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Abstract: Active optical sensing (LIDAR and light curtain transmission) devices mounted 

on a mobile platform can correctly detect, localize, and classify trees. To conduct an 

evaluation and comparison of the different sensors, an optical encoder wheel was used for 

vehicle odometry and provided a measurement of the linear displacement of the prototype 

vehicle along a row of tree seedlings as a reference for each recorded sensor measurement. 

The field trials were conducted in a juvenile tree nursery with one-year-old grafted almond 

trees at Sierra Gold Nurseries, Yuba City, CA, United States. Through these tests and 

subsequent data processing, each sensor was individually evaluated to characterize their 

reliability, as well as their advantages and disadvantages for the proposed task. Test results 

indicated that 95.7% and 99.48% of the trees were successfully detected with the LIDAR 

and light curtain sensors, respectively. LIDAR correctly classified, between alive or dead 

tree states at a 93.75% success rate compared to 94.16% for the light curtain sensor. These 

results can help system designers select the most reliable sensor for the accurate detection 

OPEN ACCESS 



Sensors 2014, 14 10784 

 

and localization of each tree in a nursery, which might allow labor-intensive tasks, such as 

weeding, to be automated without damaging crops. 

Keywords: optical sensors; tree stem detection; state tree classification; LIDAR; light 

curtain transmission 

 

1. Introduction 

Juvenile trees are propagated in a tree nursery and grown to usable size before transfer to a permanent 

orchard site. Similar to other agricultural crops, nursery tree production is affected by temperature, 

drought, and economic pressures on the production practices associated with labor requirements and pest 

control needs. Most of the nursery operations remain highly labor intensive and utilize minimal 

automation of mechanized practices. Although some processes have been mechanized and automated, 

many others have not. According to estimates based on the “Resource book on horticulture nursery 

management”, by Yashwantrao Chavan Maharashtra Open University, manpower accounts for 70 

percent of the production costs of a horticultural nursery [1].  

In nearly all tree nurseries, seedlings are grafted in the spring, pruned and grown during the summer 

and fall, and excavated the following winter for bare-root sale. To efficiently market these trees, the 

nursery must have a precise count of the number and size distribution of each cultivar. A sampling 

method is used by many nurseries when conducting inventories and the total number of trees in the field 

is estimated by counting a selected number of rows. An error that occurs during counting might cause 

serious marketing problems if the number of estimated trees in the sample is not close to the actual 

number of trees available in the nursery. Some nurseries count each tree in the field, which results in a 

labor-intensive operation [2]. With this method, an evaluation of the feasibility of the automation of 

these nursery tasks compared to the efficiency of manual labor would be beneficial for determining if 

automation might lead to a lower cost for the nursery, which would significantly benefit the industry. 

Specialty crop producers are beginning to experience significant progress in automating tasks that 

had previously been the exclusive domain of major crops, such as wheat, soy, and rice. Nearly 30 years 

ago, Maw et al. [3] developed a photoelectric transducer for counting seedlings in containerized nursery 

operations. For the development of this study, they used a photo-interrupt sensor with a  

near-infrared (NIR) emitter and a phototransistor detector mounted in a stationary comb through which 

the trays were conveyed. The results indicated were an accuracy of 98% and an imprecision of 3% with 

a speed of 40 plants per second [3]. Today, vehicles are capable of driving autonomously along rows of 

fruit and nursery trees while incorporating a variety of sensors that increase management efficiency [4]. 

Kranzler [5] developed an optoelectronic tree seedling counter for use in forestry nurseries with 

similar systems. The system was composed of a light-barrier with multiple NIR light-emitting diodes 

(LED) on one side of the seedlings for illumination and a linear array of photodiodes on the other side for 

detection. In this way, a tree was counted as long as all of the detectors were blocked. An optical encoder 

for measuring linear displacement was coupled to a small tractor wheel where the sensor system was 

mounted. The results showed a count error with pine seedlings ranging from 4% to 58% depending on 

the sensor settings and diameter measurement error with wooden dowels ranging from 2.5% to 40.6%. 
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Problems caused by needle formation and irregular stem structure limited the field measurement of 

diameter to counts within size categories [5]. 

Delwiche and Vorhees [2] developed an optoelectronic system to count and size fruit and nut trees in 

commercial nurseries. For this purpose, an optical sensor was designed using a high-power infrared laser 

for illumination. Similar to the study of Kranzler, a rotary encoder was used and was coupled to one of 

the wheels of the cart for displacement measurements. The signal processing was based on the 

comparison of the recorded signal with the background threshold; when the background threshold was 

exceeded, it corresponded to a tree trunk entering the field of view. Calibration tests showed that the 

system could measure the trunk diameter to 1.9 mm (three times the standard error of prediction) with a 

sensor placed 15 to 23 cm from the tree line. Leaves, low-level suckers, and weeds were observed as 

causing inaccurate counting and sizing [2]. 

