Two-weight, Weak-type N orm Inequalities for Fractional Integrals,
 C alderón-Zygmund 0 perators and Commutators

D. Cruz-Uribe, SFO, C. Pérez

Abstract

We give A_{p}-type conditions which are sufficient for the two-weight, weak-type (p, p) inequalities for fractional integral operators, C alderón-Zygmund operators and commutators. For fractional integral operators, this solves a problem posed by Sawyer and Wheeden [28]. At the heart of all of our proofs is an inequality relating the H ardy-Littlewood maximal function and the sharp maximal function which is strongly reminiscent of the good- λ inequality of Fefferman and Stein [13].

1. Introduction

Let M be the H ardy-Littlewood maximal operator. Given a pair of weights (u, v) and $p, 1<p<\infty$, it is well known that the weak-type inequality

$$
\begin{equation*}
u\left(\left\{x \in \mathbb{R}^{n}: M f(x)>t\right\}\right) \leq \frac{C}{t^{p}} \int_{\mathbb{R}^{n}}|f|^{p} v d x \tag{1.1}
\end{equation*}
$$

holds if and only if (u, v) $\in A_{p}$: there exists a positive constant K such that for all cubes Q,

$$
\begin{equation*}
\left(\frac{1}{|Q|} \int_{Q} u d x\right)\left(\frac{1}{|Q|} \int_{Q} v^{-p^{\prime} / p} d x\right)^{p / p^{\prime}} \leq K . \tag{1.2}
\end{equation*}
$$

For other classical operators, however, the A_{p} condition is not sufficient for the weak (p, p) inequality. In fact, of the operators we are interested in, a necessary and sufficient condition for the weak (p, p) inequality is known only for fractional integral operators. (See Sawyer [27].) This result is interesting and important, but it has the drawback that the condition involves the fractional integral operator.

Sufficient, A_{p}-type conditions can also be gotten from sufficient conditions for the strong (p, p) inequality. N eugebauer [18] showed that

$$
\begin{equation*}
\left(\frac{1}{|Q|} \int_{Q} u^{r} d x\right)^{1 / r p}\left(\frac{1}{|Q|} \int_{Q} v^{-r p^{\prime} / p} d x\right)^{1 / r p^{\prime}} \leq C, \quad r>1, \tag{1.3}
\end{equation*}
$$

is sufficient for the strong (p, p) inequality for themaximal operator, for C alderónZygmund operators and commutators. Sawyer and Wheeden [28] showed that for $0<\alpha<n$,

$$
\begin{equation*}
|Q|^{\alpha / n}\left(\frac{1}{|Q|} \int_{Q} u^{r} d x\right)^{1 / r p}\left(\frac{1}{|Q|} \int_{Q} v^{-r p^{\prime} / p} d x\right)^{1 / r p^{\prime}} \leq C, \quad r>1 \tag{1.4}
\end{equation*}
$$

is sufficient for the strong-type (p, p) inequality for fractional integral operators. (Additional sufficient conditions arefound in [20], [21], and [24]. Wegive precise definitions of these operators in Section 2 below.)

In general, sufficient conditions for the weak (p, p) inequality which are derived from strong (p, p) conditions are not sharp. The purpose of this paper is to show that for the operators we consider, there are conditions that are weaker than (1.3) and (1.4), which are sufficient for the weak-type inequality. Roughly, it suffices to strengthen the A_{p} condition (1.2) by introducing a "power bump" on the left-hand term alone, rather than on both terms as in (1.3) and (1.4).

O ur first result is for fractional integral operators. It solves a problem posed by Sawyer and W heeden [28].

Theorem 1.1. Given a pair of weights $(u, v), p, 1<p<\infty$, and $\alpha, 0<\alpha<$ n, suppose that for some $r>1$ and for all cubes Q,

$$
\begin{equation*}
|Q|^{\alpha / n}\left(\frac{1}{|Q|} \int_{Q} u^{r} d x\right)^{1 / r p}\left(\frac{1}{|Q|} \int_{Q} v^{-p^{\prime} / p} d x\right)^{1 / p^{\prime}} \leq C<\infty . \tag{1.5}
\end{equation*}
$$

Then the fractional integral operator I_{α} satisfies the weak (p, p) inequality

$$
\begin{equation*}
u\left(\left\{x \in \mathbb{R}^{n}:\left|I_{\alpha} f(x)\right|>t\right\}\right) \leq \frac{C}{t^{p}} \int_{\mathbb{R}^{n}}|f|^{p} v d x . \tag{1.6}
\end{equation*}
$$

O ur second result is for C alderón-Zygmund operators.

Theorem 1.2. Let T be a Calderón-Zygmund operator. Given a pair of weights (u, v) and $p, 1<p<\infty$, suppose that for some $r>1$ and for all cubes Q,

$$
\begin{equation*}
\left(\frac{1}{|Q|} \int_{Q} u^{r} d x\right)^{1 / r p}\left(\frac{1}{|Q|} \int_{Q} v^{-p^{\prime} \mid p} d x\right)^{1 / p^{\prime}} \leq C<\infty . \tag{1.7}
\end{equation*}
$$

Then T satisfies the weak (p, p) inequality

$$
\begin{equation*}
u\left(\left\{x \in \mathbb{R}^{n}:|T f(x)|>t\right\}\right) \leq \frac{C}{t^{p}} \int_{\mathbb{R}^{n}}|f|^{p} v d x . \tag{1.8}
\end{equation*}
$$

Remark 1.3. Though for clarity we have stated Theorem 1.2 for CalderónZygmund operators, it is true for a much larger class of operators. To be precise: if there exists some $\delta, 0<\delta<1$, and a constant C_{δ} such that for every $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
M^{\#}\left(|T f|^{\delta}\right)(x)^{1 / \delta} \leq C_{\delta} M f(x), \tag{1.9}
\end{equation*}
$$

then (1.7) implies (1.8).
Alvarez and Pérez [3] showed that inequality (1.9) holds for CalderónZygmund operators. In this case it can be thought of as extending the classical estimate

$$
\begin{equation*}
M^{\#}(T f)(x) \leq C_{r} M\left(|f|^{r}\right)(x)^{1 / r}, \tag{1.10}
\end{equation*}
$$

where T is a regular singular integral operator and $r>1$, (see García-Cuerva and Rubio de Francia [14, p. 204]). In some sense, (1.9) contains more information than (1.10) since the latter does not suffice to prove Theorem 1.2.

Alvarez and Pérez also showed that inequality (1.9), and so Theorem 1.2, hold for the following operators: weakly strongly singular integral operators (see C. Fefferman [12]), some pseudo-differential operators in the H örmander class (see H örmander [15]), and a class of oscillatory integral operators related to those introduced by Phong and Stein [25]. They used (1.9) to generalize Coifman's theorem [7] relating the L^{p} norm of singular integral operators and the maximal function.

Remark 1.4. For C alderón-Zygmund operators we have been able to prove stronger results; see [11]. By different methods we showed that we may replace the "power bump" in (1.7) by a "bump" in the scale of O rlicz spaces. M ore precisely, we replace the L^{r} norm by the $L(\log L)^{p-1+\delta}$ norm with $\delta>0$. H owever we are unable to extend these results to the broader class of operators discussed in the previous remark.

