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Different approaches of feature weighting and k-value selection to improve the nearest neighbour tech-
nique can be found in the literature. In this work, we show an evolutionary approach called k-Label
Dependent Evolutionary Distance Weighting (kLDEDW) which calculates a set of local weights depending
on each class besides an optimal k value. Thus, we attempt to carry out two improvements simulta-
neously: we locally transform the feature space to improve the accuracy of the k-nearest-neighbour rule
whilst we search for the best value for k from the training data. Rigorous statistical tests demonstrate that
our approach improves the general k-nearest-neighbour rule and several approaches based on local
weighting.
The use of weight-based models is common in machine learn-
ing, and specifically, in classification problems (Wettschereck 
et al., 1997). The proper adjustment of weights during the training 
phase improves the model prediction rate. Weighted neural net-
works are perhaps the most used example (Li et al., 2012; Park, 
2009), but support vector machines (Shen et al., 2012) and near-
est-neighbour (Chen et al., 2009) methods can also use weights 
for a better fit. All the weighting proposals have the search for opti-
mal values (in training) in common, attempting to avoid overfit-
ting. This optimization can be carried out by analytical methods 
(e.g., RELIEF method (Sun, 2007)) or by heuristics such as evolu-
tionary computation (AlSukker et al., 2010) or tabu search (Tahir 
et al., 2007).

A survey of the research in the literature on weight-based mod-
els shows that most of them use a set of weights for all instances. 
For example, in the weighted nearest neighbour method, a xi value 
is wanted for each feature fi and represents the influence of fi in the 
calculation of every distance which is modified according to the 
influences of every feature. A weight xi is therefore a measure of 
the importance of fi.

Although most approaches search for a global set of weights for 

 proposals which use 
egion) (Fernandez and 
al., 2010; Chen et al., 
en analyzed, taking into 
et of weights for each
prototype may prove to be too hard (in terms of execution time)
for evolutionary computation.

We explore the hypothesis that feature influence is not the
same for every label. For example, if we classify patients according
to three labels representing variants of a disease, the feature age
could be more important for one variant than for another, and
therefore, it could be more appropriate to have different weights
depending on the variant. The difficulty of such a model is obvious:
if we want to classify a new example with an unknown class and
we have different weights for each class, which set of weights
should we apply? Hence, we propose a heuristic based on an evo-
lutionary algorithm that firstly searches for a set of different
weights per class or label in the training phase and later selects
the best set of weights for each instance in the testing phase to
optimize a nearest neighbour classifier. Moreover, the selection
of the number of neighbours (k parameter) for the nearest neigh-
bour classifier is essential for its best performance. For this reason,
we also use the evolutionary search to simultaneously attempt to
find the best k.

In the next sections, we show how the combination of weight
matrices and a proper number of neighbours results in an objective
good performance of the nearest neighbour rule. The rest of the pa-
per is organized as follows. Section 2 presents related works. Sec-
tion 3 describes the general process for obtaining and using the
weight matrix in the nearest neighbour method. The results
achieved are shown in Section 4. Finally, Section 5 presents a sum-
mary of the conclusions and future lines of work.
2. Related work

There are many works in the literature which refer to how to
obtain weights to improve machine learning techniques. These
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Fig. 1. Training and testing processes.
works can be classified depending on the learning model and the
optimization algorithm used to find the weights. Since our work
is based on the nearest neighbour (NN) rule, we only present pro-
posals based on this paradigm in this section. As we have men-
tioned above, weighting can refer to a global or a local scope.
With regard to global methods, Raymer et al. (2000) present a pro-
posal to select and remove features by a genetic algorithm in com-
bination with NN. This algorithm optimizes a vector of weights
that is used to scale the original features. They also use another
bit vector to make a feature selection simultaneously. In a later
work, Raymer et al. (2003) show a hybrid evolutionary algorithm
based on the Bayes discriminant function for isolating characteris-
tics belonging to large datasets of biomedical origin by selecting
and extracting features. In addition to evolutionary-based optimi-
zation methods, we can find other heuristics. Thus, Tahir et al.
(2007) present a hybrid approach to simultaneously select and
weight features through tabu search (TS) and improve the classifi-
cation accuracy of k-NN.

