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The L(logL)ǫ endpoint estimate for maximal singular
integral operators

Tuomas Hytönen and Carlos Pérez

Abstract

We prove in this paper the following estimate for the maximaloperatorT∗ associated to the
singular integral operatorT:

‖T∗ f ‖L1,∞ (w) .
1
ǫ

∫

Rn
| f (x)|M

L(log L)ǫ
(w)(x) dx, w ≥ 0, 0 < ǫ ≤ 1.

This follows from the sharpLp estimate

‖T∗ f ‖Lp(w) . p′ (
1
δ

)1/p′ ‖ f ‖
Lp(ML(log L)p−1+δ (w))

, 1 < p < ∞,w ≥ 0, 0 < δ ≤ 1.

As as a consequence we deduce that

‖T∗ f ‖L1,∞ (w) . [w]A1 log(e+ [w]A∞)
∫

Rn
| f |w dx,

extending the endpoint results obtained in [LOP] and [HP] to maximal singular integrals. Another
consequence is a quantitative two weight bump estimate.

1 Introduction and main results

Very recently, the so called Muckenhoupt-Wheeden conjecture has been disproved by Reguera-Thiele
in [RT]. This conjecture claimed that there exists a constantc such that for any functionf and any
weightw (i.e., a nonnegative locally integrable function), there holds

‖H f ‖L1,∞(w) ≤ c
∫

R

| f |Mwdx. (1)

whereH is the Hilbert transform. The failure of the conjecture was previously obtained by M.C.
Reguera in [Re] for a special model operatorT instead ofH. This conjecture was motivated by a
similar inequality by C. Fefferman and E. Stein [FS] for the Hardy-Littlewood maximal function:

‖M f ‖L1,∞(w) ≤ c
∫

Rn
| f |Mw dx. (2)
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The importance of this result stems from the fact that it was acentral piece in the approach by
Fefferman-Stein to derive the following vector-valued extension of the classicalLp Hardy-Littlewood
maximal theorem: for every 1< p, q < ∞, there is a finite constantc = cp,q such that

∥∥∥∥∥
(∑

j

(M f j)
q
) 1

q

∥∥∥∥∥
Lp(Rn)

≤ c
∥∥∥∥∥
(∑

j

| f j |
q
) 1

q

∥∥∥∥∥
Lp(Rn)

. (3)

This is a very deep theorem and has been used a lot in modern harmonic analysis explaining the
central role of inequality (2).

Inequality (1) was conjectured by B. Muckenhoupt and R. Wheeden during the70’s. That this
conjecture was believed to be false was already mentioned in[P2] where the best positive result in
this direction so far can be found, and whereM is replaced byML(log L)ǫ , i.e., a maximal type operator
that is “ǫ-logarithmically” bigger thanM:

‖T f‖L1,∞(w) ≤ cε

∫

Rn
| f |ML(log L)ε(w)dx w≥ 0.

whereT is the Calderón-Zygmund operatorT. Until very recently the constant of the estimate did not
play any essential role except, perhaps, for the fact that itblows up. If we check the computations in
[P2] we find thatcε ≈ e

1
ε . It turns out that improving this constant would lead to understanding deep

questions in the area. One of the main purposes of this paper is to improve this result in several ways.
A first main direction is to improve the exponential blow upe

1
ε by a linear blow up1

ε
. The second

improvement consists of replacingT by the maximal singular integral operatorT∗. The method in
[P2] cannot be used directly since the linearity ofT played a crucial role.

We refer to Section2.3 for the definition of the maximal functionMA = MA(L). We remark that
the operatorML(logL)ε is pointwise smaller thanMr = MLr , r > 1, which is anA1 weight and for
which the result was known.

Theorem 1.1. Let T be a Calderón-Zygmund operator with maximal singularintegral operator T∗.
Then for any0 < ǫ ≤ 1,

‖T∗ f ‖L1,∞(w) .
cT

ǫ

∫

Rn
| f (x)|ML(log L)ǫ (w)(x) dx w≥ 0 (4)

If we formally optimize this inequality inǫ we derive to the following conjecture:

‖T∗ f ‖L1,∞(w) ≤ cT

∫

Rn
| f (x)|M

L log logL
(w)(x) dx w≥ 0, f ∈ L∞c (Rn). (5)

To prove Theorem1.1 we need first anLp version of this result, which is fully sharp, at least in
the logarithmic case. The result will hold for allp ∈ (1,∞) but for proving Theorem1.1 we only
need it whenp is close to one.

There are two relevant properties properties that will be used (see Lemma4.2). The first one
establishes that for appropriateA and allγ ∈ (0, 1), we have (MA f )γ ∈ A1 with constant [(MA f )γ]A1

independent ofA and f . The second property is thatMĀ is a bounded operator onLp′(Rn) where
Ā is the complementary Young function ofA. The main example isA(t) = tp(1 + log+ t)p−1+δ,

p ∈ (1,∞), δ ∈ (0,∞) since

‖MĀ‖B(Lp′ (Rn)) . p2 (
1
δ

)1/p′

by (25).
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Theorem 1.2. Let1 < p < ∞ and let A be a Young function, then

‖T∗ f ‖Lp(w) ≤ cT p′ ‖MĀ‖B(Lp′ (Rn)) ‖ f ‖Lp(MA(w1/p)p) w ≥ 0. (6)

In the particular case A(t) = tp(1+ log+ t)p−1+δ we have

‖T∗ f ‖Lp(w) ≤ cT p′ (
1
δ

)1/p′ ‖ f ‖Lp
(
ML(logL)p−1+δ (w)

) w ≥ 0, 0 < δ ≤ 1.

Another worthwhile example is given byML(logL)p−1(log logL)p−1+δ instead ofML(logL)p−1+δ for which:

‖T∗ f ‖Lp(w) ≤ cT p′ (
1
δ

)1/p′ ‖ f ‖
Lp

(
ML(logL)p−1(log logL)p−1+δ (w)

) w ≥ 0, 0 < δ ≤ 1.

