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Abstract

This paper presents an evolutionary technique applied to the optimal short-term scheduling (24 h) of the electric energy
production. The equations that define the problem lead to a non-convex non-linear programming problem with a high
number of continuous and discrete variables. Consequently, the resolution of the problem based on combinatorial meth-
ods is rather hard. The required heuristics, introduced to assure the feasibility of the constraints, are analyzed, along with a

brief description of the proposed genetic algorithm (GA). The GA is used to compute the optimal on/off status of thermal

units and the fitness function is obtained by solving a quadratic programming problem by means of a standard non-linear
Interior Point (IP) method. The results from real-world cases based on the Spanish power system are reported, which show
the good performance of the proposed algorithm, taking into account the complexity and dimensionality of the problem.
Finally, an IP algorithm is adapted to deal with discrete variables that appear in this problem and the obtained results are
compared with that of the proposed GA.
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1. Introduction

The optimal short-term scheduling of the electri-
cal energy production [1] aims at determining which
generating units should be online and the corre-
sponding optimal generation of thermal and hydro
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units along the scheduling period, usually 24 h, in
order to minimize the expected total cost satisfying
the forecasted system load. The scheduling task
leads to a non-linear mixed-integer programming
problem. Moreover, this problem is coupled in time
by the maximum speed that generating units, spe-
cially thermal units, are able to change the produced
energy (known as up and down ramps), and also by
the topology of the hydroelectric power plants, with
a delay in hours between the water of a reservoir
being used and the availability of that water in the
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reservoirs downstream. A really large number of
variables, both continuous and discrete variables,
is needed to properly model this problem. Many
approaches have been proposed for the resolution
of this optimization problem, ranging from
Dynamic Programming to Linear Mixed-Integer

Programming or Lagrangian Relaxation [2], the lat-
ter being the most widely used optimization method
in commercial programs. Genetic Algorithms (GAs)
[3,4], a general-purpose stochastic search method
based on the mechanics of natural selection, have
also been successfully applied to the electrical
energy scheduling problem since the adaptation is
quite straightforward due to the combinatorial nat-
ure of this problem. In the last few years, the Inte-
rior-Point (IP) or Logarithmic-Barrier class of
methods has become the preferred numerical
approach to solve non-linear optimization prob-
lems, as a consequence of its enhanced capability
to deal with inequality constraints [5,6]. Since the
early developments, intended for Linear Program-
ming problems, many improvements have been pro-
posed in order to extend the application of IP
methods to convex and non-convex non-linear
problems. These refinements have to do with step-
size control [7], line-search techniques to force con-
vergence to a local minimum from arbitrary starting
points [8,9], use of trust regions [10], among others.
However, despite these improvements, its perfor-
mance on mixed-integer problems is frequently dis-
appointing because the solution is far from the
global optimum [11]. This has raised the interest in
computationally expensive algorithms taken from
the artificial intelligence area such as evolutionary
methods [12], tabu search [13], particle swarm opti-
mization [14], simulated annealing [15] or ant col-
ony optimization [16]. Although convergence to
the global optimum cannot be theoretically guaran-
teed, the ability to escape from local minima makes
them an attractive choice for many applications
[17,18].

In this paper, a GA applied to the optimal short-
term (24 h) electrical energy production scheduling
is presented. Some heuristics are included in order
to assure the feasibility of the constraints that
appear in the problem. Results from real-world
cases based on Spanish power system are reported.
The electric energy production scheduling presents
a large number of variables and constraints, a
non-convex non-linear objective function and inte-
ger and continuous variables. Thus, the main diffi-
culty is to find feasible solutions and the novelty
of the paper is addressed to improve the feasibility.
The main contributions of the encoded GA can be
stated as: a procedure to generate the initial popula-
tion taking into account the ramp constraints;
dynamic constraints of minimum limits on the
hourly energy production of the thermal units to
consider the starting and stopping periods as an
alternative to the inclusion of other binary variables
to model these states; a crossover operator adapted
to the features of this problem leading to an ade-
quate percentage of feasible individuals; and spar-
sity techniques and optimal ordering used to
reduce the computational overhead. In spite of the
sparsity techniques, a potential limitation of the
GA is rather related to the CPU time when a com-
plex topology of hydroelectric power plants is
analyzed.