Remark 1.5. Conditions (1.5) and (1.7) aresufficient for the fractional maximal operator and the H ardy-Littlewood maximal operator to be bounded from $L^{p^{\prime}}\left(u^{-p^{\prime} / p}\right)$ to $L^{p^{\prime}}\left(v^{-p^{\prime} / p}\right)$. (See [21], [22].) We conjecture that the boundedness of the corresponding maximal operator is itself sufficient for inequalities (1.6) and (1.8) to hold. In particular we believe that the O rlicz space conditions given in [21] and [22] are sufficient.

O ur last result is about (linear) commutators. These operators are defined by

$$
C_{b}^{k} f(x)=\int(b(x)-b(y))^{k} K(x, y) f(y) d y
$$

where K is a kernel satisfying the standard estimates and b is a locally integrable function. (See Section 2 for a precise definition.)

Since commutators have a greater degree of "singularity" than the corresponding C alderón-Zygmund operators, we need a slightly stronger condition. Roughly, we need to "bump" the right-hand term as well, but it suffices to do so in the scale of O rlicz spaces. Recall that if B is an increasing Young function and if Q is any cube, we define the mean Luxemburg norm of a measurable function f with respect to B by

$$
\|f\|_{B, Q}=\inf \left\{\lambda>0: \frac{1}{|Q|} \int_{Q} B\left(\frac{|f|}{\lambda}\right) d x \leq 1\right\} .
$$

(For more information on O rlicz spaces, see Section 2 below.)
Theorem 1.6. Let T be a Calderón-Zygmund operator and b a function in BMO. Given a pair of weights $(u, v), p, 1<p<\infty$, and $k \geq 0$, suppose that for some $r>1$ and for all cubes Q,

$$
\begin{equation*}
\left(\frac{1}{|Q|} \int_{Q} u^{r} d x\right)^{1 / r p}\left\|v^{-1 / p}\right\|_{C_{k}, Q} \leq C<\infty, \tag{1.11}
\end{equation*}
$$

where $C_{k}(t)=t^{p^{\prime}} \log (e+t)^{k p^{\prime}}$. Then the commutator C_{b}^{k} satisfies the weak (p, p) inequality

$$
\begin{equation*}
u\left(\left\{x \in \mathbb{R}^{n}:\left|C_{b}^{k} f(x)\right|>t\right\}\right) \leq \frac{C}{t^{p}} \int_{\mathbb{R}^{n}}|f|^{p} v d x . \tag{1.12}
\end{equation*}
$$

When $k=0, C_{b}^{0}=T$, and so in this case T heorem 1.6 reduces to T heorem 1.2.

Remark 1.7. As a corollary to Theorem 1.6 we get a new proof of the one weight, strong (p, p) norm inequality for commutators, which was first proved in a more general form by Alvarez, Bagby, Kurtz, and Pérez [2] and Segovia and Torrea [29]. If $w \in A_{p}$, then w and $w^{-p^{\prime} / p}$ both satisfy the reverse H ölder inequality and so inequality (1.11) holds for some $r>1$ and for $p \pm \varepsilon$. The strong-type inequality follows by interpolation.

The proofs of Theorems 1.1, 1.2 and 1.6 all follow the same outline. Each relies on our so-called principal Iemma, Theorem 3.4 below, which relates the H ardy-Littlewood maximal operator and the Fefferman-Stein sharp maximal operator via an inequality strongly reminiscent of a good- λ inequality. To apply Theorem 3.4 we use three results which relate the given operator, the sharp maximal operator and the maximal operator. For C alderón-Zygmund operators this is inequality (1.9). Similar inequalities hold for fractional integral operators and commutators: see Lemmas 4.4 and 6.1.

The remainder of this paper is organized as follows: in Section 2 we give a number of definitions and lemmas needed in later sections. The heart of the paper is Section 3, where we prove Theorem 3.4. Finally, in Sections 4, 5, and 6 we prove Theorems 1.1, 1.2, and 1.6.

Throughout this paper all notation is standard or will be defined as needed. All cubes are assumed to have their sides parallel to the coordinate axes. Given a cube $Q, \ell(Q)$ will denote the length of its sides and for any $r>0, r Q$ will denote the cube with the same center as Q and such that $\ell(r Q)=r \ell(Q)$. We will denote the collection of all dyadic cubes by Δ and by $\Delta(Q)$ the collection of all dyadic subcubes relative to the (not necessarily dyadic) cube Q. By weights we will always mean non-negative, locally integrable functions which are positive on a set of positive measure. Given a Lebesgue measurable set E and a weight $w,|E|$ will denote the Lebesgue measure of E and $w(E)=\int_{E} w d x$. Given $1<p<\infty$, $p^{\prime}=p /(p-1)$ will denote the conjugate exponent of p. Finally, C will denote a positive constant whose value may change at each appearance.

2. Preliminary ideas

In this section we give a number of definitions and lemmas needed in later sections.

The main operators. First we definetheoperators in T heorems 1.1,1.2, and 1.6.

Fractional integral operators. Given $\alpha, 0<\alpha<n$, define the fractional integral operator of order α by

$$
I_{\alpha} f(x)=\int_{\mathbb{R}^{n}} \frac{f(y)}{|x-y|^{n-\alpha}} d y .
$$

For more information, see Stein [31, pp. 117-120].
Calderon-Zygmund operators. Given a kernel K on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ - i.e. a locally integrable, complex-valued function defined off the diagonal - we say that it satisfies the standard estimates if there exist $\delta, 0<\delta \leq 1$, and C finite such that for all distinct points x and y in \mathbb{R}^{n}, and all z such that $|x-z|<\frac{1}{2}|x-y|$:
(1) $|K(x, y)| \leq C|x-y|^{-n}$;
(2) $|K(x, y)-K(z, y)| \leq C|x-z|^{\delta}|x-y|^{n+\delta}$;
(3) $|K(y, x)-K(y, z)| \leq C|x-z|^{\delta}|x-y|^{n+\delta}$.

A bounded linear operator $T: C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ (here \mathcal{D}^{\prime} is the space of distributions) is said to be associated with a kernel K if

$$
\langle T f, g\rangle=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} K(x, y) g(x) f(y) d x d y
$$

for all f and g in $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\operatorname{supp}(f) \cap \operatorname{supp}(g)=\varnothing . T$ is said to be a C alderón-Zygmund operator if its associated kernel satisfies the standard estimates and it extends to a bounded linear operator on L^{2}. For more information, see Coifman and M eyer [8] and Christ [6].

Important examples of such operators are the Calderón-Zygmund singular integral operators:

$$
T f(x)=\text { p.v. } \int_{\mathbb{R}^{n}} k(x-y) f(y) d y,
$$

where $k \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ and $K(x, y)=k(x-y)$ satisfies the standard estimates. For more information see García-Cuerva and Rubio de Francia [14, p. 192].