There are some interesting consequences from Theorem1.1, the first one is related to the one
weight theory. We first recall that the definition of theA∞ constant considered in [HP] and where
is shown it is the most suitable one. This definition was originally introduced by Fujii in [F1] and
rediscovered later by Wilson in [W1].

Definition 1.3.

[w]A∞ := sup
Q

1
w(Q)

∫

Q
M(wχQ) dx.

Observe that [w]A∞ ≥ 1 by the Lebesgue differentiation theorem.
When specialized to weightsw ∈ A∞ or w ∈ A1, Theorem1.1 yields the following corollary.

It was formerly known for the linear singular integralT [HP], and this was used in the proof, which
proceeded via the adjoint ofT; the novelty in the corollary below consists of dealing withthe maximal
singular integralT∗.

Corollary 1.4.

‖T∗ f ‖L1,∞(w) . log(e+ [w]A∞)
∫

Rn
| f |Mw dx, (7)

and hence

‖T∗ f ‖L1,∞(w) . [w]A1 log(e+ [w]A∞)
∫

Rn
| f |w dx, (8)

The key result that we need is the following optimal reverse Hölder’s inequality obtained in [HP]
(see also [HPR] for a better proof and [DMRO] for new characterizations of theA∞ class of weights).

Theorem 1.5. Let w∈ A∞, then there exists a dimensional constantτn such that
(
−

∫

Q
wrw

)1/rw
≤ 2−

∫

Q
w

where

rw = 1+
1

τn[w]A∞

Proof of Corollary1.4. To apply (4), we use logt ≤ tα
α

for t > 1 andα > 0 to deduce that

ML(logL)ǫ (w) .
1
αǫ

ML1+ǫα(w)

Hence, if w ∈ A∞ we can chooseα such thatαǫ = 1
τn[w]A∞

. Then, applying Theorem1.5

1
ǫ

ML(logL)ǫ (w) .
1
ǫ

(ǫτ[w]A∞)ǫMLrw (w) .
1
ǫ

[w]ǫA∞M(w)

and optimizing withǫ ≈ 1/ log(e+ [w]A∞) we obtain (7). �
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As a consequence of Theorem1.1we have, by using some variations of the ideas from [CP1], the
following:

Corollary 1.6. Let u, σ be a pair of weights and let p∈ (1,∞). We also letδ, δ1, δ2 ∈ (0, 1]. Then

(a) If

K = sup
Q
‖u1/p‖Lp(log L)p−1+δ,Q

(
1
|Q|

∫

Q
σ dx

)1/p′

< ∞, (9)

then

‖T∗( fσ)‖Lp,∞(u) .
1
δ

K (
1
δ

)1/p′‖ f ‖Lp(σ) (10)

(The boundedness in the caseδ = 0 is false as shown in [CP1].)

(b) As consequence, if

K = sup
Q
‖u1/p‖Lp(log L)p−1+δ1,Q

(
1
|Q|

∫

Q
σ dx

)1/p′

+ sup
Q

(
1
|Q|

∫

Q
u dx

)1/p

‖σ1/p′‖Lp′ (log L)p′−1+δ2,Q < ∞,

(11)

then

‖T∗( fσ)‖Lp(u) . K


1
δ1

(
1
δ1

) 1
p′

+
1
δ2

(
1
δ2

) 1
p

 ‖ f ‖Lp(σ). (12)

The first qualitative result as in (10) was obtained in [CP1], Theorem 1.2 and its extension Theo-
rem 4.1.

We remark that this result holds for any operatorT which satisfies estimate (4). We also remark
that this corollary improves the main results from [CRV] (see also [ACM]) by providing very precise
quantitative estimates. We refer to these papers for historical information about this problem.

We don’t know whether the factors1
δi

, i = 1, 2 can be removed or improved from the estimate
(12). Perhaps our method is not so precise to prove the conjecture formulated in Section7. However,
it is clear from our arguments that these factors are due to the appearance of the factor1

ǫ
in (4).

Acknowledgments

We would like to thank the anonymous referee for detailed comments that improved the presentation.

2 Basic definitions and notation

2.1 Singular integrals

In this section we collect some notation and recall some classical results.
By a Calderón-Zygmund operator we mean a continuous linearoperator

T : C∞0 (Rn)→ D′(Rn) that extends to a bounded operator onL2(Rn), and whose distributional kernel
K coincides away from the diagonalx = y in Rn × Rn with a functionK satisfying the size estimate

|K(x, y)| ≤
c

|x− y|n

4



and the regularity condition: for someε > 0,

|K(x, y) − K(z, y)| + |K(y, x) − K(y, z)| ≤ c
|x− z|ε

|x− y|n+ε
,

whenever 2|x− z| < |x− y|, and so that

T f(x) =
∫

Rn
K(x, y) f (y)dy,

wheneverf ∈ C∞0 (Rn) andx < supp(f ).
Also we will denote byT∗ the associated maximal singular integral:

T∗ f (x) = sup
ε>0

∣∣∣∣∣∣

∫

|y−x|>ε
K(x, y) f (y) dy

∣∣∣∣∣∣ f ∈ C∞0 (Rn)

More information can be found in many places as for instance in [G] or [Duo].

2.2 Orlicz spaces and normalized measures

We will also need some basic facts from the theory of Orlicz spaces that we state without proof. We
refer to the book of Rao and Ren [RR] for the proofs and more information on Orlicz spaces. Another
interesting recent book is [W2].

A Young function is a convex, increasing functionA : [0,∞) → [0,∞) with A(0) = 0, such that
A(t) → ∞ ast → ∞. Such a function is automatically continuous. From these properties it follows
thatA : [t0,∞)→ [0,∞) is a strictly increasing bijection, wheret0 = sup{t ∈ [0,∞) : A(t) = 0}. Thus
A−1(t) is well-defined (single-valued) fort > 0, but in general it may happen thatA−1(0) = [0, t0] is
an interval.

