
ar
X

iv
:m

at
h/

02
12

15
0v

1
 [

m
at

h.
G

T
]

 1
0

D
ec

 2
00

2 Improving an algorithm to solve Multiple

Simultaneous Conjugacy Problems in braid

groups

Juan González-Meneses

November 2002.

Abstract

There are recent cryptographic protocols that are based on Multiple

Simultaneous Conjugacy Problems in braid groups. We improve an algo-

rithm, due to Sang Jin Lee and Eonkyung Lee, to solve these problems, by

applying a method developed by the author and Nuno Franco, originally

intended to solve the Conjugacy Search Problem in braid groups.

1 Introduction

In [14], Sang Jin Lee and Eonkyung Lee give an algorithm to solve the following
problem, that they call Multiple Simultaneous Conjugacy Problem (MSCP), in
the braid group Bn: given the r-tuples (a1, . . . , ar) and (x−1a1x, . . . , x−1arx)
in Bn, find the conjugator x.

This problem has been proposed for cryptographical applications: There is
a Key Agreement Protocol proposed by Anshell, Anshell and Goldfeld in [2],
improved by the same authors and Fisher in [1], which is based on the difficulty
to solve a MSCP in some groups. Braid groups have been proposed as a good
choice. There have been different attacks to this cryptosystem, namely length-
based attacks ([13], [9]), linear algebraic ones ([14], [12]) and others ([11]). But
the algorithm we describe in this paper can be thought of as a direct attack to
the base problem of the protocol.

We will assume that the reader is familiar with the basic notions in braid
theory, which can be found in [3] or [15]. It is also desirable to know the work
in [10], [7] and [16].

Recall that, given a braid a ∈ Bn, the integer inf(a) is the biggest k ∈ Z

such that a = ∆kp, where ∆ is the usual Garside element (half twist of all the
strands) and p is a positive braid (all its crossings are positive).

The algorithm in [14] works as follows: First they define, for every r-
tuple of braids, α = (a1, . . . , ar) ∈ (Bn)r, the set C inf(α) consisting of all

1

http://arXiv.org/abs/math/0212150v1

β = (b1, . . . , br) ∈ (Bn)r such that inf(bi) ≥ inf(ai) for all i and there ex-
ists some ω ∈ Bn satisfying bi = ω−1aiω for all i simultaneously (that is,
β = ω−1αω). Then they prove the following result:

Theorem 1.1. [14] Let α = (a1, . . . , ar) and β = (b1, . . . , br) be an instance
of a MSCP in Bn, and x a positive solution. Then one can compute a positive
braid x0 and a r-tuple β′ = (b′1, . . . , b

′
r) ∈ C inf(α) such that b′i = x0bix

−1
0 for all

i, in time proportional to

n(log n)|x|

(
|x| +

r∑

i=1

(|ai| + |bi|)

)
,

where | · | denotes word length in generators. Moreover x = x1x0 for some
positive braid x1.

Here C inf(α) plays the role of the Summit Set defined in [10] to solve the
conjugacy problem in Bn, in the sense that it satisfies the following result:

Theorem 1.2. [14] Given β ∈ C inf(α), there exists a chain of elements α =
α1, α2, . . . , αk+1 = β in C inf(α), where successive elements are simultaneously
conjugated by a permutation braid. In other words, there exist permutation
braids s1, . . . , sk such that s−1

j αjsj = αj+1 for every j = 1, . . . , k.

Therefore, by classical methods (see [10]), one can use these two results to
solve any MSCP in finite time. Nevertheless, this classical approach gives a
computational complexity which is exponential with respect to the braid index
n, and involves the cardinality N of the set C inf(α).

S. J. Lee and E. Lee expect in [14] that one can apply the methods in [8]
to this algorithm, so that the computational complexity becomes a polynomial
in (n, r, l, N), where l is the maximal word-length of the ai’s and bi’s. Here we
show that this is the case. More precisely, we show:

Theorem 1.3. Let α = (a1, . . . , ar) ∈ (Bn)r and let β = (b1, . . . , br) ∈ C inf(α).
Let l be the maximal word length of the ai’s and bi’s, and let N be the number of
elements in C inf(α). Then one can compute a braid x ∈ Bn such that x−1αx = β

in time O(Nrl2n3).

