≥ 1
S

(‖x‖ − ε)− 2ε ≥ 1
S

(‖g‖−1 − ε)− 2ε.

Thus θ(T ) ≥ 1/(S‖g‖).
(b) Let (yn) in C be a sequence given in Proposition 3.1 (b). Then there

is a bi-Lipschitz homeomorphism φ between K = S+({yn}) and S+({σn}).
We can therefore define T : K → K by T = φ−1T0φ where T0 is the right
shift with respect to (σn). Since T0 is nonexpansive, the mapping T is
uniformly Lipschitzian.

Let x =
∑∞

n=1 tnyn, y =
∑∞

n=1 bnyn belong to K. Since (yn) is equiva-
lent to the summing basis (σn) of Jp, there is a positive constant M such
that ‖x‖ ≥ M‖∑∞

n=1 tnσn‖ ≥ M . Let ε ∈ (0,M). An argument as above
yields to

‖x− Tny‖ ≥ M − ε

S
− 2ε

Thus θ(T ) ≥ M/S. The proof of (c) is analogous to (b).

Remark 3.3. Parts (b) and (c) of Theorem 3.2 may be strengthened.
Namely, for any ε > 0 in case (b) we can choose T so that it is uniformly
Lipschitzian with the constant 21/q31/p+ε, where 1/q+1/p = 1, and in case
(c) we can choose T so that it is uniformly Lipschitzian with the constant
1 + ε.

Indeed, let (yn) be a sequence in Jp given in Proposition 3.1 (b). We
can find ν ∈ N such that if n ≥ ν, then

∥∥∥∥∥
∞∑

k=1

tkyn+k

∥∥∥∥∥ ≤ 21/q31/p(1 + ε)

∥∥∥∥∥
∞∑

k=1

tkyν+k

∥∥∥∥∥

for every sequence (tk) of scalars such that the series
∑∞

k=1 tkσk converges.
For this purpose, in the proof of Proposition 3.1 (b) we choose ν ∈ N so
that |x(j)| < L(1 + ε/16) for every j > mpν . Let (tk) be a sequence of
scalars such that the series

∑∞
k=1 tkσk converges. Given n ≥ ν, we write

z =
∑∞

k=1 tkzν+k and z′ =
∑∞

k=1 tkzn+k. We put

N1 = sup




s−1∑

k=1

∣∣∣∣∣∣

jk+1−1∑

i=jk

ti

∣∣∣∣∣∣

p


1/p

and

N2 = sup

(
s−1∑

k=1

|z(jk)− z(jk+1)|p
)1/p
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where both the suprema are taken over all finite sequences mpν
< j1 <

· · · < js. The same reasoning as in the case of (9) shows that

N1L
(
1− ε

8

)
≤ N2.

Let us consider a sequence q1 < · · · < qm of positive integers. If ql =
mpν

+ 1 for some 1 < l < m, then z(qk) = z′(qk) for every k ≤ l and
modifying the proof of (8), we obtain

(
m−1∑

k=l+1

|z′(qk)− z′(qk+1)|p
)1/p

≤ 31/p
(
1 +

ε

8

)
N1L

Hence

m−1∑

k=1

|z′(qk)− z′(qk+1)|p ≤
l−1∑

k=1

|z(qk)− z(qk+1)|p + 3
((

1 +
ε

8

)
N1L

)p

≤
l−1∑

k=1

|z(qk)− z(qk+1)|p + 3
(

1 + ε
8

1− ε
8

)p

Np
2

≤ 3
(

1 + ε
8

1− ε
8

)p
(

l−1∑

k=1

|z(qk)− z(qk+1)|p + Np
2

)

≤ 3
(

1 + ε
8

1− ε
8

)p

‖z‖p.

In the case when there exists 1 < l < m such that ql < mpν + 1 < ql+1 we
replace the sequence q1, . . . , qm by q′1, . . . , q

′
m+1 where q′i = qi if 1 ≤ i ≤ l,

q′l+1 = mpν + 1 and q′i = qi−1 if l + 2 ≤ i ≤ m + 1. Clearly,

(
m−1∑

k=1

|z′(qk)− z′(qk+1)|p
)1/p

≤ 2
1
q

(
m∑

k=1

|z′(q′k)− z′(q′k+1)|p
)1/p

≤ 2
1
q 3

1
p
1 + ε

8

1− ε
8

‖z‖.

