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Abstract
We consider a nonlinear eigenvalue problem with indefinite weight under Robin

boundary condition. We prove the existence and multiplicity of positive solutions. To
this end, we carry out a detailed study of some linear eigenvalues problems and we
use mainly bifurcation and sub-supersolution methods.
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1 Introduction and main results

Let Ω ⊂ IRN , N ≥ 2, be a bounded domain with a C2,γ boundary, 0 < γ < 1. We are
interested in the study of positive solutions for the problem

(P )

 −∆u = λm(x)(u− u2) in Ω,
∂u

∂ν
= αu on ∂Ω,

where λ, α ∈ IR, m ∈ C1(Ω) changes sign and ν is the outward unit normal to ∂Ω.
Throughout this article we assume that∫

Ω
m < 0, (1.1)

since the case
∫

Ωm > 0 reduces to (1.1) changing λ by −λ. The case
∫

Ωm = 0 is singular
and will be treated elsewhere.

We shall treat (P ) by a bifurcation approach, so we shall consider the linear eigenvalue
problem

(E)

 −∆u = λm(x)u in Ω,
∂u

∂ν
= αu on ∂Ω.
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Figure 1: Bifurcation diagrams of (P ): Case a) α < 0 and Dirichlet boundary conditions.
Case b) α = 0.

It is shown in [1] that there exists α∗0 > 0 such that, for α < α∗0, (E) possesses
two principal eigenvalues, denoted by λ−1 (α) and λ+

1 (α). In the homogeneous Dirichlet
boundary conditions case, we denote them by λ±1 (D). In Section 2 we recall the results
from [1] and complement them providing an expression for α∗0.

(P ) has already been studied in different cases. For the cases α < 0 [7] and Dirichlet
boundary conditions [2, 11], it has been proved that (P ) has a positive solution for all
λ 6= 0 and, under further conditions for a priori bounds, at least two positive solutions for
λ ∈ (−∞, λ−1 (α)) ∪ (λ+

1 (α),+∞) and λ ∈ (−∞, λ−1 (D)) ∪ (λ+
1 (D),+∞), respectively. See

Figure 1 (a) for the bifurcation diagram in these cases.
The case α = 0, which has been analyzed in [6] (see also [14, 17]), is singular in the

following sense: the trivial solutions u ≡ 0 and u ≡ 1 exist for all λ ∈ IR, and for λ = 0
the positive constants are solutions. Moreover, for λ ∈ (−∞,−λ+

1 (0))∪ (λ+
1 (0),+∞) there

exists a stable solution u < 1, which is the only positive solution of (P ) less than one, see
Figure 1 (b). Recall that in this case λ−1 (0) = 0.

Finally, the case α > 0 and small was studied in [7]. Assuming 2 < (N+2)/(N−2) and
using variational methods, the authors proved that if 0 < α < α∗0 and λ ∈ (λ−1 (α), λ+

1 (α))
then (P ) possesses at least a positive solution.

In this article, we adopt a different viewpoint, namely, we consider λ fixed and look
at α as a bifurcation parameter. Consequently, we improve some results of [6] for α = 0,
and complement the study of (P ) when α > 0.

We shall assume that
M± := {x ∈ Ω : m± > 0}

are open and regular sets; here m± denote the positive and negative part of m respectively.
We shall also assume that m±(x) ≈ [dist(x, ∂M±)]γ

±
for x close to ∂M± and some γ± ≥ 0.

Let
M0 := Ω \ (M+ ∪M−). (1.2)

We assume the following conditions on M± and M0:
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M

Figure 2: Two examples of admissible domains. The white, shady and lined sets represent
M0, M+ and M−, respectively.

(HM0) M0 is a proper subdomain of Ω, i.e. dist(∂Ω, ∂M0 ∩ Ω) > 0.

(HM±) ∂M± = Γ±1 ∪ Γ±2 , with Γ±1 = ∂Ω ∩ ∂M± and Γ±2 ⊂ Ω.

In fact, (HM±) is assumed to avoid regularity issues, see [12]. In Figure 2 we have repre-
sented two different admissible domains.

Our first result is related to a priori bounds for positive solutions of (P ). We show
that if

2 < min
{
N + 2
N − 2

,
N + 1 + γ±

N − 1

}
, (1.3)

then, there exist a priori bounds for positive solutions of (P ) whenever α varies in compact
sets of IR.

In order to show our main results, we need to introduce some further notation. We
denote by λ1(−∆−λm,N) and λ1(−∆−λm,D) the principal eigenvalues of the problem

−∆ϕ− λm(x)ϕ = σϕ in Ω,

under homogenous Neumann and Dirichlet boundary conditions, respectively. In Section
2, we show that given λ ∈ IR, there exists a principal eigenvalue of (E) with respect to
α, denoted by α1(λ), if and only if λ1(−∆ − λm,D) > 0. Furthermore, sign(α1(λ)) =
sign(λ1(−∆− λm,N)).