The paper is organized as follows: Section 2 pre-
sents the equations used to model the scheduling
problem, leading to a non-linear mixed-integer
programming problem with a large number of
both continuous and discrete variables. In Section
3 a briefly description of the primal-dual IP algo-
rithm is made. Section 4 introduces the proposed
GA, and several implementation issues that are
crucial to obtain feasible solutions are discussed.
Finally, Section 5 reports some results obtained
from realistic cases based on the Spanish power
system, and the main conclusions of the paper
are outlined.
2. Formulation of the problem

The objective of the scheduling problem is to
determine the on/off state and the energy produc-
tion of thermal and hydro units at each hour of
the scheduling period, in order to minimize the total
cost of the system satisfying the forecasted hourly
demand and the technical constraints of thermal
and hydro power plants.

The standard notation used for the scheduling of
the electrical energy production problem is summa-
rized in Table 1. This notation describes fixed
parameters of the thermal and hydro units, indexes,
number of elements and variables.
2.1. Objective function

The total energy production cost of the schedul-
ing period is defined by



Table 1
Definition of the data and variables of the problem

Data or fixed parameters

SUi The start-up cost of the thermal unit i (€)
SDi The shut-down cost of the thermal unit i (€)
Ci(Æ) Quadratic cost function of the thermal unit i (€)
P m

i Lower bound of the hourly energy production of the thermal unit i (MWh)
P M

i Upper bound of the hourly energy production of the thermal unit i (MWh)
PHm

h Lower bound of the hourly energy production of the hydro plant h (MWh)
PHM

h Upper bound of the hourly energy production of the hydro plant h (MWh)
VHm

h Lower bound of the water level of the reservoir h in terms of energy (MWh)
VHM

h Upper bound of the water level of the reservoir h in terms of energy (MWh)
URi Upper bound of the up rate of the thermal unit i (MWh/h)
DRi Lower bound of the down rate of the thermal unit i (MWh/h)
Wh Inflow of the reservoir h in terms of energy (MWh)
Dt Energy demand at hour t (MWh)
Rt Generating capacity in reserve at hour t (MWh)
DTi Number of hours that the unit i must be shut-down after stopping
UTi Number of hours that the unit i must be functioning after starting
d(k) Water delay time between reservoir k and the next reservoir downstream (in h)
n(k) Next reservoir downstream regarding the reservoir k

Indexes and number of elements

i Thermal unit index
h Hydro plant index
t Hour index
ng Number of thermal units
nh Number of hydro plants
nt Number of hours of the scheduling period

Variables

Pi,t Energy production of the thermal unit i at hour t (MWh)
Ui,t On/off state of the thermal generator i at hour t

PHh,t Energy production of the hydro plant h at hour t (MWh)
VHh,t Stored energy of the reservoir h at hour t (MWh)
CT ¼
Xnt

t¼1

Xng

i¼1

½CiðP i;tÞ þ SUi � Ui;t � ð1� U i;t�1Þ

þ SDi � ð1� Ui;tÞ � U i;t�1�; ð1Þ
where nt is the number of hours of the scheduling
period, ng the number of thermal units, each having
a quadratic cost function, Ci(Pi,t), of the energy pro-
duction, Pi,t; SUi and SDi are, respectively, the start-
up and shut-down cost of the thermal generator i,
and Ui,t is a binary variable representing the on/off
state of the thermal generator i at hour t.

It can be observed that the total production cost
is a sum of quadratic functions of the energy of each
thermal generator if the state of each generator was
previously stated by the GA. This is the case of the
proposed technique because the on/off states are
managed by the GA. Notice that the production
cost is only due to the production of thermal gener-
ators Pi,t, i.e., generators that produce energy by
burning a fuel or by atomic means. Hydro units
provide free-of-charge energy PHh,t that is only sub-
ject to the availability of water in the corresponding
reservoirs.
2.2. Constraints

The minimization of the objective function is
subject to technical constraints, water balance in
hydroelectric power plants and the associated reser-
voirs, and to the system energy demand and reserve
balances:

• Maximum and minimum limits on the hourly
energy production of the thermal and hydro
generators,

P m
i 6 P i;t 6 P M

i ; i¼ 1; . . . ;ng; t ¼ 1; . . . ;nt; ð2Þ
PH m

h 6 PH h;t 6 PH M
h ; h¼ 1; . . . ;nh; t ¼ 1; . . . ;nt;

ð3Þ



where nh is the number of hydro plants, PHh,t the
energy production of hydro plant h at hour t, and
P m

i , P M
i , PH m

h and PHM
h are the limits on the

hourly energy production of the thermal unit i
and hydro plant h, respectively.
Eq. (2) cannot be fulfilled when thermal genera-
tors are either starting or stopping, as starting
and stopping periods begin, respectively, when
the corresponding state changes to ON or OFF.
In order to avoid this problem, this equation is
modified for thermal units that are either being
started-up or shut-down,

