
PEANO CURVES ON TOPOLOGICAL VECTOR SPACES

N. ALBUQUERQUE, L. BERNAL-GONZÁLEZ, D. PELLEGRINO,
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Abstract. The starting point of this paper is the existence of Peano
curves, that is, continuous surjections mapping the unit interval onto
the unit square. From this fact one can easily construct of a continuous
surjection from the real line R to any Euclidean space Rn. The algebraic
structure of the set of these functions (as well as extensions to spaces
with higher dimensions) is analyzed from the modern point of view of
lineability, and large algebras are found within the families studied. We
also investigate topological vector spaces that are continuous image of
the real line, providing an optimal lineability result.
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1. Preliminaries

Lately, many authors have been interested in the study of the set of
surjections in KK (K = R or C). From this study, many different classes of
functions have been either recovered from the old literature or introduced.
Some of these classes are, for instance: (i) everywhere surjective functions
(ES, see [4]). (ii) strongly everywhere surjective functions (SES, see [19]),
(iii) perfectly everywhere surjective functions (PES, see [19]), and (iv) Jones
functions (J, see [17,18,24]).
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Figure 1. Sketch of an iteration of a space-filling curve.

If S and CS stand, respectively, for the set of surjections and continuous
surjections on R, the above functions (when defined on R) enjoy the following
strict inclusions:
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ES
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Authors have studied the previous classes of functions in depth, to the point
of even finding large algebraic structures (infinite dimensional linear spaces
or infinitely generated algebras) inside the previous sets of functions. How-
ever, “most” of these functions, although surjective, also are nowhere con-
tinuous on their domains. Thus, the natural question rises when one tries
to consider continuous surjections.

Inspired by Cantor’s counterintuitive result stating that the unit interval
[0, 1] has the same cardinality as the infinite number of points in any finite-
dimensional manifold (such as the unit square), Peano constructed the (no
doubt!) most famous space filling curve, also known as the Peano curve
[25,27] (see Figure 1). Later on, the Hahn-Mazurkiewicz theorem (see, e.g.,
[29, Theorem 31.5] or [21]) helped in characterizing the spaces that are the
continuous image of curves, namely:

Theorem 1.1 (Hahn-Mazurkiewicz). A non-empty Hausdorff topological
space is a continuous image of the unit interval if and only if it is a compact,
connected, locally connected, and second-countable space.

Hausdorff spaces that are the continuous image of the unit interval will
be called Peano spaces, so that, a Peano space is a Hausdorff, compact, con-
nected, locally connected second-countable topological space. Equivalently,
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by well-known metrization theorems, a Peano space is a compact, connected,
locally connected metrizable topological space. From Peano’s example one
can easily construct a continuous function from the real line R onto the
plane R2 (see, e.g., [3]). If X and Y are topological spaces, by C(X,Y ) and
CS(X,Y ) we will denote, respectively, the set of all continuous mappings
X → Y and the subfamily of all continuous surjective mappings.

This paper focuses on studying the algebraic structure of the set of con-
tinuous surjections between Euclidean spaces, as well as extensions of Peano
curves to arbitrary topological vector spaces that are, in some natural sense,
sums of Peano spaces. Before carrying on, let us recall some concepts that,
by now, are widely known (see, e.g., [4–6,9, 12,14–16]).

Definition 1.2 (lineability, [4,28]). Let X be a topological vector space and
M a subset of X. Let µ be a cardinal number.

(1) M is said to be µ-lineable if M ∪ {0} contains a vector space of
dimension µ. At times, we shall be referring to the set M as simply
lineable if the existing subspace is infinite dimensional.

(2) When the above linear space can be chosen to be dense (infinite di-
mensional and closed, resp.) in X we shall say that M is µ-dense-
lineable (spaceable, resp.).

Moreover, Bernal introduced in [10] the notion of maximal lineable (and
that of maximal dense-lineable) in X, meaning that, when keeping the above
notation, the dimension of the existing linear space equals dim(X). Besides
asking for linear spaces one could also study other structures, such as alge-
brability and some related ones, which were presented in [5–7,28].