The properties ofA easily imply that for 0< ε < 1 andt ≥ 0

A(ε t) ≤ εA(t) . (13)

TheA-norm of a functionf over a setE with finite measure is defined by

‖ f ‖A,E = ‖ f ‖A(L),E = inf {λ > 0 : −
∫

E
A

(
| f (x)|
λ

)
dx≤ 1}

where as usual we define the average off over a cubeE, −
∫

E
f = 1

|E|

∫
E

f dx.
In many situations the convexity does not play any role and basically the monotonicity is the

fundamental property. The convexity is used for proving that ‖ ‖A,E is a norm which is often not
required.

We will use the fact that

‖ f ‖A,E ≤ 1 if and only if −
∫

E
A (| f (x)|) dx≤ 1. (14)

Associated with each Young functionA, one can define a complementary function

Ā(s) = sup
t>0
{st− A(t)} s≥ 0. (15)

ThenĀ is finite-valued if and only if limt→∞ A(t)/t = supt>0 A(t)/t = ∞, which we henceforth assume;
otherwise,Ā(s) = ∞ for all s > supt>0 A(t)/t. Also, Ā is strictly increasing on [0,∞) if and only if
limt→0 A(t)/t = inf t>0 A(t)/t = 0; otherwiseĀ(s) = 0 for all s≤ inf t>0 A(t)/t.

5



SuchĀ is also a Young function and has the property that

st≤ A(t) + Ā(s), t, s≥ 0. (16)

and also
t ≤ A−1(t)Ā−1(t) ≤ 2 t, t > 0. (17)

The main property is the following generalized Hölder’s inequality

1
|E|

∫

E
| f g|dx ≤ 2‖ f ‖A,E‖g‖Ā,E. (18)

As we already mentioned, the following Young functions playa main role in the theory:

A(t) = tp(1+ log+ t)p−1+δ t, δ > 0, p > 1.

2.3 General maximal functions andLp boundedness: precise versions of old results

Given a Young functionA or more generally any positive functionA(t) we define the following max-
imal operator ([P1],[P2])

MA(L) f (x) = MA f (x) = sup
Q∋x
‖ f ‖A,Q.

This operator satisfies the following distributional type estimate: there are finite dimensional constants
cn, dn such that

|{x ∈ Rn : MA f (x) > t}| ≤ cn

∫

Rn
A

(
dn

f
t

)
dx f ≥ 0, t > 0 (19)

This follows from standard methods and we refer to [CMP, Remark A.3] for details.
A first consequence of this estimate is the followingLp estimate of the operator, which is nothing

more than a more precise version of one the main results from [P1]. A second application will be
used in the proof of Lemma4.2.

Lemma 2.1. Let A be a Young function, then

‖MA‖B(Lp(Rn)) ≤ cnαp(A) (20)

whereαp(A) is the following tail condition that plays a central role in the sequel

αp(A) =

( ∫ ∞

1

A(t)
tp

dt
t

)1/p

< ∞. (21)

Examples of functions satisfying theBp condition areA(t) = tq, 1 ≤ q < p. More interesting
examples are given by

A(t) =
tp

(1+ log+ t)1+δ
A(t) ≈ tp log(t)−1 log log(t)−(1+δ), p > 1, δ > 0.

Often we need to consider instead of the functionA in (21) the complementarȳA.
We also record a basic estimate between a Young function and its derivative:

A(t) ≤ tA′(t) (22)

which holds for anyt ∈ (0,∞) such thatA′(t) does exist.
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There is the following useful alternative estimate of (20) that will be used in the sequel. Although
variants of this lemma are well known in the literature (cf. [CMP], Proposition 5.10), we would
like to stress the fact that we avoid the doubling condition on the Young functionsB and B̄, which
is important in view of the quantitative applications to follow: even if our typical Young functions
are actually doubling, we want to avoid the appearance of their (large) doubling constants in our
estimates.

Lemma 2.2. Let B a Young function. Then

‖MB‖B(Lp(Rn)) ≤ cn βp(B) (23)

where

βp(B) =

(∫ ∞

B(1)

( t

B̄(t)

)p
dB̄(t)

)1/p

Proof. We first prove that fora > 0
∫ ∞

B−1(a)

dB(t)
tp ≤

∫ ∞

B̄−1(a)

( t

B̄(t)

)p
dB̄(t). (24)

We discretize the integrals with a sequenceak := ηka, whereη > 1 and eventually we pass to the
limit η→ 1. Then

∫ ∞

B−1(a)

dB(t)
tp =

∞∑

k=1

∫ B−1(ak+1)

B−1(ak)

dB(t)
tp ≤

∞∑

k=1

1
B−1(ak)p

∫ B−1(ak+1)

B−1(ak)
dB(t) =

∞∑

k=1

1
B−1(ak)p

(ak+1 − ak).

Similarly,
∫ ∞

B̄−1(a)

( t

B̄(t)

)p
dB̄(t) =

∞∑

k=0

∫ B̄−1(ak+1)

B̄−1(ak)

( t

B̄(t)

)p
dB̄(t)

≥

∞∑

k=0

( B̄−1(ak+1)

B̄(B̄−1(ak+1))

)p
∫ B̄−1(ak+1)

B̄−1(ak)
dB̄(t) =

∞∑

k=0

( B̄−1(ak+1)
ak+1

)p
(ak+1 − ak),

where we used the fact thatt 7→ B̄(t)/t is increasing, so its reciprocal is decreasing. Moreover,

B−1(ak+1)
ak+1

≥
B̄−1(ak)

ak+1

B−1(ak)

B−1(ak)

(17)
≥

ak

ak+1

1

B−1(ak)
=

1

ηB−1(ak)

and hence ∫ ∞

B−1(a)

dB(t)
tp ≤ ηp

∫ ∞

B̄−1(a)

( t

B̄(t)

)p
dB̄(t).