Commutators. Given a C alderón-Zygmund operator T and a function b in BM O, let M_{b} denote multiplication by b. We define the linear operators C_{b}^{k} by $C_{b}^{0}=T, C_{b}^{1}=\left[M_{b}, T\right]=M_{b} T-M_{b} T$, and for $k>1, C_{b}^{k}=\left[M_{b}, C_{b}^{k-1}\right]$. If $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, then

$$
C_{b}^{k} f(x)=\int(b(x)-b(y))^{k} K(x, y) f(y) d y, \quad x \notin \operatorname{supp}(f)
$$

C ommutators were introduced by C oifman, Rochberg and Weiss [9], who showed they are bounded on $L^{p}, 1<p<\infty$.

Maximal operators. Key to the proofs of our results are a number of maximal operators. For completeness we give their definitions here.

The maximal operator. Given a locally integrable function f and $\alpha, 0 \leq$ $\alpha<n$, define

$$
M_{\alpha} f(x)=\sup _{Q \ni x} \frac{1}{|Q|^{1-\alpha / n}} \int_{Q}|f| d y .
$$

If $\alpha=0$ this is the H ardy-Littlewood maximal operator and we write $M f$ for $M_{0} f$; if $0<\alpha<n$ this is the fractional maximal operator of order α. We use the H ardy-Littlewood maximal operator to control C alderón-Zygmund operators and commutators, and the fractional maximal operator to control fractional integral operators. (See inequality (1.9) and Lemmas 4.4 and 6.1.)

We define the dyadic maximal and fractional maximal operators M^{d} and M_{α}^{d} similarly except the supremums are restricted to dyadic cubes containing x. Given $\delta>0$ we define the δ-maximal operator by $M_{\delta} f(x)=M\left(|f|^{\delta}\right)(x)^{1 / \delta}$. We define M_{δ}^{d} similarly. From the context there should be no confusion between the fractional maximal operator and the δ-maximal operator.

The sharp maximal operator. Given a locally integrable function f and a cube Q, let f_{Q} denote the average of f over Q :

$$
f_{Q}=\frac{1}{|Q|} \int_{Q} f d x
$$

D efine the sharp maximal function of f by

$$
M^{\#} f(x)=\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right| d y .
$$

The sharp maximal function was introduced by Fefferman and Stein [13]. Again, define the dyadic sharp maximal function $M^{\#, d}$ by restricting the supremum to dyadic cubes. Given $\delta>0$, define the sharp δ-maximal function by

$$
M_{\delta}^{\#} f(x)=M^{\#}\left(|f|^{\delta}\right)(x)^{1 / \delta},
$$

and define $M_{\delta}^{\#, d}$ similarly.

Orlicz spaces. In Section 6 we will need the following facts about Orlicz spaces. (For further information see Bennett and Sharpley [4] or Rao and Ren [26].) A function $B:[0, \infty) \rightarrow[0, \infty)$ is a Young function if it is convex and increasing, and if $B(0)=0$ and $B(t) \rightarrow \infty$ as $t \rightarrow \infty$.

Given a Young function B, define the mean Luxemburg norm of f on a cube Q by

$$
\|f\|_{B, Q}=\inf \left\{\lambda>0: \frac{1}{|Q|} \int_{Q} B\left(\frac{|f|}{\lambda}\right) d y \leq 1\right\} .
$$

When $B(t)=t^{p}, 1 \leq p<\infty$,

$$
\|f\|_{B, Q}=\left(\frac{1}{|Q|} \int_{Q}|f|^{p} d x\right)^{1 / p} ;
$$

that is, the Luxemburg norm coincides with the (normalized) L^{p} norm. There is another characterization of the Luxemburg norm, due to Krasnosel'skiĭ and Rutickiĭ [17, p. 92] (also see Rao and Ren [26, p. 69]) which we will need:

$$
\begin{equation*}
\|f\|_{B, Q} \leq \inf _{s>0}\left\{s+\frac{s}{|Q|} \int_{Q} B\left(\frac{|f|}{s}\right) d x\right\} \leq 2\|f\|_{B, Q} . \tag{2.1}
\end{equation*}
$$

Given three Young functions A, B, and C such that for all $t>0$,

$$
\begin{equation*}
A^{-1}(t) C^{-1}(t) \leq B^{-1}(t), \tag{2.2}
\end{equation*}
$$

then we have the following generalized H ölder's inequal ity due to $\mathrm{O}^{\prime} \mathrm{N}$ eil [19]: for any cube Q and all functions f and g,

$$
\begin{equation*}
\|f g\|_{B, Q} \leq 2\|f\|_{A, Q}\|g\|_{C, Q} . \tag{2.3}
\end{equation*}
$$

D efine the maximal operator M_{B} by

$$
M_{B} f(x)=\sup _{Q \ni x}\|f\|_{B, Q} .
$$

The dyadic maximal operator M_{B}^{d} is defined in similarly, except the supremum is restricted to dyadic cubes containing x. It follows from an inequality due to Stein [30] that for $k \geq 1$, if $B_{k}(t)=t \log (e+t)^{k-1}$, then $M^{k} f \approx M_{B_{k}} f$, where $M^{k}=M \cdot M \cdots M$ is the k-th iterate of the maximal function. (See C arozza and Passarelli di N apoli [5] and the references given there.)

The Calderón-Z ygmund decomposition. O ur proofs depend heavily on the C alderón-Zygmund decomposition and a generalization of it to Orlicz space norms. To be precise and to establish notation, we state the result here. For a proof see [22]; this is an adaptation of the classical proof given in García-Cuerva and Rubio de Francia [14, p. 137].

Lemma 2.1. Given a Young function B, suppose f is a non-negative function such that $\|f\|_{B, Q}$ tends to zero as $\ell(Q)$ tends to infinity. Then for each $t>0$ there exists a disjoint collection of dyadic cubes $\left\{C_{i}^{t}\right\}$ such that for each $i, t<\|f\|_{B, C_{i}^{t}} \leq$ $2^{n} t$,

$$
\begin{array}{ll}
\left\{x \in \mathbb{R}^{n}: M_{B}^{d} f(x)>t\right\} & =\bigcup_{i} C_{i}^{t}, \\
\left\{x \in \mathbb{R}^{n}: M_{B} f(x)>4^{n} t\right\} & \subset \bigcup_{i} 3 C_{i}^{t} .
\end{array}
$$

M oreover, thecubesaremaximal: if Q is dyadic cubesuch that $Q \subset\left\{M_{B}^{d} f(x)>t\right\}$, then $Q \subset C_{i}^{t}$ for some i.

To recapture the classical lemma, let $B(t)=t$ and note that if $f \in L^{q}$ for some $q, 1 \leq q<\infty$, then

$$
\|f\|_{B, Q}=\frac{1}{|Q|} \int_{Q} f d x \rightarrow 0 \quad \text { as } \quad|Q| \rightarrow \infty .
$$

M ore generally, to apply Lemma 2.1 it suffices to assume that f is bounded and has compact support.

3. The principal lemma

In this section we prove our principal Iemma: an inequality linking the sharp maximal function and the H ardy-Littlewood maximal function. In spirit, though not in detail it resembles the good- λ inequality of Fefferman and Stein [13]. (Also see García-Cuerva and Rubio de Francia [14, pp. 161-3] and Journé [16, p. 41].)