2 Minimal simple elements for MSCP

Let us consider the Artin monoid of positive braids, B+
n . We can define a prefix

order on its elements, ≺, as follows: for a, b ∈ B+
n , a ≺ b if and only if there

exists c ∈ B+
n such that ac = b. We will say that a is a prefix (or a divisor)

of b, or that b is divisible by a. This is a partial order on B+
n , with some nice

properties: For every u, v ∈ B+
n there exists their least common multiple, u ∨ v,

and their greatest common divisor, u∧v. There also exists an element ∆ (which
is represented by a half twist of all the strands) which, together with the above
partial order, endows B+

n with a structure of Garside monoid, so Bn is a Garside
group (cf. [6] [5]).

2

The permutation braids, also called simple elements, are the prefixes (or
divisors) of ∆. We denote by S the set of simple elements. In B+

n there are n!
simple elements.

The algorithm used in [14] to solve a MSCP goes as follows: given α, β ∈
(Bn)r conjugated, one computes β′ ∈ C inf(α) as in Theorem 1.1. Then one
must construct the whole C inf(α) using the method by Garside: Conjugate α

by all simple elements. If new elements in C inf(α) are obtained, conjugate each
one of them by all simple elements. Continue until no new elements appear.
At that point, by Theorem 1.2, we will have computed the whole C inf(α) and
moreover, we will know a chain going from α to any other element in C inf(α),
as in Theorem 1.2. Hence, the chain associated to β′, together with the element
x0 in Theorem 1.1 will give us the solution to the MSCP.

One of the main problems of this algorithm is the size of S. For every element
in C inf(α) one must compute n! conjugations! The idea in [8] is to consider
very small subsets of S, which can be fastly computed, satisfying some suitable
properties that allow the classical algorithm to work with them, instead of the
whole S. The general method to compute these small subsets is the following.

Let P be a property for simple elements, and let SP be the set of simple
elements satisfying P . Then min(SP) is defined as the set of minimal elements
(with respect to ≺) in SP . We must then define some suitable properties.

Let J = (j1, . . . , jr) ∈ Z
r and let CJ be the set of r-tuples δ = (d1, . . . , dr) ∈

(Bn)r such that inf(di) ≥ ji for all i.

Definition 2.1. Let J = (j1, . . . , jr) ∈ Z
r and let δ = (d1, . . . , dr) ∈ CJ . We

say that a simple element s satisfies the property P(δ, J) if s−1δs ∈ CJ . In
other words, if inf(s−1dis) ≥ ji for all i.

Now consider the subsets Sδ,J = min(SP(δ,J)) ⊂ S, where δ ∈ CJ . These
are the small subsets of S we were talking about. We can use them to solve a
MSCP by means of the following result:

Proposition 2.2. Given α = (a1, . . . , ar) ∈ (Bn)r, let J =
(inf(a1), . . . , inf(ar)) ∈ Z

r. For every β ∈ C inf(α), there exists a chain
α = α1, α2, . . . , αk+1 = β in C inf(α), where for j = 1, . . . , k, αj is conju-
gated to αj+1 by a simple element sj ∈ Sαj ,J . That is, s−1

j αjsj = αj+1 and sj

is minimal among the simple elements conjugating αj to an element in CJ .

Proof. This result is analogous to Proposition 4.10 in [8]. It suffices to take the
chain given in Theorem 1.2 and decompose every simple element into minimal
ones. We notice that we obtain a chain of elements in CJ , but since all these
elements are conjugated to α, they all belong to C inf(α).

3 Size of Sδ,J

In this section we will show that the cardinal of Sδ,J , for every J ∈ Z
r and every

δ ∈ CJ , is always smaller that n. Hence, if we know how to compute it fastly,

3

we will improve considerably the speed of the algorithm by Lee and Lee (recall
that #(S) = n!). We will need the following results:

Proposition 3.1. [8] If a property P is closed under gcd (i.e., if s1, s2 ∈ SP

implies s1 ∧ s2 ∈ SP) then #(min(SP)) ≤ n − 1.