Since this is valid for anyη > 1, we obtain (24).
Now, let t1 = max(1, t0), wheret0 = max{t : B(t) = 0}. UsingB(t)dt/t ≤ dB(t) and applying (24)

with a = B(t1 + ǫ) > 0

αp(B) = lim
ǫ→0

( ∫ ∞

t1+ǫ

B(t)
tp

dt
t

)1/p
≤ lim
ǫ→0

( ∫ ∞

B−1(B(t1+ǫ))

dB(t)
tp

)1/p

(24)
≤ lim
ǫ→0

( ∫ ∞

B̄−1(B(t1+ǫ))

( t

B̄(t)

)p
dB̄(t)

)1/p
≤

( ∫ ∞

B(1)

( t

B̄(t)

)p
dB̄(t)

)1/p
,

where in the last step we used (17) with t = B(t1 + ǫ) to conclude that

B̄−1(B(t1 + ǫ)) ≥
B(t1 + ǫ)

t1 + ǫ
≥

B(t1)
t1
≥ B(1),

sinceB(t)/t is increasing andt1 ≥ 1. �
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In this paper we will considerB so thatB̄(t) = A(t) = tp(1 + log+ t)p−1+δ, δ > 0. Then, for
0 < δ ≤ 1

A′(t) ≤ 2p
A(t)

t
t > 1

and
Ā(1) = sup

t∈(0,1)
(t − tp) = (t − tp)

∣∣∣∣
t=p−1/(p−1)

= (p− 1)p−p′ .

Thus, by the lemma

‖MĀ‖B(Lp′ (Rn)) ≤ cn


∫ ∞

(p−1)p−p′

(
t

A(t)

)p′

A′(t) dt


1/p′

≤ cnp2
(
1
δ

)1/p′

(25)

Similarly for the smaller functional:

B̄(t) = A(t) = tp(1+ log+ t)p−1(1+ log+(1+ log+ t))p−1+δ δ > 0.

Then, using thatA′(t) ≤ 3 p A(t)
t t > 1, when 0< δ ≤ 1 and hence by the lemma

‖MĀ‖B(Lp′ (Rn)) ≤ cn p2
(
1
δ

)1/p′

2.4 The iteration lemma

We will need the following variation of the Rubio de Francia algorithm.

Lemma 2.3. Let 1 < s < ∞ and let v be a weight. Then there exists a nonnegative sublinear
operator R satisfying the following properties:
(a) h≤ R(h)
(b) ‖R(h)‖Ls(w) ≤ 2‖h‖Ls(v)

(c) R(h)v1/s ∈ A1 with
[R(h)v1/s]A1 ≤ cs′

Proof. We consider the operator

S( f ) =
M( f v1/s)

v1/s

Since‖M‖Ls ∼ s′, we have
‖S( f )‖Ls(v) ≤ cs′‖ f ‖Ls(v).

Now, define the Rubio de Francia operatorR by

R(h) =
∞∑

k=0

1

2k

Sk(h)

(‖S‖Ls(v))k
.

It is very simple to check thatRsatisfies the required properties. �
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2.5 Two weight maximal function

Our main new result is intimately related to a sharp two weight estimate forM.

Theorem 2.4. Given a pair of weights u, σ and p,1 < p < ∞, suppose that

K = sup
Q

(
1
|Q|

∫

Q
u(y) dy

)1/p ∥∥∥σ1/p′
∥∥∥

X,Q
< ∞. (26)

where X is a Banach function space such that its corresponding associate space X′ satisfies MX′ :
Lp(Rn)→ Lp(Rn). Then

‖M( fσ)‖Lp(u) . K ‖MX′‖B(Lp(Rn)) ‖ f ‖Lp(σ) (27)

In particular if X = LB with B(t) = tp′ (1+ log+ t)p′−1+δ, δ > 0, then by (25)

‖MX′‖B(Lp(Rn)) = ‖MB̄‖B(Lp(Rn)) ≈ (p′)2(
1
δ

)1/p.

where the last≈ is valid for δ ≤ 1.

This result together with some improvements can be found in [PR].

3 Dyadic theory

In this section we define an important class of dyadic model operators and recall a general result
by which norm inequalities for maximal singular integral operators can be reduced to these dyadic
operators. The result is due to Lerner [Le2], and comes from his approach to prove theA2 theorem
proved by the first author [H].

We say that a dyadic grid, denotedD, is a collection of cubes inRn with the following properties:
1) eachQ ∈ D satisfies|Q| = 2nk for somek ∈ Z;
2) if Q,P ∈ D thenQ∩ P = ∅,P, or Q;
3) for eachk ∈ Z, the familyDk = {Q ∈ D : |Q| = 2nk} forms a partition ofRn.

We say that a family of dyadic cubesS ⊂ D is sparseif for eachQ ∈ S,
∣∣∣∣
⋃

Q′∈S
Q′(Q

Q′
∣∣∣∣ ≤

1
2
|Q|.

Given a sparse family,S, if we define

E(Q) := Q\
⋃

Q′∈S
Q′(Q

Q′,

then
1) the family{E(Q)}Q∈S is pairwise disjoint
2) E(Q) ⊂ Q, and
3) |Q| ≤ 2|E(Q)|.

If S ⊂ D is a sparse family we define the sparse Calderón-Zygmund operator associated toS as

TS f :=
∑

Q∈S

−

∫

Q
f dx · χQ.

As already mentioned the key idea is to “transplant” the continuous case to the discrete version
by means of the following theorem.
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Theorem 3.1. Suppose that X is a quasi-Banach function space onRn and T is a Calderón-Zygmund
operator. Then there exists a constant cT

‖T∗‖B(X) ≤ cT sup
S⊂D

‖TS‖B(X).

For Banach function spaces (without ‘quasi-’), this theorem is due to Lerner [Le2]. The stated
generalization was obtained independently by Lerner and Nazarov [LN] on the one hand, and by
Conde-Alonso and Rey [CAR] on the other hand. As a matter of fact, the last two papers only
explicitly deal with the Calderón–Zygmund operatorT rather than the maximal truncationT∗, but the
version above follows immediately from the same considerations, say, by combining [HLP, Theorem
2.1] and [CAR, Theorem A].

We will not prove this theorem, we will simply mention that a key tool is the decomposition
formula for functions found previously by Lerner [Le1] using the median. The main idea of this
decomposition goes back to the work of Fujii [F2] where the standard average is used instead.

4 Proof of Theorem1.2

4.1 Two lemmas

Following the notion of dyadic singular integral operator mentioned in the section above we have the
following key Lemma.