Note that if λ = 0 then (P ) has no positive solutions unless if α = 0, in which case,
all the positive constants are solutions. So we assume that λ 6= 0 along this article.

We state now our main result (see Figure 3):

Theorem 1.1. Assume (1.1) and (1.3).

1. Assume λ1(−∆ − λm,D) > 0. Then there exists α∗ ≥ α1(λ) such that (P ) has a
positive solution if α < α∗ and no positive solution for α > α∗. Moreover, there
exists α∗∗ ∈ (α1(λ), α∗] such that (P ) has at least two positive solutions for α ∈
(α1(λ), α∗∗). In addition:
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(a) If λ1(−∆− λm,N) > 0 then 0 < α1(λ) ≤ α∗∗.
(b) If λ1(−∆− λm,N) = 0 then 0 = α1(λ) < α∗∗.

(c) If λ1(−∆− λm,N) < 0 and λ 6= −λ+
1 (0) then α1(λ) < 0 < α∗∗.

(d) If λ = −λ+
1 (0) then α1(λ) < 0 ≤ α∗∗.

2. Assume λ1(−∆− λm,D) ≤ 0. Then there exist α∗ > 0 such that (P ) has a positive
solution if and only if α ≤ α∗. Moreover, there exists α∗∗ ∈ (0, α∗] such that (P )
has at least two positive solutions for α < α∗∗.

As a consequence, we obtain (see Figure 4 (a)):

Theorem 1.2. Assume (1.1) and α = 0.

1. For all λ ∈ IR, u ≡ 1 is a positive solution of (P ), which is stable for λ ∈ (−λ+
1 (0), 0).

2. (P ) has a second (and stable) positive solution for λ > λ+
1 (0) and λ < −λ+

1 (0).

3. Assume (1.3). (P ) has a second positive solution for −λ+
1 (0) < λ < 0.

In the case α > 0, we get:

Theorem 1.3. Assume (1.1), (1.3) and α > 0.

1. There exists α0 > 0, such that (P ) has no positive solution for α ≥ α0.

2. Let λ < 0 and λ 6= −λ+
1 (0). Then there exists α∗(λ) such that (P ) has at least two

positive solutions for α < α∗(λ).

3. Let λ ∈ (λ−1 (α), λ+
1 (α)) and 0 < α < α∗0. Then (P ) has at least a positive solution.

4. Let λ ≥ λ+
1 (0). Then (P ) has at least two positive solutions for α sufficiently small.

We stress that we do not know what the bifurcation diagram looks like in the case
λ ∈ [λ+

1 (α), λ+
1 (0)). However, since λ+

1 (α) → λ+
1 (0) as α → 0, we have represented in

Figure 4 (b) the suggested bifurcation diagram in the case α > 0 and small.
The outline of this article is as follows: in Section 2 we study in detail the eigenvalue

problems related to (P ). In Section 3 we consider (P ) with α as the bifurcation parameter.
Finally, Section 4 is devoted to prove our main results.

2 Eigenvalue problems

Given m ∈ L∞(Ω) and h ∈ C1(∂Ω), we denote by λ1(−∆ + m,N + h) the principal
eigenvalue (the notation N refers to the Neumann boundary condition) of the problem −∆u+m(x)u = λu in Ω,

∂u

∂ν
+ h(x)u = 0 on ∂Ω.

Let us summarize the main properties of λ1(−∆ +m,N + h). For a proof, we refer to [8]:

Lemma 2.1. λ1(−∆+m,N+h) is a simple eigenvalue, and any eigenfunction ϕ associated
to λ1(−∆ +m,N + h) satisfies ϕ ∈ C1,γ(Ω) ∩H2(Ω), γ ∈ (0, 1). In addition:
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Figure 3: Bifurcation diagrams of (P ): Case a) λ1(−∆ − λm,N) > 0. Case b) λ1(−∆ −
λm,N) = 0. Case c) λ1(−∆− λm,N) < 0 < λ1(−∆− λm,D) and λ 6= −λ+

1 (0). Case d)
λ = −λ+

1 (0). Case e) λ1(−∆− λm,D) ≤ 0.
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Figure 4: Bifurcation diagrams of (P ): Case a) α = 0. Case b) α > 0 and small.

1. λ1(−∆ +m,N + h) is separately increasing with respect to m and h.

2. λ1(−∆ +m,N +h) < λ1(−∆ +m,D) where λ1(−∆ +m,D) stands for the principal
eigenvalue of −∆ +m with homogeneous Dirichlet boundary conditions.

