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Abstract

In the this paper we present a simple recurrent algorithm for solving the Lin-
earization Problem involving some families of g-polynomials in the exponential lattice
z(s) = c¢1¢® + ¢3. Some simple examples are worked out in details.

1 Introduction.

Given three families of polynomials, denoted by P,(x), Q.. (z) and R;j(x), of degree exactly
equal to respectively n, m and j, the Linearization Problem asks to compute the so-called
linearization coefficients Ly, j, defined by the relation:

m+7
Qm(x)R](x) = Z LmjnPn(x)-
n=0

The study of such a problem has known an increasing interest in the last few years.
Special emphasis was given to the classical continuous (Hermite, Laguerre, Jacobi and
Bessel) [8, 9, 11, 15, 19, 20, 21, 24, 26, 27, 28] and the discrete cases (Charlier, Meixner,
Kravchuk and Hahn) [7, 9, 12, 14, 27]. The main aim of the present paper is to show that
the ideas given in [14, 26] can be extended in a very easy way to the ¢-polynomials on the
exponential lattice z(s) = ¢1¢® + c3. If fact, if P,(z), Qn(z) and R;(z) are polynomials
in z(s) = c1¢° + c3, then it is possible to find a recurrence relation for the linearization
coefficients Ly, j,, which is an alternative approach to the one given in [5]. This approach
requires the knowledge of the so-called structure relation and three-term recurrence relation
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for the polynomials P, (x) as well as the second order difference equation which satisfy the
other two polynomials Q,,(z) and R;(x).

In this paper we will present an algorithm for computing the above coefficients, show-
ing, as an example, the case when the polynomials P, (z), Qn,(z) and R;(z) are the three
Pochhammer and ¢g-Pochhammer symbols. In both cases the solutions are given explicitly.
The obtained expression can be used for solving more “complicated” examples.

The structure of the paper is as follows. In Section 2, a general algorithm for finding a
recurrence relation for the Ly, j,, is presented. In Section 3, two special cases, of particular
importance, are worked out, namely, the linearization of a product of two ¢-Pochhammer
or g-Stirling polynomials in terms of single ¢g-Pochhammer or ¢-Stirling polynomials, re-
spectively. Finally, some more complicated examples involving the Charlier polynomials
and their g-analogues in the lattice x(s) = ¢° are presented.

2 General algorithm for solving the linearization problem.

In this section we will present a general algorithm to find a recurrence relation for the
linearization coefficients Ly, j, in the expansion

m-+j
Qm(z(s))Rj(x(s)) = D ImjnPa(z(s)),  z(s) = c1¢° + ¢3, (2.1)
n=0

where c¢1, ¢3 and ¢ are constants, Qn,(z(s)) = Qm(s)q and R;j(z(s)) = R;(s), are polyno-
mials which satisfy a second order difference equation of the form

a(S)Qm(S + 1)11 + b(S)Qm(S)q + C(S)Qm(s - 1)q =0, (2'2)
and
a(s)Rj(s+1)g + B(s)Rj(s)g +v(s)Rj(s — 1) =0, (2.3)

respectively. A special case of such polynomials are the g-polynomials of hypergeometric
type [3, 22, 23], which satisfy the difference equation

A wy(s) +r(s) Ay(s)

") Rt m D vats) T T A T =0 0
Vf(s)=f(s)—fls—1), Af(s)=f(s+1)—f(s).
Obviously, the Eq. (2.4) is of the type (2.2) (y = Qn), with
A(s)
a(s) =o(s) +7(s) Az(s —3), cs) =o0(s) ;
v(s) (2.5)

b(s) = AAxz(s— L)Ax(s) —a(s) —e(s) .

2

Notice that when z(s) = c1¢® + c3, Vz(s), Az(s) and Az(s — 3) are polynomials of first
degree in x(s), then, in this case, the functions a, b, ¢, o, # and ~ in (2.2)-(2.3) are

polynomials of 2th degree at most.