0 6 P i;t 6 P M
i ; i ¼ 1; . . . ; ng; t ¼ 1; . . . ; nt: ð4Þ

Moreover, the energy produced by thermal units
during periods of shutting-down (Ui,t = 0) is out
of the optimal scheduling. Consequently, penalty
terms proportional to this energy are added to
the objective function as follows:

C0T ¼ CT þ
Xnt

t¼1

Xng

i¼1

Cp � P i;t � ð1� U i;tÞ: ð5Þ

• Maximum up and down ramps of thermal units.
The thermal units can not increase or decrease
the production of energy at consecutive hours
by more than a given maximum rate,

� DRi 6 P i;t � P i;t�1 6 URi; i ¼ 1; . . . ; ng;

t ¼ 1; . . . ; nt; ð6Þ

where URi y DRi are, respectively, the maximum
up and down rates of the thermal generator i,
usually known as ramp limits.

• Limits on the available water. The hydro units
use water to generate electrical energy and water
is a limited resource. Thus, the energy produced
by a hydro unit is limited by the volume of avail-
able water in the associated reservoir. In conse-
quence, reservoir levels are subject to capacity
limits,

VH m
h 6 VH h;t 6 VH M

h ; h ¼ 1; . . . ; nh;

t ¼ 1; . . . ; nt; ð7Þ

where VHh,t is the stored energy of reservoir h at
hour t, corresponding to the hydro unit h; VHm

h

and VH M
h are respectively the minimum and max-

imum limits on the stored energy imposed by the
maximum and minimum possible water level of
reservoir h.
• Hydraulic coupling between reservoirs. Time cou-
pling exits due to cascaded reservoirs, since the
water used to produce energy in a hydro unit will
be available later to the next hydraulic unit down-
stream with a certain delay, obviously when the
water has arrived to the corresponding reservoir.

VH h;t ¼ VH h;t�1 � PH h;t þ
X

nðkÞ¼h

PH k;t�dðkÞ þ W h;

ð8Þ
where d(k) is the water delay time in hours be-
tween reservoir k and the next reservoir down-
stream, n(k), that is supposed to be reservoir h,
and Wh is the natural inflow of reservoir h.

• The total hourly energy production must be
equal the total energy demand at that hour, Dt,
which has been previously forecasted.

Xng

i¼1

P i;t � Ui;t þ
Xnh

h¼1

PH h;t ¼ Dt; t ¼ 1; . . . ; nt:

ð9Þ

• The total energy that can be produced at each
hour must exceed the forecasted demand by a
specified amount, Rt, i.e., the generating capacity
in reserve to be used if an unexpected event such
as the failure of a plant or a large error on the
forecasted demand happens.

Xng

i¼1

P M
i � U i;t þ

Xnh

h¼1

PH M
h P Dt þ Rt;

t ¼ 1; . . . ; nt: ð10Þ

• Minimum up and down times of thermal units.
The minimum up time, UTi, is the minimum
number of hours that the unit i must be function-
ing after starting. Besides, the minimum down
time, DTi, is the minimum number of hours that
the unit i must be shut-down after stopping.

XDT i�1

k¼0

ð1�U i;tþkÞP DT i

if unit i is shut-down at hour t ð11Þ
XUT i�1

k¼0

U i;tþk P UT i

if unit i is started at hour t: ð12Þ
Start-up and shut-down costs of realistic cases tend
to reduce the number of shut-downs and start-ups
to a minimum, making the minimum-time con-
straints useless in most cases. Moreover, the inclu-
sion of hydraulic generation facilitates the
fulfillment of the thermal unit constraints because



the hydro units are faster in response and produce
energy at no cost, i.e., the hydraulic energy will be
strategically distributed among the hours of the
scheduling horizon in order to avoid the starting
of more thermal units than the strictly required.

As an example, Table 2 shows the number of
constraints, binary and continuous variables of the
above problem for a test system comprising 49 ther-
mal units, two hydro units and the scheduling hori-
zon embracing 24 h.
3. Primal-dual IP algorithm

Among the distinctive features of the above opti-
mization problem, the most important are: large
number of variables and constraints in practical
cases; non-convexity of the objective function; and
presence of integer and continuous variables. The
IP methods only can be applied when all the vari-
ables of the problem are continuous. An alternative
frequently used in practice consists in relaxing the
discrete nature of Ui,t and imposing instead the next
constraint:

0 6 Ui;t 6 1: ð13Þ

This leads to a simplified model without discrete
variables which requires that a heuristic procedure
be applied during or at the end of the iterative pro-
cess in order to determine the best integer value for
every Ui,t. Thus a mixed-integer programming prob-
lem is considered from a continuous perspective. In
addition, every discrete variable can be handled as a
continuous variable provided that the following
quadratic constraint is added:

Ui;t � ð1� U i;tÞ ¼ 0: ð14Þ

However, this procedure increases the non-linearity
and non-convexity of the initial problem.