Proposition 3.2. For every J ∈ Z
r and every δ ∈ CJ , the property P(δ, J) is

closed under gcd.

Proof. Suppose that s1, s2 ∈ SP(δ,J), that is, for every i = 1, . . . , r,

inf(s−1
1 dis1) ≥ ji and inf(s−1

2 dis2) ≥ ji. Since δ ∈ CJ one has di = ∆jipi

for some positive braid pi. Then

s−1
1 dis1 = s−1

1 ∆jipis1 = ∆jiτ ji(s−1
1)pis1,

where τ is the inner automorphism of Bn which consists on conjugation by ∆.
Hence, inf(s−1

1 dis1) ≥ ji means that τ ji (s−1
1)pis1 is positive, or in other words:

τ ji(s1) ≺ pis1. In the same way one has τ ji(s2) ≺ pis2 for all i. We must
therefore show that, for i = 1, . . . , r, one has τ ji (s) ≺ pis, where s = s1 ∧ s2.

Since τ is a homomorphism that preserves the prefix order, then τ ji (s1) ∧
τ ji(s2) = τ ji (s1 ∧ s2) = τ ji (s). This implies τ ji(s) ≺ pis1 and τ ji(s) ≺ pis2,
hence τ ji (s) ≺ (pis1) ∧ (pis2) = pi(s1 ∧ s2) = pis, as we wanted to show.

Corollary 3.3. For every J ∈ Z
r and every δ ∈ CJ , the set Sβ,J =

min(SP(β,J)) has at most n − 1 elements.

4 How to compute Sδ,J

We will finally present an algorithm that computes Sδ,J , given J ∈ Z
r and

δ ∈ CJ . This algorithm will have complexity O(rl2n3). Hence, in the algorithm
by Lee and Lee, we no longer need to conjugate every δ ∈ C inf(α) by all simple
elements (n! conjugations); we can compute Sδ,J and then we do no more than
n − 1 conjugations.

We first need to be more precise about the work in [8]. We saw in Proposi-
tion 3.1 that min(SP) has at most n−1 elements; but be can actually say more:
for every generator σi, there is exactly one element ri ∈ min(SP) such that
σi ≺ ri. It can happen, however, that ri = rj for some i 6= j. Anyway, in order
to compute min(SP) (in our particular case Sδ,J), we just need to compute ri

for i = 1, . . . , n − 1.
It is also given in [8] a method to compute the least common multiple s ∨ p

of a simple element s and a positive braid p. More precisely, the algorithm
given in [8] computes a simple element s′ such that ps′ = s∨ p. This takes time
O(l2n log n), where l is the word length of p, and n is the number of strands.
Notice that, in terms of theoretical complexity, this algorithm is equivalent to
the computation a normal form (cf. [16]). Furthermore, it is also shown in [8]
that if p is given in left normal form, then the complexity becomes O(ln log n).

4

So let us suppose that we are given J = (j1, . . . , jr) ∈ Z
r and δ =

(d1, . . . , dr) ∈ CJ , and we want to compute Sδ,J . As we said before, we just need
to compute ri for every i = 1, . . . , n − 1, where, in this case, ri is the minimal
simple element which is divisible by σi and conjugates δ to an element in CJ .
We propose the following algorithm:

Algorithm to compute ri.

1. Let D ⊂ {1, . . . , r} consisting of those t such that inf(dt) = jt.

2. For every t ∈ D, compute pt such that dt = ∆jtpt.

3. Let s = σi.

4. If τ jt(s) ≺ pts for every t ∈ D, then return s. Stop.

5. Take m ∈ D such that τ jm (s) 6≺ pms.

6. Compute s′ such that (pms)s′ = τ jm (s) ∨ pms.

7. Let s = ss′ and go to step 4.

Proposition 4.1. Given J = (j1, . . . , jr) ∈ Z
r, δ = (d1, . . . , dr) ∈ CJ and

i ∈ {1, . . . , n−1}, the above algorithm computes ri, the minimal simple element
which is divisible by σi and conjugates δ to an element in CJ .