It follows that ‖z′‖ ≤ 21/q31/p(1+ε/8)(1−ε/8)−1‖z‖. But (yn) is (1+ε/8)2-
equivalent to (zn). This implies that

∥∥∥∥∥
∞∑

k=1

tkyn+k

∥∥∥∥∥ ≤ 2
1
q 3

1
p

(
1 +

ε

8

)3 (
1− ε

8

)−1
∥∥∥∥∥
∞∑

k=1

tkyν+k

∥∥∥∥∥

≤ 2
1
q 3

1
p (1 + ε)

∥∥∥∥∥
∞∑

k=1

tkyν+k

∥∥∥∥∥ .
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Let now K = S+({yn+ν}n) and T : K → K be the right shift. The
above inequality shows that the Lipschitz constant of Tn−ν does not exceed
21/q31/p + ε.

In the case of c0 we can, analogously, find ν ∈ N such that if n ≥ ν,
then ∥∥∥∥∥

∞∑

k=1

tkyn+k

∥∥∥∥∥ ≤ (1 + ε)

∥∥∥∥∥
∞∑

k=1

tkyν+k

∥∥∥∥∥

for every sequence (tk) of scalars such that the series
∑∞

k=1 tk converges.
Thus the right shift T on K = S+({yn+ν}n) is uniformly Lipschitzian with
the constant 1 + ε.

Let Γ be an infinite set. Every sequence (xn) in c0(Γ) is contained in a
subspace Y of c0(Γ) such that Y is isometrically isomorphic to c0. It follows
that Proposition 3.1 (c), and Theorem 3.2 (c) hold also for the space c0(Γ).

From Theorem 3.2 and Remark 3.3 we deduce the following character-
ization of convex bounded weakly compact sets.

Corollary 3.4. (a) Let C 6= ∅ be a closed convex bounded subset of
a Banach space X. The set C is weakly compact if and only if C has the
generic fixed point property for continuous affine mappings.

(b) Let C 6= ∅ be a convex closed bounded subset of Jp. The set C is
weakly compact if and only if there exists M > 21/q31/p such that C has
the generic fixed point property for affine mappings which are uniformly
Lipschitzian with the constant M .

(c) Let Γ be an infinite set and C 6= ∅ be a convex closed bounded subset
of c0(Γ). The set C is weakly compact if and only if there exists M > 1
such that C has the generic fixed point property for affine mappings which
are uniformly Lipschitzian with the constant M .

4. CHARACTERIZATION OF WEAKLY COMPACT CONVEX
SUBSETS OF L-EMBEDDED BANACH SPACES

Let Y be a Banach space and P be a projection in Y . P is called
an L-projection if ‖x‖ = ‖Px‖ + ‖(Id − P )x‖ for all x ∈ Y . A closed
subspace X ⊂ Y is called an L-summand in Y if X is the range of an
L-projection on Y . A Banach space X is said to be L-embedded if X is
an L-summand in X??. Then there exists a closed subspace Xs ⊂ X??

such that X?? = X ⊕1 Xs. Examples of L-embedded Banach spaces are
the L1(µ)-spaces, preduals of von Neumann algebras, the dual of the disk
algebra A∗ and the quotient space L1/H1

0 . Another class of L-embedded
Banach spaces are the duals of M -embedded Banach spaces. A Banach
space E is called an M -embedded space (also called an M -ideal in its
bidual) if its annihilator E⊥ = {w ∈ E??? : w(e) = 0 for all e ∈ E} is
an L-summand in E???. In this case, the L-projection is just the adjoint
of the canonical embedding of E in E??. It is clear that X = E? is an

12



L-embedded Banach space and X?? = X ⊕1 E⊥. Particular cases of duals
of M -embedded Banach spaces are `1(Γ), the Hardy space H1, the space
C1(H) (dual of the space of compact operators on a Hilbert space), the
duals of certain Orlicz spaces, some Lorentz spaces, etc. A wide study
and more examples of these classes of Banach spaces can be found in the
monograph [5].

In order to establish the main theorem in this section we recall the
following result which can be found in [3, Theorem 1].

Theorem 4.1. Let X be a Banach space and let C be a closed convex
bounded subset of X. Let (εn) be a null sequence in (0, 1). If C contains a
sequence (xn) such that

∞∑
n=1

(1− εn)|tn| ≤
∥∥∥∥∥
∞∑

n=1

tnxn

∥∥∥∥∥ ≤
∞∑

n=1

(1 + εn)|tn|

for all (tn) ∈ `1, then C contains a nonempty closed convex subset K such
that there is a nonexpansive affine mapping T : K → K which fails to have
a fixed point in K.