Based on the above comments and practical
experience, the following procedure has been chosen
to solve the optimal short-term scheduling of the
electrical energy production.
Table 2
Dimension of the problem for a test system

Number of constraints Number of variables

Binary Continuous

(2 Æ ng + 3 Æ nh + 2) Æ nt + 2 Æ ng ng Æ nt (ng + 2 Æ nh) Æ nt

2642 1176 1272
(1) The problem is solved adding the constraint
(Eq. (13)).

(2) Using the obtained solution in the before step
to initialize the IP algorithm, solve the prob-
lem including the constraint (Eq. (14)).

A brief description of a classical IP algorithm is
provided next. This method introduces auxiliary
positive slack variables in order to turn inequality
restrictions into equality constraints:

xj 6 xj , xj þ sj ¼ xj sj P 0; ð15Þ

where xj represents any variable subject to a limit,
and sj is the corresponding positive slack variable.

In order to guarantee the positiveness of the slack
variables, logarithmic penalty terms are included in
the objective function by means of a penalty factor
l that is progressively reduced throughout the iter-
ative process [5].

f 0ðxj; sj; lÞ ¼ f ðxjÞ � l
X

j

ln sj: ð16Þ

The main steps of the IP algorithm are the
following:

(1) Initialize the variables so that the slack vari-
ables are positive.

(2) Initialize the penalty factor l so as to make the
logarithmic terms dominate over the original
objective function.

(3) The minimization of the corresponding
Lagrangian function is performed by solving
the non-linear optimality equations using an
one-step Newton’s algorithm, and the optimal
increment of primal and dual variables is
computed.

(4) The step-length a is reduced, if necessary, so
that the slack variables remain positive.
Lagrange multipliers associated to equality
constraints arising from the introduction of
auxiliary slack variables must also remain
positive because optimality conditions lead
to equations of the form:
sj � zj ¼ l; ð17Þ

where zj is the Lagrange multiplier associated
with the slack variable sj.

(5) Update primal and dual variables taking into
account the necessary step-length limitation.

(6) Reduce the penalty factor l. The proportional
relationship between the penalty factor and
the duality gap (dugap) defined by Eq. (17)



provides the most common approach to
reduce this penalty factor:
l ¼ c �
Pnl

j¼1sj � zj

nl
; ð18Þ
where c 6 1 and nl is the number of inequality con-
straints of the original problem. Steps 3–6 are itera-
tively repeated until optimality conditions are
satisfied and the penalty coefficient l, and conse-
quently the average duality gap, is small enough.
More sophisticated versions of steps 3 and 4, includ-
ing line searches, modified Hessians, etc. [8–10]
could be needed in the non-convex case, in order
to avoid divergence or convergence to unacceptable
points. However, such refinements have not been
actually implemented because the behaviour of the
IP method has proven good enough for the applica-
tion tested.

The application of Newton’s method to solve the
non-linear optimality equations yields a very large,
sparse linear system, specially when ramp and
hydraulic couplings are considered. Consequently,
sparsity techniques and optimal ordering [19] must
be used to reduce the computational overhead.

Fig. 1 shows the fill-ins generated when solving a
small example (five hydro plants, five thermal plants
and a 5-hour scheduling horizon), with and without
optimal ordering. It can be noted that the fill-ins are
reduced a 50% approximately when an optimal
ordering is made. Table 3 shows relative execution
times of the IP algorithm for two realistic problems
(73 thermal plants, 24 h, 8 and 30 reservoirs, respec-
tively). As can be noticed, execution times grow
considerably with the number of variables, specially
when standard ordering is performed. Finally,
Fig. 2 shows the relative overhead of the different
processes comprising the IP algorithm.
4. The proposed genetic algorithm

As presented in the previous section, the optimal
scheduling of the electric energy production is a
non-linear, non-convex, combinatorial, mixed-inte-
ger and very large problem. Hence, there is no tech-
nique that would always lead to the optimal
solution of the problem for realistic cases. In the last
years, techniques based on heuristics, dynamic pro-
gramming, linear mixed-integer programming and
lagrangian relaxation have been applied to this par-
ticular problem. Techniques based on heuristics rely
on simple rules that depends on the knowledge of
power plant operators. Constraints of realistic prob-
lems are not properly modelled by dynamic pro-
gramming approaches, and the number of
required states increases exponentially, thus leading
to excessive computation times. Linear program-
ming approaches cannot properly model neither
the non-linear objective function nor the non-linear
constraints, and crude approximations are required.
Finally, the use of heuristic techniques is required
by lagrangian relaxation approaches to calculate
feasible solutions, deteriorating the quality of the
obtained solutions.