Proof. The algorithm starts by considering just those dt whose infimum is ex-
actly jt. This is due to the following fact: If we can write dt = ∆kpt where
k > jt and pt is a positive braid, then for every simple element s we will have:

s−1dts = s−1∆kpts = ∆kτk(s−1)pts = ∆k−1(∆τk(s−1))pts.

But τk(s) is a simple element, so ∆τk(s−1) is a positive braid, hence the infimum
of s−1dts is at least k − 1 ≥ jt. Therefore, we just need to care about those dt

where t ∈ D.
For every t ∈ D one has dt = ∆jtpt, where pt is a positive braid. These

elements pt are computed in Step 2 just by computing the left normal form of
dt.

We want to find ri, and we know that σi ≺ ri. In the algorithm, the simple
element s will be the possible value of ri. At every iteration of the loop in steps
4-7, we start with a simple element s such that σi ≺ s ≺ ri, and we check if
s = ri. If it is not, we multiply s by some suitable simple element s′, and we
start again. We must show that this makes sense.

At Step 3 we set s = σi, so we are sure that σi ≺ s ≺ ri. Then we start
the loop. In order to decide if s = ri, we must check if inf(s−1dts) ≥ jt for all
t ∈ D. But, in the same way as above, one has s−1dts = ∆jtτ jt(s−1)pts, so
inf(s−1dts) ≥ jt if and only if τ jt(s−1)pts is a positive braid, or in other words,
if τ jt(s) ≺ pts. This is what is checked at Step 4.

If Step 4 determined that s 6= rt, we must have found some m ∈ D such that
τ jm(s) 6≺ pms. Step 5 just takes one of these values.

5

Now it comes the main step: We know that s ≺ ri, so ri = sŝ for some
simple element ŝ. Moreover, inf(r−1

i dmri) ≥ jt so one has τ jm (ri) ≺ pmri.
Hence, τ jm(s) ≺ τ jm(s)τ jm (ŝ) = τ jm (ri) ≺ pmri while on the other hand
pms ≺ pmsŝ = pmri. Therefore, the least common multiple τ jm (s) ∨ pms must
also divide pmri. Step 6 computes this lcm. Actually, it computes s′ such that
τ jm(s) ∨ pms = (pms)s′. But since this divides pmri, we finally obtain that
ss′ ≺ ri.

We must remark two facts: First, ss′ is always a simple element, since it
divides the simple element ri. Second, s′ cannot be trivial, since otherwise
we would have τ jm (s) ∨ pms = pms, implying τ jm(s) ≺ pms, which gives a
contradiction with the choice of m. Therefore, ss′ is strictly greater than s, but
still a divisor of ri, so in Step 7 we set s = ss′, and start the loop again. This
cannot run forever since the word length of s is increased at every iteration, so

the maximal number of iterations is n(n−1)
2 (the word length of ∆).

Therefore, at a certain iteration, we will obtain s = ri, and the algorithm
stops at Step 4 giving the correct output.

5 Theoretical complexity

The algorithm we presented in this paper is exactly as the one in [14] except
for the computations of Sδ,J , for every δ ∈ C inf(α). The main step is the
computation of ri given by the algorithm in the previous section. So we start
by studying the complexity of this computation:

Proposition 5.1. Given J = (j1, . . . , jr) ∈ Z
r, δ = (d1, . . . , dr) ∈ CJ and

i ∈ {1, . . . , n − 1}, one can compute ri (the minimal simple element which is
divisible by σi and conjugates δ to an element in CJ) in time O(rl2n2) where l

is the maximal word-length of the di’s.

Proof. We need to study the complexity of the algorithm in the previous section.
First, Step 1 can be performed by computing the left normal form of every dt.
Every normal form takes time O(l2n log n), so Step one can be done in time
O(rl2n log n).