Lasers were used as an optical sensor in a study by Kise et al. [6], who developed a targeted spray 

system for cutworm control in grapes that hit only the targeted trunk or posts. The system consisted of a 

laser sensor system for target recognition and a single-nozzle sprayer system, all of which were built on 

a small electric utility vehicle platform equipped with automated speed control and steering. The results 

showed trunk detection greater than 96% at operational speeds of up to 1.1 m·s
−1

 [6]. 

Kang et al. [7] adapted the concepts used by Kise et al. [6] in their targeted sprayer system to a  

low-cost, commercially available spray trailer. The automated trailer-based sprayer system consisted of a 

scanning laser-based trunk detection system and multi-nozzle sprayer controller installed on a modified 

trailer sprayer with both sides equipped to spray grape trunks in adjacent vineyard rows. When the laser 

sensor completed one full scan, the raw data, including the distance and measurement angle, were 

obtained and conveyed to the trunk’s labeling and filtering function, which extracted the trunk 

information from the raw data. The labeling function evaluated each point’s connectivity to adjacent 

points based on a fixed distance and determined the presence of an object (trunk or post). The tests 

showed that the laser scanner-based target recognition system could detect trunks and posts at all of the 

tested travel speeds. However, the detected trunk radius decreased linearly with increasing speed [6]. 

Following the same line of work one year later, Kang et al. [8] developed a sucker detection system to 

trigger a targeted spray application for vine-specific sucker control in grape vineyards. The sucker 

detection system consisted of a laser scanner for vine detection and color camera for imaging the 

suckers. The results from field tests showed that the developed system could identify more than 97% of 

the suckers at three travel speeds, from 1.6 to 3.2 km·h
−1

. The average accuracy of the sucker dimension 

measurement ranged from 83% to 88%. The root mean square error (RMSE) of the relative position of 

suckers to the corresponding trunk varied from 13 to 29 mm [8]. 

Previously studies have not assessed different optical sensors under the same conditions to determine 

the state of the tree (alive or dead) [9]. Under this premise, the main goal of this article was to evaluate 

the two optical sensors (laser and photoelectric) most commonly used for such assessments under the 

same nursery test conditions. 

The objective of this study was to evaluate under the same nursery test conditions two different 

optical sensors and their data processing software to select the most reliable sensor for the accurate 

detection, localization and classification (alive or dead) of each one-year-old tree in the nursery. The use 

of these sensors will enable automated tree counting and potentially other future tasks with the same 

efficiency as manual labor and at a lower cost to the nursery. 
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2. Materials and Methods 

2.1. Optical Sensors and Configuration 

The optical sensors evaluated were a LIDAR (Light Detection And Ranging) sensor for determining 

the distance from a laser emitter to the tree using a pulsed laser beam based on the time-of-fight (TOF) 

and a photoelectric transmission barrier using 4 pairs of optical light curtain transmitters and receivers to 

evaluate the interruption by the tree of the light curtain between the two devices. All of the sensors were 

installed on a prototype vehicle, and they are examined in detail below. 

2.1.1. Laser Sensor 

The laser sensor was the model LMS 221, SICK AG, Waldkirch, Germany, and its main 

characteristics are summarized in Table 1. 

Table 1. LMS 221 technical data. 

Features Performance 

Operating range: Up to 80 m Systematic error: ±15 mm 

Angular resolution: 1° Statistical error: ±5 mm 

Light source: Infrared (905 nm) Interfaces/mechanics/electronics 

Field of view/Scanning angle: 180° Data interface: RS 232 (38.4 kBd) 

MTBF: 50,000 h Supply voltage: 24 V DC (20 W) 

Laser Class: 1 (EN/IEC 60825-1) Enclosure Rating: IP 67 

Scanning Frequency (by the Software): 10 Hz Temperature Range: −30 °C to +50 °C 

Figure 1. (Middle) Equipment mounted on the sensor platform that was used. (Bottom left) 

Tree stem detection. (Top right) Detail of the two sensors locations: Laser at the top and four 

light curtain emitters at the bottom. (Bottom right) Schematic of the LIDAR and light curtain 

orientation. (Top left) Detail of the encoder coupled by a timing chain to one of the wheels. 
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The laser was installed in a vertical orientation in the middle, right side of the prototype vehicle with 

a ground clearance of 56 cm and at a 50 cm distance from the centerline of the vehicle (Figure 1). The 

laser was positioned to scan the row of trees passing through the center of the vehicle. At this distance 

from the trees, and according with to the manufacturer’s specification of the laser, the spot diameter  

of the laser beam was 3 cm with a distance between the individual measured points (spot spacing)  

of 1.8 cm. 

2.1.2. Light Curtain Sensor  

The light curtain sensor was the model Mini-Beam SM 31 EL/RL, Banner Engineering Co., 

Minneapolis, MN, USA, and its main characteristics are summarized in Table 2. 

Table 2. Mini-Beam SM31 EL/RL technical data. 