Considering prototype weighting, Fernandez and Isasi (2008)
propose a local system used with a prototype-based classifier.
The weights are iteratively calculated after applying a local data
normalization. This normalization is based on the positions of the
instances with respect to the prototype (or region) which they be-
long to.

Following with local methods, AlSukker et al. (2010) use a Dif-
ferential Evolution (DE) optimization technique to find weights
that affect different elements of the training set. Four proposals
are described in their work: feature weighting, neighbours weight-
ing, classes weighting and mixed weighting (features and classes),
and the best results are obtained for the latter. Thus, the mixed
method obtains a vector of weights by concatenating two: a vector
of weights by feature, and a vector of weights by class. Therefore,
the degrees of freedom of this proposal are given by the dimension
of the resultant concatenated vector (number of features + number
of classes). Mohemmed and Zhang (2008) present a Nearest Cen-
troid Classifier (NCC) based on the search of the arithmetic mean
of classes from the training data. The instances with unknown label
are classified by measuring the distance to the calculated means.
Particle swarm optimization is used to find the centroids that min-
imize the classification error, and one of the similarity functions
used in this paper consists of a label-dependent Euclidean distance.
This function is introduced by Paredes and Vidal (2006). The simi-
larity function (which is used in our work) is a weighted distance
with the objective of improving the performance of NN. A first ap-
proach considers a weight for each feature and instance from the
training data, resulting in a non-viable number of parameters in
the learning process. Therefore, the authors present three types
of reduction: a weight by class and feature (class-dependency), a
weight by prototype (prototype-dependency) and a combination
of the previous two. The optimization step is carried out by Gradi-
ent Descent.

There are also references to unbalanced data processing. Liu and
Chawla (2011) define a Class Confidence Weight (CCW) as the
probability of a feature value given a class. The CCW estimation
is calculated by mixture models for numeric features, and Bayesian
networks for categorical attributes.

As we have seen previously, a set of weights can be applied in a
global or local way for the nearest neighbour rule. In this work, the
latter option has been analyzed to achieve two goals: getting a
trade-off between complexity and best fit, and objectively showing
the effectiveness of a local feature weighting method. For the first
goal, we have chosen an evolutionary approach to obtain a matrix
of weights (a weight for each class and feature, and therefore with
as many degrees of freedom as the matrix dimension, i.e. number
of features � number of classes) and the best value of the k param-
eter for the k-nearest neighbour. For the second goal, we have
evaluated the experimental results with rigorous statistical tests
that have already been used in the literature (Demšar, 2006; Garcı́a
and Herrera, 2008). All these aspects are exposed in the next
sections.
3. Method

In this section, we describe our method of feature weighting
named k-Label Dependent Evolutionary Distance Weighting
(kLDEDW). Section 3.1 presents the aim of this approach and the
use of the learned parameters (weights and number of neigh-
bours). Section 3.2 details the search algorithm itself.
3.1. Purpose and functionality

As noted above, we aim to find a set of weights and a proper k to
optimize the nearest neighbour rule. The basis of our method is
that this set of global weights will not be the same for all instances
but will depend on the label or class instance. Therefore, we are
searching for a matrix of weights instead of the usual vector. This
matrix will have as many rows as labels in the training file, and
as many columns as features. In this way, we obtain weights for
each feature and label, which allows us to transform the feature
space for a later classification. In addition, this transformation will
be driven by the best k parameter found for the considered training
data.