3. Assume that G ⊂ Ω is a proper regular subdomain of Ω, that is,

dist(∂Ω, ∂G ∩ Ω) > 0,

and denote by λG1 (−∆ +m,N + h,D) the principal eigenvalue of
−∆u+m(x)u = λu in G,
∂u

∂ν
+ h(x)u = 0 on ∂G ∩ ∂Ω,

u = 0 on ∂G ∩ Ω.

Then
λ1(−∆ +m,N + h) < λG1 (−∆ +m,N + h,D).

4. There holds

lim
K→−∞

λ1(−∆ +m,N +K) = −∞,

lim
K→+∞

λ1(−∆ +m,N +K) = λ1(−∆ +m,D).
(2.4)
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Given λ, α ∈ IR, we set

µ(λ, α) := λ1(−∆− λm,N − α) (2.5)

and
Iλ,α(u) =

∫
Ω

(
|∇u|2 − λm(x)u2

)
− α

∫
∂Ω
u2 for u ∈ H1(Ω).

Recall that

µ(λ, α) = min
{
Iλ,α(u); u ∈ H1(Ω),

∫
Ω
u2 = 1

}
.

This map has the following properties, which follow from Lemma 2.1 and [1, Lemma 2]:

Lemma 2.2.

1. The map α 7→ µ(λ, α) is decreasing on IR and

lim
α→+∞

µ(λ, α) = −∞,

lim
α→−∞

µ(λ, α) = λ1(−∆− λm,D).
(2.6)

2. Assume that m changes sign. Then the map λ 7→ µ(λ, α) is concave on IR and
lim
|λ|→∞

µ(λ, α) = −∞. Moreover, it is differentiable and

dµ

dλ
(λ, α) = −

∫
Ω
m(x)φ2

λ,α,

where φλ,α is the eigenfunction achieving µ(λ, α).

3. For every α ∈ IR the map λ 7→ µ(λ, α) has an unique maximum point.

We shall first consider (E) as an eigenvalue problem with respect to α. It is clear that,
given λ ∈ IR, α1(λ) is a principal eigenvalue of (E) if and only if µ(λ, α1(λ)) = 0. From
Lemma 2.2 we deduce:

Lemma 2.3. Given λ ∈ IR, (E) has a principal eigenvalue α1(λ) if and only if λ1(−∆−
λm,D) > 0. In this case we have

α1(λ) = min
{
Iλ,0(u); u ∈ H1(Ω),

∫
∂Ω
u2 = 1

}
(2.7)

and

α1(λ) > 0 (respect. = 0, < 0) ⇐⇒ λ1(−∆− λm,N) > 0 (respect. = 0, < 0).

In Figure 5 we have depicted the map α 7→ µ(λ, α) depending on the values of λ.
On the other hand, when dealing with (E) as an eigenvalue problem with respect to

λ, we shall consider the maximum of the map λ 7→ µ(λ, α). We complement Lemma 2.2
providing an expression for this maximum, namely:

µ0(α) := inf
{
I0,α(u); u ∈ H1(Ω),

∫
Ω
u2 = 1,

∫
Ω
m(x)u2 = 0

}
. (2.8)
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a) b)

c) d)

Figure 5: The map α 7→ µ(λ, α): Case a) λ1(−∆−λm,D) ≤ 0. Case b) λ1(−∆−λm,N) <
0 < λ1(−∆− λm,D). Case c) λ1(−∆− λm,N) = 0. Case d) λ1(−∆− λm,N) > 0.
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Lemma 2.4. For every α ∈ IR there holds

max
λ∈IR

µ(λ, α) = µ0(α).

Proof. We know that lim
|λ|→∞

µ(λ, α) = −∞ and λ 7→ µ(λ, α) is continuous, so that it has a

global maximum achieved by some λ0, i.e.

max
λ∈IR

µ(λ, α) = µ(λ0, α).

We shall prove that µ(λ0, α) = µ0(α). Since λ 7→ µ(λ, α) is differentiable and

dµ

dλ
(λ, α) = −

∫
Ω
m(x)φ2

λ,α,

where φλ,α is the eigenfunction achieving µ(λ, α), we must have∫
Ω
m(x)φ2

0 = 0,

where φ0 = φλ0,α. Consequently

µ(λ0, α) = Iλ0,α(φ0) = I0,α(φ0) ≥ µ0(α).

On the other hand, it is easily seen that µ0(α) is achieved by some u0. Hence

µ(λ0, α) ≤ Iλ0,α(u0) = I0,α(u0) = µ0(α),

and we get the conclusion.

We are now in position to analyse the existence of zeros for the map λ 7→ µ(λ, α). The
case α = 0 (Neumann) is well-known, whereas the other cases were considered in [1], but
we shall provide them a complete and unified description. We set

α∗0 := inf
{∫

Ω
|∇u|2; u ∈ H1(Ω),

∫
Ω
m(x)u2 = 0,

∫
∂Ω
u2 = 1

}
. (2.9)

Lemma 2.5. Assume (1.1).