To state the principal lemma we first need a definition and a lemma.
Definition 3.1. Given $r>1$ and a weight u, define the set function A_{u}^{r} on measurable sets $E \subset \mathbb{R}^{n}$ by

$$
A_{u}^{r}(E)=|E|^{1 / r^{\prime}}\left(\int_{E} u^{r} d x\right)^{1 / r}=|E|\left(\frac{1}{|E|} \int_{E} u^{r} d x\right)^{1 / r} .
$$

(The second equality holds provided $|E|>0$.)

Lemma 3.2. For any $r>1$ and weight u, the set function A_{u}^{r} hasthefollowing properties.
(1) If $E \subset F$, then $A_{u}^{r}(E) \leq(|E| /|F|)^{1 / r^{\prime}} A_{u}^{r}(F)$;
(2) $u(E) \leq A_{u}^{r}(E)$;
(3) If $\left\{E_{j}\right\}$ is a sequence of disjoint sets and $\bigcup_{j} E_{j}=E$, then

$$
\sum_{j} A_{u}^{r}\left(E_{j}\right) \leq A_{u}^{r}(E) .
$$

Proof. Condition (1) follows immediately from Definition 3.1, and Condition (2) is just H ölder's inequality. Condition (3) also follows from H ölder's inequality:

$$
\begin{aligned}
\sum_{j}\left|E_{j}\right|^{1 / r^{\prime}}\left(\int_{E_{j}} u^{r} d x\right)^{1 / r} & \leq\left(\sum_{j}\left|E_{j}\right|\right)^{1 / r^{\prime}}\left(\sum_{j} \int_{E_{j}} u^{r} d x\right)^{1 / r} \\
& =|E|^{1 / r^{\prime}}\left(\int_{E} u^{r} d x\right)^{1 / r} .
\end{aligned}
$$

Remark 3.3. The key property is Condition (1), which plays the same role that the A_{∞} condition plays in the proof of weighted good- λ inequalities. (See, for example, Journé [16, p. 41].) If A_{u} were another set function which satisfied Conditions (2) and (3) of Lemma 3.2, satisfied

$$
\begin{equation*}
A_{u}(E) \leq \varphi\left(\frac{|E|}{|F|}\right) A_{u}(F), \quad \varphi(t) \rightarrow 0 \text { as } t \rightarrow 0, \tag{3.1}
\end{equation*}
$$

and for some $r>1$ satisfied (for technical reasons in the proof) $A_{u}(E) \leq C A_{u}^{r}(E)$, we could immediately derive corresponding conditions governing weak-type norm inequalities for the operators we are interested in.
O riginally, we had hoped to replace the "power bumps" in (1.5), (1.7), and (1.11) by O rlicz space conditions. Intuitively, the appropriate set function would be $A(E)=|E|\|u\|_{B, E}$, where B is some Young function-for example, $B(t)=$ $t \log (e+t)^{\delta}, \delta>0$. For such B, Conditions (2) and (3) hold; we will show this in the course of proving Lemma 5.1 below. H owever, C ondition (1) fails.

Remark added in proof. The first author and A. Fiorenza have characterized the class of Young functions B for which $A(E)=|E|\|u\|_{B, E}$ satisfies (3.1). This class includes O rlicz functions which grow slower than t^{r} for any $r>1$. These results will appear in [10].

We can now state and prove our principal lemma.
Theorem 3.4. Given a non-negative function $f \in L^{q}$ for some $q, 1 \leq q<\infty$, $r, 1<r \leq q^{\prime}$, a weight u, and $\delta>0$, then there exists $\varepsilon>0$ such that for each $t>0$ there exists a subcollection $\left\{Q_{j}^{t}\right\}$ of dyadic cubes from the Calderón-Zygmund decomposition of f^{δ} at height $t^{\delta},\left\{C_{i}^{t^{\delta}}\right\}$, with the property that

$$
\left(\frac{1}{\left|Q_{j}^{t}\right|} \int_{Q_{j}^{t}}\left|f^{\delta}-\left(f^{\delta}\right)_{Q_{j}^{t}}\right| d x\right)^{1 / \delta}>\varepsilon^{1 / \delta} t
$$

and such that for all $p \geq q / r^{\prime}$,

$$
\begin{equation*}
\sup _{t>0} t^{p} u\left(\left\{x \in \mathbb{R}^{n}: M_{\delta}^{d} f(x)>t\right\}\right) \leq C \sup _{t>0} t^{p} \sum_{j} A_{u}^{r}\left(Q_{j}^{t}\right) . \tag{3.2}
\end{equation*}
$$

The constants ε and C depend only on r, p, and n.
As a corollary to the proof we have the following stronger inequality.
Corollary 3.5. With the same hypotheses and notation as T heorem 3.4, we have that

$$
\begin{equation*}
\sup _{t>0} t^{p} \sum_{i} A_{u}^{r}\left(C_{i}^{t^{\delta}}\right) \leq C \sup _{t>0} t^{p} \sum_{j} A_{u}^{r}\left(Q_{j}^{t}\right) . \tag{3.3}
\end{equation*}
$$

Remark 3.6. In our applications of these results we always have $f \in L^{q}$ for any $q>1$, so we can get any value of $p \geq 1$. If r can be taken close to 1 , then we can get any $p>0$.

Proof. First note that it will suffice to prove this result for $\delta=1$. For arbitrary $\delta>0, M_{\delta}^{d} f(x)>t$ is equival ent to $M^{d}\left(f^{\delta}\right)(x)>t^{\delta}$, so the general case follows if we replace f by f^{δ} and t by t^{δ}.

Second, we may assume that u is bounded and has compact support. To see that the general case follows, fix a weight u and let $u_{k}=\min (u, k) \chi_{B(0, k)}$. Since u_{k} is bounded, inequalities (3.2) and (3.3) hold with u replaced by u_{k}. Since $\lim _{n} u_{k}=\sup _{n} u_{k}=u$, if we take the limit as n tends to infinity we may exchange limit and supremum and apply the monotone convergence theorem to get the desired result.

Fix $p, q / r^{\prime} \leq p<\infty$, and fix f. For each $t>0$, let $\Omega_{t}=\left\{x \in \mathbb{R}^{n}\right.$: $\left.M^{d} f(x)>t\right\}$. N ow fix $N=2^{n}+1$ (the reason for this choice will be clear below); by the Calderón-Zygmund decomposition, Lemma 2.1, $\Omega_{N t}=\cup_{k} C_{k}^{N t}$ and $\Omega_{t}=\cup_{i} C_{i}^{t}$. By maximality, for each $k, C_{k}^{N t} \subset C_{i}^{t}$ for some i. By Lemma 3.2, Conditions (2) and (3),

$$
\begin{aligned}
t^{p} u\left(\Omega_{N t}\right) & =t^{p} \sum_{k} u\left(C_{k}^{N t}\right) \\
& \leq t^{p} \sum_{k} A_{u}^{r}\left(C_{k}^{N t}\right) \\
& =t^{p} \sum_{i} \sum_{C_{k}^{N t} \subset C_{i}^{t}} A_{u}^{r}\left(C_{k}^{N t}\right) \\
& \leq t^{p} \sum_{i} A_{u}^{r}\left(\Omega_{N t} \cap C_{i}^{t}\right) .
\end{aligned}
$$

Fix $\varepsilon<N^{-p r^{\prime}}$; again the reason for this choice will be clear below. Dividethe indices i into two sets: $i \in F$ if

$$
\frac{1}{\left|C_{i}^{t}\right|} \int_{C_{i}^{t}}\left|f-f_{C_{i}^{t}}\right| d x \leq \varepsilon t,
$$

and $i \in G$ if the opposite inequality holds. The cubes $\left\{C_{i}^{t}: i \in G\right\}$ are the cubes in the conclusion of the theorem, and we relabel them $\left\{Q_{j}^{t}\right\}$.