A set of weights by label provides more information than a sin-
gle weight vector. However, it raises the problem of selecting
which set of weights (matrix row) has to be applied in the testing
phase when we do not know the class of any given instance. There-
fore, a heuristic is needed to determine the weights used to classify
a new testing example. This heuristic is based on the nearest
neighbour rule but with a modified distance calculation. To sim-
plify the notation, we assume that the set of classes or labels can
be represented by the set of integers between 1 and the number
of labels b. Therefore, let D ¼ fðe; lÞje 2 Rf and l 2 f1;2; . . . ; bgg be
our dataset, with f features and b labels from different classes.
Let label be a map that assigns to each element e its class. Suppose
that we divide D into two sets TR and TS, corresponding to training
and testing sets, respectively, so that D ¼ TR [ TS and TR \ TS ¼ ;.
In this way, examples of TS (testing set) will be used to test the
goodness of kLDEDW, and they will not play a role in obtaining
the weights (see Fig. 1 where testing data belongs to a different
set than training data). As we will detail in Section 3.2, we obtain
a matrix W ¼ ðxijÞb�f from only the examples of TR. This matrix
will be used to modify the calculation of the distance between an
instance x 2 TR and another one y 2 TS during the testing phase.



Fig. 2. BLX-a crossover.
For this purpose, we use a weighted distance dw (Paredes and Vidal,
2006) defined as follows:

dwðx; yÞ ¼
Xf

k¼1

xlabelðxÞkðxk � ykÞ
2 with x 2 TR; y 2 TS

xlabelðxÞk is the element ðweightÞ of the weighting matrix
corresponding to the row labelðxÞ and the column k ð1Þ

The justification for this distance is given by the dependence of
the weights on the class so that the calculation of the distance of a
testing example y to the training example x depends on the label of
x. As we can see in Eq. (1), the row selection of the weight matrix is
determined by the label of the training example. Thus, once this
distance dw is defined, the classification of an example of TS is car-
ried out by following the nearest neighbour rule but calculating the
distance with dw.

Consider an example. Suppose that we have six training exam-
ples belonging to three different classes and two features. Let
x1 ¼ ð1:2;2:3;1Þ, x2 ¼ ð3:2;1:3;1Þ, x3 ¼ ð4:3;3:3;2Þ, x4 ¼ ð3:2;
4:7;2Þ, x5 ¼ ð3:2;4:3;3Þ, x6 ¼ ð5:2;1:3;3Þ be the examples. The first
two values represent the features, and the third value is the class
(1, 2 or 3). Let the matrix W be ðð1:4;2:1Þ; ð3:1;0:2Þ; ð0:7;0:4ÞÞ; if
we want to find the label of the point y ¼ ð3:2;4:6Þ, we would cal-
culate the distance to y from the six training examples, so that:

dwðx1; yÞ ¼ 1:4ð1:2� 3:2Þ2 þ 2:1ð2:3� 4:6Þ2 ¼ 16:709
dwðx2; yÞ ¼ 1:4ð3:2� 3:2Þ2 þ 2:1ð1:3� 4:6Þ2 ¼ 22:869
dwðx3; yÞ ¼ 3:1ð4:3� 3:2Þ2 þ 0:2ð3:3� 4:6Þ2 ¼ 4:089
dwðx4; yÞ ¼ 3:1ð3:2� 3:2Þ2 þ 0:2ð4:7� 4:6Þ2 ¼ 0:002
dwðx5; yÞ ¼ 0:7ð3:2� 3:2Þ2 þ 0:4ð4:3� 4:6Þ2 ¼ 0:036
dwðx6; yÞ ¼ 0:7ð5:2� 3:2Þ2 þ 0:4ð1:3� 4:6Þ2 ¼ 7:156
As the minimum value is 0:002, for k ¼ 1 we determine that the

class of y is the same as x4 (class 2). If we consider k ¼ 3, the near-
est points are x4, x5 and x3, and the majority class is then chosen
(also class 2). This classification rule is formalized in the function
NearestN detailed in Section 3.2.3.

3.2. Calculation of weights and k

In this subsection, we detail the evolutionary search algorithm
for obtaining the weighting matrix and the optimal k value. To
determine an evolutionary algorithm, it is necessary to define an
individual encoding, genetic operators, a fitness function and a rule
to carry out the generational replacement. These aspects are de-
scribed in the following subsections.