Definition 1.3. Given an algebra A, a subset B ⊂ A, and a cardinal number
κ, we say that B is:

(1) algebrable if there is a subalgebra C of A so that C ⊂ B ∪ {0} and
the cardinality of any system of generators of C is infinite.

(2) κ-algebrable if there exists a κ-generated subalgebra C of A with C ⊂
B ∪ {0}.

(3) strongly κ-algebrable if there exists a κ-generated free algebra C con-
tained in B ∪ {0}.

If A is commutative, the last sentence means that there is a set C ⊂ A
with card(C) = κ such that, for every finite set {x1, . . . , xN} ⊂ C and
every nonzero polynomial P of N variables without constant term, one has
P (x1, . . . , xN ) ∈ B \ {0}. Of course, being strongly algebrable implies being
algebrable (the converse is not true, see [7]). When, in part (3) of Definition
1.3, one can take as κ the supremum of the cardinalities of all algebraically
free systems in A, then B will be called maximal strongly algebrable in A.

This paper is arranged in five sections. Section 2 is devoted to the study of
the set of continuous surjections from Rm to Cn (since the case of continuous
surjections from Rm to Rn, and its maximal dense-lineability and spaceabil-
ity, was recently studied and solved in [3, 11]). Here we shall improve the
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results from [3,11] by showing that the subset of continuous surjections from
Rm to Cn such that each value a ∈ Cn is assumed on an unbounded set of
Rm is, actually, (maximal) strongly algebrable (Theorem 2.5). In order to
achieve this we shall need to make use of some results and machinery from
Complex Analysis, such as the order of growth of an entire function. While
doing this, we also provide some new results from Complex Analysis which
are of independent interest (see, e.g., Lemma 2.4).

Henceforth, for a given arbitrary non-empty set Λ, the linear space of
complex funcions CΛ is an algebra when endowed with pointwise product of
vectors.

Section 3 moves on to the study of generalizations of the previous results
to topological vector spaces that are, in some natural sense, covered by
Peano spaces. We introduce the notion of σ-Peano space (see Definition
3.1) and use it to show (among other results) that given any topological
vector space X that is also a σ-Peano space, then the set{

f ∈ C (Rm,X ) : f−1({a}) is unbounded for every a ∈ X
}

is c-lineable (hence maximal lineable in C (Rm,X )), where c stands for the
continuum (Theorem 3.6). In addition, we will show how, by just starting
with separable normed spaces, one can obtain σ-Peano spaces. In Section
4, we analyze Peano spaces in the framework of sequences spaces. The last
section is devoted to study Peano space in real and complex function spaces.

2. Peano curves on Euclidean spaces

Let N := {1, 2, . . . } and N0 := N ∪ {0}. Along this paper, and for any
topological space X, we will use the notation

CS∞(Rm, X) :=
{
f ∈ C (Rm, X) : f−1({a}) is unbounded for every a ∈ X

}
.

In [3], Albuquerque showed the following.

Theorem 2.1 (Albuquerque, 2014). For every pair m,n ∈ N, the set
CS(Rm,Rn) is maximal lineable in the space C(Rm,Rn).

Also, in [11], Bernal and Ordóñez provided the following natural general-
ization of the previous result.

Theorem 2.2 (Bernal and Ordóñez, 2014). For each pair m,n ∈ N, the set
CS∞(Rm,Rn) is maximal dense-lineable and spaceable in C (Rm,Rn). In
particular, it is maximal lineable in C (Rm,Rn).

A natural question would be to ask about the algebrability of the set
CS∞(Rm,Rn). Clearly, algebrability cannot be obtained in the real context,
since for any f ∈ RR, f2 is always non-negative. However, in the complex
frame it is actually possible to obtain algebrability. Before that, let us recall
some results related to the growth of an entire function (see, e.g., [13, p.9]).
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Remark 2.3. (Order of an entire function and consequences). By H (C)
we denote the space of all entire functions from C to C. For r > 0 and
f ∈ H (C), we set M (f, r) := max|z|=r |f(z)|. The function M(f, ·) increases
strictly towards +∞ as soon as f is non-constant.

