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Abstract. This paper presents a novel procedure to apply in a sequen-
tial way two data preparation techniques from a different nature such as
data cleansing and feature selection. For the former we have experienced
with a partial removal of outliers via inter-quartile range whereas for
the latter we have chosen relevant attributes with two widespread fea-
ture subset selectors like CFS (Correlation-based Feature Selection) and
CNS (Consistency-based Feature Selection), which are founded on corre-
lation and consistency measures, respectively. Empirical results on seven
difficult binary and multi-class data sets, that is, with a test error rate of
at least a 10%, according to accuracy, with C4.5 or 1-nearest neighbour
classifiers without any kind of prior data pre-processing are outlined.
Non-parametric statistical tests assert that the meeting of the aforemen-
tioned two data preparation strategies using a correlation measure for
feature selection with C4.5 algorithm is significant better, measured with
roc measure, than the single application of the data cleansing approach.
Last but not least, a weak and not very powerful learner like PART
achieved promising results with the new proposal based on a consistency
measure and is able to compete with the best configuration of C4.5. To
sum up, bearing in mind the new approach, for roc measure PART clas-
sifier with a consistency metric behaves slightly better than C4.5 and a
correlation measure.
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1 Introduction

Knowledge Discovery in Databases (KDD)[9] is a multidisciplinary paradigm of 
computer science comprising challenging tasks to transform a problem into useful 
models for prediction such as dealing with raw data, analysing the problem, data 
preparation [25] and data mining [17].

Several machine learning approaches have tackled the classification problem. 
Roughly speaking, algorithms may be divided into strong and weak algorithms 
according to inner complexity of the classifier. There is a good number of families 
to get classification models like those based on decision trees, rules, nearest 
neighbours, support vectors and neural networks.



Data pre-processing is crucial due to some issues: a) real-world problems may
be incomplete or noisy (with errors or outliers); b) the discovery of useful pat-
terns depends on the starting data quality. Data cleansing [7] and feature se-
lection [18] are two samples of data preparation approaches. The former aims
to correct errors, to detect and analyse outliers, thus to purify data. The latter
pursues to pick up the most important features in order to simplify the model
and predict more accurately.

This paper goals to assess the potential usefulness of the ordered application
in supervised machine learning problems of two very different data-preprocessing
techniques like data cleansing and feature selection. Another additional aim is
to improve the performance of the classification models.

The rest of this article is organized as follows: Sect. 2 describes some concepts
about data cleansing and feature selection; Sect. 3 presents our proposal; Sect.
4 details the experimentation; then Sect. 5 shows and analyzes statistically the
results obtained; finally, Sect. 6 states the concluding remarks.

2 Related Work

2.1 Data Cleansing

An outlier may be defined as a data point which is very different from the rest
of the data based on some measure [1], or alternatively as a case that does not
follow the same model as the remaining data and appears as though it comes
from a different probability distribution [26].

The core question about outliers is to delete or not to delete them. The answer
is unclear because there are contributions from both sides. On the one hand, some
authors claim either that the deletion of outliers did not significantly change the
overall error distribution, accuracy, ... [14], or that the elimination of instances
which contain attribute noise is not a good idea, because many other attributes of
the instance may still contain valuable information [26]. On the other hand, some
works showed that dropping the outlier in the training set may be a beneficial
action for the classifier [20].

2.2 Feature Selection

It can be defined as the problem of choosing a small subset of features that
ideally is necessary and sufficient to describe the target concept. The different
approaches for feature selection (FS) can be divided into two broad categories
(i.e., filter and wrapper) based on their dependence on the inductive algorithm
that will finally use the selected subset [16]. Filter methods are independent of
the inductive algorithm, whereas wrapper methods use the inductive algorithm
as the evaluation function. FS involves two phases: a) to obtain a list of attributes
according to an attribute evaluator and b) to perform a search on the initial
list. All candidate lists would be evaluated using a measure evaluation and the
best one will be returned. Correlation-based Feature Selection (CFS) [12] and



Consistency-based feature selection (CNS) [6] are two of the most widespread
feature subset selectors (FSS) and both work together with a search method
such as Greedy Search, Best First or Exhaustive Search.