3.2.1. Individual encoding
An individual is a set of weights for each label and a value for k;

the weights are represented by a matrix with one row for each la-
bel and a column for each feature. Each element of the matrix is a
real value whose initial lower and upper bounds can be custom-
ized. In our case, the chosen range is ½0;1� so that, initially, a value
of 0 indicates that the corresponding feature is irrelevant and a va-
lue of 1 indicates that it is indispensable. However, it is possible to
reach values above one through crossover and mutation operators.
For the number of neighbours the chosen range is an odd integer in
½1;5�. Therefore, the initial population consists of N real-valued
matrices of dimensions b� f with random values between 0 and
1, and N random odd integers from 1 to 5.

3.2.2. Genetic operators
Since our algorithm works with matrices instead of the usual

linear structures, we have adapted the operators of crossover and
mutation used in our individuals. Thus, the crossover between
two matrices is carried out row by row so that the ith row of one
parent crosses the ith row of the other. For this crossing between
two vectors of real numbers, we use the BLX-a crossover that is
very common in the literature (Eshelman and Schaffer, 1993). For
the k parameter, the operation consists of the random selection be-
tween each one of the k values from the ancestors. The BLX-a cross-
over is described as follows. If xij and x0ij are the jth elements of
the ith row of each parent, the new gene is a real value randomly
chosen in the range ½xmin � Ia;xmax þ Ia� (Fig. 2).

Regarding the weighting matrix and the mutation operator,
each row has a probability of p that any of its weights w is in-
creased or decreased in a random value d �w. Initially, d 2 ½0;1�,
but for a better fit, every g generations, the upper bound is reduced
by g=G, where G is the total number of generations. For example, if
G ¼ 100 and g ¼ 10, during the first ten generations, the upper
bound for d is 1, in the following ten it will be 0:9, in the next
ten 0:8, and so on. For the k parameter, its value is increased or de-
creased in two unities in the range ½1;5� with a probability of p.

3.2.3. Fitness function
During the training phase, we only use the subset TR � D. The

fitness function should reward those individuals that obtain a bet-
ter classification on the training set but that prevent over-fitting
for these examples. This is the reason why the training phase
and the fitness function are based on a cross-validation on TR
and its accuracy respectively. We have to keep in mind that we
can know the class label on the TR data, and thus the fitness works
as a measure of the quality of the performed prediction.

As we show in Fig. 3, the fitness is calculated using m� s cross-
validations, where m is the number of times to repeat the valida-
tion process (line 3) and s is the number of partitions of the train-
ing set TR (line 4). Thus, for each validation, the set TR is divided
into s bags B1;B2; . . . ;Bs. For each bag Bj, we evaluate the fit of a
classification, where Bj acts as the testing set and the remainder
of TR as the training set. This evaluation is conducted by the Eval-
uate function, which will be analyzed later. The error of this classi-
fication on Bj is accumulated on average (lines 7 and 9) by the
partialError variable for each bag, and by error (line 10) for each
validation. Finally, the fitness value corresponds to the mean value
of the error for all validations (line 12).

The Evaluate function takes as input parameters the matrix W,
the k value, the virtual training set TR� Bj and the virtual testing
set Bj (line 7) and returns the accuracy for the virtual testing set
of a classifier based on W taking the reference instances from the
virtual training set. The classifier used is a version of the k nearest
neighbour based on the modified Euclidean distance from Eq. (1).
For each virtual testing instance (line 16), the label returned is
the majority label corresponding to its k nearest neighbours in
the virtual training set by the NearestN function (line 17). If the
label returned does not match the label of the virtual testing



Fig. 3. Fitness function.
example, the error increases by 1 (line 19). Subsequently, the
resulting error is normalized by the virtual testing set size (line
22). Therefore, the value returned by Evaluate is a real value
between 0 (classification success) and 1 (misclassification). The
NearestN function calculates the closest instances from the virtual
training set to the virtual testing instance y (line 24 et seq.). We in-
sert each example from the virtual training data in a sorted set
according to its distance to y (line 27) so that the resulting first



example of the sorted set is the nearest neighbour, and the last is
the farthest neighbour from y. After selecting the k nearest neigh-
bours from the sorted set (line 29), the majority label is returned
(lines 30 and 31).