(a) The (growth) order ρ(f) of an entire function f ∈ H (C) is defined
as the infimum of all positive real numbers α with the following
property: M (f, r) < er

α
for all r > r(α) > 0. Note that ρ(f) ∈

[0,+∞]. Trivially, the order of a constant map is 0. If f is non-
constant, we have

ρ(f) = lim sup
r→+∞

log logM (f, r)

log r
.

(b) If f(z) =
∑∞

n=1 anz
n is the MacLaurin series expansion of f then

ρ(f) = lim sup
n→+∞

n log n

log (1/|an|)
.

In particular, given α > 0, fα(z) :=

∞∑
n=1

zn

nn/α
satisfies ρ(fα) = α.

(c) For every f ∈ H (C), every N ∈ N and every α ∈ C \ {0},

ρ
(
αfN

)
= ρ (f) .

(d) For every f, g ∈ H (C),

ρ(f · g) ≤ max{ρ(f), ρ(g)}
and

ρ(f + g) ≤ max{ρ(f), ρ(g)}.
Moreover, if f and g have different orders, then

ρ(f + g) = max{ρ(f), ρ(g)} = ρ(f · g),

where it is assumed f 6≡ 0 6≡ g for the second equality.
(e) (Corollary to Hadamard’s theorem): Every non-constant entire func-

tion f with∞ > ρ(f) /∈ N is surjective (see, e.g., [1, Corollary, p.211]
or [20, Thm 9.3.10]).

As a consequence of the previous properties, we obtain the following result
(of independent interest) concerning the order of a polynomial of several
variables evaluated on entire functions with different orders. First, we need
to establish some notation: for a non-constant polynomial in M complex
variables P ∈ C[z1, . . . , zM ], let IP ⊂ {1, . . . ,M} be the set of indexes k
such that the variable zk explicitly appears in some monomial (with non-
zero coefficient) of P ; that is, IP = {n ∈ {1, . . . ,M} : ∂P

∂zn
6≡ 0}.

Lemma 2.4. Let f1, . . . , fM ∈ H(C) such that ρ(fi) 6= ρ(fj) whenever i 6= j.
Then

ρ (P (f1, . . . , fM )) = max
k∈IP

ρ (fk) ,
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for all non-constant polynomials P ∈ C[z1, . . . , zM ]. Moreover, (fk)
M
k=1 is

algebraically independent and generates a free algebra.

Proof. We start by proving the result for just one entire map. Let us fix a
non-constant entire function. We shall prove that ρ (P (f)) = ρ(f), for any
non-constant polynomial P ∈ C[z]. Properties (c) and (d) of Remark 2.3
assure that ρ(P (f)) ≤ ρ(f). So, we just need to prove the reverse inequality.
We may write P (z) = amz

m + · · ·+ a1z+ a0, with m > 0 and am ∈ C \ {0}.
Since

lim
|z|→+∞

∣∣∣∣P (z)

zm

∣∣∣∣ = |am| > 0,

we have
|P (z)| > c · |z|m

for |z| large enough, where c := |am|/2. Plainly, we may suppose ρ(f) > 0.
Let ε > 0 be such that 0 < ε < ρ(f). By the definition of order, there exist a
sequence of positive radii (rn)n going to +∞ and a complex sequence (zn)n
such that |zn| = rn and

|f(zn)| = M (f, rn) > er
ρ(f)−ε
n (n = 1, 2, . . . ).

Thus, for large enough values of n,

M (P (f), rn) ≥ |P (f)(zn)| > c · |f(zn)|m > c · emr
ρ(f)−ε
n .

Consequently,

ρ (P (f)) ≥ lim sup
r→+∞

log logM (P (f), r)

log r

≥ lim sup
n→∞

log logM (P (f), rn)

log rn

≥ lim
n→∞

log log(c · emr
ρ(f)−ε
n )

log rn
≥ ρ(f)− ε.

This leads us to obtain the remaining inequality ρ (P (f)) ≥ ρ(f) and,
therefore, conclude the proof for the case M = 1. Next, let us deal with
the general case: we may assume that the functions f1, . . . , fM ∈ H(C)
satisfy ρ(f1) < ρ(f2) < · · · < ρ(fM ). Given a non-constant polynomial
P ∈ C[z1, . . . , zM ], we just need to prove, as earlier, that

ρ (P (f1, . . . , fM )) ≥ max
k∈IP

ρ (fk) .

