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Centro de Modelamiento Matemático, UMR 2071 CNRS-Universidad de Chile, Santiago,
Chile.

Abstract

We consider here a linear quasi-geostrophic ocean model. We look for controls insen-
sitizing (resp. � -insensitizing) an observation function of the state. The existence of such
controls is equivalent to a null controllability property (resp. an approximate controllability
property) for a cascade Stokes-like system. Under reasonable assumptions on the spatial
domains where the observation and the control are performed, we are able to prove these
properties.

1 Introduction and main result

Let
�

be a nonempty open bounded connected subset of ��� , with boundary � of class ��� and
outwards unit normal vector �
	������� . Let � be a nonempty open subset of

�
, ����� , ��	��� ������� � and !"	#� � �$���%�&� . We consider a linear quasi-geostrophic ocean model [9, 10],

described by the following equations'(((() ((((*
+-,/.10&23+3415�+64 �$798 4;: � � ��<>= +64 ?@ 8BADC 	FE 4HG ?JI in �K�LNMPO + 	Q� in �K�+ 	F� on ! �+SR ,PT 8U	 + 8 4
VUW+ 8 in

�&X (1)

Here, + 	 + �Y���%Z%� and C 	 C �Y���%Z%� are the velocity field and the pressure of the fluid. In this
model, 0 is the horizontal eddy viscosity coefficient, 5 is the bottom friction coefficient, @ 8 is the



fluid density and �$7[8 4;: � � �\<&= + is the Coriolis term, with <>= + 	�� .]+ � � +^ � . In the right hand
side, ?JI denotes the characteristic function of � and E is a given source. The term V�W+ 8 , whereV`_ � , represents a small unknown perturbation of the initial condition + 8 and G 	 G �Y���%Z%� is a
control term to be determined.

Notice that the Coriolis force is modelled by a zero order coupling term in the equations. It
introduces a different behavior of the system depending on the direction in space. In order to
simplify the presentation of the results, we will assume that 0 	 5 	Q7a8U	 : 	 @ 8�	 ? .

Let us recall the classical spacesb 	dcfe _hg � � � � �ji LNMPO ek	F� in
� �feml9�K	Q� on �kn

and o 	pcfe _ b ^8 � � � �]i LNMqO e3	Q� in
� n X

Assume that + 8r� VUW+ 8 _ b , with s W+ 8tsu8�v wx	 ? , E _yg � �$�z� and G{_yg � ��� � �$���%�&�%� . Then prob-
lem � ? � possesses exactly one solution � + � C � , with +|_hg � �$�����~} o ��� b ^ �������~} o&� ���D���%����������} b �
and C _|� � �$�����~} g �8 � � ��� . This can be easily proved by adapting the arguments of [11].

Let � be a non-empty subset of
�

and let us introduce the functional � , with�>� + �S	 ?�>�;�8 �-� R + ������Z%� R ��� � � Z X (2)

The notion of insensitizing control was introduced by J.L. Lions in [8]. In the context of � ? � ,
it can be formulated as follows:

Definition 1.1 We say that the control G is insensitizing � if�� V �>� + �[����� T 8 	Q� � W+ 8 _ b ��s W+ 8tsu8�v wx	 ? X (3)

On the other hand, we say that G is � -insensitizing � if���� �� V �>� + � ����� T 8 ������ � � W+ 8 _ b ��s W+ 8[su8�v wx	 ? X (4)

Of course, in �$�a� and ����� , + is, together with C , the unique solution to � ? � .
The existence of insensitizing and � -insensitizing controls for linear and semilinear heat equa-

tions has been studied in [1, 2, 12]. In this Note, we will be concerned with this question in the
case of the previous Stokes-like system.

As in the previous references, we will impose the following geometrical hypothesis:�y�����	Q� X (5)

The main results of this Note are the following:

Theorem 1.2 Let ����� and assume that �$�a� is satisfied. Then, for each ����� , there exists a
control G�_hg � ��� � �$���%�&�%� which is � . insensitizing � .