Consequently, new methods are still needed to
obtain more optimal solutions to realistic problems.
In this paper, a GA [20,21] has been used to solve
the scheduling problem due to its ability to deal with
non-linear functions and integer variables.

The proposed GA algorithm is used to compute
the optimal on/off states of thermal units, i.e., the
binary variables, while the optimal continuous vari-
ables, i.e., the hourly energy production of hydro
and committed thermal units, are calculated solving
a typical quadratic programming problem by a clas-
sical IP optimization algorithm in which the on/off
states of thermal units are known.

Convergence characteristics of GA depend on
several key implementation issues that are discussed
in the rest of this section.

4.1. Codification of the individuals

Each individual is represented by the on/off states
of thermal generators during the scheduling period.
Thus, individuals are represented by 0/1 matrices,
with columns corresponding to time scheduling
intervals and rows associated with thermal units.
If the element (i, j) is equal to one, the state of ther-
mal unit i during time interval j is on. Similarly, if
the element (i, j) is equal to zero, the state of thermal
unit i during time interval j is off.

Fig. 3 shows the representation of a certain indi-
vidual of the population. It can be observed that the
thermal unit 1 is on from 1am to 4am and the rest of
hours is off; the thermal unit 2 is off from 1am to
6am and the rest of hours is on; the thermal unit 3
is on during all scheduling horizon; the thermal unit
4 is only on from 11am to 4pm, etc.

4.2. Initial population

Up and down ramp constraints of thermal units
(Eq. (6)) are a key factor in the convergence of the
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Fig. 1. Structure of the linear system including fill-ins.
GA: if the initial population is strictly randomly
selected, ramp constraints lead to many infeasible
individuals in the initial generation, which makes
successive generations suffer from poor diversity,
and the GA may converge prematurely. To assure
that the initial population contains an adequate



Table 3
Relative execution time and iteration number.

Number of variables Natural ordering Optimal ordering

Iterations Time Iterations Time

2376 33 4.00 34 1.00
3960 27 140.98 34 2.45

Others
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61%

Fig. 2. Relative overhead of the different processes.
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Fig. 3. Representation of an individual of the population.
percentage of feasible individuals, initial on/off
schedulings are randomly selected but modified to
account for the minimum start-up and shut-down
times imposed by ramp constraints. For example,
if generator g, with a maximum down ramp equal
to 100 MWh, is on at hour 3 producing an energy
of 400 MWh, this generator would require 4 hours
to shut-down and, consequently, the generator at
hours 4, 5 and 6 should be on. The state Ug,3 is
strictly randomly generated but the states for the
following hours, Ug,4, Ug,5 and Ug,6, are given by

U g;3 ¼ 1) U g;4 ¼ U g;5 ¼ Ug;6 ¼ 1: ð19Þ
4.3. Fitness function

The fitness function evaluates the quality of an
individual of the population. In this case, the func-
tion is the inverse of the total production cost of the
individual. The total production cost is obtained
solving a quadratic programming problem by using
a non-linear Interior Point method [22,23]. An
extra-high-cost fictitious generator is included to
satisfy the system demand (Eq. (9)). This fictitious
generator generates the necessary energy that the
rest of generators cannot produce to satisfy the
demand of the customers. A penalty term propor-
tional to the deficit in reserve requirements is added
in the cost function aiming at satisfying the reserve
constraint. Penalty terms only apply to infeasible
individuals, which are consequently eliminated
throughout the evolutionary process.

4.4. Selection operator

To produce a new generation, parents are ran-
domly selected using a roulette wheel selection tech-
nique that selects the best individuals for
reproduction. The probability of a particular indi-
vidual being selected is in proportion to its fitness
function, taking into account that the total genera-
tion cost, including possible penalizations, is being
minimized. The individuals chosen to be parents
are included in the following generation.

4.5. Crossover operator

Offspring is obtained by adding the binary strings
that results from random partitions of each row, as
shown in Fig. 4a. A column-partitioning procedure
may also be applied (Fig. 4b). This crossover oper-
ator is a particular case of the multi-point crossover
operator where the number of points is equal to the
number of rows or columns, respectively.