Let be N = maxk∈IP . We can write

P (f1, . . . , fM ) =
m∑
i=0

Pi(f1, . . . , fN−1) · f iN , (1)

with some m > 0 and Pm ∈ C[z1, . . . , zN−1] \ {0}. Let ε > 0 such that

ρ(fN−1) < ρ(fN )− 2ε < ρ(fN ) =: ρN .
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Now, parts (c) and (d) of Remark 2.3 allow us to estimate the order of each
one of terms of the sum in (1):

ρ (Pi(f1, . . . , fN−1)) ≤ ρ(fN−1) < ρN for all i = 0, . . . ,m and

ρ (Pm(f1, . . . , fN−1) · fN ) = ρN .

As before, there exist a sequence of positive real numbers, (rn)n, going to
+∞ and complex numbers zn, of modulus rn, such that, for n large enough,
the following inequalities hold:

|Pm(f1, . . . , fN−1)(zn)| · |fN (zn)| > er
ρN−ε
n and

|Pi(f1, . . . , fN−1)(zn)| < er
ρN−2ε
n for all i = 0, . . . ,m.

In particular,

|fN (zn)| > er
ρN−ε
n −rρN−2ε

n for n large.

Thus,

|P (f1, . . . , fM )(zn)| ≥

≥ |Pm(f1, . . . , fN−1)(zn)| · |fN (zn)|m −
m−1∑
i=0

|Pi(f1, . . . , fN−1)(zn)| · |fN (zn)|i

> er
ρN−ε
n · |fN (zn)|m−1 − er

ρN−2ε
n ·

m−1∑
i=0

|fN (zn)|i

= er
ρN−ε
n · |fN (zn)|m−1 ·

[
1− er

ρN−2ε
n −rρN−εn ·

m−1∑
i=0

|fN (zn)|i−(m−1)

]
.

Note that the expression inside the brackets in the last formula tends to 1
as n → ∞. Thus, it is greater than some constant C1 ∈ (0, 1) for n large
enough. A similar argument also provides

er
ρN−ε
n · |fN (zn)|m−1 ≥ C2 · emr

ρN−ε
n ,

for n large enough and some constant C2 > 0. Consequently, if C := C1C2,
one has for n large that

M (P (f1, . . . , fM )(zn), rn) ≥ C · emr
ρN−ε
n ,

which implies

ρ (P (f1, . . . , fM )) = lim sup
r→+∞

log logM (P (f1, . . . , fM ), r)

log r

≥ lim sup
n→∞

log logM (P (f1, . . . , fM ), rn)

log rn

≥ lim
n→∞

log log(C · emr
ρN−ε
n )

log rn
≥ ρN − ε.
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Letting ε→ 0, the above inequalities prove

ρ (P (f1, . . . , fM )) ≥ ρN = max
k∈I(P )

ρ (fk)

and the proof follows straightforwardly. �

From this lemma we can prove that CS∞ (Rm,Cn) is maximal strongly
algebrable, which means that the set is strongly c-algebrable.

Theorem 2.5. For every m ∈ N, the set CS∞ (Rm,Cn) is maximal strongly
algebrable in C (Rm,Cn).

Proof. It suffices to consider the case n = m = 1. In fact, the case m > 1
follows from the m = 1 by considering the projection map from Rm to R.
The case n > 1 is obtained from n = 1 by working on each coordinate.

For each s > 0, select an entire function ϕs : C→ C of order s > 0. Let
A := (0,+∞) \ N. Lemma 2.4 assures that the set {ϕs}s∈A is a system of
cardinality c generating a free algebra A.

Next, notice that any element ϕ ∈ A \ {0} may be written as a non-
constant polynomial P without constant term evaluated on some ϕs1 , ϕs2 ,
. . ., ϕsN :

ϕ = P (ϕs1 , ϕs2 , . . . , ϕsN ) =
∑
|α|≤m

cα · ϕα1
s1 · ϕ

α2
s2 · · ·ϕ

αN
sN
.