Features Interfaces/Mechanics/Electronics 

Range: 30 m Output type: Bipolar NPN/PNP 

Light source: Infrared (880 nm) Supply voltage: 12 V DC  

Maximal frequency: 500 Hz Environmental rating: IEC IP 67 

Beam pattern distance: ≈35 mm Operating temperature: −20 °C to +70 °C 

Four light curtain emitters were installed vertically in the same line as the laser on the middle right 

side of the prototype vehicle with a height above ground of 12.7 cm to the lowest emitter and a 5.1 cm 

vertical spacing between each emitter. The four receivers were installed in the middle, left side of the 

prototype vehicle with a distance to the transmitter of 1.1 m so that the light curtain covered a vertical 

height from 12.7 cm to 28 cm above ground level (Figure 1). 

The recording frequency of the light curtain was determined by the forward speed of the vehicle 

because the acquisitions of each pair of light curtain data (interruptions in the beam) were triggered  

by changes in the odometry encoder values (i.e., by forward travel). A horizontal slotted aperture of  

1.0 × 6.4 mm (AP31-040H) was installed in each light curtain sensor; use of these apertures allowed for 

a closer matching of the size and shape profile of the detected object (i.e., trees). 

2.1.3. Sensor Acquisition Configuration 

As previously mentioned, the sensors were installed on a manually powered prototype vehicle that 

was composed mainly of structural framing (to provide suitable robustness), four bicycle wheels, and a 

pair of horizontal shelves as support for the computers (one for each optical sensor). Placement of the 

sensors was along a vertical line, which eliminated the need to perform any offset calculations to 

compare the results between sensors (Figure 1). 

A rotary encoder wheel was coupled by a timing chain to one of the wheels for vehicle odometry and 

used to conduct the evaluation and comparison of the different sensors (Figure 1). This arrangement 

provided a measurement of the linear displacement of the prototype vehicle along the row of tree 

seedlings and formed the spatial basis for each recorded sensor measurement.  
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To determine the most appropriate vehicle speed for the test, the lowest frequency and field of view of 

the two sensors were considered. With a LIDAR frequency of 10 Hz, and by scanning each tree stem  

(1 cm diameter) three times, it was concluded that the speed could be as high as 0.108 km/h (3 cm/s). 

For the LIDAR acquisition system, the manufacturer’s software was developed in C++, and it 

combined LIDAR, GNSS, and data received by the odometry encoder through an Arduino “UNO” 

device. For the light curtain acquisition system, the optical output signals were connected to a 

bidirectional digital module (NI 9403, National Instruments Co., Austin, Texas, USA), whereas the 

encoder signal was connected to a digital input module (NI 9411, National Instruments Co., Austin, 

Texas, USA). Both modules were embedded in an NI cRIO 9004 (National Instruments Co., Austin, 

Texas, USA), and all of the data were recorded using the Labview software program (National 

Instruments Co., Austin, Texas, USA). 

Figure 2. Devices and software used the two systems.  

 

All of the necessary components for each of the aforementioned systems (LIDAR and light curtain, 

Figure 2) were recorded in a parallel fashion using the encoder value for future event synchronization and 

evaluation. In this way, two independent files were obtained from each optical sensor system and test. 

2.2. Field Experiments 

On 19 April, 2013, six field trials were conducted on one-year-old grafted almond trees at the nursery 

of Sierra Gold Nurseries in Yuba City, CA, United States. Each field test plot consisted of 20 m of data 

collected along the tree line with the use of the manually powered vehicle. Trees were located in beds 

that were 15 cm high, 61 cm wide, and 400 m long. The distance between trees was  

20 cm, and the tree top height above the ground was approximately 22 cm. Because of the good ground 

conditions and their installation on the vehicle, the laser detections did not require correction by the IMU. 

2.3. Method for LIDAR Tree Stem Characterization 

After the field data had been recorded using the laser, processing was performed. An algorithm was 

written to convert the distances and angles from the LIDAR detection to 3D coordinates using the 

encoder value for the displacement of the vehicle. 



Sensors 2014, 14 10789 

 

The analysis of these initial values showed an outlier effect of the depth for laser values. According to 

previous studies: “An outlier is an observation that deviates so much from other observations as to 

arouse suspicion that it was generated by a different mechanism. Large errors or outliers can be caused 

by different sources and they are mainly measurements that do not belong to the local neighborhood and 

do not obey the local surface geometry. As the footprint of the laser beam is not a geometrical point, but 

an ellipse, when it hits a boundary of an occlusion (i.e., the tree), it is divided into two parts, each of 

which radiate one of the front and the back surfaces incident to the occlusion boundary. Thus, the 

irradiance at this point would be a weighted average of the irradiance reflected by both surfaces” [10] and 

in the case of a tree row does not represent a true point on either the tree or the background, but is an 

artifact of the beam size and the size of the juvenile tree. The tree stem detection in our study showed this 

outlier effect (Figure 3) was enhanced because the object to be scanned (one-year-old grafted almond 

trees) was normally smaller than the spot diameter of the laser (according to the manufacturer’s 

documentation, an LMS 221 had a spot diameter of approximately 3 cm at a 1 m distance) [11]. 