If $i \in F$, then we claim that

$$
A_{u}^{r}\left(\Omega_{N t} \cap C_{i}^{t}\right) \leq \varepsilon^{1 / r^{\prime}} A_{u}^{r}\left(C_{i}^{t}\right) .
$$

By Lemma 3.2, Condition (1), it will suffice to show that

$$
\left|\Omega_{N t} \cap C_{i}^{t}\right| \leq \varepsilon\left|C_{i}^{t}\right| .
$$

By the maximality of the C alderón-Zygmund decomposition, if $x \in \Omega_{N t} \cap C_{i}^{t}$, then

$$
M^{d} f(x)=M^{d}\left(f X_{\mathcal{C}_{i}^{t}}\right)(x)
$$

H ence,

$$
\begin{aligned}
\Omega_{N t} \cap C_{i}^{t} & =\left\{x \in C_{i}^{t}: M^{d}\left(f \chi_{C_{i}^{t}}\right)(x)>N t\right\} \\
& =\left\{x \in C_{i}^{t}: M^{d}\left(f \chi_{C_{i}^{t}}\right)(x)-f_{C_{i}^{t}}>N t-f_{C_{i}^{t}}\right\} \\
& \subset\left\{x \in C_{i}^{t}: M^{d}\left(\left|f-f_{C_{i}^{t}}\right| \chi_{C_{i}^{t}}\right)(x)>t\right\} .
\end{aligned}
$$

Since the dyadic maximal operator is weak-type $(1,1)$ with constant 1 (see Journé [16, p. 10]), and since $i \in F$,

$$
\left|\Omega_{N t} \cap C_{i}^{t}\right| \leq \frac{1}{t} \int_{C_{i}^{t}}\left|f-f_{C_{i}^{t}}\right| d x \leq \varepsilon\left|C_{i}^{t}\right| .
$$

Therefore, we have shown that

$$
\begin{align*}
t^{p} \sum_{k} A_{u}^{r}\left(C_{k}^{N t}\right) & \leq t^{p} \sum_{i} A_{u}^{r}\left(\Omega_{N t} \cap C_{i}^{t}\right) \tag{3.4}\\
& \leq t^{p} \sum_{i \in F} A_{u}^{r}\left(C_{i}^{t}\right)+t^{p} \sum_{i \in G} A_{u}^{r}\left(C_{i}^{t}\right) \\
& \leq \varepsilon^{1 / r^{\prime}} t^{p} \sum_{i} A_{u}^{r}\left(C_{i}^{t}\right)+t^{p} \sum_{j} A_{u}^{r}\left(Q_{j}^{t}\right) .
\end{align*}
$$

Therefore, if we take the supremum of (3.5) over $0<t<M$ and the supre mum of (3.4) over $0<t<M / N$, we get

$$
\sup _{0<t<M / N} t^{p} \sum_{k} A_{u}^{r}\left(C_{k}^{N t}\right) \leq \sup _{0<t<M} \varepsilon^{1 / r^{\prime}} t^{p} \sum_{i} A_{u}^{r}\left(C_{i}^{t}\right)+\sup _{0<t<M} t^{p} \sum_{j} A_{u}^{r}\left(Q_{j}^{t}\right) ;
$$

equivalently,

$$
\sup _{0<t<M} t^{p} \sum_{i} A_{u}^{r}\left(C_{i}^{t}\right) \leq \varepsilon^{1 / r^{\prime}} N^{p} \sup _{0<t<M} t^{p} \sum_{i} A_{u}^{r}\left(C_{i}^{t}\right)+N^{p} \sup _{0<t<M} t^{p} \sum_{j} A_{u}^{r}\left(Q_{j}^{t}\right) .
$$

To get the desired inequality we need to re-arrange terms; to do this we need to show that for each $M>0$,

$$
\sup _{0<t<M} t^{p} \sum_{i} A_{u}^{r}\left(C_{i}^{t}\right)<\infty .
$$

But for fixed t, by Condition (3) of Lemma 3.2 and the definition of A_{u}^{r},

$$
t^{p} \sum_{i} A_{u}^{r}\left(C_{i}^{t}\right) \leq t^{p} A_{u}^{r}\left(\Omega_{t}\right)=t^{p}\left|\Omega_{t}\right|^{1 / r^{\prime}}\left(\int_{\Omega_{t}} u^{r} d x\right)^{1 / r} .
$$

Let B be the support of u; by assumption $|B|<\infty$. Further, u is bounded. Therefore,

$$
t^{p} \sum_{i} A_{u}^{r}\left(C_{i}^{t}\right) \leq|B|^{1 / r}\|u\|_{\infty} t^{p}\left|\Omega_{t}\right|^{1 / r^{\prime}}
$$

Since $f \in L^{q}$, by the weak (q, q) inequality for the dyadic maximal operator,

$$
t^{p} \sum_{i} A_{u}^{r}\left(C_{i}^{t}\right) \leq|B|^{1 / r}\|u\|_{\infty} t^{p-q / r^{\prime}}\|f\|_{q}^{q / r^{\prime}} .
$$

Therefore, since $p-q / r^{\prime} \geq 0$,

$$
\sup _{0<t<M} t^{p} \sum_{i} A_{u}^{r}\left(C_{i}^{t}\right)<|B|^{1 / r}\|u\|_{\infty} M^{p-q / r^{\prime}}\|f\|_{q}^{1 / r^{\prime}}<\infty .
$$

Thus we can re-arrange terms; since $\varepsilon<N^{-p r^{\prime}}$, we get

$$
\begin{aligned}
\sup _{0<t<M} t^{p} u\left(\left\{x \in \mathbb{R}^{n}: M^{d} f(x)>t\right\}\right) & \leq \sup _{0<t<M} t^{p} \sum_{i} A_{u}^{r}\left(C_{i}^{t}\right) \\
& \leq \frac{N^{p}}{1-\varepsilon^{1 / r^{\prime}} N^{p}} \sup _{0<t<M} t^{p} \sum_{j} A_{u}^{r}\left(Q_{j}^{t}\right)
\end{aligned}
$$

Since this holds for all $M>0$, if we take the limit as M tends to infinity, we get inequalities (3.2) and (3.3).

4. Fractional integral operators

In this section we prove T heorem 1.1. The proof depends on three lemmas; the first two are due to Sawyer and W heeden [28].