As rows are associated with the thermal units, the
first approach yields mainly the infeasibility of new
individuals in terms of minimum up and down times
(Eqs. (11) and (12)), while the second approach has
an effect bigger on the constraint of the demand
(Eq. (9)) and the reserve (Eq. (10)). This above state-
ment is shown in the next example. Let be a test
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Fig. 4. Crossover Operator: (a) random partitions of rows and (b) random partitions of columns.

h1 h2 h3 h4 h1 h2 h3 h4 
g1 1 1 1 1 g1 1 1 0 0 
g2 1 1 0 0 g2 1 1 0 0 
g3 1 1 1 1 g3 0 0 0 0 
g4 0 0 1 1 g4 1 1 0 0 

Fig. 7. Children by partitions of columns.
system comprising four thermal units and a 4-hour
scheduling horizon. The minimum up and down
time are 2 hours for all thermal units. Two individ-
uals selected to be parents are represented in Fig. 5.
Fig. 6 shows the children obtained using a crossover
operator by rows from the random partition
(1,2,1,2). It can be observed that the children do
not satisfy the Eqs. (11) and (12) (generator three)
while the Eqs. (9) and (10) can be feasible. Fig. 7
shows the children obtained using a crossover oper-
ator by columns from the same partition. It can be
observed that the individual on the right does not
satisfy the Eqs. (9) and (10) since all generators
are off at hours 3 and 4. However, in this case the
Eqs. (11) and (12) are fulfilled.
h1 h2 h3 h4 h1 h2 h3 h4 
g1 1 1 1 1 g1 1 1 0 0 
g2 1 1 0 0 g2 1 1 0 0 
g3 0 0 0 0 g3 1 1 1 1 
g4 1 1 0 0 g4 0 0 1 1 

Fig. 5. Parents.

h1 h2 h3 h4 h1 h2 h3 h4 
g1 1 1 0 0 g1 1 1 1 1 
g2 1 1 0 0 g2 1 1 0 0 
g3 0 1 1 1 g3 1 0 0 0 
g4 1 1 1 1 g4 0 0 0 0 

Fig. 6. Children by partitions of rows.
The crossover probability has been set to one, i.e.,
two individuals that have been selected to be parents
are always combined to obtain a new individual.

In the final version of the GA, the crossover by
rows has been chosen because start-up and shut-
down costs of realistic cases, along with the inclu-
sion of hydraulic generation, tend to reduce the
number of shut-downs and start-ups to a minimum,
making the minimum-time constraints useless in
most cases. All the rows are always combined to
obtain a new individual, though probabilities might
have been used to determine which rows should be
combined.
4.6. Mutation operator

After the crossover process, the individuals of the
population are mutated to introduce some new
genetic material according to a pre-defined muta-
tion probability p. Consequently, the percentage of
mutated individuals of a generation is equal to
100p%. The mutation of an individual means the
mutation of an only gene. The gene to be mutated



is represented by a randomly selected generator and
time interval, element (i, j) of the matrix representing
a particular individual. The mutation of a gene
implies changing the state on/off of the generator.
5. Test results

The GA algorithm have been applied to several
realistic cases based on the Spanish generation sys-
tem, comprising 49 thermal units and one equiva-
lent hydraulic generator, the scheduling horizon
embracing 24 hours. Hourly system demand corre-
sponds to a working day.

The main parameters of the implemented GA are
as follows: 5000 for the maximum number of gener-
ations; 100 for the size of the population; 1 for the
probability of crossover and 0.1 for the probability
of mutation. To avoid any misinterpretation of the
experimental results, the GA has been applied 10
times to the optimal scheduling electrical energy
production.

Fig. 8 shows the evolution of the fittest individual
cost and the average cost of the generation through-
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Fig. 8. Evolution of the best individual and average costs: (a)
reserve requirements considered and (b) no reserve requirements
considered.
out the evolutionary process for 10 runs, with and
without reserve requirements (Fig. 8a and b, respec-
tively). It can be noticed that the initial population
improves its quality throughout the generations.
This fact is due to the adopted heuristics to generate
the initial population taking into account the ramp
constraints and the modified constraints (Eq. (4)) to
assure the feasibility of the solutions at starting and
stopping periods. Obviously, reserve requirements
lead to higher operating costs, both in the best solu-
tion (3152.71 and 3109.51 thousands of Euros,
respectively) and in the average (3170.90 and
3132.02 thousands of Euros, respectively). To make
this fact more clear, the evolution of the last gener-
ations is depicted in Fig. 9.