Figure 3. A sample of the LIDAR outlier that occurs at the boundary of an occlusion.  

(a) Image of the scanned tree. (b) Front view of the detection recorded of the tree by  

the LIDAR sensor. (c) Top view of the detection recorded of the tree by the LIDAR after 

ground removal. 

   

(a) (b) (c) 

To reduce the error produced from the outlier detection’s shape, the LIDAR tree stem detection task 

was performed in three steps: data filtering for delimiting the number of detections to the area of interest; 

a calibration test I for evaluating and selecting the tree stem identification parameters values included in 

the algorithm; and validation of the proposed methodology. 

To extend the application range of this methodology in nurseries, it is necessary to consider the 

number of trees present in a field and their state as either alive or dead. For this purpose, tree 

classification was performed in two steps: calibration test II and validation. For this study, an off-line 

Matlab process was used with actual field data collected during the field tests. In its final version, the 

process will run on-line to adjust the mechanical weed implement without damaging the crop trees. 

2.3.1. Data Filtering 

The 3D LIDAR data were filtered by removing unnecessary measurement data from the background, 

ground and all detections outside of the vehicle frame. To remove the unnecessary ground data, all of the 
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detections with a height lower than 17 cm were removed. This height threshold was obtained by manual 

analysis of the data. To remove data from within the interest area (removal of background and 

measurements from outside the vehicle’s frame), a boundary delimitation was performed for depth and 

height, and only the values with a LIDAR distance of 10 to 65 cm and with a height less than 10 cm 

above the LIDAR height (56 cm) were retained.  

2.3.2. Calibration Test I: Stem Identification and Selection of Parameter Values 

Data provided by the 4 field experiment tests were used for the calibration test, which was composed 

of 373 trees. The methodology used for reducing the LIDAR outlier effect during tree stem detection 

was based on six different filter parameters (height threshold, encoder range, path increment, cut 

identification, jump, and blanking tree distance) and applied as follows: 

1. Once the data were filtered, there was an initial height threshold applied to the remaining points 

(height cut parameter) to focus the study on the stems without considering leaves and branches, 

which strengthened the outlier shape effect. 

2. The trees should be located where the number of detections is maximal, so a depth 

(perpendicular distance from the LIDAR) histogram evaluation was performed. Histograms were 

produced for every 10 encoder values and by selecting different range data (encoder range 

parameter).  

3. The depth value obtained with the highest detection number for a histogram was related to the 

average value of the data encoder range. This defined a line, termed the tree line, which was then 

smoothed. 

4. The tree path was obtained by adding and subtracting a defined value (path increment parameter) 

to this tree depth line. 

5. A second threshold in height was applied (cut identification parameter) based on the detections 

at the starting point (after data filtering) that were inside the tree path. 

6. A binary transformation was performed to determine the presence or absence of detections for 

each encoder value. These binary values were filtered by changing all of the absence values (that 

were between presence values) from absence to presence inside an evaluation window (jump 

parameter).  

7. The initial, final and median encoder values were obtained from each presence series. The potential 

tree detection was removed when the distance in the encoder values from its midpoint to the 

previously detected tree midpoint was lower than a threshold (blanking tree distance parameter). 

8. The median encoder value of each tree detected by the LIDAR sensor was compared with the 

actual values obtained manually during the tests. The real tree location and LIDAR tree detection 

were compared by proximity and deemed a success if the distance between them was less than 80 

encoder values; otherwise it was considered to be a false positive (detected by the laser but not 

real) or negative (real tree not detected by the laser). 

This methodology was conducted for the study of each parameter independently through an 

evaluation of the following parameters: height cut parameter from 18 to 25 cm, encoder range parameter 

from 127 to 5080 cm steps of 150 encoder values, path increment parameter, from 2.54 to 22.86 cm steps 
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of 2 cm, cut identification parameter from 18 to 25 cm, jump parameter from 2.54 to 22.86 cm steps of  

2 cm, and blanking tree distance parameter from 127 to 482.6 cm steps of 20 encoder values.  

In each independent evaluation, the values of the other variables were set to their average value:  

22 for height cut and cut identification, 1025 for encoder range, 5 for path increment and jump, and 125 

for tree distance. 

Based on an independent set of evaluations (Figure 4), the values at which a minimum number of tree 

detection errors were obtained were as follow: a height cut of 21, an encoder range of 200, a path 

increment of 5 a cut identification of 19, a jump of 1, and a blanking tree distance of 110. 

Figure 4. The total number of detected tree errors (false positives and negatives) by the 

LIDAR sensor using different parameter values: (a) Jump parameter with a Fischer value of 

5.79. (b) Blanking tree distance parameter with a Fisher value of 24.44. On each box, the 

central mark is the median, the edges of the box are the 25th and 75th percentiles, and the 

whiskers extend to the most extreme data points. 

