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Defects in solids

• There are several types of crystalline defects of different dimen-
sions. Among them, the zero-dimensional defects are also called
point defects. This kind of defects includes impurities, vacancies
(Schottky defects), interstitials (Frenkel defects), polarons, exci-
tons, ...

• The nonlinear dynamics of Schottky and Frenkel defects can be
described using the Frenkel-Kontorova (FK) model, which basi-
cally consists in a one-dimensional chain of interacting particles,
subjected to a periodic substrate potential.

• The properties of this kind of defects are very important in the de-
sign of new materials [1]. Furthermore, the study of the transport
properties is a subject of outstanding recent interest [2, 3].

• Vacancies can be modelled by an empty well of the substrate po-
tential. The dynamics of this structure is described in terms of
kinks:

• Interstitials correspond to a doubly occupied well. These struc-
tures are described by antikinks:

The mathematical model

• We have used a driven and damped Frenkel-Kontorova model with
an anharmonic interaction potential:

ün+αu̇n+
1

2π
sin(2πun)+κ[W ′(un−un+1)−W ′(un−1−un)] = E(t)

• Here, α and κ are the damping and coupling constants, respec-
tively. We assume that E(t) is a biharmonic ac force:

E(t) =
E0

2π
[cos(ωt) + cos(2ωt + θ)]

• This driving force is asymmetric for almost all values of θ. Thus, it
breaks the time symmetry of the system leading to soliton trans-
port through a ratchet effect [4].

The anharmonic potential

• The ratchet dynamics of solitons with a harmonic interaction po-
tential was widely studied in [4]. The aim of our work is to study
the effect of an anharmonic interaction potential. We have chosen
a Morse potential:

W (x) =
1

2b2
[exp(−bx) − 1]2

• b−1 is a measure of the potential width. For b → 0, the harmonic
potential is recovered. Results for Hamiltonian lattices [5, 6] show
that kinks motion is strongly dependent on this parameter.

• The main effect of the anharmonicity is the symmetry breaking
between antikink and kinks structures [7, 8]. For instance, in the
case of a harmonic interaction potential, for the same set of pa-
rameters (α, κ, E, ω) antikink and kink dynamics are exactly the
same except for their opposing velocities.

• The anharmonicity implies, apart from a change in the profiles, a
diminution of the Peierls-Nabarro barrier in the case of antikinks,
whereas, for kinks, this barrier increases. This effect, as we show
in the poster, makes the kink dynamics richer than the antikink
one.

Effect of the anharmonicity on antikinks motion

• As ratchet antikinks (or kinks) are attractors, if an initial condition
close to the attractor is chosen, in a finite time, the attractor is
found.

• We use then, as initial condition, an antikink (or kink) at rest,
solution of the Hamiltonian lattice equations, with the same κ

and b of the desired solution of the full dissipative lattice.

• In all simulations α = 0.5 and κ = 1 are fixed and periodic
boundary conditions are chosen.

• The effect of increasing b is, in general, to increase antikinks ve-
locity. Figures below show the time evolution of the energy center
for two antikinks with E0 = 0.2, ω = 0.35 and θ = 0:
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• The velocity dependence is better visualized in the following den-
sity plots. The graphs represent the velocity (in the colored bar)
as a function of b and, from left to right, θ, E0 and ω.
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• We show below an alternative view of the last figures:
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• We can observe the following facts from the figures:

1. For θ variable and b fixed, there is a region where the antikink
remains pinned. This region is smaller as b increases.

2. For E0 variable and b fixed, there is a threshold value of the
driving amplitude for antikink motion. This threshold value
decreases with b.

3. For ω variable and b fixed, there is a maximum value of the
driving frequency for antikink motion. This maximum increases
with b.

• The increase of the mobility with the anharmonicity (i.e. with
parameter b) can be related with a decrease of the Peierls-Nabarro
barrier.

Effect of the anharmonicity on kinks motion

• For fixed α, κ, θ, E0 and ω, two different regimes are observed in
kink motion separated by a critical value bc:

1. For b < bc: the velocity decreases with b and has the opposite
sign of the antikinks with the same value of θ.

2. For b > bc: kinks can move in the same direction of the antikinks
with the same value of θ, and with a much higher velocity than
those.

• Figures below show the time evolution of the energy center for two
antikinks with E0 = 0.2, ω = 0.35 and θ = 0:
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• Next figures show, from left to right, the following magnitudes:
(left) the dependence of the velocity is displayed versus θ and b;
(center & right) the direction of motion is represented versus b

and E0 (center) or ω (right). Colors mean the following in the last
figures: (black) directed motion; (red) reversed motion; (white)
pinning.
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• Alternatively,

0 0.5 1 1.5 2
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

θ/π

v

E
0
=0.2, ω=0.35

b=0
b=0.4
b=0.8

0 0.1 0.2 0.3 0.4

−0.02

0

0.02

0.04

0.06

E
0

v

ω=0.35, θ=0

b=0
b=0.4
b=0.8

0 0.2 0.4 0.6 0.8 1
−0.02

0

0.02

0.04

0.06

0.08

ω

v

E
0
=0.2, θ=0

b=0
b=0.4
b=0.8

• Some facts can be observed from these figures:

1. For θ variable and b fixed, there is a region where the kink
remains pinned. This region is bigger as b increases, so that the
kink cannot move for 0.5 . b . 0.6. For values of b above this
range, kink motion is recovered, but in the inverse direction.

2. For E0 or ω variable and b fixed, there is a critical value of b

separating regions with only directed motion and regions with
possible inverse motion. This value is bc = 0.54 for E0 variable
and bc = 0.60 for ω variable.

3. Differently from the antikink case, where the pinning was not
observed for E0 or ω variable (with θ = 0), in the kink case, the
most observed regime is the pinning.

• An increase of the Peierls-Nabarro barrier can explain the lose of
mobility when b increases. However, the appearance of inverse
kink motion cannot be understood with this explanation. This
anomalous motion might be related to a topological change of the
Peierls-Nabarro barrier for high values of b.

Summary

• We have shown some aspects of the dynamics of vacancy and inter-
stitial defects driven by biharmonic ac fields. Vacancy and intersti-
tial defects can be represented by kinks or antikinks respectively.

• For a harmonic interaction potential, the dynamics of both defects
is equivalent but of opposite velocities when all the parameters are
the same. For anharmonic interaction potentials, this symmetry
is broken.

• For interstitials (antikinks), the motion is facilitated when the in-
teraction potential becomes narrower.

• For vacancies (kinks), the motion is hindered when the interaction
potential narrows. However, for a critical value of the potential
width, reversed high-velocity vacancy motion is observed.

• There is a value of the interaction potential width below which
there can be found vacancies and interstitials moving in the same
direction (moving the former faster). Above this critical value,
vacancies and interstials always move in opposite direction.
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