The requirements of Step 2 can be achieved while doing Step 1: if some dt

has infimum jt, we keep the value of pt. Hence Step 2 is negligible, as well as
Step 3.

Now we start a loop in Steps 4-7, which has at most n(n−1)
2 iterations, as we

saw above. The only non-negligible steps are Steps 4 and 6. In Step 4, for every
t ∈ D we must compute τ jt(s), which can be done in linear time on the word

size of s (at most n(n−1)
2), and then we must compute the left normal form of

pts taking time O(ln log n) (notice that pt is already in left normal form). After
performing these computations, to check if τ jt(s) ≺ pts is O(n log n) (cf [16]).
Hence Step 4 takes time O(rln2). On the other hand, Step 6 can be done in
time O(ln log n) by [8]. Therefore, each iteration of the loop takes time O(rln2).

Now we could say that, since there are at most n(n−1)
2 iterations, all of

them can be computed in time O(rln4). But we can do better than that: The

6

different values of s in the successive iterations form an ascending chain of
simple elements. Hence, the total number of computations performed in all the
iterations is the same as if it were just one iteration, with the maximum value
of s (see [16]). Therefore, the whole loop can be done in time O(rln2), and the
whole algorithm takes time O(rl2n2).

We can now apply this result to measure our contribution to the algorithm
in [14]:

Proof of Theorem 1.3. One just need to apply the classical algorithm by Garside,
together with the results given in Proposition 2.2 and Corollary 3.3. To be more
precise, let J = (inf(a1), . . . , inf(ar)) ∈ Z

r. For every element δ ∈ C inf(α) (there
are N elements) one must compute Sδ,J . This takes time O(rl2n2) for every
element, by the above result. Since there are at most n − 1 elements, it takes
time O(rl2n3). Then one must conjugate δ by all the elements in Sδ,J (at most
n−1), so we do at most n−1 conjugations by simple elements, each one taking
time O(ln log n) since δ is already in left normal form.

The algorithm stops when we find β. So, in the worst case, the complexity
of the whole computation is O(Nrl2n3), as we wanted to show.

6 Final remarks

In this paper we have improved the algorithm in [14] to solve a MSCP. More
precisely, we have improved a particular case of a MSCP, when the conjugate
elements α and β are such that β ∈ C inf(α).

It is shown in [14] how to transform the general situation into this particular
case (see Theorem 1.1), but the complexity of this step depends on the size of
the solution! Therefore, using this method we do not have an upper bound for
the complexity of the general case, in terms of the input data. Nevertheless,
if our interest is to attack the cryptosystem in [2], where the secret key is the
solution to the MSCP, then the complexity given in Theorem 1.1, to transform
the general case into this particular case, yields a very efficient running time.

Nevertheless, if one dislikes to measure the complexity in terms of the length
of the solution, one can do the following: given two conjugate elements α =
(a1, . . . , ar) and β = (b1, . . . , br) in (Bn)r, let J = (j1, . . . , jr) ∈ Z

r where
ji = min(inf(ai), inf(bi)). Then one has α, β ∈ CJ . Now define C inf(α, β) as
the set of δ ∈ CJ conjugate to α (thus to β). Then all the above results can be
applied to C inf(α, β), so we do not need to pass through Theorem 1.1. That is,
we have:

Theorem 6.1. Let α = (a1, . . . , ar) and β = (b1, . . . , br) in (Bn)r. Let l be the
maximal word length of the ai’s and bi’s, and let M be the number of elements
in C inf(α, β). Then one can compute a braid x ∈ Bn such that x−1αx = β in
time O(Mrl2n3).

Anyway, we do not think that this is the better way to proceed, since
C inf(α, β) will be, in general, much bigger than C inf(α), so one should try first

7

to raise the infimum of the entries of α and β, before starting to construct the
whole C inf(α, β).