  

(a) (b) 

2.3.3. Calibration Test II: Tree Classification 

The trees that ware correctly detected by the LIDAR sensor in the 4 field tests comprised, 359 trees 

(284 alive and 75 dead), and they were used to calibrate the tree classification methodology. The 

methodology used for LIDAR tree classification was based on the following: 

1. Considering the LIDAR detections that were inside the tree line defined in point 4 of the 

“Calibration test I: Stem identification and selection of parameter values” a binary 

transformation was performed to determine the presence or absence of detections for each 

encoder value. 

2. Using the medium encoder values of each success tree detected in point 8 of “Calibration test I: 

Stem identification and selection of parameter values” as the midpoint in the binary 

transformations from the previous point, the number of presence detections was counted inside 

an evaluation window (dead range parameter).  

3. According to the number of detections inside the dead range window and the actual state of  

the tree, which was obtained manually during the test, the detection threshold (threshold  

count parameter) was obtained, which difference live trees from dead trees at 95th percentile of  

alive trees. 
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This methodology was conducted through an evaluation window of the dead range parameter from 

12.7 to 508 cm steps of 5 encoder values. Based upon on the validation tables (assessment of success and 

false positives and negatives), a dead range parameter value of 55 was selected (Figure 5). The success 

of the classifications (dead and alive trees) was considered along with the percentage of live trees 

classified as dead. For a nursery, this error should be as low as possible because it could involve the 

replacement of live trees and causes unnecessary expense to the nursery. 

Figure 5. Classification tree percentages obtained for the different dead range parameter 

values by the LIDAR sensor. 

 

Table 3. Mean percentages of successful classifications and false positives and negatives 

during the calibration test with a dead range value of 55 at the different threshold  

count values. 

 
Threshold 

Count Value 

Alive Trees 

Correctly 

Classified 

(%) 

Dead TREES 

Correctly 

Classified (%) 

Alive Trees 

Classified as 

Dead (%) 

Dead Trees 

Classified as 

Alive (%) 

Max value 18 69.29 19.18 9.86 1.67 

Min value 11.75 78.06 16.93 1.09 3.92 

Average value 15.75 75.60 18.06 3.55 2.79 

Once the dead range parameter was selected, the threshold count parameter was calculated in which 

the detection of live from dead trees was evaluated based on the 95 percent (95th percentile) of lives 

trees. Table 3 shows the mean validation values obtained in the calibration tests by selecting the highest, 

average and lowest threshold count value evaluated. To obtain a universal methodology, a single 

threshold count value should be calculated. To minimize unnecessary expenses to the nursery, the lowest 

threshold value (11.75 detections) was selected. This selection process involved a reduction of the error 

by which a living tree is considered as dead and the error whereby a large number of dead trees were 

considered alive. 
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2.4. Method for Light Curtain Tree Stem Characterization 

Figure 1 shows the four pairs of light curtain sensors (model Mini-Beam SM31 EL/RL, Banner 

Engineering Co., Minneapolis, MN, USA) that were placed under the LIDAR device. The four light 

curtain receivers were configured to output a TTL pulse when the infrared beam was blocked by the 

passage of a tree stem during travel on the prototype vehicle. All four of the light-beam signals were 

monitored simultaneously in real-time by a high-speed embedded control system. This sensing system 

allowed for the analysis of within-row tree placement. 

Light can be blocked by various circumstances, such as tree leaves, weeds, and large soil clods; 

therefore, unwanted pulses can be observed and cause inaccurate tree counting and sizing. 

2.4.1. Calibration Test I: Stem Identification 

The data used for the light curtain calibration were the same as for the LIDAR calibration: 4 field 

experiments tests composed of 373 trees. The methodology used for the tree stem detection by the light 

curtain sensors was based on the following: 

1. The detections of the three lower light curtain sensors (the highest sensor did not detect small nor 

dead trees) in an encoder window “tree encoder parameter” were evaluated using the 

successful detection of the previous/lower light curtain sensor as the midpoint. The evaluation 

order was upward, starting from the light curtain sensor located closest to the ground (LC0). For 

example, when detection at LC0 occurred at an odometer encoder value of 500 and with a tree 

encoder parameter of 100, the program assessed whether there was any detection in LC1 (light 

curtain above LC0) within a window range from 400 to 600 encoder values. If detection was 

obtained for LC1 in this range, the program evaluated the LC2 in the range of +/− 100 of the 

encoder value that produced the detection in LC1. 

2. The detection was considered a tree if the condition of detection were fulfilled in LC0-LC2 

(relative to the tree encoder parameter) and provided that the difference in the encoder values of 

this new candidate (LC0 encoder value) and the previous candidate were higher than the 

“minimal tree distance parameter”. If this was not the first tree detected, the program 

determined whether the distance between the previous tree encoder values was higher than the 

minimal tree distance (i.e., not a repetition of the previous tree). 

3. The LC0 encoder value for each candidate tree was compared with the actual values obtained 

manually during the test. The real tree location and light curtain tree detection were compared by 

proximity and deemed a success if the distance between them was less than 80 encoder values; 

otherwise, it was considered to be a false positive (detected by the light curtain but not real) or 

negative (real tree not detected by the light curtain).  