1. If α > α∗0 then (E) has no principal eigenvalues.

2. If α = α∗0 then (E) has a unique principal eigenvalue λ1(α).

3. If α < α∗0 then (E) has two principal eigenvalues λ−1 (α) < λ+
1 (α), given by

λ±1 (α) = ±min
{
I0,α(u); u ∈ H1(Ω),

∫
Ω
m(x)u2 = ±1

}
. (2.10)

Moreover:

(a) If α < 0 then λ−1 (α) < 0 < λ+
1 (α).

(b) If α = 0 then λ−1 (α) = 0 < λ+
1 (α).

(c) If 0 < α < α∗0 then 0 < λ−1 (α) < λ+
1 (α).
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Proof. Since λ is a principal eigenvalue of (E) if and only if µ(λ, α) = 0, we shall look for
the zeros of the map λ 7→ µ(λ, α). From Lemma 2.4, we know that max

λ∈IR
µ(λ, α) = µ0(α).

Thus the condition µ0(α) ≥ 0 is necessary for the existence of principal eigenvalues of (E).
Note also from (2.8) that µ0(α) > 0 if α ≤ 0. Now, if α > 0 then µ0(α) ≥ 0 if and

only if and only if I0,α(u) > 0 for every u 6= 0 such that
∫

Ωm(x)u2 = 0, i.e. if and only
if α ≤ α∗0. Moreover, if α = α∗0 then µ0(α) = 0 and, by Lemma 2.4, there is an unique
λ0 such that µ(λ0, α) = µ0(α). We set λ1(α) = λ0. On the other hand, if α < α∗0 then
λ 7→ µ(λ, α) vanishes at some λ−1 (α) < λ+

1 (α). Since

µ(λ−1 (α), α) = 0 and
dµ

dλ
(λ−1 (α), α) > 0,

we have, denoting φ = φλ−1 (α),α,

Iλ−1 (α),α(u) ≥ 0 for every u ∈ H1(Ω), Iλ−1 (α),α(φ) = 0 and
∫

Ω
m(x)φ2 < 0.

Let ψ =
(
−
∫

Ωm(x)φ2
)− 1

2 φ. Then
∫

Ωm(x)ψ2 = −1 and, from Iλ−1 (α),α(φ) = 0, we get

−λ−1 (α) = I0,α(ψ).

Moreover, since Iλ−1 (α),α(u) ≥ 0 for every u ∈ H1(Ω), we have in particular

−λ−1 (α) ≤ I0,α(u) for every u such that
∫

Ω
m(x)u2 = −1.

Thus

−λ−1 (α) = min
{
I0,α(u); u ∈ H1(Ω),

∫
Ω
m(x)u2 = −1

}
. (2.11)

In a similar way, we can prove that

λ+
1 (α) = min

{
I0,α(u); u ∈ H1(Ω),

∫
Ω
m(x)u2 = 1

}
.

Finally, note from (2.11) that the map α 7→ −λ−1 (α) is decreasing on (−∞, α∗0) and
λ−1 (0) = 0, in view of (1.1). Therefore λ−1 (α) > 0 if and only if 0 < α < α∗0. In a similar
way, α 7→ λ+

1 (α) is decreasing on (−∞, α∗0) and λ+
1 (α) > λ−1 (α) > 0 if 0 < α < α∗0, so that

λ+
1 (α) > 0 for every α < α∗0.

In the following result, we compare the maps α1(λ) and λ±1 (α). It can be easily proved
using Lemmas 2.2 and 2.3, and the fact that, whenever α1(λ) and λ±1 (α) exist, we have

α < α1(λ)⇔ µ(λ, α) > 0⇔ λ−1 (α) < λ < λ+
1 (α).

Lemma 2.6. Assume (1.1) and α < α∗0. Then

1. α < α1(λ)⇔ λ ∈ (λ−1 (α), λ+
1 (α)).

2. If α > α1(λ) and λ < 0, then λ < λ−1 (α).

3. If α > α1(λ), λ > 0 and:

(a) α ≤ 0, then λ > λ+
1 (α).

(b) α > 0, then either 0 < λ < λ−1 (α) or λ > λ+
1 (α).
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3 Bifurcation with respect to α

Let us recall that a positive solution u0 of (P ) is stable if the principal eigenvalue of the
linearisation of (P ) at u0 is positive, i.e.

λ1(−∆− λm+ 2u0λm,N − α) > 0.