By Lemma 2.4, there exists j ∈ {1, . . . , N} such that ρ(ϕ) = ρ(ϕsj ) = sj /∈
N0. Thus Remark 2.3 (e) guarantees that ϕ is surjective. Finally, take any
F ∈ CS∞ (R,C) and consider the algebra

B := {ϕ ◦ F}ϕ∈A .

Then it is plain that B is freely c-generated and that B\{0} ⊂ CS∞ (R,C),
as required. �

3. σ-Peano spaces

As mentioned in the introduction, the theorem of Hahn and Mazur-kie-
wicz provides a topological characterization of Hausdorff topological spaces
that are continuous image of the unit interval I := [0, 1]: these are precisely
the Peano spaces. In this section we investigate topological spaces that are
continuous image of the real line and for this task the following definition
seems natural.

Definition 3.1. A topological space X is a σ-Peano space if there exists an
increasing sequence of subsets

K1 ⊂ K2 ⊂ · · · ⊂ Km ⊂ · · · ⊂ X,
such that each one of them is a Peano space (endowed with the topology in-
herited from X) and its union amounts to the whole space, that is,

⋃
n∈NKn =

X.
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From now on, CS will stand for an abbreviation of “continuous surjective”.

Proposition 3.2. Let X be a Hausdorff topological space. The following
assertions are equivalent:

(a) X is a σ-Peano space.
(b) CS∞ (R, X) 6= ∅.
(c) CS (R, X) 6= ∅.

Proof. (a) ⇒ (b): Let K1 ⊂ K2 ⊂ · · · be an increasing sequence of Peano
spaces in X such that its union is the whole X. Fix a point x0 ∈ X.
Without loss of generality, we may suppose that x0 ∈ Kn, for all n ≥ 1.
Since Peano spaces are arcwise connected [29, Theorem 31.2], for each n ≥ 1
there is a Peano map fn : [n, n+ 1] → Kn, that starts and ends at x0, i.e.,
fn(n) = x0 = fn(n + 1). Joining all these Peano maps with the constant
path t ∈ (−∞, 0] 7→ x0 ∈ K1, one obtains a CS map F : R→ X.

(c) ⇒ (a): Let f be a map in CS (R, X). Therefore,

X = f (R) = f

(⋃
n∈N

[−n, n]

)
=
⋃
n∈N

f ([−n, n]) .

Since (b) ⇒ (c) is obvious, the proof is done. �

Example 3.3. (Spaces that are σ-Peano).

(a) Trivially, Euclidean spaces Rn and Peano spaces are σ-Peano. For
1 < p ≤ ∞, the Hilbert cube

Cp :=
∏
n∈N

[
− 1

n
,

1

n

]
⊂ `p,

considered as a topological subspace of `p, is a compact metric space,
so it is a Peano space. For each natural k, let kCp be the Hilbert
cube after applying an “k-homogeneous dilation” to it. Therefore,
the union of Hilbert cubes

⋃
k∈N kCp is a σ-Peano topological vector

space, when endowed with the topology inherited from `p.
(b) Let X be a separable topological vector space and X ′ be its topologi-

cal dual endowed with the weak∗-topology. If X ′ is covered by an in-
creasing sequence of (weak∗-)compact subsets, then it is σ-Peano. In-
deed, when the topological dual is endowed with the weak∗-topology,
its weak∗-compact subsets are metrizable (see, for instance, [26, The-
orem 3.16]). Therefore, it will be a σ-Peano space. Clearly, this holds
on the topological dual (endowed with weak∗-topology) of separable
normed spaces.

Recall that an F-space is a topological vector space with complete translation-
invariant metric which provides its topology.

Example 3.4. (Spaces that are not σ-Peano).
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(a) Every σ-Peano space is separable. Indeed, continuity preserves sep-
arability. In particular, `∞ is not σ-Peano.