Lemma 4.1. Given a non-negative function f and $\alpha, 0<\alpha<n$, there exists a constant C_{α}, depending only on α and n, such that for any cube Q_{0},

$$
\sum_{Q \in \Delta\left(Q_{0}\right)}|Q|^{\alpha / n} \int_{Q} f d x \leq C_{\alpha}\left|Q_{0}\right|^{\alpha / n} \int_{Q_{0}} f d x
$$

Definition 4.2. Given $\alpha, 0<\alpha<n$, and $z \in \mathbb{R}^{n}$, define the translated dyadic fractional integral operator $I_{\alpha, z}^{d}$ by

$$
I_{\alpha, z}^{d} f(x)=\sum_{\substack{Q+z \in \Delta \\ Q \ni x}}|Q|^{\alpha / n-1} \int_{Q} f d y .
$$

If $z=0$, we write I_{α}^{d} for $I_{\alpha, 0}^{d}$.
Lemma 4.3. Given a weight $u, \alpha, 0<\alpha<n$, and $p, 1<p<\infty$, then there existsa constant C such that for every function f,

$$
\sup _{t>0} t^{p} u\left(\left\{x \in \mathbb{R}^{n}:\left|I_{\alpha} f(x)\right|>t\right\}\right) \leq C \sup _{z \in \mathbb{R}^{n}} \sup _{t>0} t^{p} u\left(\left\{x \in \mathbb{R}^{n}:\left|I_{\alpha, z}^{d} f(x)\right|>t\right\}\right) .
$$

Lemma 4.4. Given $\alpha, 0<\alpha<n$, there exists a constant D_{α} such that for any function f, dyadic cube Q_{0} and $x \in Q_{0}$,

$$
\frac{1}{\left|Q_{0}\right|} \int_{Q_{0}}\left|I_{\alpha}^{d} f-\left(I_{\alpha}^{d} f\right)_{Q_{0}}\right| d x \leq D_{\alpha} M_{\alpha}^{d} f(x) .
$$

Proof. By the definition of I_{α}^{d}, for $x \in Q_{0}$,

$$
I_{\alpha}^{d} f(x)=\sum_{\substack{x \in Q \in \Delta \\ Q \in Q_{0}}}|Q|^{\alpha / n-1} \int_{Q} f d x+\sum_{\substack{Q \in \Delta \\ Q_{0} \leq Q}}|Q|^{\alpha / n-1} \int_{Q} f d x ;
$$

hence,

$$
\frac{1}{\left|Q_{0}\right|} \int_{Q_{0}} I_{\alpha}^{d} f d x=\frac{1}{\left|Q_{0}\right|} \sum_{\substack{Q \in \Delta \\ Q \subset Q_{0}}}|Q|^{\alpha / n} \int_{Q} f d x+\sum_{\substack{Q \in \Delta \\ Q_{0} \leq Q}}|Q|^{\alpha / n-1} \int_{Q} f d x .
$$

Therefore, by Lemma 4.1,

$$
\begin{aligned}
\frac{1}{\left|Q_{0}\right|} \int_{Q_{0}}\left|I_{\alpha}^{d} f-\left(I_{\alpha}^{d} f\right)_{Q_{0}}\right| d x & \leq \frac{2}{\left|Q_{0}\right|} \sum_{\substack{Q_{\in \Delta}^{Q \subset Q_{0}}}}|Q|^{\alpha / n} \int_{Q}|f| d x \\
& \leq 2 C_{\alpha}\left|Q_{0}\right|^{\alpha / n-1} \int_{Q_{0}}|f| d x \\
& \leq 2 C_{\alpha} M_{\alpha}^{d} f(x) .
\end{aligned}
$$

Proof. [Proof of Theorem 1.1] By Lemma 4.3, it will suffice to prove inequality (1.6) with I_{α} replaced by $I_{\alpha, z}^{d}$ and with a constant independent of z. In the proof that follows it will be clear that all the constants are independent of z, 50 in fact it will suffice to prove inequality (1.6) for I_{α}^{d}.

Since I_{α}^{d} is a positive operator, by a standard argument we may assume that f is non-negative, bounded and has compact support. Fix $p, 1<p<\infty$; then $I_{\alpha}^{d} f \in L^{q}$, where $q>1$ is such that $p \geq q / r^{\prime}$, so we can apply T heorem 3.4 to it. Let $\delta=1$. Then there exists $\varepsilon>0$ such that for each $t>0$ there exists a sequence of disjoint dyadic cubes $\left\{Q_{j}^{t}\right\}$ such that

$$
\begin{equation*}
\frac{1}{\left|Q_{j}^{t}\right|} \int_{Q_{j}^{t}}\left|I_{\alpha}^{d} f-\left(I_{\alpha}^{d} f\right)_{Q_{j}^{t}}\right| d x>\varepsilon t \tag{4.1}
\end{equation*}
$$

and (by the Lebesgue differentiation theorem)

$$
\begin{aligned}
\sup _{t>0} t^{p} u\left(\left\{x \in \mathbb{R}^{n}:\left|I_{\alpha}^{d} f(x)\right|>t\right\}\right) & \leq \sup _{t>0} t^{p} u\left(\left\{x \in \mathbb{R}^{n}: M^{d}\left(I_{\alpha} f\right)(x)>t\right\}\right) \\
& \leq C \sup _{t>0} t^{p} \sum_{j} A_{u}^{r}\left(Q_{j}^{t}\right) .
\end{aligned}
$$

Fix t; then by Lemma 4.4, for each j,

$$
Q_{j}^{t} \subset\left\{x \in \mathbb{R}^{n}: M_{\alpha}^{d} f(x)>\varepsilon D_{\alpha}^{-1} t\right\} .
$$

By an argument analogous to that for the dyadic maximal operator (cf. Lemma 2.1), we can write the right-hand side as the union of disjoint dyadic cubes $\left\{P_{k}^{t}\right\}$ such that for each k,

$$
\left|P_{k}^{t}\right|^{\alpha / n-1} \int_{P_{k}^{t}} f d x>\varepsilon D_{\alpha}^{-1} t
$$

Further, the P_{k}^{t} 's are maximal with this property; in particular, for each j there exists k such that $Q_{j}^{t} \subset P_{k}^{t}$. Therefore, by Lemma 3.2, C ondition (3),

$$
\begin{aligned}
& t^{p} \sum_{j} A_{u}^{r}\left(Q_{j}^{t}\right) \\
& \quad=t^{p} \sum_{k} \sum_{Q_{j}^{t} \in P_{k}^{t}} A_{u}^{r}\left(Q_{j}^{t}\right) \leq t^{p} \sum_{k} A_{u}^{r}\left(P_{k}^{t}\right) \\
& \quad \leq\left(\varepsilon^{-1} D_{\alpha}\right)^{p} \sum_{k}\left|P_{k}^{t}\right|\left(\frac{1}{\left|P_{k}^{t}\right|} \int_{P_{k}^{t}} u^{r} d x\right)^{1 / r}\left(\left|P_{k}^{t}\right|^{\alpha / n-1} \int_{P_{k}^{t}} f d x\right)^{p} .
\end{aligned}
$$

By Hölder's inequality and inequality (1.5),

$$
\begin{aligned}
& \leq C \sum_{k}\left|P_{k}^{t}\right|^{\alpha p / n}\left(\frac{1}{\left|P_{k}^{t}\right|} \int_{P_{k}^{t}} u^{r} d x\right)^{1 / r}\left(\frac{1}{\left|P_{k}^{t}\right|} \int_{P_{k}^{t}} v^{-p^{\prime} / p} d x\right)^{p / p^{\prime}} \int_{P_{k}^{t}} f^{p} v d x \\
& \leq C \sum_{k} \int_{P_{k}^{t}} f^{p} v d x \leq C \int_{\mathbb{R}^{n}} f^{p} v d x .
\end{aligned}
$$

The constant is independent of t, so if we take the supremum over all $t>0$ we get inequality (1.6).