3.2.4. Generational replacement
For the replacement of individuals from one generation to the

next, we have chosen an elitist design where the best individual
moves to the next generation without being affected by the muta-
tion operator. The rest of the new population is formed as follows:
if the number of individuals is N, the following C � 1 individuals
are formed by cloning the best individuals of the previous genera-
tion. The remaining N � C individuals are formed by the crossover
operator. All individuals except the first are subjected to a muta-
tion operator with probability p. To select the individuals that will
be involved in the crossover operation, the roulette-wheel and
tournament methods have been tested without any significant
differences.
4. Results

This section presents the algorithm setup and the results ob-
tained by our proposal compared with other algorithms. In Section
4.1, we analyze the parameters of our approach, in Section 4.2, we
show the results, and in 4.3, these results are statistically validated.

4.1. Parameters

The configuration of standard evolutionary algorithms is widely
discussed in the literature but for exclusive parameters it is neces-
sary to perform an analysis of its behaviour. To observe the param-
eters sensibility of our approach, we performed eight experiments
for four different datasets. Four experiments were made by varying
the parameter a of the crossover operator, and the remaining by
varying the parameter g of the mutation operator. As seen in Sec-
tion 3.2.2, the parameter a is related to the BLX-a operator for
real-coded individuals, and g is a parameter ad hoc. For each exper-
iment the average of the accuracy was obtained using 2� 2 cross-
validation a total of three times (with the same folders). We can
see that although the influence of the parameters is not significant,
for a value of g ¼ 20 we see a better overall performance (see Ta-
ble 1). The parameter a seems to be slightly less influential,
although the literature provides a standard value of 0.5. Taking into
account the above, the default setting for the studied parameters is
a ¼ 0:5 and g ¼ 20. All other values of our evolutionary algorithm
are those that appear widely in the literature, i.e. a population size
of 100, 10% of elitism (value of C) and a probability of mutation of
10%. Regarding the number of generations, tests showed stability
in the fitness value when 90–100 iterations were achieved, so that
100 was took as default value.
Table 1
Sensibility analysis for a and g. Bold values are the best results for each dataset.

Balance s. Haberman Liver d. Tae

a ¼ 0:3 86.704 73.148 60.203 55.665
a ¼ 0:4 86.704 73.910 58.901 56.651
a ¼ 0:5 86.491 73.529 60.829 56.765
a ¼ 0:6 86.944 72.386 60.059 56.217

g ¼ 5 86.678 72.277 60.926 55.995
g ¼ 10 86.997 72.985 61.409 56.659
g ¼ 15 87.317 72.494 61.552 54.124
g ¼ 20 87.343 73.802 61.312 58.855

Average 86.897 73.066 60.649 56.366

Standard deviation ±0.310 ±0.643 ±0.890 ±1.32
To make a fair comparison with other algorithms in the exper-
imentation step, we have considered the same configuration of our
approach in the following subsections.

4.2. Experiments

We can see in Table 2 the results obtained by the different ap-
proaches referenced in Section 2 with datasets from the UCI repos-
itory (Asuncion and Newman, 2007). As we have seen previously,
the represented works have in common the use of local weighting.
Because there is no concordance in validation methods and data
used by each approach, this table is indicative only and it can not
be employed as a valid comparative study. We can observe that
the most complete experimentation is performed by Paredes and
Vidal (2006).

To perform the experiments and a proper comparative study,
we have implemented DE4 (AlSukker et al., 2010), and compiled
the source code of CW (Paredes and Vidal, 2006) which is available
on http://users.dsic.upv.es/�rparedes/research/CPW/index.html.
Also, we have compared kLDEDW with IBk (implementation of k
nearest neighbour in the WEKA framework (Hall et al., 2009) for
three typical values of k: 1, 3 and 5. Thirty datasets from the UCI
repository were used with different numbers of labels and types
of features. As will be seen later, this number of tests allows us
to make a reliable statistical analysis. We have chosen to use a
10 cross-validation as testing method. To reduce the influence of
the random nature of the evolutionary algorithm, for each dataset,
five experiments were carried out, each with a different data order-
ing. Therefore, we had a total of 50 experiments by dataset (5 � 10
cross-validation). The data used in this experimentation were pre-
processed by the WEKA framework (Hall et al., 2009). Thus, nom-
inal features were converted to numerical values, all values were
normalized to lie between zero and one, and finally all numerical
missing values were replaced by the mean value of the correspond-
ing feature. All algorithms involved in experiments were tested
with the same pre-processed datasets (see Table 3).