Since α1(λ) is a simple eigenvalue whenever it exists, i.e., if λ ∈ (λ−1 (D), λ+
1 (D)), we

can apply the classical Crandall-Rabinowitz Theorem [9] to deduce the following result:

Lemma 3.1. Assume that there exists α1(λ). Then:

1. The trivial solution u ≡ 0 is stable for α < α1(λ) and unstable for α > α1(λ).

2. The point (α, u) = (α1(λ), 0) is a bifurcation point from the trivial solution of (P ).
Moreover, there exist ε > 0 and two C1 maps

α : (−ε, ε) 7→ IR and v : (−ε, ε) 7→ 〈ϕ1〉⊥,

where ϕ1 is a positive eigenfunction associated to α1(λ), satisfying α(0) = α1(λ),
v(0) = 0 and

α(s) = α1(λ) + sα2 + o(s), u(s) = s(ϕ1 + v(s))

are such that (α(s), u(s)) is the only solution of (P ) in a neighborhood of (α1(λ), 0).
Moreover,

α2 =
λ

∫
Ω
mϕ3

1∫
Ω
ϕ2

1

.

Consequently, for λ 6= 0, the bifurcation direction is supercritical (resp. subcritical)
if α2 > 0 (resp. α2 < 0).

3. If the bifurcation direction is supercritical (respect. subcritical) the new solution u(s)
is stable (respect. unstable).

4. There exists δ > 0 such that α2 > 0 if λ ∈ (λ−1 (D)− δ, 0) ∪ (λ+
1 (0)− δ, λ+

1 (D) + δ).
In particular α2 > 0 if α1(λ) = 0.

Proof. Observe that u ≡ 0 is stable if λ1(−∆ − λm,N − α) > 0, that is α < α1(λ). The
existence and properties of the maps α(s) and u(s) follow by the Crandall-Rabinowitz
Theorem. In addition, since (α(s), u(s)) solve (P ), we have −∆((ϕ1 + v(s))) = λm(x)(ϕ1 + v(s))(1− s(ϕ1 + v(s))) in Ω,

∂(ϕ1 + v(s))
∂ν

= (α1(λ) + sα2 + o(s))(ϕ1 + v(s)) on ∂Ω.

We can write v(s) = sv1 + s2v2 + o(s2) for s ' 0. Plugging this expression in the above
equation and rearranging the terms in s, we get

−∆v1 − λm(x)v1 = −λm(x)ϕ2
1 in Ω,

∂v1

∂ν
− α1(λ)v1 = α2ϕ1 on ∂Ω,
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and multiplying by ϕ1, we get

α2 =
λ

∫
Ω
mϕ3

1∫
Ω
ϕ2

1

.

Now, since

−∆ϕ1 − λm(x)ϕ1 = 0 in Ω,
∂ϕ1

∂ν
= α1(λ)ϕ1 on ∂Ω,

multiplying by ϕ2
1, we get

2
∫

Ω
ϕ1|∇ϕ1|2 − α1(λ)

∫
∂Ω
ϕ3

1 = λ

∫
Ω
mϕ3

1.

Recall that α1(λ) < 0 for λ ∈ (λ−1 (D), 0 = λ−1 (0)) ∪ (λ+
1 (0), λ+

1 (D)). Thus, by con-
tinuity of α1(λ) and ϕ1 with respect to λ (see for instance [8]), there exists δ > 0 such
that α2 > 0 for λ ∈ (λ−1 (D) − δ, 0) ∪ (λ+

1 (0) − δ, λ+
1 (D) + δ). In particular, α2 > 0 when

α1(λ) = 0, that is, when λ = λ+
1 (0).

Finally, the stability of the new solution u(s) follows by [10].

The following result has a global character (see [15]):

Lemma 3.2. Whenever α1(λ) exists, there is an unbounded continuum C of positive so-
lutions of (P ) emanating from (α, u) = (α1(λ), 0).

In the following result, we prove that (P ) has no positive solutions for α large and
independent of λ. Let α0 be the principal eigenvalue of

−∆u = 0 in M0,
∂u

∂ν
= αu on ∂M0 ∩ ∂Ω,

u = 0 on ∂M0 \ ∂Ω,

(3.12)

where M0 is given in (1.2).

Remark 3.3. Note that (3.12) has indeed a principal eigenvalue α0. This can be proved
in the same way as the existence of α1(λ) in Lemma 2.3. As a matter of fact, if we denote
by µ1(α) the principal eigenvalue of the problem

−∆u = µ1(α)u in M0,
∂u

∂ν
− αu = 0 on ∂M0 ∩ ∂Ω,

u = 0 on ∂M0 \ ∂Ω,

(3.13)

then α0 is a principal eigenvalue of (3.12) if and only if µ1(α0) = 0. Now, since α 7→ µ1(α)
is decreasing, µ1(0) > 0 and lim

α→∞
µ1(α) = −∞, we deduce the existence and uniqueness

of α0.
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Lemma 3.4. If α ≥ α0 then (P ) has no positive solution.