Fig. 10 presents the optimal thermal and hydrau-
lic generation, along with the evolution of the mar-
ginal cost during the scheduling period. The
marginal cost represents the increment of cost when
the system demand increases in one MWh, i.e., the
hourly cost of the energy. Ramp constraints are
only included in the second case (Fig. 10b). Note
that, when ramps are considered, a higher cost,
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Fig. 9. Evolution of the best individual and average costs: (a)
reserve requirements considered and (b) no reserve requirements
considered.
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Fig. 10. Optimal thermal and hydraulic generation: (a) no ramp
constraints considered and (b) ramp constraints considered.
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Fig. 11. Optimal scheduling of a thermal generator: (a) no ramp
constraints considered and (b) ramp constraints considered.
fast-response generator is needed at hour 22 to sat-
isfy a small peak of demand. As expected, the total
operating cost is higher when ramps are included
(3119.1 and 3109.5 thousands of Euros, respec-
tively). It can be observed that the marginal cost
has a similar shape to the electric energy demand.
This means that the electric energy production is
more expensive during the peak hours, i.e., hours
with higher demand. The strategy followed by the
GA is the optimal strategy. As the hydraulic
generator does not have associated costs (hydraulic
terms do not appear in the objective function (Eq.
(1)), the hydraulic generator produces the maximum
energy (7000 MW) in most of the hours of the
scheduling period and the rest of the energy demand
is fulfilled by the produced energy for the thermal
generators.

Fig. 11 shows the optimal scheduling of a ther-
mal generator, ignoring its ramp constraints
(Fig. 11a) and considering them (Fig. 11b). Notice
that ramps modify the optimal scheduling when
the generator is starting and stopping. The penalty
term imposed to the objective function when
Ui,t = 0 (Eq. (5)), forces the generator to adjust its
output to the least possible value compatible with
the ramp constraint (hours 15 and 16). Moreover,
the minimum power of the thermal generators is
equal to zero at starting and stopping periods.
Due to these considerations in these periods, a lar-
ger number of feasible individuals is obtained. Sim-
ilar considerations apply when the generation is
starting (hours 20 and 21).

Finally, Fig. 12 shows the solution provided by
the proposed GA applied to the optimal scheduling
of 49 thermal units and two cascaded reservoirs with
a delay of 10 h and all the energy initially stored in
the upstream reservoir. Note that the downstream
reservoir 2 cannot start producing until water
released by generator 1 arrives. As can be noticed,
the total available hydraulic energy cannot be used.
This fact is due to the hydraulic constraints and to
the maximum power of generators. It is important
to use the total available hydraulic energy since
the hydro plants do not have associated costs as
the fuel is water. Consequently, the optimal strategy
is to consume all the hydraulic energy and the rest
of the energy demand is completed by the produced
energy for the thermal generators.

The performance of the GA is then compared to
the IP algorithm described before for two cases: a
small test system comprising five thermal units and
the above system based on the Spanish generation
system without hydro units. The ramps and the
reserve requirements have been included in both
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Fig. 12. Optimal thermal and hydraulic generation of a case with
two cascaded reservoirs and all energy initially stored in the
upstream reservoir.
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Fig. 13. Differences between the solutions obtained by the GA
and the IP for the generators 4 and 5.
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Fig. 14. Differences between the solutions obtained by the GA
and the IP for the generator 3.
cases. The results obtained are given in Table 4. It
can be observed that the GA leads to better feasible
minima for both systems, being rather notable in
the real case. Obviously, the IP algorithm reveals
much better performance in CPU time. In the IP
algorithm, the number of fitness evaluations
means the number of total iterations since the prob-
lem is solved twice: first, adding the constraints
(Eq. (13)) and later, considering the constraints
(Eq. (14)).