In the following, we will use the operators 7 and Z defined as follows

T:P—=1IP Z:P—=1P
Tp(s) =p(s+1) Ip(s) = p(s) -
Using the above operators, we can rewrite the Eqgs. (2.2)-(2.3) in the form
a(s + 1)T?Qm(s)g + (s + )T Quu(3)g + (s + 1)IQm(s)y = 0, (2.6)
and
a(s + D)T2R;(s)g + B(s + VT R;(s)g +v(s + 1)IR;(s)g = 0. (2.7)

Other important examples of g-polynomials are the so-called ¢-Pochhammer symbols
and the ¢-Stirling polynomials (see section 3 of the present work for more details) which
satisfy a first order difference equation of type (2.6)- (2.7).

2.1 The fourth order difference equation for the polynomials @Q,,(s),R;(s),-

Using the two equations (2.6) and (2.7), it is easy to prove that the polynomials u(s), =
Qm(s)qgR;(s)g, satisfy a fourth order difference equation of the form

Lyu(s) = pa(s)Tu(s)g +pa(s)T3u(s)g + pa(s)T?u(s)y + pi1(s)Tu(s)g + po(s)Zu(s)y. (2-8)
To prove this, we will follow the works [13, 14]. The idea is the following. Since (2.6)-(2.7),
a(s + a(s + 1)T?u(s) =

= [b(s + DT @m(s)g + c(s + 1)IQm(s)g] [B(s + 1) T R;(s)q + v(s + 1)TR;(s)],
which can be rewritten as
Lou(s) = a(s + (s + 1)T%u(s) — b(s + 1)B(s + 1) Tu(s) — (s + 1)y(s + 1)Zu(s) =

=b(s+ 1)y(s + 1) [TQm(s)¢ZR;(s)q] + c(s +1)B(s + 1) [ZQm(s) T R;j(s)q] =

=11(8) [TQm()gZR;(s)q] + l2(5) [ZQm(s)gTR;(s)q] -
Next, we change in the last expression s — s+ 1, and substitute in the right-hand side the
expression T2Qm(s), and T?R;(s),, using the Egs. (2.6)-(2.7), respectively. This allows
us to rewrite the resulting expression in the form

Msu(s) = mi(s) [TQm(s)gTR;j(s)q] + ma(s) [TQm(s)gT Rj(s)q]

where M3 is a difference operator of third order (there is one term proportional to 7'3), mq
and mo are known functions of s. Repeating the same procedure, but now starting from
the above equation we obtain

Nau(s) = ni(s) [TQm(8)gZR;j(s)q] + na(s) [TQm(s)gT Rj(s)g] -

Then
Lou(s) I1(s)  Ia(s)
Msu(s) mi(s) ma(s) |=0. (2.9)
Ngu(s) ni(s) no(s)

Expanding the determinant from the first column, the Eq. (2.8) holds.

Remark: The above equation (2.9), and its proof, remains true for any lattice function
z(s) and not only for the exponential lattice z(s) = ¢1¢® + c3.



2.2 The generalized linearization algorithm

As before, we will suppose that @, (s), and R;(s), satisfy the equations (2.6) and (2.7),
respectively, and that P, (s), satisfy the so-called structure relation in the exponential
lattice z(s) = ¢1¢° 4+ c3 and a three-term recurrence relation. An example of the latest are,
again, the ¢-hypergeometric orthogonal polynomials in the aforementioned lattice which
satisfy the structure relation [4] (for the case z(s) = ¢° see [6])

[o(s) +7(s) A z(s— %)]7)‘1 = S Pry1(8)g + TnPn(s)g + RnPo—1(8)qs (2.10)

or, written in its equivalent form

n+2
S()TPals)g= . Apn)Pil(s)g, B(s) = o(s) +7(s) Als — 3), (2.11)
k=n—2

as well as the three-term recurrence relation (TTRR)
z(8)Pr(8)g = anPry1(8)g + BnPn(s)g + YnPrn-1(8)q P_i(z)=0, n>0. (2.12)

To obtain (2.11) from (2.10) we use the facts that Az(s) is a polynomial of first degree
in z(s) (which is not valid in general for any lattice z(s)), o(s) + 7(s) A z(s — 3) is a
polynomial of degree two in z(s), and the TTRR (2.12).