This methodology was conducted through an evaluation range of the tree encoder parameter from 5 

to 63.5 cm steps of 1 encoder values and a minimal tree distance parameter, from 127 to 482.6 cm steps 

of 20 encoder values. Table 4 shows the values of the parameters for which optimum results were 

obtained. Values were selected according to the total number of false detections (Figure 6). At equal 

false detections values, the standard deviation error was used as a selection criterion. Finally, a value of 

13 was selected for the tree encoder parameter and 130 was selected for the minimal tree distance parameter. 
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Figure 8 shows the same tree sequence as in Figure 7 but detected with the light curtain sensors. In 

this image, the light curtain sensor number 3 is blocked more frequently than 0, 1 and 2, which indicates 

that this sensor is frequently detecting leaves at the top of the trees. 

Figure 6. The total number of detected tree errors (false positive and negatives) by the light 

curtain using the different parameters values: (a) Tree encoder parameter with a Fisher value 

of 1.34. (b) Minimal tree distance parameter with a Fisher value of 621.7. On each box, the 

central mark is the median, the edges of the box are the 25th and 75th percentiles, and the 

whiskers extend to the most extreme data points. 

  

(a) (b) 

Table 4. Results obtained during the parameter evaluation with minimal number of trees not 

detected (4 total trees not detected for a total of 373 trees). 

Tree Encoder  

Value 

Minimal Tree  

Distance Value 

σ of Location by LC with 

Real Values 

13 110 10.82 

13 130 10.59 

14 110 10.88 

14 130 10.66 

15 110 10.96 

15 130 10.74 

16 110 11.01 

16 130 10.79 

17 110 11.07 

17 130 10.82 

18 110 11.10 

18 130 10.85 

19 110 11.43 

19 130 11.18 

20 110 11.79 

20 130 11.55 

21 110 11.88 

21 130 11.65 
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Figure 7. Methodology used for tree stem identification from the LIDAR detection data. In 

the graph on the right, the x-axis grid shows the actual location of the trees (the last one was 

not detected). The image shows the corresponding view of the scanned trees. 
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Figure 8. The x-axis grid shows the location of the trees detected with the light curtain 

sensor, and the y-axis shows which the light curtain sensor that is blocked by the tree in  

each location. 

 

2.4.2. Calibration Test II: Tree Classification 

To calibrate the tree classification methodology by the light curtain sensor, the number of successful 

detections of trees in the 4 field tests (371 trees with 294 alive and 77 dead) was used. The methodology 

was based on the methodology used for tree classification by the LIDAR sensor. 

1. Considering the LC0 encoder value of each success tree detected (point 3 of “Calibration test I: 

Stem identification and selection of parameter values”) as midpoint, the total numbers of presence 

detections for LC0 to LC2 were counted inside an evaluation window (dead range parameter). 

2. According to the number of detections inside the dead range window and the actual state of the 

tree, which was obtained manually during the test, it was obtained the detection threshold 

(threshold count parameter), which difference live trees from dead trees at 95th percentile of 

alive trees.  

Figure 9. Classification percentages obtained for the different dead range parameter values 

for the light curtain sensor. 
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Similar to that of the LIDAR sensor, the evaluation range of the dead range parameter was from 12.7 

to 508 cm steps of 5 encoder values. Considering the validation tables obtained for each dead range 

value (Figure 9) and the tree classification established by the LIDAR sensor, a parameter value of 50  

was selected. 

Table 5. Mean percentages of successes classifications and false positives and negatives 

during the calibration test with a dead range value of 50 at different threshold count values. 

 
Threshold 

Count Value 

Alive Trees 

Correctly 

Classified (%) 

Dead Trees 

Correctly 

Classified (%) 

Alive Trees 

Classified as 

Dead (%) 

Dead Trees 

Classified as 

Alive (%) 

Min value 21.4 77.15 18.49 2.14 2.22 

Max value 26 72.55 19.58 6.75 1.12 

Average value 23.56 74.99 19.03 4.30 1.68 

Once the dead range parameter was selected, the threshold count parameter was calculated in which 

the detection of live from dead trees was based on 95 percent (95th percentile) of lives trees. Table 5 

shows the mean validation values obtained in the calibration tests by selecting the highest, average and 

lowest threshold count value evaluated. To obtain a universal methodology and minimizing unnecessary 

expenses to the nursery, the lowest threshold value (21.4 detections) was selected. 

3. Results and Discussion 

3.1. LIDAR Stem Identification Validation Tests 

For the validation tests, two new field experiments were developed, composed of 194 trees along with 

the data used for the calibration. The methodology used in the calibration included the parameter values 

selected after the independent evaluations. The values obtained for both tests are summarized in Table 6, 

which shows that high percentages (95.7%) of trees were successfully detected, with a low location 

deviation error (total std. deviation of ±16.6 mm and a standard error of ±0.71 mm).  