Remark 4.5. At the cost of a more complex argument similar to that for Calderón-Zygmund operators (cf. Lemma 5.1 below) we could dispense with the dyadic fractional integral operator and prove Theorem 1.1 directly for I_{α}. The key inequality is the non-dyadic analogue of Lemma 4.4 due to Adams [1]: $M^{\#}\left(I_{\alpha} f\right)(x) \leq C M_{\alpha} f(x)$.

5. Calderón-Zygmund operators

In this section we prove Theorem 1.2. Theproof is similar to that of T heorem 1.1, but is complicated by the fact that we cannot pass to an equivalent dyadic operator. To compensate we need the following lemma which is also needed in the proof of T heorem 1.6.

Lemma 5.1. Let B bea Young function. Suppose that for somefunction $f \in L^{q}$, $1 \leq q<\infty$, and for some $t>0$ there exist a constant $\mu, 0<\mu \leq 1$, and a collection of dyadic cubes $\left\{Q_{j}\right\}$ such that for each j,

$$
\left|Q_{j} \cap\left\{x \in \mathbb{R}^{n}: M_{B} f(x)>t\right\}\right| \geq \mu\left|Q_{j}\right| .
$$

Then there exists a constant $v>0$, depending on n and μ, and a subcollection $\left\{P_{k}\right\}$ of the Calderón-Zygmund decomposition with respect to B of f at height $v t,\left\{C_{i}^{v t}\right\}$, such that for each $j, Q_{j} \subset 3 P_{k}$ for some k.

If we replace M_{B} by M_{B}^{d} in the hypothesis, then we can strengthen the conclusion by finding P_{k} 's such that $Q_{j} \subset P_{k}$ and by letting $\mu=v$.

Proof. We first consider the non-dyadic case. By Lemma 2.1,

$$
E_{t}=\left\{x \in \mathbb{R}^{n}: M_{B} f(x)>t\right\} \subset \bigcup_{i} 3 C_{i}^{\gamma t}
$$

where $y=4^{-n}$. If we had $Q_{j} \subset 3 C_{i}^{\gamma t}$ for some i we would be done, but this need not be the case, even if $\mu=1$. However, for each j there is a collection of indices A_{j} such that

$$
Q_{j} \cap E_{t} \subset \bigcup_{i \in A_{j}} 3 C_{i}^{\gamma t} \quad \text { and } \quad 3 C_{i}^{\gamma t} \cap Q_{j} \neq \varnothing, \quad i \in A_{j}
$$

There are two possibilities: first, there exists $i \in A_{j}$ such that $\ell\left(Q_{j}\right) \leq \ell\left(3 C_{i}^{\gamma t}\right)$. Then $Q_{j} \subset 9 C_{i}^{\gamma t}$ and by inequality (2.1),

$$
\begin{aligned}
2\|f\|_{B, 9 C_{i}^{\gamma t}} & \geq \inf _{s>0}\left\{s+\frac{s}{\left|9 C_{i}^{\gamma t}\right|} \int_{9 C_{i}^{\gamma t}} B\left(\frac{|f|}{s}\right) d x\right\} \\
& \geq 9^{-n} \inf _{s>0}\left\{s+\frac{s}{\left|C_{i}^{\gamma t}\right|} \int_{C_{i}^{\gamma t}} B\left(\frac{|f|}{s}\right) d x\right\} \\
& =9^{-n}\|f\|_{B, C_{i}^{\gamma t}>9^{-n} \gamma t}
\end{aligned}
$$

Alternatively, $\ell\left(Q_{j}\right)>\ell\left(3 C_{i}^{\gamma t}\right)$ for all $i \in A_{j}$. But then for each $i \in A_{j}, 3 C_{i}^{\gamma t} \subset$ $3 Q_{j}$, and so

$$
\begin{aligned}
2\left|3 Q_{j}\right|\|f\|_{B, 3 Q_{j}} & \geq \inf _{s>0}\left\{s\left|3 Q_{j}\right|+s \int_{3 Q_{j}} B\left(\frac{|f|}{s}\right) d x\right\} \\
& \geq \sum_{i \in A_{j}} \inf _{s>0}\left\{s\left|C_{i}^{\gamma t}\right|+s \int_{C_{i}^{\gamma t}} B\left(\frac{|f|}{s}\right) d x\right\} \\
& =\sum_{i \in A_{j}}\left|C_{i}^{\gamma t}\right|\|f\|_{B, C_{i}^{\gamma t}}>3^{-n} \gamma t \sum_{i \in A_{j}}\left|3 C_{i}^{\gamma t}\right| \\
& \geq 3^{-n} \gamma t\left|Q_{j} \cap E_{t}\right| \geq 9^{-n} \mu \gamma t\left|3 Q_{j}\right| .
\end{aligned}
$$

So in either case, for each j there exists a cube \bar{Q}_{j} containing Q_{j} such that

$$
\|f\|_{B, \bar{Q}_{j}}>\frac{\mu \gamma t}{2 \cdot 9^{n}} .
$$

Now by the same argument that is used to prove the Calderón-Zygmund decomposition, Lemma 2.1, we can show that there exists a subcollection $\left\{P_{k}\right\}$ of $\left\{C_{i}^{\nu t}\right\}, v=\frac{1}{2} \mu \gamma 36^{-n}=\frac{1}{2} \mu 144^{-n}$, such that for each $j, Q_{j} \subset \bar{Q}_{j} \subset 3 P_{k}$ for some k. This completes the proof for M_{B}.

The proof in the dyadic case is very similar, but is simplified considerably by the fact that if two dyadic cubes intersect then one is contained in the other.