Theorem 1.3 Under the assumptions of Theorem 1.2, if we also have + 8h	 � , there exists a
constant ¡¢� � �%�]�J�£��� �U�¤� such that, whenever� �8 � w]¥u¦�§x¨ ¡¤©9Z«ª¬fE � � � � ZU®°¯Q�
there exists a control G�_hg � ��� � �$���%�&�%� which is insensitizing � .
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2 Proof of the main results

Let us first give a characterization of the insensitivity (resp. � -insensitivity) properties in terms
of the null controllability (resp. approximate controllability) of an appropriate cascade system.
This is obtained by differentiating � with respect to the parameter V and following a standard
argument, see [1, 12]:

Proposition 2.1 Let �²±+ ��±C �´³��%µ¶� be the solution of the following system:'(((() ((((*
±+-,/.
2 ±+34 ±+34 � ? 4 � � �-·D=�±+m4 A ±C 	¸E 4�G ?²I in �k�. ³ ,�.
2 ³ 4 ³ . � ? 4 � � �-·>=�³ 4 A µ�	"±+ ? � in �k�L�MqO ±+ 	F��� LNMqO ³>	Q� in �k�±+ 	F³D	Q� on ! �±+¹R ,PT 8º	 + 8�� ³ R ,PT � 	Q� in

�&X (6)

Then the control G is insensitizing � (resp. � -insensitizing � ) if and only if³ R ,PT 8�	¸� � resp. su³ R ,PT 8tsu8�v w � �[� X (7)

In general, for linear problems, it is well known that approximate controllability is equivalent
to a unique continuation property of the associate adjoint system and that exact controllability
reduces to suitable observability estimates. We will now present the main steps in the proofs of
Theorems 1.2 and 1.3, which are inspired by these general principles. Full versions of the proofs
will appear in a forthcoming paper.

Proposition 2.2 Assume ���a� . Let ��»��´¼½�u¾¶�´¿a� be the solution to'(((() ((((*
. » ,�.
2 » 4 » . � ? 4 � � �-·D=|» 4 A ¼~	Q¾ ? � in �k�¾ ,/.
2 ¾ 4 ¾ 4 � ? 4 � � �-·>=�¾ 4 A ¿~	F� in �k�LNMqO »6	F��� LNMPO ¾À	Q� in �k�»m	Q��� ¾À	Q� on ! �» R ,PT � 	Q��� ¾ R ,PT 8U	Q¾�8 in

� � (8)

where ¾/8 _ o . Then, if »k	Á� in � � �$����� � , we necessarily have »3ÂÃ¾�ÂÄ� and A ¼mÂ A ¿6ÂÄ�in � .

Sketch of the proof: Let us put Å�1	°�h�h� . We will prove a more general result saying that'(() ((* . » ,�.
2 » 4 » . � ? 4 � � �-·D=|» 4 A ¼~	Q¾ ? � in �k�¾ ,/.
2 ¾ 4 ¾ 4 � ? 4 � � �-·>=�¾ 4 A ¿~	F� in �k�LNMqO »6	F��� LNMPO ¾À	Q� in �k�¾ ^ 	Q� on ! ^ � ¾ R ,PT 8 _ o � (9)

where ! ^ 	Æ���À��Ç ^ � � �$����� � , Ç ^ 	¢c��Y� ^ ��� � � _ � i]È � 8 ^ s.t. �Y� 8 ^ ��� � � _ Å�ºn . Then, if »K	p� in� � �$����� � , we necessarily have ¾ÉÂd� in � . We first notice that ÊJËNÌ�ÍÎ¾�	Q� in Å� � �$����� � . Then,
applying the curl operator to the second equation of �$Ïa� , in view of the presence of the Coriolis
term and the fact that

L�MqO ¾�	�� , we deduce that ¾ � 	Ð� in Å� � �$���%�&� and ¾ ^ is a constant inÅ� � �$���%�&� .
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Let us introduce Ñ
	QÒ/¾�©tÒN� ^ and µ|	QÒ�¿a©tÒN� ^ . We have'(() ((* Ñ ,�.
2 Ñ 4 Ñ 4 � ? 4 � � �-·~=ÉÑ 4 A µ�	F� in �K�LNMPO Ñ
	Q� in �k�Ñ;	F� in Å� � ������� �²���Ñ]��µ¶� _�g � �������~} b � � � � ���m� X
From the uniqueness property in [4], one has that Ñ�Â�� in � . Since Ò�¾ÔÓY©tÒN� ^ Â#� , Õ&	 ? � � ,
and