Table 6. Results obtained for stem identification with the calibration and validation samples 

using the parameter values selected from independent evaluations (height cut of 21, encoder 

range of 200, path increment of 5, cut identification of 19; jump of 1, and blanking tree 

distance of 110). 

  Calibration Validation Total 

Test number 1 2 3 4 5 6   

Real trees number 95 93 89 96 97 97 567 

LIDAR tree counts 96 94 90 95 97 96 568 

LIDAR tree correctly detected 91 89 87 92 93 91 543 

False positives 5 5 3 3 4 5 25 

False negatives 4 4 2 4 4 6 24 

Total incorrect detections 9 9 5 7 8 11 49 

σ of location by LIDAR with 

real tree values (mm) 
17.79 19.26 17.94 12.25 16.38 11.86 16.6 
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Table 7. Number and percentage of encoder events recorded in each situation during the 

LIDAR calibration tests. 

 Predicted Trees Unpredicted Trees 

Observed trees 1605 (7.4%) 140 (0.65%) 

Unobserved trees 39 (0.18%) 19900 (91.77%) 

Table 8. Number and percentage of encoder events recorded in each situation during the 

LIDAR validation tests. 

 Predicted Trees Unpredicted Trees 

Observed trees 548 (7.28%) 100 (1.33%) 

Unobserved trees 26 (0.35%) 6845 (91.04%) 

Tables 7 and 8 show the percentages and numbers of registered encoder values corresponding to each 

of the four possible situations during the LIDAR calibration and validation tests, which were the 

predicted and observed trees, predicted but not observed trees (false positive), observed but not predicted 

trees (false negative), and neither predicted nor observed trees. The percentages of the different 

situations obtained during the calibration and validation were very similar. Small variations may have 

occurred as a result of the different speeds used during the tests, and with each speed influencing the 

number of encoder values registered. 

Figure 10 is a histogram of the standard deviation of a correct tree LIDAR location and a real tree 

location. All of the tests were considered and grouped according to the parameter values during the 

independent evaluations. A low error value did not indicate an improved performance of the sensor 

because this may lead to a greater number of false positive or false negative tree detection. For example, 

using the lowest tree location error, which was 1 mm less than the actual observation, would result in a 

reduction in tree detection of up to 86%. 

Figure 10. Histogram of the standard deviation error from the LIDAR tree location and real 

tree location.  
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3.2. LIDAR Tree Classification Validation Test 

Two new field experiments were developed that were composed of 184 trees (106 alive and 78 dead) 

along with the data used for calibration. The methodology used in the calibration included the parameter 

dead range at 55 encoder values and 11.75 counts for threshold. The values obtained for both tests are 

summarized in Table 9, which shows that 95.9% of live trees and 88.24% of dead trees were successfully 

classified, with 4.1% of live trees considered as dead and 11.76% of dead trees considered as alive.  

Table 9. LIDAR results obtained for the tree classification with the calibration and 

validation samples using the parameter values selected in the calibration (dead range of 55 

and threshold count of 11.75). 

  Calibration Validation Total 

Test number 1 2 3 4 5 6   

Real tree count 95 93 89 96 97 97 567 

Trees detected by LIDAR 

after correction 
91 89 87 92 93 91 543 

Alive trees not detected  

by LIDAR 
2 4 2 4 1 4 17 

Dead trees not detected  

by LIDAR 
2 0 0 0 3 2 7 

Number of alive trees 76 75 68 65 54 52 390 

Number of dead trees 15 14 19 27 39 39 153 

Live trees well  

classified 
75 75 68 62 52 42 374 

Dead trees well  

classified 
13 7 16 25 35 39 135 

Alive trees classified as  

dead 
1 0 0 3 2 10 16 

Dead trees classified as  

alive 
2 7 3 2 4 0 18 

Table 10. Mean validation percentage using the parameters values selected for the LIDAR 

calibration and validation tests. 

 Predicted Alive Trees Predicted Dead Trees 

Observed alive trees 69.05% 2.92% 

Observed dead trees 3.33% 24.70% 

Table 10 shows the mean validation percentage obtained for each of the four possible situations during 

the LIDAR calibration and validation tests, which were the predicted and observed live trees, predicted but 

not observed live tree (false positive), observed but not predicted alive trees (false negative), and predicted 

and observed dead trees. 
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3.3. Light Curtain Stem Identification Validation Tests 

Table 11 summarized the data obtained using a value of 13 for tree encoder parameter and of 130 for the 

minimal tree distance parameter in all of the tests, which showed that 99.48% of the trees were detected 

successfully. Of the 194 trees that were in the validation study, 193 trees were detected after correction. 

Table 11. Light curtain results obtained for the calibration and validation samples using the 

parameter values selected after independent evaluations (tree encoder of 13 and minimal tree 

distance of 130). 