3 Proposal

A statistical outlier detection method based on the partial removal of outliers
according the inter-quartile range of all the instances with the same class label
was introduced in [22] with the name OUTLIERoutP. The framework can be
reviewed in Figure 2 of the aforementioned work.

The current paper proposes to complete an additional data preparation stage
after the data cleansing from a different perspective such as feature selection [16].
Typically, the application of feature selection has become a real prerequisite for
model building in due to the multidimensional nature of many modeling task in
some fields [21]. Figure 1 overviews the proposal. It is a generic methodology in
the sense that there is no restriction in the kind of feature selection method or
the number of classes that the classifier is able to operate with. As usually in
data mining field, the data preparation techniques act on the training set and
the test set stands unaltered and is evaluated by the first time once the classifier
is trained. To the best of our knowledge, the main novelty of this work is to do
a further data pre-processing phase by means of feature selection after the ap-
plication of the data cleansing stage via an outlier detection method. According
to the literature, the researches tackle data cleansing or feature selection in an
isolated way.

4 Experimentation

Table 1 describes the data sets utilised together with the outlier level according
to the taxonomy proposed in [22]. Most of them are publicly available in the UCI
(University of California at Irvine) repository [4]. They come from real-world ap-
plications of different domains such as Finances, Physics, Life, Environment, and
Analysis of Olive Oils. The following seven have been used: Cardiotocography
(CTG), Statlog (German credit), MAGIC Gamma Telescope (Magic), Olive Oil
(Olitos), Pima Indians Diabetes (Pima), Tokyo and Water Treatment Plant.
Olitos problem is deeply explained in [3]. The size of the problems ranges from
one hundred twenty to more than nineteen thousands. The number of features
varies between eight and sixty one, while the number of classes is between two
and four. The missing values have been replaced in the case of nominal variables
by the mode or, when concerning continuous variables, by the mean, bearing
in mind the full data set. The outlier level is computed once the imputation of
the missing values has been carried out. These data sets contain a number of
outliers that is between a low percentage (up to a 10%) and a moderate-high
one (in the range 30-40%, for the Tokyo problem). It is important to stress that
these outliers are originally present in the data set and we have not performed
any artificial way to add them. The taxonomy of the problems depending on the
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outlier level is based on the inter-quartile range (IQR) by classes. The common
point of these data sets is that their important error rate in test phase without
any kind of data pre-processing is about 10% or above with reference and robust
classifiers such as 1-nearest neighbour (1-NN) [2] [5] or C4.5 [19]. In relation to
the experimental design we have followed a stratified 4-fold cross validation [13],
whereby the data set is divided into four parts and subsequently a partition is
the test set and the three remaining ones are pooled as the training data. On the
other hand, for the assessment of the classification models we have chosen the
accuracy [15] and roc [8] measures. The former can be defined as the probability
of correctly classifying a randomly select pattern. Sometimes, it is called as the
number of successful hits [24]. The latter stands for receiver operating character-
istic (ROC) and is the area under the ROC curve. We report both measures for
the test set that is the performance with unseen data during the generalisation
stage.

Table 1. Summary of the data sets

Data set Size Features Classes Outlier level

CTG 2126 23 2 II
German 1000 61 2 I
Magic 19020 11 2 I
Olitos 120 26 4 II
P ima 768 8 2 I
Tokyo 639 44 2 IV
Water 527 38 3 II

Average 3457.1 30.1 2.4 I − II

Table 2 depicts the data preparation methods concerning the different ex-
periments that were conducted. The first one only includes the data cleansing,
whereas the last two ones comprise the execution of the methodology OUT-
LIERoutP followed by a feature subset selection evaluated with a correlation
or consistency measure. Last column defines an abbreviated name for each of
them that often will be referred in next sections. We have chosen CFS and CNS
as representative feature subset selection methods, because they are based on
different kind of measures, have few parameters and have provided a good per-
formance inside the supervised machine learning area. Often, BestFirst search is
the preferable option by the researchers for both FSS algorithms. CFS is likely
the most used FSS in data mining. CNS is also powerful, however the quantity of
published works is more reduced [21]. As classification algorithms we have expe-
rienced with C4.5 [19] and PART [10]. For the two previous FSS and classifiers
we have used the implementations provided by WEKA tool [11] with default
parameters that are those suggested by the own authors of the algorithms.