Lemma 4.1. Let w∈ A∞. Then for any sparse familyS ⊂ D

‖TS f ‖L1(w) ≤ 8[w]A∞‖M f ‖L1(w) (28)

Proof. The left hand side equals forf ≥ 0

∑

Q∈S

−

∫

Q
f dx w(Q) ≤

∑

Q∈S

inf
z∈Q

M f (z) w(Q) ≤
∑

Q∈S

(
−

∫

Q
(M f )1/2dw

)2
w(Q).

By the Carleson embedding theorem, applied tog = (M f )1/2, we have

∑

Q∈S

(
−

∫

Q
g dw

)2
w(Q) ≤ 4K‖g‖2L2(w) = 4K‖M f ‖L1(w)

provided that the Carleson condition
∑

Q∈S
Q⊆R

w(Q) ≤ Kw(R) (29)

is satisfied. To prove (29), we observe that

∑

Q∈S
Q⊆R

w(Q) =
∑

Q∈S
Q⊆R

w(Q)
|Q|
|Q| ≤

∑

Q∈S
Q⊆R

inf
z∈Q

M(1Rw)(z) · 2|E(Q)| ≤ 2
∫

R
M(1Rw)(z)dz≤ 2[w]A∞w(R).

This proves (29) with K = 2[w]A∞ , and the lemma follows. �
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Actually, in the applications we have in mind we just need this for w ∈ Aq ⊂ A∞ for some fixed
finite q.

The second lemma is an extension of the well known Coifman-Rochberg Lemma:

If γ ∈ (0, 1) then M(µ)γ ∈ A1 with [M(µ)γ]
A1
≤

cn

1− γ
Lemma 4.2. Let A be a Young function and u be a nonnegative function such that MAu(x) < ∞ a.e.
For γ ∈ (0, 1), there is a dimensional constant cn such that

[(MAu)γ]A1 ≤ cn cγ. (30)

A statement of this type is contained in [CMP], Proposition 5.32, but there it is suggested that the
bound may also depend on the Young functionA, while our version shows that it does not. This is
again important for the quantitative consequences.

Proof. We claim now that for each cubeQ and eachu

−

∫

Q
MA(uχQ)(x)γ dx≤ cn,γ ‖u‖

γ

A,Q
. (31)

By homogeneity we may assume‖u‖A,Q = 1, and so, in particular, that−
∫

Q
A(u(x)) dx ≤ 1.

Now, the proof of (31) is based on the distributional estimate (19). We split the integral at a level
λ ≥ bn, yet to be chosen:

−

∫

Q
MA(uχQ)(x)γ dx=

1
|Q|

∫ ∞

0
γ tγ |{x ∈ Q : MA(uχQ)(x) > t}|

dt
t

≤
1
|Q|

∫ λ

0
γtγ |Q|

dt
t
+

1
|Q|

∫ ∞

λ

γtγan

∫

Q
A
(
bn
|u(x)|

t

)
dx

dt
t

≤ λγ +
1
|Q|

∫ ∞

λ

γtγan

∫

Q

bn

t
A(|u(x)|) dx

dt
t

≤ λγ + anbnγ

∫ ∞

λ

tγ−2dt = λγ + anbn
γ

1− γ
λγ−1.

With λ = anbn, we arrive at

−

∫

Q
MA(uχQ)(x)γ dx≤

(anbn)γ

1− γ
,

which is (31), in view of our normalization that‖u‖A,Q = 1.
We will use the following fact that can be also found in [CMP]: for everyQ

MA(uχRn\3Q)(x) ≈ sup
P⊃Q
‖uχRn\3Q‖A,P x ∈ Q (32)

where the constant in the direction≤ is dimensional (actually 3n). (32) shows thatMA( f χRn\3Q) is
essentially constant onQ.

Finally sinceA is a Young, the triangle inequality combined with (31) and (32) gives for every
y ∈ Q,

−

∫

Q
MAu(x)γ dx

≤ 3n−

∫

3Q
MA(uχ3Q)(x)γ dx+ −

∫

Q
MA(uχRn\3Q)(x)γ dx.

≤ cn,γ ‖u‖
γ

A,3Q
+ 3n (

sup
P⊃Q
‖uχRn\3Q‖A,P

)γ

≤ cn,γ MAu(y)γ.

11



This completes the proof of the lemma. �

4.2 Proof of Theorem1.2

We have to prove

‖T∗ f ‖Lp(w) ≤ cT p′ ‖MĀ‖B(Lp′ (Rn)) ‖ f ‖Lp(MA(w1/p)p) w ≥ 0.

and if we use the notationAp(t) = A(t1/p) this becomes

‖T∗ f ‖Lp(w) ≤ cT p′ ‖MĀ‖B(Lp′ (Rn)) ‖ f ‖Lp(MAp (w)).

By Theorem3.1everything is reduced to proving that

‖TS f ‖Lp(w) . p′ ‖MĀ‖B(Lp′ (Rn)) ‖ f ‖Lp(MAp(w)) S ⊂ D. (33)

Now, by duality we will prove the equivalent estimate

‖TS( f w)‖Lp′ (MAp(w)1−p′ ) . p′ ‖MĀ‖B(Lp′ (Rn)) ‖ f ‖Lp′ (w).

because the adjoint ofTS (with respect to the Lebesgue measure) is itself.
The main claim is the following:

Lemma 4.3.

‖TS(g)‖Lp′ (MAp(w)1−p′ ) . p′ ‖M(g)‖Lp′ (MAp(w)1−p′ ) S ⊂ D g ≥ 0. (34)

Proof. Now

‖TS(g)‖Lp′ (MAp(w)1−p′ ) =

∥∥∥∥∥∥
TS(g)
MApw

∥∥∥∥∥∥
Lp′ (MApw)

and by duality we have that for some nonnegativeh with ‖h‖Lp(MApw) = 1

∥∥∥∥∥∥
TS(g)
MApw

∥∥∥∥∥∥
Lp′ (MApw)

=

∫

Rn
TS(g) h dx

Now, by Lemma2.3with s= p and v = MApw there exists an operatorR such that
(A) h ≤ R(h)
(B) ‖R(h)‖Lp(MApw) ≤ 2‖h‖Lp(MApw)

(C) [R(h)(MApw)1/p]A1 ≤ cp′.
Hence,

‖TS(g)‖Lp′ (MAp(w)1−p′ ) ≤

∫

Rn
TS(g) Rh dx.