Proof. Let u be a positive solution of (P ). Since M0 is a proper subdomain of Ω, by
Lemma 2.1 we have

0 = λ1(−∆− λm+ λmu,N − α) ≤ λM0
1 (−∆, N − α,D),

which implies α < α0.

We shall take advantage of the results known for (P ) when α = 0, as shown in [6]:

Lemma 3.5. Assume (1.1) and α = 0. Then:

1. (P ) has two trivial solutions, u ≡ 0 and u ≡ 1, for all λ ∈ IR. Moreover, u ≡ 0 is
stable for λ ∈ (0, λ+

1 (0)) and u ≡ 1 is stable for λ ∈ (−λ+
1 (0), 0).

2. (P ) has a stable positive solution uλ for λ ∈ (−∞,−λ+
1 (0))∪(λ+

1 (0),+∞). Moreover,
uλ < 1 and this is the only positive solution of (P ) satisfying u < 1.

Proof.

1. It is clear that u = 0 and u = 1 solve (P ). The stability of u = 0 follows by Theorem
3 in [6], whereas the linearized problem around u = 1 is

−∆w = (−λ)m(x)w in Ω,
∂w

∂ν
= 0 on ∂Ω,

for which the first eigenvalue is positive if and only −λ ∈ (0, λ+
1 (0)).

2. The case λ ∈ (λ+
1 (0),+∞) follows by [6]. On the other hand, observe that w = 1−u

verifies
−∆w = (−λ)m(x)w(1− w) in Ω,

∂w

∂ν
= 0 on ∂Ω,

so that, by [6], there exists a unique stable solution 0 < wλ < 1 for−λ ∈ (λ+
1 (0),+∞),

that is, for λ ∈ (−∞,−λ+
1 (0)).

Let us set E := C(Ω), P := {u ∈ E ;u ≥ 0} and

Σ =: {(α, u) ∈ IR× P;u is a positive solution of (P )}.

Lemma 3.6. Assume that u0 is a positive stable solution of (P ) for α = 0. Then:

1. There exist ε > 0 and a neighborhood U ⊂ IR × P such that U ∩ Σ = {(α, uα);α ∈
(−ε, ε)}. Morever, uα is stable for α ∈ (−ε, ε).

2. There exists an unbounded continuum C0 of positive solutions of (P ) containing
(0, u0). Moreover, if we assume that there exist a priori bounds for positive solutions
of (P ) whenever α varies in a compact set, then there exists F ⊂ P such that

C0 ∩ ({0} × F) 6= ∅, C0 ∩ ({0} × (P \ F)) 6= ∅.

Proof. Since u0 is stable, the first result follows by Proposition 20.6 in [3] and the existence
of C0 containing (0, u0) by Theorem 17.1 in [3]. The second paragraph is a consequence
of the first one and Lemma 3.4. See also [5], Theorems 4.4.1 and 4.4.2 for the first and
second paragraphs, respectively.
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3.1 A priori bounds

In this section we get a priori bounds for positive solutions of (P ) when α belongs to a
compact set of IR.

Proposition 3.7. Let λ > 0. Assume that there exist a function h− : M− 7→ IR+,
continuous and bounded away from zero in a neighborhood of ∂M−, and a constant γ− ≥ 0
such that

m−(x) = h−(x)(dist(x, ∂M−))γ− in M−.

Assume in addition

2 < min
{
N + 1 + γ−
N − 1

,
N + 2
N − 2

}
if N ≥ 3. (3.14)

Then, for every compact interval Λ ⊂ IR there exists a positive constant C such that

‖u‖∞ ≤ C,

for any positive solution u of (P ) with α ∈ Λ.

Proof. First note that if (P ) has positive solution u then, by Lemma 3.4, we must have
α < α0.

We split the proof in two steps.

Step 1: A priori bounds on M−. For this step, we use (3.14), an adequate rescaling
Gidas-Spruck argument and a Liouville type theorem, see exactly Lemma 4.2 and Theo-
rem 4.3 of [4].

Step 2: A priori bounds on Ω. Define

R := sup
α∈Λ

sup
x∈M−

u(x) <∞.

We consider the problem
−∆u = λm(x)u(1− u) in Ω\M−,

u = R on ∂(M−)\∂Ω,
∂u

∂ν
= αu on ∂(Ω \M−) ∩ ∂Ω.

(3.15)

We claim that there exists a unique positive solution U of (3.15) for all α < α0. In this case
it is clear that a solution u of (P ) is a subsolution of (3.15) in Ω\M−. By the uniqueness
of the positive solution of (3.15) we get

‖u‖L∞(Ω\M−) ≤ ‖U‖L∞(Ω\M−),

whence the result follows.