From the above expression (2.11), one easily obtains that

n+4

S($)S(s + DT Pals)g = D Ar(n)Pi(s)g,

k=n—4

n+6
S(s)S(s + DE(s +2)T?Po(s)g = Y. Ap(n)Pr(s)q, (2.13)
k=n—6

n+8
B()5(s + 1)S(s +2)S(s + )T Pals)g = > Ax(n) Py(s),
k=n—8

To obtain a recurrence relation for the linearization coefficients we can do the following:
Since (2.8), L4Qm(s)q R;(s)q = 0, then applying L4 to both sides of (2.1), we find
m—+j
0= LinjnX(s)E(s + 1)S(s + 2)%(s + 3) L4 P (x(5)).
n=0

Taking into account that L4 is a fourth degree operator with polynomial coefficients, and



using the structure relation (2.11) as well as (2.13) we find

0= Lmjnipa(s) Y, Ap(n)Pie(s)g +pa(s)5(s +3) Y Ap(n)Pi(s)g+

m+j { n+8 n+6
n=0 k=n—8 k=n—6

n+4
+p2(8)2(s + 2)X(s + 3) Z Ak(n)Pk(s)q-l-
k=n—4

n+2
+p1(5)S(s + 1)B(s + 2)S(s +3) > Ap(n)Pu(s)g+
k=n—2

+X(8)E(s+ 1D)X(s+2)2(s + 3)p0(s)Pn(s)q},

from where, and by taking into account that (s + k), £ = 0,1,2,3, is a polynomial of
degree two in z(s) = ¢1¢® + c3, as well as the TTRR (2.12) we obtain that the coefficients
Ly, jn satisfy a recurrence relation of the form

r

Z ¢k (4,4, 1) Lijnyr = 0. (2.14)
k=0

In general, the present algorithm may not give the minimal order recurrence for the lin-
earization coefficients. To get the order » minimal it is necessary to use more specific
properties of the families of polynomials involved in (2.1).

Remark: Notice that the present algorithm also works in the case when the product
Qm(z(s))R;j(z(s)) satisfy a kth-linear difference equation with polynomial coefficients (not
necessary of order 4 as in (2.9)), so it can be used for solving more general linearization prob-
lems, e. g., linearization problems involving the product of three or more ¢g—polynomials.

3 Examples

In this section we will work out some examples. For simplicity we will consider the case
when the involved polynomials @), and R; satisfy first order difference equations, i.e.,
equation of the form (2.6) and (2.7) with a(s) = a(s) =0.

3.1 Linearization of a product of two ¢-Pochhammer symbols.

Let us define the quantities (s), by

IV

(8)g = =4q _1[5]qa (3.1)

q—1
and let [(s)q]n, the g-Pochhammer symbol, be defined by

n—1 q5+k 1
[(8)gln = (8)g(s + L)g -+ (s+n—1)g= H q—1 (3.2)
k=0



Notice that [(s),]n is a polynomial of degree exactly equal n in ¢°. The polynomials [(s)4]n
satisfy the following difference equation

(9)al(5 + Dl — (5 1)ol(3)gln = 0. (33)
and a recurrence relation
(al(S)aln — " [(8)glns1 + 4" (1)q(3)gln = 0. (3.4
Notice also that
@ = LD e (i), = T - adb). (3.5)
(I—q)™ o

Obviously, in the limit ¢ — 1, the g-Pochhammer symbol [(s),]n, becomes into the
classical Pochhammer symbol (s), = s(s+1)---(s+n—1).

Since the product [(s)4]i[(s)¢]; is a polynomial in ¢°, it can be represented as a linear
combination of the single g-Pochhammer symbols [(s4)],. In particular,

i+j

[()glil(s)ali = 3_ Lijn(@)(5q)]n- (3.6)
n=0

In order to to obtain the recurrence relation for the linearization coefficients L;j, in
(3.6) we apply the operator
()57 = (s +i)g (s +4)gT (3.7)

to both sides of (3.6). Using formula (3.3) we obtain the following expression

i+j s 2 s+i s+ _
0=3 Lin [(u) Tls)ln — (q i 1) (q i 1) [(sqnn]. (3.8)
n=0

qg—1 qg—1 qg—1

Taking into account the Eq. (3.3) for the g-Pochhammer symbol, we find

B i+j ) ¢ —1 qs+n_1 qs+i_1 q5+j_1 _
o Foen (22 (259 (559 (25
i+j
= Z Lijnl(sg)]n [(8)g(s +1)q — (s +i)q(s + 7)q] -
n=0