(b) No infinite dimensional F-space is σ-compact (i.e., a countable union
of compact spaces), and, therefore, is not σ-Peano. This is a con-
sequence of the Baire category theorem combined with the fact that
on infinite dimensional topological vector spaces, compact sets have
empty interior. In particular, no infinite dimensional Banach space
is σ-Peano.

Remark 3.5. If X is a σ-Peano space, then card C (R, X) ≤ c. Indeed,
this is consequence of card X ≤ c (as an image of the real line), in tandem
with the fact that the separability of R implies that each map of C (R, X)
is uniquely determined the sequence of its rational images, which defines an
injective map C (R, X) ↪→ XN and, therefore, card C (R, X) ≤ card XN ≤ c.

Now we state and prove the main result of this section, which provides
maximal lineability of Peano curves on arbitrary topological vector spaces
that are also σ-Peano spaces. As in [11], we work with some particular
Peano maps, namely, with those continuous surjections assuming each value
on an unbounded set.

It is convenient to recall a well-known fact from set theory: a family
{Aλ}λ∈Λ of infinite subsets of N is called almost disjoint if Aλ ∩ Aλ′ is
finite whenever λ 6= λ′. The usual procedure to generate such a family
is the following (see, e.g., [2]): denote by {qn}n∈N an enumeration of the
rational numbers. For every irrational α, we choose a subsequence {qnk}k∈N
of {qn}n∈N such that limk→+∞ qnk = α and define Aα := {nk}k∈N. By
construction, we obtain that {Aα}α∈R\Q is an almost disjoint uncountable
family of subsets of N.

Theorem 3.6. Let X be a a σ-Peano topological vector space. Then CS∞ (Rm,X )
is maximal lineable in C (Rm,X ).

Proof. It is sufficient to prove the result for m = 1. Take g : N0 → N× N a
bijection, and set

Ik,n :=
[
g−1(k, n), g−1(k, n) + 1

]
,

for all k, n ∈ N, thus {Ik,n}k,n∈N is a family of compact intervals of [0,+∞)

such that
⋃
k,n∈N Ik,n = [0,+∞), the intervals Ik,n having pairwise disjoint

interiors, and
⋃
k∈N Ik,n is unbounded for every n. Proceeding as in the

construction presented in Proposition 3.2, for each n, we can build a CS
map fn : R→ X with the following properties:

• fn
(⋃

k∈N Ik,n
)

= X ;
• for each k ∈ N, on the interval Ik,n , fn starts and ends at the origin

0X ∈ X and covers the k-th Peano subset of X ;
• fn ≡ 0 on

⋃
k∈N Ik,m, for all m 6= n.

Notice that each fn ∈ CS∞ (R,X ), since
⋃
k∈N Ik,n is unbounded.
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Now let {Jλ}λ∈Λ be an uncountable family of subsets of N such that each
Jλ is infinite and the set is almost disjoint. Define, for each λ ∈ Λ,

Fλ :=
∑
n∈Jλ

fn : R→ X .

The pairwise disjointness of the interior of the intervals Ik,n (together with
the above properties of fn) guarantees that Fλ is well-defined, as well as
continuous. We assert that the set

{Fλ}λ∈Λ

provides the desired maximal lineability. The crucial point is the following
argument: let Fλ1 , . . . , FλN be distinct and α1, . . . , αN ∈ R, with αN 6= 0.

Since JλN \
(
∪N−1
i=1 Jλi

)
is infinite, we may fix n0 ∈ JλN \

(
∪N−1
i=1 Jλi

)
. Notice

that

Fλ1 = · · · = FλN−1
≡ 0 and FλN = fn0 on

⋃
k∈N

Ik,n0 .

Consequently,
N∑
k=1

αk · Fλk = αN · fn0 on
⋃
k∈N

Ik,n0 .

Then F :=
∑N

k=1 αk ·Fλk is an element of CS∞ (R,X ), because the image of
R under F contains αN · fn0(

⋃
k∈N Ik,n0) = αNX = X and each vector of X

is the image by fn0 of an unbounded set. Hence, one may easily prove that
the set {Fλ}λ∈Λ has c-many linearly independent elements, and each non-
zero element of its linear span also belongs to CS∞ (R,X ). The maximal
lineability follows from Remark 3.5. �

Observe that this result recovers Theorem 2.1 and the second part of
Theorem 2.2. Moreover, together with Example 3.3, item (b), provides,

Corollary 3.7. Let N be a separable normed space and N ′ be its topologi-
cal dual endowed with the weak∗-topology. Then CS∞ (Rm,N ′) is maximal
lineable.