LNMPO ¾H	Ð� in � , we have A ¾ � 	Ð� in � , and from ¾ � 	Ð� in Å� � �$���%�&� , we deduce that¾ � ÂÁ� in � . On the other hand, since Ò�¾ ^ ©tÒN� ^ 	¸� in � and ¾ ^ 	Q� on ! ^ , we obtain ¾ ^ 	F� inÇ ^ � �$���%�&� . The uniqueness properties in [3] give ¾ ^ ÂÄ� in � , as desired. Ö
Remark 1 In [3], appropriate unique continuation properties have been deduced for the Stokes
system, where the main assumption is that all components of the velocity except one vanish in an
open non-empty subset of � . At present, we do not know whether a similar result remains true
for �$Ïa� . Ö

The unique continuation property contained in the statement of Proposition 2.2 is equivalent
to Theorem 1.2. This proves our first main result. On the other hand, Theorem 1.3 follows from
the following observability estimates:

Proposition 2.3 There exist constants ¡F�Ç ��� depending on
�

, � , � and � such that the
following inequality holds true

�;�8 � w ¥²¦�§£¨ . ¡¤©½Z ª ¬Î» �Ô� � � Z � Ç �;�8 � I » �/� � � Z
for every solution of ��Ï×� with ¾�8 _ o .

The proof of Proposition 2.3 relies on certain global Carleman estimates for the cascade
system �$Ïa� . More precisely, let us introduce the weight functionsØÃÙ ������Z%�S	¢�$Ú �«ÛÎÜ�ÝßÞÜ�à . Ú ÛÝßÞ �ßZ´á ª ��� . Z%�´á ª � WÙ �YZ%�â	Fã Måä w Ù �Y����Z%�u�æ �Y���%Z%�S	¢�$Ú ÛÝßÞ �«Z´á ª �Y� . Z%�á ª � Wæ �YZ%�â	¸ãèç ¦ w æ �Y����Z%�u� (10)

where ét8 _ � ª � � � is a function satisfying:é 8 �H� in
� � é 8 	F� on �â� R A é 8 R �H� in

�`ê ¨ �h�h� ¬ X
The existence of such a function é 8 is guaranteed in [5].

Proposition 2.4 Assume �$�a� . There exists Wë 	 Wì � � �%�]�²�k�J�Y� ª 4 � ^ 8 � , with Wì �F� , such that for
all ë � Wë and for all W5 ® ? there exist

Wí � ? , W: � ? , and Ç��°� such that for any
í � Wí

, : � W: ,
and 5 ® W5 , one has:'(() ((* � �8 � w Ú á �ßî�ïxð ?ë½æ � R 2 » R � 4ÄR » ,R � � 4�ë í � æ]R A » R � 4�ërñ í ª æ¶ñtR » R �òp� � � Z

� Ç � �8 � I Ú á-ó
^$ô�õJö îr÷ï Wæ¶ø�R » R � � � � Z (11)

for every solution of �$Ï×� with ¾�8 _ o , where the constant Ç depends on
� �%�]�²� and � , but is

independent of ��»��´¼½�u¾¶�´¿a� .
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Sketch of the proof: We first write the global Carleman inequalities for the Stokes equations
given in [7, 6] for both systems in ��Ï×� . The task is then to estimate the integral of ¾ in terms of» . To this end, the main idea is to follow the steps of the proof of proposition 2.2 in the reversed
order. Thus, we estimate ¾ ^ in terms of A ¾ ^ , then A ¾ ^ in terms of ¾ � , then ¾ � in terms ofÊùË�Ì�Í½¾ and, finally, ÊJËNÌ�Í½¾ in terms of » . At each step, the weight increases. At the end, we find
an inequality like � ?a? � with some additional terms in the right hand side that can be suppressed
using an appropriate compactness-uniqueness argument. Ö
Remark 2 It must be emphasized that the presence of the Coriolis term plays a crucial role in this
argument. It is not clear at all whether theorem 1.3 holds for � ? � when 7a8�	 : 	Q� . Ö
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