Table 3 overviews the properties of the data sets with a stratified 4-fold
cross validation in three moments: i) in the initial situation (see all the columns
containing Or. word), ii) after the data pre-processing stage (refer to columns



Table 2. List of data preparation methods for the experimentation

Data cleansing Attribute evaluator Search method Feature selector name Abb. Name

OUTLIERoutP − − − OutP
OUTLIERoutP CFS BestF irst CFS BestF irst OutP + FS1
OUTLIERoutP CNS BestF irst CNS BestF irst OutP + FS2

Table 3. Number of instances and features with the data preparation methods with a
4-fold cross validation

Data set Or. Av. T r. Sz. Av. OutP Tr. Sz. � Or. F. � Av. F. FS1 � Av. F. FS2

CTG 1594.5 1490.6 23 6.8 7.8
german 750.0 744.6 61 7.8 19.9
magic 14265.0 14058.5 10 4.0 10.0
olitos 90.0 80.4 25 12.3 12.3
pima 576.0 556.1 8 3.9 7.3
tokyo 719.3 619.6 44 11.0 11.4
water 390.8 362.9 38 10.8 11.0

Average 2626.5 2559.0 29.9 8.1 11.4

Or. = Original Av. = Average Tr. = Training Sz. = Size F. = Features

labelled with OutP ) and iii) once the two data preparation approaches have
been carried out (see two last columns).

5 Results

Tables 4 reports the accuracy and roc test results averaged with an outer strati-
fied 4-fold cross validation over the original data set followed by an inner strati-
fied 2-fold cross validation adding one fold of the outlier set into the training set
in each iteration (see Fig. 1). Also, we have included the number of times that
OutP + FS1 or OutP + FS2 result is better than the OutP one. Finally, last
row shows the average for each method with all the data sets. It is clear that
the performance measured with accuracy for OutP + FS1 and OutP + FS2 is
very similar to OutP because the number of wins is lower than the half of the
number of data sets. On the other hand, the results with roc measure require to
be submitted to a deep analysis.

Table 5 shows the results of the non-parametric statistical analysis of OutP
(baseline approach) versus Out+ FS1 or Out + FS2. We have represented the
average roc value for each method, their difference with the baseline case and its
ranking. According to Wilcoxon signed-ranks test, since there are 7 data sets,
the T value at α = 0.05 should be less or equal than 2 (the critical value) to
reject the null hypothesis. On the one hand, OutP + FS1 is significantly better
than OutP . On the other hand, for OutP + FS2 the results are statistically
in the line of OutP but the R+ value is three times the R− value, thus the
performance of OutP + FS2 is promising in most of the cases.



Table 4. Classifier C4.5: Accuracy and roc test results averaged with a 4-fold cross
validation

Data set C4.5

Accuracy Roc

OutP OutP + FS1 OutP + FS2 OutP OutP + FS1 OutP + FS2

CTG 89.49 86.50 88.88 0.8276 0.8379 0.8236
german 70.95 71.50 72.35 0.6170 0.6998 0.7168
magic 85.22 82.80 85.22 0.8691 0.8639 0.8691
olitos 65.42 68.75 68.75 0.7480 0.7730 0.7730
pima 74.86 74.60 74.66 0.7553 0.7645 0.7488
tokyo 90.62 91.71 91.03 0.9070 0.9290 0.9095
water 84.07 83.11 83.39 0.8035 0.8048 0.8199

Wins 3 3 6 4

Average 80.09 79.85 80.61 0.7896 0.8104 0.8087

Table 5. C4.5: Statistical tests for roc measure

Data set OutP OutP + FS1 Difference Ranking OutP + FS2 Difference Ranking

CTG 0.8276 0.8379 0.0103 4 0.8236 −0.0040 3
german 0.6170 0.6998 0.0828 7 0.7168 0.0998 7
magic 0.8691 0.8639 −0.0052 2 0.8691 0.0000 1
olitos 0.7480 0.7730 0.0250 6 0.7730 0.0250 6
pima 0.7553 0.7645 0.0092 3 0.7488 −0.0065 4
tokyo 0.9070 0.9290 0.0220 5 0.9095 0.0025 2
water 0.8035 0.8048 0.0012 1 0.8199 0.0164 5