Next we plan to replaceTS by M by using Lemma4.1. To do this we to estimate theAq constant ofRh,
for a fixedq > 1 (in fact,q = 3) using property (C) combining the following two facts. Thefirst one
is well known, is the easy part of the factorization theorem,if w1,w2 ∈ A1, then w = w1w1−p

2 ∈ Ap,
and

[w]Ap ≤ [w1]A1[w2]p−1
A1

The second fact is Lemma4.2

12



Now if we chooseγ = 1
2 in Lemma4.2,

[R(h)]A∞ . [R(h)]
A3
= [R(h)(MApw)

1
p
(
(MApw)

1
2p
)1−3]

A3

≤ [R(h)(MApw)
1
p ]A1[(MApw)

1
2p ]3−1

A1

≤ cn p′ [MA(w1/p)
1
2 ]3−1

A1

≤ cnp′

by the lemma and sinceAp(t) = A(t1/p).
Therefore, by Lemma4.1and by properties (A) and (B) together with Hölder,

∫

Rn
TS(g)h dx ≤

∫

Rn
TS(g)R(h) dx . [R(h)]A∞

∫

Rn
M(g)R(h) dx

. p′
∥∥∥∥∥∥

M(g)
MApw

∥∥∥∥∥∥
Lp′ (MApw)

‖Rh‖Lp(MApw) = cN p′
∥∥∥∥∥∥

M(g)
MApw

∥∥∥∥∥∥
Lp′ (MApw)

.

This proves claim (34). �

With (34), the proof of Theorem1.2is reduced to showing that

‖M( f w)‖Lp′ (MAp(w)1−p′ ) ≤ c‖MĀ‖B(Lp′ (Rn)) ‖ f ‖Lp′ (w)

for which we can apply the two weight theorem for the maximal function (Theorem2.4) to the couple
of weights (MAp(w)1−p′ ,w) with exponentp′. We need then to compute (26): (We reproduce this
short calculation from [CMP], Theorem 6.4, for completeness.)

(
1
|Q|

∫

Q
MAp(w)1−p′ dy

)1/p′ ∥∥∥w1/p
∥∥∥

A,Q
≤ ‖w‖−1/p

Ap,Q

∥∥∥w1/p
∥∥∥

A,Q
= ‖w1/p‖−1

A,Q

∥∥∥w1/p
∥∥∥

A,Q
= 1,

sinceAp(t) = A(t1/p). Hence

‖M( f w)‖Lp′ (MA(w)1−p′ ) ≤ c‖MĀ‖B(Lp′ (Rn)) ‖ f ‖Lp′ (w)

concluding the proof of the theorem.

5 Proof of Theorem1.1

To prove the Theorem we follow the basic scheme as in [P2] (see also [LOP], [HP]).
Thanks to Theorem3.1, it is enough to prove the following dyadic version:

Proposition 5.1. LetD be a dyadic grid and letS ⊂ D be a sparse family. Then, there is a universal
constant c independent ofD andS such that for any0 < ǫ ≤ 1

‖TS f ‖L1,∞(w) ≤
c
ǫ

∫

Rn
| f (x)|ML(log L)ǫ (w)(x) dx w≥ 0 (35)

Note that in order to deduce Theorem1.1 from the Proposition above, we need the full strength
of Theorem3.1 with quasi-Banach function space, because the spaceL1,∞ is not normable. It is
also possible to prove Theorem1.1 directly (without going through the dyadic model); this wasour
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original approach, since the quasi-Banach version of Theorem3.1was not yet available at that point.
However, we now present a proof via the dyadic model, which simplifies the argument.

Recall that the sparse Calderón-Zygmund operatorTS is defined by,

TS f =
∑

Q∈S

−

∫

Q
f dx · χQ.

By homogeneity onf it would be enough to prove

w{x ∈ Rn : TS f (x) > 2} ≤
c
ǫ

∫

Rn
| f (x)|ML(log L)ǫ (w)(x) dx.

We consider the the CZ decomposition off with respect to the gridD at levelλ = 1. There is
family of pairwise disjoint cubes{Q j} fromD such that

1 <
1
|Q j |

∫

Q j

| f | ≤ 2n

Let Ω =
⋃

j Q j and Ω̃ =
⋃

j 3Q j . The “good part” is defined by

g =
∑

j

fQ jχQ j (x) + f (x)χΩc(x),

and it satisfies‖g‖L∞ ≤ 2n by construction. The “bad part”b is b =
∑
j

b j where b j(x) = ( f (x) −

fQ j )χQ j
(x). Then, f = g+ b and we split the level set as

w{x ∈ Rd : TS f (x) > 2} ≤ w(Ω̃) + w{x ∈ (Ω̃)c : TSb(x) > 1}

+ w{x ∈ (Ω̃)c : TSg(x) > 1} = I + II + III .

As in [P2], the most singular term isIII . We first deal with the easier termsI and II , which
actually satisfy the better bound

I + II ≤ cT ‖ f ‖L1(Mw).

The first is simply the classical Fefferman-Stein inequality (2).
To estimateII = w{x ∈ (Ω̃)c : |TSb(x)| > 1} we argue as follows:

w{x ∈ (Ω̃)c : |TSb(x)| > 1} ≤
∫

Rn\Ω̃

|TSb(x)|w(x)dx .
∑

j

∫

Rn\Ω̃

|TS(b j )(x)|w(x)dx

.