Next, we will rewrite the expression inside the quadratic brackets using the identity

(s + ”)q = qn(s)q + (”)qv
to obtain

i+

0="3" Lijnl(s)hn { ()31a" = "] + ()g[(n)g = €' (i)g — @ (3)] = (D)q (i)} »
n=0



from where, using Eq. (3.4), we arrive to the expression

i+j
> Lin{a 2 a" — ¢ (sg) st
n=0

+ [((”)q - qi(j)q - qj(i)q) " —(q" - qH_j) (q_Qn_l(” + 1) + q_Qn(”)q)] [(sg)]n+1+

(@ = )02 = () = ¢ Gl = 60)a) ™ = @] (5] } =
i+7 o

=3 Lijn{a™ 7 a" = ¢ [(5)]nso
n=0

Nk D I L )4 )y — 20+ 1] (sl -

—gHI=2 (), = ¢ (5),] [(n)g — ()] [(59)]n } = 0.

The above equation leads us to the following three-term recurrence relation for the lin-
earization coefficients L;j,

AnLijnf2 + BnLijnfl + CnLun =0, (39)

where

An — q72n+3[qn72 _ qi+j],
By =—q "(n)g =gt g (G)g + a7 (0)g — g "(n)g — g "THn—1)4],  (3.10)
Cn =—=¢" [g7™(n)g — a7 (4)q] [47"(n)g —q"(i)q]

with the initial conditions L;j;y;41 = 0 and L;j;1; = q .

To solve the above recurrence we apply the algorithm qHyper [1, 2, 25] which allows us
to find an equivalent two-term recurrence relation for the linearization coefficients. Namely,

—k—1/: .

q (i 47— ”)q
L;; = — L;; 3.11
ijn+1 (i—n—l)q(j—n—l)q Ny ( )

so that,
" iGN+ GHD 4D [(—7) glii—nl|(—%)glivi—
Lijn = (—1)H ng" G ( ])qu.“ =Ll 2)(],]ZH -, (3.12)
i+ j—n)g!

for n > max(i, j) and vanishes otherwise.

Notice that, in the limit ¢ — 1, the above recurrence relations (3.9)-(3.11) transform
into a two-term recurrence relations for the standard Pochhammer symbols (s),, of the form

(k—i—j —1)Lijn—1 — (k* — (i + j)k +ij) Lijn =0, Lijivjy1 =0, Lijiq; =1,



which solution
_1\etItn 5y, . AT
( 1) ( ])'z+]fn'( 71)1+]7TL n> max(i,j)
Lijn = (i+7—n)! ;

0 otherwise

corresponds to (3.12) in the limit ¢ — 1.

3.2 Linearization of a product of two ¢-Stirling polynomials.

Let us define the ¢-Stirling polynomials or ¢-falling factorials (S)M by

n—1 ¢— kE_
()M =(8)g(s = 1)g-- (s —n+1)g =[] qq — 1 (3.13)
k=0
Also we will use the notation
s. 4\[n]
n_ (@%5q n _ Y
()5 = 7& = ;)n, (a;¢)" = (1 — a)(1 —ag™") - (1 — ag™™+"). (3.14)

]

These quantities (s,)["] are closely related to the g-Stirling numbers Sy(n, k), sg(n, k)

[30] by formulas

Saln, k) ()™, ()5 =" sy, k)(s)y (3.15)

and satisfy the following difference equation
(s)gls = D — (s =)yl =0, (3.16)
as well as the recurrence relation
(8)g(5)I = g™ ()T — (n)4[(s)g]™ = 0. (3.17)
Again, since the product (s),[]i](s)([lj] is a polynomial in z(s) = ¢*, it can be represented as a
linear combination of the ¢-falling factorials (sq)["}. In particular,

1>

n=0

e

()§(s ijn()(sq)". (3.18)