On the other hand, the complexity given in Theorems 1.3 and 6.1 may lead
to confusion, since one may think that we solved the MSCP in polynomial time.
This is not true, since the factors N and M (the size of C inf(α) and C inf(α, β))
may not be a polynomial in (n, r, l) (there is no known bounds for N or M in
terms of (n, l, r)). All we can say by now is that N and M get smaller as r

grows, so it seems that MSCP’s are simpler than usual conjugacy problems in
braid groups (see the discussion in [14] about the size of N).

Finally, the algorithm in this paper works not only for braid groups, but for
a larger class of groups, called Garside groups (see [6], [5] and [8]), that share
with braid groups the existence of simple elements and their basic properties.
It can also be applied to other Garside structures in braid groups, as the one
obtained from the presentation by Birman, Ko and Lee in [4].

References

[1] I. Anshel, M. Anshel, B. Fisher and D. Goldfeld, New Key Agreement Pro-
tocols in Braid Group Cryptography. Topics in Cryptology–CT-RSA 2001
(San Francisco, CA), 13-27, Lecture Notes in Comput. Sci., 2020, Springer,
Berlin, 2001.

[2] I. Anshel, M. Anshel and D. Goldfeld, An algebraic method for public-key
cryptography. Math. Res. Lett. 6, No. 3-4 (1999), 287-291.

[3] J. Birman, “Braids, links and mapping class groups”. Princeton University
Press, Princeton, 1974.

[4] J. Birman, K. H. Ko and S. J. Lee, A new approach to the word and
conjugacy problems in the braid groups, Adv. Math. 139, No. 2 (1998),
322-353.

[5] P. Dehornoy, Groupes de Garside, Ann. Scient. Éc. Norm. Sup., 4e série, t.
35, 2002, 267-306.

[6] P. Dehornoy and L. Paris, Gaussian groups and Garside groups, two gen-
eralizations of Artin groups, Proc. London Math. Soc. 79, No. 3 (1999),
569-604.

[7] E. A. Elrifai, H. R. Morton, Algorithms for positive braids, Quart. J. Math.
Oxford 45 (1994), 479-497.

[8] N. Franco and J. González-Meneses, Conjugacy problem for braid groups
and Garside groups. To appear in Journal of Algebra. Available at
www.arxiv.org/math.GT/0112310

[9] D. Garber, S. Kaplan, M. Teicher, B. Tsaban and U. Vishne, Length-
based conjugacy search in the Braid group. Preprint. Available at
www.arxiv.org/math.GR/0209267.

8

[10] F. A. Garside, The braid group and other groups. Quart. J. Math. Oxford
20 (1969), 235-154.

[11] D. Hofheinz and R. Steinwandt, A Practical Attack on Some Braid Group
Based Cryptographic Primitives. Accepted for presentation at the Interna-
tional Workshop on Practice and Theory in Public Key Cryptography -
PKC 2003.

[12] J. Hughes, A Linear Algebraic Attack on the AAFG1 Braid Group Cryp-
tosystem. The 7th Australasian Conference on Information Security and
Privacy ACISP 2002, Lecture Notes in Computer Science, 2384, 176–189,
Springer-Verlag, New York 2002.

[13] J. Hughes and A. Tannenbaum, Length-Based Attacks for Certain Group
Based Encryption Rewriting Systems, Workshop SECI02 Securité de la
Communication sur Intenet, September 2002, Tunis, Tunisia.

[14] S. J. Lee and E. Lee, Potential weaknesses of the commutator key agreement
protocol based on braid groups. L.R. Knudsen (Ed.): EUROCRYPT 2002,
LNCS 2332, pp. 14-28, 2002.

[15] K. Murasugi and B. Kurpita, “A Study of Braids”, Kluwer, Dordrecht 1999.

[16] W. P. Thurston, Braid Groups, Chapter 9 of “Word processing in groups”,
D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson
and W. P. Thurston, Jones and Bartlett Publishers, Boston, MA, 1992.

Juan González-Meneses:

Dep. Matemática Aplicada I, ETS Arquitectura, Univ. de Sevilla, Av. Reina Mercedes 2,

41012-Sevilla (SPAIN).

E-mail: meneses@us.es

9