Table 3 shows the percentage results for the 30 datasets used.
Each row contains the mean accuracy of 50 runs for each classifier
(5 � 10 CV). We can observe for the IBk family that a high value of
k does not necessarily imply a better accuracy, and therefore the
selection of a proper k is important for a good performance of near-
est neighbour rule. At the foot of Table 3, we show the mean suc-
cess of all tests. An improvement can be seen in the results when
our proposal is compared with its competitors. On the one hand,
we see that our work’s averages are better than the other proposals
and its standard deviation is close to that obtained by the IBk fam-
ily but lower than of the two proposals based on local weighting.
Furthermore, our method wins 11 out of 30 data sets, and it is sec-
ond in 13 of the remaining 19. In the next subsection, we show that
this improvement is significant from the statistical point of view.

4.3. Statistical analysis

To establish a proper evaluation of the results, we have con-
ducted a series of tests that statistically validate the comparison
of all of the algorithms used in the experimentation. Specifically,
we have used the non-parametric Friedman’s test and Holm’s post
hoc procedure. We use a non-parametric test because of the failure
of some of the conditions for the application of parametric tests
(independence, normality and homoscedasticity) (Demšar, 2006;
Garcı́a and Herrera, 2008). Concretely, Demšar (2006) suggests that
the condition of independence cannot be verified in cross-valida-
tions because a portion of the examples is used both for training
and testing in different partitions. In our case, having used a
5 � 10 cross-validation, the condition of independence is therefore
not satisfied.

http://users.dsic.upv.es/~rparedes/research/CPW/index.html
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Table 2
Accuracy of related works.

Validation kLDEDW Paredes and Vidal (2006) Mohemmed and Zhang (2008) Fernandez and Isasi (2008) AlSukker et al. (2010)
5 � 10 CV 100 � 5 CV 10 � 3 CV 100 � 10 CV 10 � Hold-Out (66%-33%)

Aaustralian 85.943 82.63 85 – –
Balance s. 88.186 82.02 90.7 – –
Breast w. 96.529 96.31 96.2 – 99.93
Diabetes 74.533 72.01 75.8 74.118 81.04
Glass 73.593 71.48 – 63.714 –
Heart s. 79.47 77.66 81.2 – –
Ionosphere 92.207 – – – 98.85
Liver d. 61.004 59.78 – 65.294 –
Sonar 86.466 – – – 90.19
Vehicle 72.43 70.62 57.7 – –
Vote 95.651 93.39 – – –
Vowel 98.815 98.64 – – –
Wine 97.913 98.56 93.8 – –

Table 3
Accuracy of each studied algorithm. Bold values are the best results for each dataset.