Fig. 13 presents some differences between the
solutions obtained from the GA and the IP algo-
rithm for the thermal generators 4 and 5 in the small
test system. Basically in both solutions the genera-
tors 1, 2 and 3 are always on. The generators 4
and 5 are only on at minimum power during peak
hours (7am to 11am and 7am to 12pm, respectively)
in the GA. However, in the solution obtained using
Table 4
Comparison of GA and IP in terms of the objective function CT, the n

Objective function (Euros) Numbe

GA IP GA

Test system 528,832 594,407 100,000
Real system 4,708,849 4,881,891 500,000
an IP algorithm these generators are on at minimum
power in most hours of the day (8am to 12am for
the generator 4 and 1am to 3am and 6am to 12am
for the generator 5). The produced energy for the
generator 3 is adjusted to satisfy the demand
depending on the state of the generators 4 and 5
as can be observed in Fig. 14.
umber of fitness evaluations and the relative CPU time

r of fitness evaluations Relative CPU time

IP GA IP

37 737 1
48 2800 1



Table 5
Convergence of the IP algorithm

Iteration Constraints 06Ui,t61 Constraints Ui,t Æ (1 � Ui,t) = 0

l a dugap l a dugap

1 1.000E + 04 0.35 9.982E + 03 1.000E + 03 0.23 9.974E + 02
2 8.984E + 03 0.27 9.678E + 03 9.974E + 01 0.30 7.270E + 02
3 8.711E + 03 0.39 9.278E + 03 7.270E + 01 0.64 3.103E + 02
4 8.351E + 03 0.72 8.473E + 03 3.103E + 01 0.78 9.312E + 01
5 7.625E + 03 0.99 7.603E + 03 9.312E + 00 0.99 1.027E + 01
6 7.603E + 02 0.99 8.281E + 02 1.027E + 00 0.99 1.120E + 00
7 8.281E + 01 0.99 9.030E + 01 1.120E � 01 0.99 1.221E � 01
8 9.030E + 00 0.99 9.846E + 00 1.221E � 02 0.99 1.331E � 02
9 9.846E � 01 0.99 1.074E + 00 1.331E � 03 0.99 1.452E � 03
10 1.074E � 01 0.99 1.170E � 01 1.452E � 04 0.88 3.026E � 04
11 1.171E � 02 0.99 1.275E � 02 3.026E � 05 0.75 9.822E � 05
12 1.275E � 03 0.99 1.383E � 03 9.822E � 06 0.45 5.863E � 05
13 1.380E � 04 0.77 4.244E � 04 5.863E � 06 0.34 4.066E � 05
14 3.820E � 04 0.99 1.912E � 04 4.066E � 06 0.35 2.796E � 05
15 1.900E � 05 0.88 3.225E � 05 2.796E � 06 0.20 2.283E � 05
16 2.900E � 05 0.99 1.461E � 05 2.283E � 06 0.54 1.168E � 05
17 1.000E � 06 0.56 6.810E � 06 1.168E � 06 0.48 6.676E � 06
18 6.676E � 07 0.10 6.049E � 06
19 6.049E � 07 0.24 4.735E � 06
20 4.735E � 07 0.20 3.895E � 06
21 3.895E � 07 0.26 2.987E � 06
22 2.987E � 07 0.37 1.984E � 06
23 1.984E � 07 0.43 1.220E � 06
24 1.220E � 07 0.28 9.084E � 07
25 9.084E � 08 0.22 7.264E � 07
26 7.264E � 08 0.29 5.369E � 07
27 5.369E � 08 0.30 3.926E � 07
28 3.926E � 08 0.39 2.543E � 07
29 2.543E � 08 0.65 1.043E � 07
30 1.043E � 08 0.67 4.090E � 08
31 4.090E � 09 0.24 3.200E � 08
Finally, Table 5 shows the convergence of the IP
algorithm for the case based on the real system.
First the problem is solved including the constraints
(Eq. (13)) only to obtain an initialization point.
Consequently, in this case the stopping criteria are
not hard and 17 iterations are enough. Later, the
same problem is solved with the constraints (Eq.
(14)) using the former solution as initialization. In
this case the stopping criteria must be more strict
and 31 iterations have been need. Notice that the
penalty factor and the average duality gap approach
zero throughout the iterations.

6. Conclusions

In this paper, an evolutionary technique applied
to the optimal short-term (24 h) electric energy
production scheduling has been proposed. The
equations defining the model of the problem have
been presented leading to a non-linear mixed-inte-
ger programming problem with a large number of
continuous and integer variables. Some heuristics
have been introduced to assure the feasibility of
the solutions obtained by the GA, and key imple-
mentation issues have been discussed. Results from
realistic cases based on the Spanish power system
have been compared with that of a IP algorithm,
revealing the good convergence characteristics
and the remarkable performance of the proposed
GA.

Further research will be addressed to improve the
modelling of realistic cases to decrease the computa-
tional cost of the GA for real systems including
hydroelectric power plants and to test other possible
implementations of the selection, crossover and
mutation operators maintaining the percentage of
feasible individuals of the population. In the other
hand, the GA and IP algorithms will be adapted
to deal with multiple local minima in non-convex
and non-linear optimization problems.
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