To obtain the recurrence relation for the linearization coefficients Eijn in (3.18) we apply
the operator

()27~ = (s —i)g(s — §)gT (3.19)
to both sides of (3.18) and do similar calculations as before but now using the equations
(3.16) and (3.17), respectively. This leads us to the expression

i+7

Z L { 2n+1 _ qfifj](sq)[nJrZ]_i_

{4+ 1)g+ "7 (f)g + (D)g — (n)g — (n+1)g]} (Sq)[nﬂ}_
—q7 7 [(n)g = (§)q] [(n)g — (D)g] (59"} =0,

8



which allows us to obtain the following three-term recurrence relation for the linearization
coefficients L;j,

AnLijn—s+ BnLijn—1 + CnLij, = 0, (3.20)

where - o
An =g = 7],

By = (n)g+¢" "I (f)g + (i)g — (n = 1)g — (n)g], (3.21)

Cn = _qiiij [(n)q - (])q] [(n)q - (i)q] )

with the initial conditions f}ij i+j+1 = 0 and ffz’jz‘+j = q".

Again, applying to the above recurrence relation the algorithm gqHyper 1, 2, 25] we
find that the coefficients L;;, satisfy an equivalent two-term recurrence relation

5 q(i +3j—n)q 7
L;; = L;; 3.22
ign+1 (Z o 1)q(j o 1)q tJn ( )

so that,

. o (=D Vi [(=3) ol o
Lijn = ¢ nll ])qu—i—j_jn! n))qq!]lﬂ " for n>max(i,7), (3.23)

and vanishes otherwise.

We want to point out here that the above recurrence relation (3.20), as well as its
solution (3.23), can be obtained from the previous equations (3.9) and (3.12). In order to
do that we use the identity

() = (~1)767[(—5) 1] (3.24)
and substitute it in (3.6). Comparing the obtained expression with (3.18) we find
Lijn(q) = (=1)"7"¢" "I Liju(qg ") (3.25)

The above three-term recurrence relation (3.20) in the limit ¢ — 1, transforms into a
two-term recurrence relation for the classical Stirling polynomials ()" = s(s —1)--- (s —
n + 1), of the form

(j+i+1—Fk)Lijn 1 — (k* = (i + )k +1ij) Lijn = 0, Lijivj+1 =0, Lijivj =1, (3.26)
which have the solution
(=3)itj—n(—1)itj—n

LA n > max(i, )
. — )
Lijn = (i4j—n) , (3.27)

0 otherwise

and that is in agreement with (3.23).



Remark: To conclude this section we want to remark that the method presented here can
be used also for solving the linearization problem

i+m

{[(9)gi}™ = 3~ Lin(@)[(5q)In,
m=0

or
i+m

()51 = > Lin(a)(s9)™,
m=0

since the the m—power of a g-Pochhammer or a ¢-Stirling polynomials satisfy a first order
difference equation of the form

7 TS ™ = (s +D7{)al}™ =0, ()F TSN = (s =) 1)

respectively. Then, it is easy to see that the corresponding recurrence relations for the
coefficients L7 (¢) and L7 (q), are of degree at most m + 1 (for the classical case see [18]).

3.3 Further examples

In this section we will show the usefulness of the obtained relations for solving some lineriza-
tion formulas involving some classical hypergeometric polynomials and their g-analogues.
Classical Charlier polynomials.

Firstly, we will obtain the linearization of a product of two Stirling polynomials z[™zl] in
terms of the monic Charlier polynomials

m—+j
gMall = 3" ¢ 2Ol (), (3.28)
n=0

where the Charlier polynomials C¥# are defined by

—n,—T

Ci(a) = (=n)" Fo

_%>:In+..., (3.29)

Here ,F'; denotes the generalized hypergeometric function

F < A1, G2y ...y Qp
p-q
bi, by, ..., by

oo

$> — Z (al)k((lQ)k Ce (ap)k o

= (00)k(b2)k - - (bg) B! (3.30)