Notice that this result holds in a more general framework: if X is a
separable topological vector space and its topological dual X ′ (endowed with
the weak∗-topology) is covered by an increasing sequence of (weak∗-)compact
subsets, then CS∞ (Rm,X ′) is maximal lineable.

4. Peano curves on sequence spaces

Throughout this section we shall deal with the space of real sequences RN

and some of its variants. Recall that RN is an F-space under the metric

d ((xn)n , (yn)n) :=
∑
n∈N

1

2n
· |xn − yn|

1 + |xn − yn|
,
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and also this metric provides the product topology on RN (see [23, p.175]).
From Example 3.4, it is clear that RN is not a σ-Peano space.

Looking for infinite dimensional “smaller” subspaces of RN that could
σ-Peano, we easily find the following example.

Example 4.1. The space c00 of eventually null sequences (with its natu-
ral topology induced by the sup norm) is a σ-Peano space. Indeed, In :=
[−n, n]n × {0}N ⊂ c00 defines a increasing sequence of Peano spaces in c00,
whose union results in the entire space.

Therefore, Theorem 3.6 immediately gives the following:

Proposition 4.2. The set CS∞ (Rm, c00) is maximal lineable.

It possible to provide a more “constructive” proof of the previous result,
by just making some adjustments to an argument provided in [3]. The proof
is presented below and shell be used later in order to obtain algebrability
results.

2nd proof of Proposition 4.2. Let R+ := (0,+∞) and `+∞ := (R+)
N ∩ `∞.

For r = (rn)n∈N ∈ `+∞, let us define Φr : RN → RN by

Φr

(
(tn)n∈N

)
:= (φrn(tn))n∈N ,

where φr(t) := ert − e−rt for each r ∈ R+. Observe that each φr is a
homeomorphism from R to R and, consequently, Φr is a bijection. Notice
that the restriction Φr : `∞ → `∞ is well defined and surjective because, for
(tn)n ∈ `∞, one has

|φrn(tn)| =
∣∣erntn − e−rntn∣∣ ≤ ern|tn| ≤ eC (n = 1, . . . ),

for some positive constant C. Moreover, the family {φrn}n is equicontinuous.
In fact, let t, s ∈ R, t < s. There exists ζ = ζ(t, s, n) ∈ [t, s] such that

|φrn(t)− φrn(s)| =
∣∣φ′rn(ζ)

∣∣ · |t− s| .
But since r ∈ `+∞,

|φ′rn(u)| = rn
(
ernu − e−rnu

)
≤ rnern|u| ≤ ‖r‖∞e‖r‖∞|u|,

for all real numbers u. Thus,

|φrn(t)− φrn(s)| ≤ ‖r‖∞e‖r‖∞|t−s| · |t− s| ,
and, therefore, {φrn}n is equicontinuous. The continuity of the restriction

Φr : `∞ → `∞

is an immediate consequence of the equicontinuity of the coordinate maps.
Since φr(0) = 0 for all r ∈ R+, we may restrict again to Φr : c00 → c00.
Then, for a fixed map F ∈ CS∞ (R, c00) (see the comments after the proof
of Proposition 3.2), the set

{Φr ◦ F}r∈`+∞
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only contains functions in CS∞ (R, c00). Working on each coordinate and
using the properties of the maps φr as in [3], this family provides the desired
maximal lineability. �

The following result extends Theorem 2.5 to the framework of sequence
spaces.

Proposition 4.3. The set CS∞ (Rm, c00 (C)) is maximal strongly algebrable
in C (Rm, c00 (C)).