kLDEDW IB1 IB3 IB5 CW DE4

Australian 85.94 ± 2.04 80.20 ± 2.25 83.55 ± 1.92 84.37 ± 1.24 80.92 ± 4.27 81.88 ± 2.20
Balance s. 88.18 ± 1.00 86.80 ± 0.97 86.90 ± 1.10 88.28 ± 0.95 85.63 ± 3.22 58.40 ± 6.59
Breast t. 71.01 ± 5.50 68.29 ± 5.01 63.90 ± 5.98 65.39 ± 7.65 70.74 ± 10.07 67.54 ± 3.71
Breast w. 96.52 ± 1.16 95.65 ± 1.05 96.63 ± 0.98 97.18 ± 1.08 96.75 ± 2.15 96.34 ± 1.31
Car 96.38 ± 0.59 93.12 ± 0.59 93.12 ± 0.59 93.12 ± 0.59 73.18 ± 29.87 96.32 ± 0.67
CMC 46.89 ± 2.32 44.35 ± 1.37 47.05 ± 1.68 45.93 ± 1.58 44.01 ± 4.04 44.85 ± 1.65
Diabetes 74.53 ± 2.04 70.93 ± 2.10 74.38 ± 2.21 74.72 ± 1.54 68.74 ± 3.99 67.07 ± 2.51
E. coli 86.13 ± 2.11 80.23 ± 2.84 84.83 ± 2.19 86.48 ± 1.96 80.53 ± 5.93 79.91 ± 2.89
Glass 73.59 ± 3.41 70.01 ± 3.33 68.62 ± 3.41 66.12 ± 4.64 75.23 ± 7.4 64.94 ± 6.39
Haberman 74.40 ± 2.60 67.03 ± 2.59 71.58 ± 2.71 71.07 ± 1.77 71.51 ± 4.55 56.01 ± 3.96
Heart s. 79.47 ± 2.78 75.20 ± 3.11 78.52 ± 3.39 78.36 ± 3.13 76.22 ± 6.94 74.37 ± 3.26
Hill v. 53.32 ± 2.26 50.31 ± 1.52 51.16 ± 2.40 51.39 ± 2.58 52.86 ± 5.34 52.27 ± 2.65
Ionosphere 92.20 ± 2.18 86.89 ± 2.46 86.13 ± 1.78 85.61 ± 1.52 91.68 ± 4.63 91.97 ± 2.11
Liver d. 61.00 ± 3.78 59.31 ± 3.96 61.80 ± 3.85 58.35 ± 3.70 63.33 ± 7.96 62.54 ± 3.43
Lymphoma 85.12 ± 5.69 81.73 ± 3.03 78.70 ± 4.14 78.53 ± 4.30 84.85 ± 8.93 79.86 ± 4.11
Mammographic m. 81.04 ± 1.69 76.83 ± 1.89 80.97 ± 1.84 82.20 ± 1.52 75.96 ± 4.07 76.07 ± 1.66
Mfeat m. 72.04 ± 0.91 65.83 ± 1.49 69.65 ± 1.30 71.08 ± 1.15 65.99 ± 2.57 66.63 ± 1.02
Ozone 94.00 ± 0.26 92.27 ± 0.95 93.96 ± 0.30 94.04 ± 0.31 93.80 ± 0.61 78.06 ± 1.24
Pendigits 99.49 ± 0.04 99.36 ± 0.12 99.37 ± 0.08 99.27 ± 0.08 99.57 ± 0.17 99.43 ± 0.04
Postoperative p. 69.47 ± 4.28 62.89 ± 3.08 69.24 ± 4.31 72.40 ± 3.87 63.77 ± 13.61 43.80 ± 9.79
Sonar 86.46 ± 3.78 84.85 ± 3.44 83.00 ± 4.93 82.56 ± 3.68 88.97 ± 6.60 85.02 ± 2.69
Sponge 90.86 ± 3.88 92.33 ± 3.08 88.78 ± 1.74 88.78 ± 1.74 95.00 ± 6.18 87.14 ± 7.11
Tae 61.33 ± 6.63 60.96 ± 6.14 50.35 ± 7.71 53.65 ± 5.86 66.88 ± 12.17 63.68 ± 7.56
Transfusion 76.34 ± 1.25 69.46 ± 2.08 73.81 ± 1.50 75.99 ± 1.65 68.05 ± 15.39 64.24 ± 2.26
Vehicle 72.43 ± 1.72 70.00 ± 1.44 70.59 ± 1.58 70.91 ± 1.53 72.47 ± 3.92 71.02 ± 1.73
Vote 95.65 ± 1.67 93.00 ± 1.56 93.95 ± 1.84 94.01 ± 2.31 95.31 ± 3.07 94.39 ± 1.32
Vowel 98.81 ± 0.62 99.07 ± 0.34 96.41 ± 1.46 92.75 ± 1.35 99.23 ± 0.87 99.30 ± 0.30
Wine 97.91 ± 1.92 94.51 ± 1.84 95.64 ± 2.29 95.48 ± 2.35 97.99 ± 3.51 97.48 ± 2.08
Yeast 57.24 ± 1.15 52.91 ± 1.43 55.21 ± 1.13 57.56 ± 1.38 53.47 ± 2.83 50.98 ± 1.55
Zoo 91.08 ± 3.41 95.37 ± 2.82 92.73 ± 2.79 94.66 ± 2.17 96.07 ± 5.93 94.24 ± 4.08

80.29 ± 2.42 77.32 ± 2.26 78.02 ± 2.44 78.34 ± 2.31 78.29 ± 6.36 74.86 ± 3.06

Table 4
Average rankings of the algorithms (Friedman).