To obtain the explicit expression for the coefficients ¢, j, in (3.28), we will use the
expression (3.27) as well as the well known inversion formula (see, for example, [7])

n

k
ol = > cinChi(z), Ckn = ( g > Tl (3.31)
n=0

Then, substituting (3.31) in
m—+j

gl = 3 F ¥,
k=0

10



and interchanging the sums we obtain

m+j—n

Cm,jn = Z Lnj k+nCk+n n-
k=0

Substituting in the above expressions the Eqs. (3.27) and (3.31) for the coefficients f}mj ktn
and ¢4y n and making some straightforward calculations, we finally obtain

m+j i -m, —j, n—m-—j
Cm,j,n:< n]>'um+g n3F1< ’ —]7;1—j ’

1
ﬁ)' (3.32)

An analogous expression have been obtained in [7] by others means. Obviously, the same
can be done for other hypergeometric polynomials (e.g. Hahn, Meixner and Kravchuk).

Notice also that, since

(=17 (=)’ *
! ’

J
Cl(z) = Z ajka:[k], ajr =
k=0

then, multiplying (3.28) by aj; and taking the sum over k, we obtain

m+j
2™ CY (@) = 37 bmjnClh(x), (3.33)
n=0
where
J . &
j M +k\ (=5, (M) -m, —k, n—m-—%k |1
lm in — \— Jymon m - F I ) - )
2T (=) %( n ) X ~ 3k o — k .

A similar result was obtained in [7] by a different way.

Notice also the finiteness of the last sum as well as the termination character of the
involved hypergeometric serie 3F;.

g-Charlier polynomials.

Next we will obtain some formulas for the linearization coefficients involving a g-analogue
of the Charlier polynomials ¢/ (s, ¢) in the exponential lattice z(s) = ¢* [3, 4].

These monic Charlier g-polynomials c£ (s, q) are defined by

(s,0) =1 —a)"q" 20 ( SRERE _(qgil)z) B
(3.34)

= "1 —q)"¢"™ zn: (@

LR TLA l<g<l,0<p<l,
= (@G a)ke p

11



where (s),[]k] are the ¢-Stirling polynomials defined in (3.13), the symbols (a; q)x are given

n (3.5), and the g-basic hypergeometric serie is defined by [16]

a1,09, ..., 0p 0 (al;q)k"‘(aHQ)k Sk P 1
r RS 2 . 3.35
%< b by, Z) ,; (br; -~ (bps Q)i (@3 D)k [( D' ] (3.35)

Also we need the g-analogue of the inversion formula (3.31) [5]

k k—2(n+1)

g 2 [k n

=Y cachisq), = T (3.36)
= g \n )

( k ) __ (@9
n ), (@GOG Den

Notice that the above expressions transform into the classical ones when ¢ — 1. Then, to
solve the linearization problem

where

m+j

Z e inch( (3.37)

we apply the same procedure as before, i.e.,

m+j—n
7]) Z Lm] k+n Ck+’n n’

where Ly k1n(g) are given in (3.23) and Chinn by (3.36). Again, some straightforward

calculations (in which we use some identities involving the (a;q), and (a;q)™ symbols
[16, 17]) lead us to the expression

‘ qm+j+mj*%(n+l)'um+j—n ji+m R g™, qu qnfmfj 1
Cmyjan = (q — 1)’!1 n 3Lp1 q_m_g ’ q’ m :
q
Here, we use the function ,,, defined by
Q/b ( ai, az, .. 7 Qr q, Z> i ai; q “(ar; @)k 2 (3 38)
T 617627 7 : b17 ‘ (b 1q)k (qu)k '

k=0

Notice also that in the case when ¢ — 1, Eq. (3.37) transforms into the classical one (3.32).

Obviously, the same can be done with others g-polynomials (e.g. g¢-Hahn, ¢-Meixner,
etc [3, 17]). Also, analogues of the problem (3.33) can be solved in a similar way.
Summary

In the present work we have developed a general recurrent method for solving the lineariza-
tion problem for a product of two polynomials in the exponential lattice z(s) = ¢1¢° + ¢3,
obtaining the explicit solution in the case of the g-analogues of the Pochhammer symbol and
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the Stirling polynomials. Finally, some linearization problems involving the g-analogues of
the classical Charlier polynomials were solved.
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