 
Calibration Validation Total 

Test number 1 2 3 4 5 6   

Real trees number 95 93 89 96 97 97 567 

LC trees counts 95 93 89 96 97 97 567 

LC trees correctly detected 95 92 88 96 97 96 564 

False positives 0 1 1 0 0 1 3 

False negatives 0 1 1 0 0 1 3 

σ of location by LC with real tree values 

(encoder) 
8.8 13.7 9.13 10.74 13.21 9.35 11.32 

Tables 12 and 13 show the percentages and numbers of registered encoder values corresponding to each 

of the four possible situations during calibration and validation tests, which were the predicted and 

observed trees, predicted but not observed trees (false positive), observed but not predicted trees (false 

negative), and neither predicted nor observed trees. The percentages of the different situations obtained 

during the calibration and validation were very similar. Small variations may have occurred as a result on 

the different speeds employed during the tests influencing the number of encoders registered. 

Table 12. Number and percentage of encoder events recorded in each situation during the 

light curtain calibration tests. 

 Predicted Trees Unpredicted Trees 

Observed trees 3140 (3.99%) 20 (0.02%) 

Unobserved trees 2 (0.02%) 75460 (95.97%) 

Table 13. Number and percentage of encoder events recorded in each situation during the 

light curtain validation tests. 

 Predicted Trees Unpredicted Trees 

Observed trees 1257 (3.15%) 10 (0.03%) 

Unobserved trees 1 (0.00%) 38637 (96.82%) 

3.4. Light Curtain Tree Classification Validation Tests 

The methodology used during the calibration was followed by setting the dead range at 50 encoder 

values and 21.4 counts for the threshold. The values obtained for both tests are summarized in Table 14, 

which shows that 97.28% of live trees and 86.16% of the dead trees were successfully classified, with 

2.72% of the live trees considered as dead and 13.84% of the dead trees considered as alive. 
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Table 14. Light curtain results obtained for the tree classification with the calibration and 

validation samples using the parameter values selected the in calibration (dead range of 50 

and threshold count of 21.4). 

 
Calibration Validation Total 

Test number 1 2 3 4 5 6 
 

Real tree count 95 93 89 96 97 97 567 

Trees detected by LC  

after correction 
95 92 88 96 97 96 564 

Lives trees not  

detected by LC 
0 1 1 0 0 0 2 

Dead trees not  

detected by LC 
0 0 0 0 0 1 1 

Number of alive trees 78 78 69 69 55 56 405 

Number of dead trees 17 14 19 27 42 40 159 

Live trees correctly  

Classified 
74 78 67 67 54 54 394 

Dead trees correctly  

classified 
17 10 15 27 33 35 137 

Alive trees classified as  

dead 
4 0 2 2 1 2 11 

Dead trees classified as  

alive 
0 4 4 0 9 5 22 

Table 15. Mean validation percentage using the parameters values selected for the light 

curtain calibration and validation tests. 

 Predicted Alive Tree Predicted Dead Tree 

Observed alive tree 70.09% 1.94% 

Observed dead tree 3.90% 24.07% 

Table 15 shows the mean validation percentage obtained for each of the four possible situations 

during the LC calibration and validation tests. 

4. Conclusions 

This study showed that the LIDAR and light curtain sensors represent a useful technique for within-row 

tree detection in a nursery. This study also developed an automated analysis for this type of technology 

that allows for the elimination of outliers, detection of weeds, tree leaves and soil based on point clouds 

detected by the LIDAR and light curtain sensors. Our major contributions are as follows: 

 A sensor platform was successfully constructed to monitor and record the LIDAR and 

light curtain measurements simultaneously for a tree row.  

 High percentages (95.7%) of trees were detected successfully with the LIDAR sensor, 

which also had a low location deviation error (total std. deviation of ±16.6 mm and a 

standard error of ±0.71 mm).  
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 Higher percentages (99.48%) of trees were detected successfully with the light curtain 

sensor, with a lower location deviation error (total std. deviation of ±11.32 mm and a 

standard error of ±0.48 mm).  

 The LIDAR sensor correctly classified 93.75% of the trees compared to 94.16% for the 

light curtain sensor.  

For the task proposed in this study, the most reliable system was the light curtain sensor. Not only 

were the best results obtained with this sensor, but also the data processing was much simpler, consisting 

of two filter parameters, rather than the six filter parameters required for the laser sensor. Further, 

reducing system complexity provides faster data processing, which is a plus for future applications in 

real-time. 

From an economic point of view, the light curtain sensor, even though formed by four pairs of 

sensors, was less costly than the single laser sensor at a cost ratio of 2/1. The system could be used to 

automate intra-row (i.e., within-row) weeding based on tree or crop detection with active optical sensors. 

In most cases, weed control still requires costly hand weeding for organic, nursery field and small-scale 

farmers. 

The use of this innovative sensor platform for tree detection in nurseries may result in a new era that 

allows for online control of aggressive weeds and the automation of weeding tools, which we plan to 

pursue through future research. Further work is also required to provide additional insight into large 

commercial fields with different types of trees so that data obtained with the optical sensor can be related 

to the plethora of published studies that have used machine optical sensing. 
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