∑

j

∫

Rn\3Q j

|TS(b j)(x)|w(x)dx

We fix one of thesej and estimate nowTS(b j )(x) for x < 3Q j :

TS(b j )(x) =
∑

Q∈S

−

∫

Q
b j dy · χQ(x) =

∑

Q∈S,Q⊂Q j

+
∑

Q∈S,Q⊃Q j

=
∑

Q∈S,Q⊃Q j

since x < Q j . Now, this expression is equal to

∑

Q∈S,Q⊃Q j

1
|Q|

∫

Q j

( f (y) − fQ j ) dy · χQ(x)

and this expresion is zero by the key cancellation:
∫

Q j
( f (y) − fQ j ) dy= 0. HenceII = 0, and we are

only left with the singular termIII .
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5.1 Estimate for part III

We now consider the last termIII , the singular part. We apply Chebyschev’s inequality and then (33)
with exponentp and functionalA, that will be chosen soon:

III = w{x ∈ (Ω̃)c : TSg(x) > 1}

≤ ‖TSg‖pLp(wχ(Ω̃)c)

. (p′)p ‖MĀ‖
p
B(Lp′ (Rn))

∫

Rn
|g|pMAp(wχ(Ω̃)c)dx

. (p′)p ‖MĀ‖
p
B(Lp′ (Rn))

∫

Rn
|g|MAp(wχ(Ω̃)c)dx,

using the boundedness ofg by 2n
. 1, and denotingAp(t) = A(t1/p).

Now, we will make use of (32) again: for an arbitrary Young functionB, a nonnegative function
w with MBw(x) < ∞ a.e., and a cubeQ, we have

MB(χ
Rn\3Qw)(y) ≈ MB(χ

Rn\3Qw)(z) (36)

for eachy, z ∈ Q with dimensional constants. Hence, combining (36) with the definition ofg we have
∫

Ω

|g|MAp(wχ(Ω̃)c)dx.
∑

j

∫

Q j

| f (x)| dxinf
Q j

MAp(wχ(Ω̃)c)

.

∫

Ω

| f (x)|MApw(x) dx,

and of course ∫

Ωc
|g|MAp(wχ(Ω̃)c) dx ≤

∫

Ωc
| f |MApwdx.

Combining these, we have

III . (p′)p ‖MĀ‖
p
B(Lp′ (Rn))

∫

Rd
| f |MAp(w)dx.

We optimize this estimate by choosing an appropriateA. To do this we apply now Lemma2.2
and more particularly to the example considered in (25), namelyB is so thatB̄(t) = A(t) = tp(1 +
log+ t)p−1+δ, δ > 0. Then

‖MĀ‖B(Lp′ (Rn)) ≤ cn


∫ ∞

1

(
t

A(t)

)p′

A′(t) dt


1/p′

. p

(
1
δ

)1/p′

0 < δ ≤ 1

ThenAp(t) = A(t1/p) ≤ t(1+ log+ t)p−1+δ and we have

III . (p′)p
(
1
δ

)p−1 ∫

Rd
| f |ML(logL)p−1+δ(w)(x) dx.

Now if we choosep such that

p− 1 =
ǫ

2
= δ < 1

then (p′)p(1
δ
)p−1
.

1
ǫ

if ǫ < 1.
This concludes the proof of (35), and hence of Theorem1.1.
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6 Proof of Corollary 1.6

We follow very closely the argument given in [CP1], the essential difference is that we compute in a
more precise way the constants involved. We consider the set

Ω = {x ∈ Rn : T∗( fσ)(x) > 1}

Then by homogeneity it is enough to prove

u(Ω)1/p
.

1
δ

K (
1
δ

)1/p′‖ f ‖Lp(σ) (37)

where we recall that

K = sup
Q
‖u1/p‖

Lp(log L)p−1+δ,Q

(
1
|Q|

∫

Q
σ dx

)1/p′

< ∞ (38)

Now, by duality, there exists a non-negative functionh ∈ Lp′(Rn), ‖h‖Lp′ (Rn) = 1, such that

u(Ω)1/p = ‖u1/pχΩ‖Lp(Rn) =

∫

Ω

u1/ph dx= u1/ph(Ω) .
1
ε

∫

Rn
| f |ML(log L)ε(u

1/ph)σdx

≤
1
ε

(∫

Rn
| f |pσdx

)1/p (∫

Rn
ML(logL)ε(u

1/ph)p′ σdx

)1/p′

,

where we have used inequality (4) from Theorem1.1and then Hölder’s inequality. Therefore every-
thing is reduced to understanding a two weight estimate forML(logL)ε .

We need the following Lemma that can be found in [P1] or in [CMP] Appendix A, Proposition
A.1

Lemma 6.1. Given a Young function A, suppose f is a non-negative function such that‖ f ‖A,Q tends
to zero as l(Q) tends to infinity. Given a> 2n+1, for each k∈ Z there exists a disjoint collection of
maximal dyadic cubes{Qk

j } such that for each j,

ak < ‖ f ‖A,Qk
j
≤ 2nak, (39)

and
{x ∈ Rn : MA f (x) > 4nak} ⊂

⋃

j

3Qk
j .

Further, let Dk =
⋃

j Qk
j and Ek

j = Qk
j \ (Qk

j ∩ Dk+1). Then the Ekj ’s are pairwise disjoint for all j and

k and there exists a constantα > 1, depending only on a, such that|Qk
j | ≤ α|E

k
j |.

Fix a functionh bounded with compact support. Fixa > 2n+1; for k ∈ Z let

Ωk = {x ∈ R
n : 4nak < MA f (x) ≤ 4nak+1}.

Then by Lemma6.1,
Ωk ⊂

⋃

j

3Qk
j , where ‖ f ‖A,Qk

j
> ak.

We will use a generalization of Hölder’s inequality due to O’Neil [ O1]. (Also see Rao and Ren
[RR, p. 64].) We include a proof for the reader’s convenience.
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Lemma 6.2. Let A, B and C be Young functions such that

B−1(t)C−1(t) ≤ κA−1(t), t > 0. (40)

Then for all functions f and g and all cubes Q,

‖ f g‖A,Q ≤ 2κ‖ f ‖B,Q‖g‖C,Q. (41)

Proof. The assumption (40) says that ifA(x) = B(y) = C(z), thenyz ≤ κx. Let us derive a more
applicable consequence:

Let y, z ∈ [0,∞), and assume without loss of generality (by symmetry) thatB(y) ≤ C(z). Since
Young functions are onto, we can find ay′ ≥ y andx ∈ [0,∞) such thatB(y′) = C(z) = A(x). Then
(40) tells us thatyz≤ y′z≤ κx. SinceA is increasing, it follows that

A
(yz
κ

)
≤ A(x) = C(z) = max(B(y),C(z)) ≤ B(y) +C(z). (42)

Let thens> ‖ f ‖B andt > ‖g‖C. Then, using (42),

−

∫

Q
A
( | f g|
κst

)
≤ −

∫

Q
B
( | f |

s

)
+ −

∫

Q
C
( |g|

t

)
≤ 1+ 1,

and hence

−

∫

Q
A
( | f g|
2κst

)
≤

1
2
−

∫

Q
A
( | f g|
κst

)
≤ 1.