Proof. It is sufficient to deal with the case m = 1. The argument combines
the previous constructive proof and the ideas of Theorem 2.5: let A :=
(0,+∞) \ N, and let ϕs : C→ C stand for an entire function of order s > 0
such that ϕs(0) = 0. For each r = (rn)n ∈ AN, the map

Φr := (ϕrn)n∈N : c00 (C)→ c00 (C)

is well-defined, continuous and surjective. Therefore, for a fixed map

F ∈ CS∞ (R, c00 (C)) ,

the set {Φr ◦ F}r∈AN generates a free algebra, which provides the strong
maximal algebrability. �

From Example 3.4, item (a), we know that `∞ is not σ-Peano. On the
other hand, if we consider the product topology inherited from RN, it is
obvious that it becomes σ-Peano. In fact, `∞ =

⋃
n[−n, n]N. Consequently,

Theorem 3.6 provides the maximal lineability of the set CS∞ (Rm, `∞) in
C (Rm, `∞).

Notice that, as we did earlier when we dealt with c00, one could also
present a constructive proof of this lineability result: for a fixed F ∈ CS∞ (R, `∞)
the set

{Φr|`∞ ◦ F}r∈`+∞
provides the desired maximal lineability. With appropriate adaptations, a
similar argument as the one employed in the proof of the algebrability of
CS (Rm, c00 (C)) will prove that the set CS (Rm, `∞ (C)) is maximal strongly
algebrable in C (Rm, `∞ (C)), when `∞ is endowed with the product topology
inherited from RN.

5. Peano curves on function spaces

Let Λ be an infinite index set. Recall that the space RΛ of real functions
f : Λ→ R is a complete metric space when endowed with the metric given
by

d (f, g) := sup
λ∈Λ

min {1, |f(λ)− g(λ)|} ,

which provides the uniform topology on RΛ, strictly finer that the product
topology (see [23, p. 124] for more details). Note that RΛ is not σ-compact
and, thus, cannot be σ-Peano. Indeed, suppose that RΛ =

⋃
n∈NKn. We

may regard N as a subset of Λ, and consider the standard n-projection
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πn : RΛ → R, which is continuous and, so there is xn ∈ R\πn(Kn). However,
the function f : Λ → R defined by f(n) = xn, for n ∈ N, and f(λ) = 0, if
λ /∈ N, does not belong to

⋃
nKn = RΛ.

Let Λ,Γ be infinite index sets. Clearly, if card Λ ≥ card Γ, then S(RΛ,RΓ) 6=
∅, i.e., the set of surjective maps from from RΛ onto RΓ is non-empty.
In this situation, Γ may be seen as a subset of Λ. Keeping the nota-
tion of the proof of Proposition 4.2, for each r = (rγ)γ∈Γ ∈ (0, 1]Γ, define

Φr : RΛ → RΓ by Φr(f)(γ) := φrγ (f(γ)). Since the set of coordinate maps
{φγ := πγ ◦ Φr}γ∈Γ is equicontinuous, Φr is continuous. Working with the

set
{

Φr : RΛ → RΓ
}
r∈(0,1]Γ

and with entire maps as in Section 2, we obtain

Proposition 5.1. Let card Λ ≥ card Γ. Then

(a) CS
(
RΛ,RΓ

)
is 2cardΓ-lineable.

(b) CS
(
CΛ,CΓ

)
is 2cardΓ-algebrable.

Remark 5.2. There is nothing to be done in the remaining case, which
is the most dramatic scenario, namely, the case card Λ < card Γ. Here we
have card

(
RΛ
)

= 2card Λ ≤ 2card Γ = card
(
RΓ
)
. In ZF+GCH (Zermelo-

Fraenkel + generalized continuum hypothesis) we have that card Λ < card Γ
implies 2card Λ < 2card Γ (although in ZF+MA + ¬CH –where MA stands
for Martin Axiom– what we have is that for all ℵ0 ≤ a, b < c, 2a = 2b).
Thus, in ZF+GCH we get S

(
RΛ,RΓ

)
= ∅, provided card Λ < card Γ, that

is, there is no surjective map from RΛ onto RΓ. Therefore, CS(RΛ,RΓ) = ∅
in this case.

Acknowledgements. The authors would like to thank Prof. Dr. J.L. Gámez-
Merino for his fruitful comments regarding Remark 5.2.
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