T = min{26, 2} = 2 (∗) T = min{21, 7} = 7

5.1 Application of the New Proposal to Classifier PART

Once the new approach has been validated according to non-parametric sta-
tistical tests we extended it to the PART classifier. Generally speaking, CFS
and CNS exhibited an intermediate performance as feature selectors operating
directly on the original data [23]. In the current paper we do a previous data
cleansing and after that the feature selection phase to evaluate the convenience
or not to apply both data pre-processing strategies.

Tables 6 depicts the accuracy and roc test results for PART algorithm aver-
aged with an outer stratified 4-fold cross validation and an inner stratified 2-fold
cross validation as explained in the previous section. We have represented the
number of times that OutP+FS1 is better than OutP+FS2 and the average for
each method with all the data sets. We should remark that OutP +FS2 has an
excellent performance for roc measure and wins 5 out of 7 times to OutP +FS1.

5.2 Statistical Comparison of the Two Best Classifiers with their
Suitable Data Preparation Approach

This subsection compares the two best achievements that have been reported
so far in the paper. Table 7 includes the results of the two best options and a



Table 6. Classifier PART: Accuracy and roc test results with OUTLIERoutP+FS for
a 4-fold cross validation

Data set PART

Accuracy Roc

OutP + FS1 OutP + FS2 OutP + FS1 OutP + FS2

CTG 85.89 84.22 0.8210 0.8349
german 72.00 70.50 0.7058 0.6755
magic 82.90 84.71 0.8731 0.8980
olitos 67.50 67.50 0.7858 0.7858
pima 73.63 73.44 0.7571 0.7606
tokyo 91.71 91.29 0.9359 0.9543
water 83.30 83.49 0.8166 0.8443

Wins by pairs 4 2 1 5

Average 79.56 79.31 0.8136 0.8219

Table 7. Statistical comparison between C4.5 with OutP+FS1 and PART with
OutP+FS2 for roc measure

Data set C4.5 PART

OutP + FS1 OutP + FS2 Difference Ranking

CTG2 0.8379 0.8349 −0.0030 1
german 0.6998 0.6755 −0.0243 4
magic 0.8639 0.8980 0.0341 6
olitos 0.7730 0.7858 0.0127 3
pima 0.7645 0.7606 −0.0039 2
tokyo 0.9290 0.9543 0.0253 5
water 0.8048 0.8443 0.0395 7

Wins 3 4

T = min{21, 7} = 7

non-parametric statistical analysis via a Wilcoxon signed-ranks test of C4.5+
OutP + FS1 versus PART+OutP + FS2. Since the T value at α = 0.05 is
not less or equal than 2 the null hypothesis is accepted. Hence, both algorithms
performs equally without significant differences. The good new is that PART
behaves better according to the rankings; R+ value is three times the R− value,
thus PART with the proposed methodology should be consider as an interesting
alternative to C4.5 classifier with our new approach.

6 Conclusions

An innovative methodology that performs two data preparation phases such
as data cleansing via outlier detection and feature selection, in this order, was
introduced. An empirical study on seven binary and multi-class classification
problems with a test error rate of a 10% or above measured in accuracy was
conducted. The experimentation shed light on that the roc measure is improved



in global terms and the accuracy is increased in punctual cases. According to
the non-parametric statistical tests, C4.5 with the new approach (OUTLIER-
outP+FS) using a correlation measure overcame significantly the results for roc
versus the framework OUTLIERoutP that was previously proposed. Moreover,
C4.5 and a feature selector with a consistency measure, after the data cleansing
stage, achieved better results than OUTLIERoutP in most of the data sets. Fi-
nally, the behaviour of a not very powerful classifier such as PART became excel-
lent with the new approach until the extent that PART with a consistency mea-
sure reached slightly better results than the best setting of OUTLIERoutP+FS
(significantly better than OUTLIERoutP) with C4.5 classifier.
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