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Abstract
So far, all the studies on breathers on DNA have
considered models with either short–range or
long-range interaction. However, none of them have
considered both kinds of interactions.
When both interactions are taken into account, there
appear a great number of phenomena, and some of
them are considered here.
One of these phenomena consists in that short–range
interaction provide the existence of moving breathers,
a fact that does not occur when only long–range
interactions are taken into account.
Other phenomena studied here are the existence,
stability and shape of static breathers and the
properties of moving breathers.
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Introduction
• There exist in DNA two important sources of

interaction:
1. Stacking forces → Nearest–neighbour

interaction (NNI)
2. Dipole–dipole forces → Long–range

interaction (LRI)
• The introduction of NNI is necessary to make a

breather movable.
• The LRI reduces the range of existence of static

and moving breathers
• The LRI hinders the mobility of breathers
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Moving breather
This is a moving breather in a system with both NNI
and LRI:
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Description of the model
• Modification of the Peyrard–Bishop model with

long-range interaction
• Hamiltonian: H = T + UBP + UNN + ULR

• Terms in the Hamiltonian:
• Kinetic Energy: T
• Energy due to the openings of base pairs

(on–site potential): UBP =
∑

n V (un). V (un)
is the Morse potential:

V (u) =
1

2
(e−u − 1)2

• Coupling terms UNN + ULR
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Coupling terms
• Nearest–neighbour interaction (NNI):

UNN =
1

2
C

∑

n

(un+1 − un)
2

• Long–range interaction (LRI):

ULR =
1

2

∑

m,n

Jmun+mun

Jm =

{

J
|m|3

for 1 ≤ |m| ≤ (N − 1)/2

0 otherwise
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Parameters
• C is the NNI coupling parameter
• J is the LRI coupling parameter

Origin of the terms:
• Nearest-neighbour term: stacking forces
• Long-range term: dipole–dipole forces
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Vibration pattern I
Breather with only NNI: Bell pattern
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Vibration pattern II
Breather with only LRI

• Low LRI: All particles vibrate in anti-phase with
respect to the central one

• Medium LRI: The particles in even sites start to
vibrate in phase

• High LRI: Zigzag pattern of vibration
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Different patterns with LRI
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Main bifurcations I
General description when C and J are varied

• Stability bifurcations:
There is a change of stability of the breather. A
Floquet exponent corresponding to a localized
mode abandons (or returns to) the unit circle.
Necessary for the existence of moving breathers

• Breather extinctions:
The breather is not continuable any longer when
a Jacobian eigenvalue becomes zero.
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Main bifurcations II
The NNI and LRI parameters, C and J , are varied

Different cases:

• Only NNI: Breathers are movable: there exist
only stability bifurcations.

• Only LRI: Breathers are not movable: there exist
only breather extinctions. NNI must be included
in order to obtain moving breathers in a system
with LRI.

• General case: There exists a critical value of J
above which no stability bifurcation occurs.
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Obtaining moving breathers
A static breather is moved by perturbing its velocity
components. However, the static breather and the
perturbation must fulfill several conditions [2,3]

1. Existence of two complementary stability
bifurcations for the 1–site and 2–site breathers
with bifurcation loci fairly close together. The
static–breather parameters must be in a region
near these bifurcation loci.

2. The static breather has to be perturbed with the
velocity components of the localized mode that
abandons the Floquet circle at the stability
bifurcation.
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Concept of effective mass
• The breather effective mass (m∗) is a quantitative

measure of the mobility.
• It is found [2]that the translational velocity of a

moving breather (v) is proportional to the
modulus of the initial perturbation (vI).

• The effective mass is defined by the equation:

1

2
m∗v2 =

1

2
v2

I
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Moving breathers
Range of existence

• There is a maximum value of the LRI parameter
J above which there are no mobile breathers.
This value is higher for 2–site breathers than for
1–site breathers and is independent of the size of
the system.

• For low J , breathers can be made movable for
values of C above the first stability bifurcation

• For high J , the 1–site breathers can only be
moved in the proximity of the first stability
bifurcation curve and above the second one; the
2–site breathers can only be moved above the
second stability bifurcation curve.
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Range of existence I
Moving breathers obtained from a 1–site breather
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Range of existence II
Moving breathers obtained from a 2–site breather
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Mobility
• The breather effective mass has its maximum

value in the vicinity of the first stability
bifurcation curve

• This maximum value increases with the LRI
parameter J

• The long–range interaction emphasizes the
discreteness of the system. In other words, the
smoothness of the movement decreases when J
increases.
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Breather effective mass
Variation of with the NNI parameter C at constant
LRI parameter J
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Maximum breather mass
For different values of J
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Energy centre
For different values of J being the value of C the
corresponding to the maximum breather mass
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Further developments
• Moving breathers are studied in a bent chain [4]
• At constant velocity, there exists a critical value

of the curvature below which the breather cross
the bending point.

• Above this curvature the breather is reflected.
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Motion of the energy centre
For low and high curvature
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