Algorithm Ranking

kLDEDW 2.033
CW 2.999
IB5 3.45
IB3 3.783
DE4 4.233
IB1 4.500
The Friedman non-parametric test is similar to ANOVA. First, for
a given database, we calculate the ranking of the results obtained
by each algorithm, where the best has a value of 1, and the worst
has a value of k (the number of algorithms to compare). This oper-
ation is performed for the N databases considered, so finally the
mean ranking is obtained using each algorithm. The null hypothe-
sis is the assumption that the results of the algorithms are equiva-
lent and, therefore, that they are not statistically different. Eq. (2) is
the statistic used by the Friedman’s test, where Rj ¼ 1

N

P
ir

j
i and rj

i is
the ranking for the ith algorithm and jth database. v2

F is distributed
as a v2 with k� 1 degrees of freedom. Table 4 presents the rank-
ings obtained.

v2
F ¼

12N
kðkþ 1Þ

X
j

R2
j �

kðkþ 1Þ2

4

!
ð2Þ
The p-value obtained in the test is 1.918E�6 with a ¼ 0:05, and
therefore we can reject the null hypothesis.

Holm’s post hoc method is an a posteriori procedure that allows
us to compare a control algorithm (in this case kLDEDW) with the
rest of the proposals. If we have k algorithms, the null hypothesis is



Table 5
Holm’s procedure.

i Algorithm p a=ðk� iÞ

1 IB1 3.282E�7 0.01
2 DE4 5.253E�6 0.0125
3 IB3 2.914E�4 0.0166
4 IB5 0.003 0.025
5 CW 0.0454 0.05
the assumption that some of the remaining k� 1 algorithms have
the same quality as the control algorithm. The procedure starts
testing the hypotheses sequentially ordered according to their sig-
nificance values.

z ¼ ðRi � RjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þ

6N

r,
ð3Þ

Let p1; p2; . . . ; pk�1 be the sorted p-values, so that
p1 6 p2 6 � � � 6 pk�1. The Holm method compares each pi with
a=ðk� iÞ starting from the smallest p value. If p1 < a=ðk� 1Þ then
the corresponding hypothesis is rejected, allowing us to compare
p2 with a=ðk� 2Þ. If the second hypothesis is rejected, we continue
the process. If a hypothesis cannot be rejected, the rest, which have
not yet been tested, are considered accepted. In Eq. (3), we can see
the statistic to compare the ith algorithm with the jth. In our case,
all hypotheses are rejected for a ¼ 0:05 (see Table 5).

Noting that the differences between the six algorithms are sta-
tistically significant and considering the results of the rankings, we
can conclude that kLDEDW obtains the most satisfactory results.

5. Conclusions

In this paper, we have explored the possibility of selecting a
suitable number of neighbours with feature weighting for the
nearest neighbour rule. The main characteristics of our approach
are twofold. First, the weights are not equal for all data but depend
on the label and therefore, we are not searching for a classical
weighting vector but a matrix. The second feature is that the num-
ber of neighbours is deduced from training data. The main diffi-
culty of this approach is how to apply the methodology during
the testing phase, where the label cannot be used to select the
weights. The use of a weighted distance between the testing and
training data in the nearest neighbour rule solves this problem.
To optimize the model, a real-coded evolutionary algorithm has
been used. The proposed methodology has been tested on datasets
from the UCI repository. The number of datasets used and the
cross-validation for each dataset allow a rigorous statistical analy-
sis of the results. This analysis confirms that our approach outper-
forms five classification algorithms including two other local
weighting methods. In future work, we plan to test this methodol-
ogy in various real domains such as medical data and remote
sensing.
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