This proves that‖ f g‖A ≤ 2κst, and taking the infimum over admissiblesandt proves the claim. �

If A(t) = t(1 + log+ t)ε, the goal is to “break”MA in an optimal way, with functionsB andC so
that one of them, for instanceB, has to beB(t) = tp(1+ log+ t)p−1+δ coming from (38).

We can therefore estimateMA using Lemma6.1as follows:
∫

Rn
(MA(u1/p h))p′σ dx=

∑

k

∫

Ωk

(MA(u1/p h))p′σ dx

≤c
∑

k

akp′σ(Ωk)

≤c
∑

j,k

akp′σ(3Qk
j )

≤c
∑

j,k

σ(3Qk
j )‖u

1/p h‖p
′

A,Qk
j

.

≤c
∑

j,k

σ(3Qk
j )‖u

1/p‖
p′

B,Qk
j

‖h‖p
′

C,Qk
j

,

by (41). Now since‖u1/p‖B,Qk
j
≤ 3n‖u1/p‖B,3Qk

j
, we can apply condition (38), and since theEk

j ’s are

disjoint,

≤c
∑

j,k


1

|3Qk
j |

∫

3Qk
j

σ dx

 ‖u
1/p‖

p′

B,3Qk
j

‖h‖p
′

C,Qk
j

|Ek
j |

≤Kp′
∑

j,k

∫

Ek
j

MC(h)p′ dx

≤Kp′
∫

Rn
MC(h)p′ dx.

≤Kp′ ‖MC‖
p′

B(Lp′ (Rn))

∫

Rn
hp′ dx.
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If we chooseC such thatMC is bounded onLp′(Rn), namely it must satisfy the tail condition (21). We
are left with choosing the appropriateC . Now, 1< p < ∞ andδ > 0 are fixed from condition (38)
but ε > 0 is free and will be chosen appropriately close to 0. To be more precise we need to choose
0 < ε < δ/p and letη = δ − pε. Then

A−1(t) ≈
t

(1+ log+ t)ε

=
t1/p

(1+ log+ t)ε+(p−1+η)/p
× t1/p

′

(1+ log+ t)(p−1+η)/p

=B−1(t)C−1(t),

where
B(t) ≈ tp(1+ log+ t)(1+ε)p−1+η = tp(1+ log+ t)p−1+δ

and
C(t) ≈ tp′(1+ log+ t)−1−(p′−1)η.

These manipulations follow essentially O’Neil [O2] but we need to be careful with the constants.
It follows at once from Lemma2.1 that

‖MC‖B(Lp′ (Rn)) .
(1
η

)1/p′
= (

1
δ − pε

)1/p′ ,

where we suppress the multiplicative dependence onp. Finally if we chooseε = δ
2p we get the desired

result:

u(Ω)1/p
.

1
δ

K (
1
δ

)1/p′‖ f ‖Lp(σ) (43)

This completes the proof of part (a) of Corollary6.
To prove part (b) we combine Lerner’s theorem3.1,

‖T∗ f ‖Lp(u) ≤ cT sup
S⊂D

‖TS f ‖Lp(u),

with the characterization of the two-weight inequalities for TS from [LSU] by testing conditions: a
combination of their characterizations for weak and strongnorm inequalities shows in particular that

‖TS(.σ)‖Lp(σ)→Lp(u) h ‖T
S(.σ)‖Lp(σ)→Lp,∞(u) + ‖T

S(.u)‖Lp′ (u)→Lp′,∞(σ)

Now, as it is mentioned after the statement of Corollary1.6, sinceTS satisfies estimate (4) (see
(35)) we can apply the same argument as the just given to both summands and since that estimate has
to be independent of the grid and we must take the two weight constantK over all cubes, not just for
those from the specific grid. This concludes the proof of the corollary.

7 Conjectures

A conjecture related to Corollary1.6 is as follows:

Conjecture 7.1. Let T∗, p, u, σ as above. Let X is a Banach function space so that its corresponding
associate space X′ satisfies MX′ : Lp′(Rn)→ Lp′(Rn). If

K = sup
Q
‖u1/p‖X,Q

(
1
|Q|

∫

Q
σ dx

)1/p′

< ∞, (44)
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then
‖T∗( fσ)‖Lp,∞(u) . K ‖MX′ ‖B(Lp′ (Rn))‖ f ‖Lp(σ). (45)

As a consequence, if Y is another Banach function space with MY′ : Lp(Rn)→ Lp(Rn) and if

K = sup
Q
‖u1/p‖X,Q

(
1
|Q|

∫

Q
σ dx

)1/p′

+

(
1
|Q|

∫

Q
u dx

)1/p

‖σ1/p′‖Y,Q < ∞, (46)

then
‖T∗( fσ)‖Lp(u) . K

(
‖MX′ ‖B(Lp′ (Rn)) + ‖MY′ ‖B(Lp(Rn))

)
‖ f ‖Lp(σ) (47)

This is a generalization of the conjecture stated in [CRV] which arises from the work [CP1, CP2].
We also refer to the recent papers [La, TV] for further results in this direction.

If we could prove this, we would get as corollary:

Corollary 7.2.
‖T∗‖B(Lp(w)) ≤ c[w]1/p

Ap

(
[w]1/p′

A∞
+ [σ]1/p

A∞

)
(48)

This last result itself is known [HL] (see also [HLP] for a more general case), but not as a corollary
of a general two-weight norm inequality.
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