Theorem 4.2. Let X be an L-embedded Banach space and C 6= ∅ be
a closed convex bounded subset of X. Then the following conditions are
equivalent.

(1) C is weakly compact.
(2) C has the generic fixed point property for nonexpansive affine map-

pings.

Proof. In view of Theorem 3.2 we only need to prove that (2) implies (1).
Assume that C is not weakly compact. Then there exists a net (uα) ⊂ C
such that (uα) converges weak? in X?? to some w ∈ X?? \ X. Thus
w = x0 +xs with x0 ∈ X, xs ∈ Xs and xs 6= 0. From the proof of Lemma 8
in [16] there exist a null sequence (εn) in (0, 1) and a sequence (yn) in
co{uα} ⊂ C such that

∞∑
n=1

(1− εn)|tn| ≤
∥∥∥∥∥
∞∑

n=1

tn

(
yn − x0

‖xs‖
)∥∥∥∥∥ ≤

∞∑
n=1

(1 + εn)|tn|

for all (tn) ∈ `1.
We put zn = (yn−x0)/‖xs‖ for n ∈ N. This gives us a sequence (zn) in

the closed convex and bounded set C0 = (C − x0)/‖xs‖. By Theorem 3.1,
there exist a convex closed subset K0 of C0 and a nonexpansive affine
mapping T0 : K0 → K0 which is fixed point free. Consider now K =
x0 + ‖xs‖K0 which is a closed convex subset of C and define T : K → K
by

T (x0 + ‖xs‖x) = x0 + ‖xs‖T0(x)

for all x ∈ K0. Then T is fixed point free nonexpansive affine mapping
from a closed convex subset of C into itself, which contradicts (2).
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Remark 4.3. Analysis of the proof of Theorem 4.1 shows that the map-
ping T given in its conclusion satisfies the condition θ(T ) > 0. Conse-
quently, the mapping constructed in the proof of Theorem 4.2 also has this
property.

Notice that the word affine can not be dropped from the statement of
the above theorem. This is due to Alspach’s example [1], which shows that
there is a convex weakly compact subset C of L1[0, 1] and a nonexpansive
mapping T : C → C without fixed points.

In the case when an L-embedded Banach space X has the w-FPP, i.e.,
every nonexpansive mapping from a convex weakly compact subset of X
into itself has a fixed point, we can drop the word affine. This gives us the
following modification of Theorem 4.2.

Corollary 4.4. Let X be an L-embedded Banach space with the w-
FPP and let C 6= ∅ be a closed convex bounded subset of X. Then the
following conditions are equivalent.

(1) C is weakly compact.
(2) C has the generic fixed point property for nonexpansive mappings.

Corollary 4.4 may be applied for instance to the sequence space `1,
the space of the trace operators C1(H) (see [9]), the Hardy space H1 (see
[13]) and space of the nuclear operators C∞(`q, `p), dual of the compact
operators K(`p, `q) with 1/p + 1/q = 1 (see [8]).

Since the uniform Lipschitz condition is preserved under renorming, the
following result is a direct consequence of Corollary 3.4 and Theorem 4.2.

Corollary 4.5. Let X denote a renorming of c0(Γ) or Jp or an L-
embedded Banach space and C 6= ∅ be a closed convex bounded subset of X.
The following conditions are equivalent.

(1) C is weakly compact.
(2) C has the generic fixed point property for uniformly Lipschitzian

affine mappings.

Remark 4.6. The bilateral shift with respect to the standard basis of `1
is an isometry. It follows that if X is a renorming of an L-embedded space
and C is a closed convex bounded but not weakly compact subset of X,
then there exist a closed convex subset K of C and a uniformly Lipschitzian
mapping T from K onto K without a fixed point. A similar result holds for
renormings of c0 and Jp. This time however we obtain a mapping which is
only Lipschitzian. Indeed, the bilateral shift with respect to the summing
basis is Lipschitzian in c0 and Jp.
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Verlag, Basel, Boston, Berlin, 1997.

[3] P. N. Dowling, C. J. Lennard and B. Turett, The fixed point property
for subsets of some classical Banach spaces, Nonlinear Anal., TMA,
to appear.

[4] J. Dugundji and A. Granas, “Fixed Point Theory,” PWN, Warszawa,
1982.

[5] P. Harmand, D. Werner and W. Werner, “M -ideals in Banach Spaces
and Banach Algebras,” Lectures notes in Mathematics 1547, Springer,
Berlin, 1993.

[6] R. C. James, A non-reflexive Banach space isometric to its second
conjugate, Proc. Nat. Sci. U.S.A. 37 (1951), 174–177.
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