It remains to prove the claim. We use the sub-supersolution method to obtain U .
Indeed, u := 0 is a subsolution of (3.15). Now, set

Mδ := {x ∈ Ω : dist(x,M0) < δ},
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for δ > 0, and consider the eigenvalue problem
−∆u = 0 in Mδ,

u = 0 on ∂Mδ ∩ Ω,
∂u

∂ν
= αu on ∂Ω.

(3.16)

Thanks to Remark 3.3 there exists a principal eigenvalue α1(δ) of (3.16), and ϕδ a
positive eigenfunction associated to α1(δ). Now, we can show that Mδ is a sequence of
bounded and regular domains converging to M0 from the exterior in the sense of [8]. So,
by Theorem 7.1 in [8], we conclude that

α1(δ) ↑ α0 as δ ↑ 0.

Take α < α0 and consider δ such that α < α1(δ) < α0. Now, define

Ψ :=

 ϕδ in Mδ/2 ∩ (Ω \M−),

ψ in M+ \Mδ/2,

where ψ is a smooth and positive function such that Ψ is smooth. Then, u := KΨ is a
supersolution of (3.15) for K sufficiently large. Indeed, it is clear that KΨ is supersolution
in M0 because −∆(KΨ) = 0 in M0. In M+ ∩Mδ/2 we have

−∆(KΨ) = 0 ≥ λm(x)Kϕδ(1−Kϕδ) for K large.

Moreover, in M+ \Mδ/2 we get

−∆(KΨ) = K(−∆(ψ)) ≥ λm(x)Kψ(1−Kψ) for K large.

On ∂M−, we take K such that KΨ ≥ R. Thus, it is clear that

∂u

∂ν
=
∂(KΨ)
∂ν

= K
∂ϕd
∂ν

= Kα1ϕδ > αu on ∂Ω.

Finally, the uniqueness follows by Theorem 1.2 in [16].

By symmetry on λ, we deduce the following a priori bounds result for positive solutions
of (P ).

Theorem 3.8. Let λ 6= 0. Assume that there exist two functions h± : M± 7→ IR+,
continuous and bounded away from zero in a neighborhood of ∂M±, and constants γ± ≥ 0
such that

m±(x) = h±(x)(dist(x, ∂M±))γ± in M±.

Assume in addition

2 < min
{
N + 1 + γ±
N − 1

,
N + 2
N − 2

}
if N ≥ 3.

Then, for every compact interval Λ ⊂ IR there exists a positive constant C such that

‖u‖∞ ≤ C,

for any positive solution u of (P ) with α ∈ Λ.



16 H. Ramos Quoiŕın and A. Suárez

4 Proof of the main results

Before proving our main results, we need the following result (recall the definition of
µ(λ, α) in (2.5)).

Lemma 4.1.

1. Assume that there exists a positive solution u∗ of (P ) for α = α∗. Then, there exists
a positive solution for every α < α∗ such that µ(λ, α) < 0.

2. Assume that there exists a positive solution u0 of (P ) for α = 0. Then, there exists
a positive solution uα for all α < 0 such that µ(λ, α) < 0. Moreover, if u0 ≤ 1 then
uα is stable.

Proof.

1. We use the sub-supersolution method. Consider ϕ a positive eigenfunction associated
to µ(λ, α). Take as pair of sub-supersolution (u, u) = (εϕ, u∗), with ε > 0. It is easily
seen that u is a sub-solution of (P ) if

µ(λ, α) + λm(x)εϕ ≤ 0,

which holds for ε small enough. Then, there exists a positive solution uα ∈ (u, u∗).

2. The existence of uα follows by the previous item. Assume that u0 ≤ 1. Since u ≡ 1
is not solution of (P ) for α < 0, we have uα < 1. Now, we show that uα is stable,
i.e.

λ1(−∆− λm(x)(1− 2uα), N − α) > 0. (4.17)

To this end, we prove the existence of a positive supersolution for the operator
(−∆− λm(x)(1− 2uα), N − α). Take u := f(uα) where f(uα) = uα(1 − uα) > 0,
see [6]. Then, it is clear that

−∆u− λm(x)(1− 2uα)u = −f ′′(uα)|∇uα|2 > 0 in Ω,

and
∂u

∂ν
− αu = −2αu2

α > 0 on ∂Ω.

This proves that uα is stable.

We are now ready to prove Theorem 1.1:

Proof of Theorem 1.1.

1. Assume that λ1(−∆−λm,D) > 0. By Lemma 2.3 we know that (E) has a principal
eigenvalue α1(λ) and from Lemma 3.2 there exists an unbounded continuum C of
positive solutions of (P ) emanating from (α, u) = (α1(λ), 0). On the other hand, by
Lemma 3.4 there is no positive solution of (P ) for α ≥ α0. Moreover, Theorem 3.8
provides us with a priori bounds for positive solutions of (P ), so we conclude the
existence of positive solutions of (P ) for all α < α1.
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Now, we set
α∗ := sup{α ∈ IR : (P ) has a positive solution}

It is clear that α∗ < ∞. Thanks to the a priori bounds, we infer the existence of a
non-negative solution of (P ) for α = α∗, which we denote by u∗.

If α∗ = α1(λ) we conclude the existence of positive solution for α < α∗ and no
positive solution for α > α∗.

Assume that α∗ > α1(λ). In this case, since α1(λ) is the unique bifurcation point
from the trivial solution, we can show that u∗ > 0. Now, by Lemma 4.1, we know
that (P ) has a positive solution uα for every α < α∗ such that µ(λ, α) < 0, that is,
for α ∈ (α1, α∗).

On the other hand, by Lemma 3.1 the solution uα is stable for α ∈ (α1(λ), α1(λ)+δ)
for some δ > 0. This implies the existence of two positive solutions of (P ) for
α ∈ (α1(λ), α1(λ) + δ) and the existence of positive solution for all α ≤ α∗.

(a) Assume that λ1(−∆−λm,N) > 0. Then, in this case α1(λ) > 0 and so α∗ > 0.

(b) If λ1(−∆ − λm,N) = 0 then α1(λ) = 0. In this case, by Lemma 3.1, the
direction of bifurcation is supercritical, and so again α∗ > 0 = α1(λ).

(c) Assume now that λ1(−∆ − λm,N) < 0, that is, λ > λ+
1 (0) or λ < λ−1 (0) = 0

and λ 6= −λ+
1 (0). Recall that in this case α1 < 0. Hence, by Lemma 3.5, for

α = 0 there exists a stable solution u0 ≤ 1 of (P ). By Lemma 4.1, we have a
stable positive solution uα for all α ∈ (α1, 0]. By continuity, we have a stable
solution, still denoted uα, for α ∈ (α1, α∗∗). Now, in view of non-existence
of solutions for large α, the continuum C0 has to turn backwards, and so we
conclude the existence of a second solution, wα, for α ∈ (α1, α∗∗).

(d) Finally, assume that λ = −λ+
1 (0). Again we have α1(λ) < 0 and by Lemma

3.5 for α = 0 there exists the trivial solution u0 ≡ 1 of (P ). By Lemma 4.1,
we have a stable positive solution uα for all α ∈ (α1(λ), 0]. Hence, in this case,
α∗∗ ≥ 0.

2. Assume now that λ1(−∆ − λm,D) ≤ 0, which implies that λ1(−∆ − λm,N) < 0.
In this case, α1(λ) does not exist. However, by Lemma 3.5, for α = 0 there exists
a stable solution u0 ≤ 1 of (P ), and consequently, by Lemma 3.6, there exists
an unbounded continuum C0 containing (0, u0) and at least a positive solution for
α ∈ (−ε, ε). We set α∗as in the previous case. Now, by Lemma 4.1, there exists
a positive solution for every α < α∗ such that µ(λ, α) < 0, that is, for all α < α∗.
Indeed, since λ1(−∆ − λm,D) ≤ 0, we have µ(λ, α) < 0 for all α. Moreover, there
exists a stable solution for all α ∈ (−∞, α∗∗). This implies the existence of a second
solution in this interval.

Proof of Theorem 1.2.
Items 1 and 2 follow by Lemma 3.5. Moreover, for λ ∈ (−λ+

1 (0), 0) there holds

λ1(−∆− λm,N) < 0 < λ1(−∆− λm,D)

so that, by Theorem 1.1, there exist two positive solutions for α = 0.
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Proof of Theorem 1.3.

1. This item follows directly from Lemma 3.4.

2. Assume that λ < 0, λ 6= −λ+
1 (0). In this case, λ1(−∆ − λm,N) < 0 and applying

Theorem 1.1 (in both cases λ1(−∆ − λm,D) ≤ 0 and λ1(−∆ − λm,D) > 0) we
conclude that there exist two positive solutions of (P ) for α small enough.

3. Assume now λ ∈ (λ−1 (α), λ+
1 (α)). Then λ1(−∆ − λm,N) > 0, so α1(λ) > 0 and

there exists at least a positive solution for α < α1(λ), that is, for λ ∈ (λ−1 (α), λ+
1 (α)),

by Lemma 2.6.

4. Assume that λ > λ+
1 (0). In this case λ1(−∆−λm,N) < 0 and again by Theorem 1.1

we conclude that (P ) has at least two positive solutions for α small enough. Finally,
for λ = λ+

1 (0) we have α1(λ) = 0, so that for α sufficiently small, (P ) has at least
two positive solutions.
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Ecology” (S. Cano-Casanova, J. López-Gómez, C. Mora-Corral, eds), World Scientific,
(2005), 175-199.
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