Proof. [Proof of Theorem 1.2] By a standard argument, we may assume that $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and has compact support. Fix $p, 1<p<\infty$; then $T f \in L^{q}$, where $q>1$ is such that $p \geq q / r^{\prime}$. Hence, we may apply T heorem 3.4 to it. Fix $\delta<1$. Then there exists $\varepsilon>0$ such that for each $t>0$ there exists a sequence of disjoint dyadic cubes $\left\{Q_{j}^{t}\right\}$ such that

$$
\left(\left.\left.\frac{1}{\left|Q_{j}^{t}\right|} \int_{Q_{j}^{t}}| | T f\right|^{\delta}-\left(|T f|^{\delta}\right)_{Q_{j}^{t}} \right\rvert\, d x\right)^{1 / \delta}>\varepsilon^{1 / \delta} t
$$

and

$$
\begin{aligned}
\sup _{t>0} t^{p} u\left(\left\{x \in \mathbb{R}^{n}:|T f(x)|>t\right\}\right) & \leq \sup _{t>0} t^{p} u\left(\left\{x \in \mathbb{R}^{n}: M_{\delta}^{d}(T f)(x)>t\right\}\right) \\
& \leq C \sup _{t>0} t^{p} \sum_{j} A_{u}^{r}\left(Q_{j}^{t}\right) .
\end{aligned}
$$

As we noted in the Introduction, T satisfies inequality (1.9). Therefore, for each j,

$$
Q_{j}^{t} \subset\left\{x \in \mathbb{R}^{n}: M_{\delta}^{\#}(T f)(x)>\varepsilon^{1 / \delta} t\right\} \subset\left\{x \in \mathbb{R}^{n}: M f(x)>\beta t\right\},
$$

where $\beta=C_{\delta}^{-1} \varepsilon^{1 / \delta}$.
By Lemma 5.1 (with $\mu=1$), for each $t>0$ there exists a sequence of disjoint dyadic cubes $\left\{P_{k}^{t}\right\}$ such that for each $j, Q_{j}^{t} \subset 3 P_{k}^{t}$ for some k, and such that

$$
\frac{1}{\left|P_{k}^{t}\right|} \int_{P_{k}^{t}}|f| d x>\rho t
$$

where $\rho>0$ depends only on β and n. Then by Lemma 3.2, Condition (3), for each $t>0$,

$$
\begin{aligned}
& t^{p} \sum_{j} A_{u}^{r}\left(Q_{j}^{t}\right) \\
& \quad=t^{p} \sum_{k} \sum_{Q_{j}^{t} \subset 3 P_{k}^{t}} A_{u}^{r}\left(Q_{j}^{t}\right) \\
& \quad \leq t^{p} \sum_{k} A_{u}^{r}\left(3 P_{k}^{t}\right) \\
& \quad \leq \rho^{-p} \sum_{k}\left|3 P_{k}^{t}\right|\left(\frac{1}{\left|3 P_{k}^{t}\right|} \int_{3 P_{k}^{t}} u^{r} d x\right)^{1 / r}\left(\frac{1}{\left|P_{k}^{t}\right|} \int_{P_{k}^{t}}|f| d x\right)^{p} .
\end{aligned}
$$

By Hölder's inequality and inequality (1.7),

$$
\begin{aligned}
& \leq C \sum_{k}\left(\frac{1}{\left|3 P_{k}^{t}\right|} \int_{3 P_{k}^{t}} u^{r} d x\right)^{1 / r}\left(\frac{1}{\left|3 P_{k}^{t}\right|} \int_{3 P_{k}^{t}} v^{-p^{\prime} \mid p} d x\right)^{p / p^{\prime}} \int_{P_{k}^{t}}|f|^{p} v d x \\
& \leq C \sum_{k} \int_{P_{k}^{t}}|f|^{p} v d x \\
& \leq C \int_{\mathbb{R}^{n}}|f|^{p} v d x .
\end{aligned}
$$

The constant is independent of t, so if we take the supremum over all $t>0$ we get inequality (1.8). This completes our proof.

6. COMMUTATORS

In this section we prove Theorem 1.6. The proof depends on Theorem 1.2 and the following analogue of inequality (1.9) for commutators.

Lemma 6.1. Given a Calderón-Zygmund operator T, a function b in BM O , constants δ_{0} and $\delta_{1}, 0<\delta_{0}<\delta_{1}<1$, and $k \geq 1$, there exists a constant K, depending on the BMO norm of b, such that for every function $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and any $x \in \mathbb{R}^{n}$,

$$
M_{\delta_{0}}^{\#, d}\left(C_{b}^{k} f\right)(x) \leq K \sum_{i=0}^{k-1} M_{\delta_{1}}^{d}\left(C_{b}^{i} f\right)(x)+K M^{k+1} f(x) .
$$

This result is found in [23, 24]. As given there, the non-dyadic maximal operator appears in the first term on the right-hand side, but it is immediate from the proof that it is still true with the dyadic maximal operator there.

Proof. [Proof of Theorem 1.6] When $k=0$, Theorem 1.6 reduces to Theorem 1.2, so we may fix $k \geq 1$. By a standard argument we may assume that $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and has compact support. Fix $p, 1<p<\infty$; then $C_{b}^{i} f \in L^{q}$, where $0 \leq i \leq k$ and $q>1$ is such that $p \geq q / r^{\prime}$. Hence, we may apply Theorem 3.4 to $C_{b}^{k} f$. Fix δ_{0} and $\delta_{1}, 0<\delta_{0}<\delta_{1}<1$. Then there exists $\varepsilon>0$ such that for each $t>0$ there exists a sequence of disjoint dyadic cubes $\left\{Q_{j}^{t}\right\}$ such that

$$
\left(\left.\left.\frac{1}{\left|Q_{j}^{t}\right|} \int_{Q_{j}^{t}}| | C_{b}^{k} f\right|^{\delta_{0}}-\left(\left|C_{b}^{k} f\right|^{\delta_{0}}\right)_{Q_{j}^{t}} \right\rvert\, d x\right)^{1 / \delta_{0}}>\varepsilon^{1 / \delta_{0}} t
$$

and

$$
\begin{aligned}
\sup _{t>0} t^{p} u\left(\left\{x \in \mathbb{R}^{n}:\left|C_{b}^{k} f(x)\right|>t\right\}\right) & \leq \sup _{t>0} t^{p} u\left(\left\{x \in \mathbb{R}^{n}: M_{\delta_{0}}^{d}\left(C_{b}^{k} f\right)(x)>t\right\}\right) \\
& \leq C \sup _{t>0} t^{p} \sum_{j} A_{u}^{r}\left(Q_{j}^{t}\right) .
\end{aligned}
$$

By Lemma 6.1, for each j and t,

$$
\begin{aligned}
Q_{j}^{t} \subset & \bigcup_{i=1}^{k-1}\left\{x \in \mathbb{R}^{n}: M_{\delta_{1}}^{d}\left(C_{b}^{i} f\right)(x)>\beta t\right\} \\
& \cup\left\{x \in \mathbb{R}^{n}: M_{\delta_{1}}^{d}(T f)(x)>\beta t\right\} \\
& \cup\left\{x \in \mathbb{R}^{n}: M^{k+1} f(x)>\beta t\right\} \\
\equiv & \left(\bigcup_{i=1}^{k-1} F_{i}^{\beta t}\right) \cup F_{0}^{\beta t} \cup F_{k}^{\beta t},
\end{aligned}
$$

where $\beta=\varepsilon^{1 / \delta_{0}} K^{-1}(k+1)^{-1}$. For each j and t we cannot have that $\left|Q_{j}^{t} \cap F_{i}^{\beta t}\right|<$ $(k+1)^{-1}\left|Q_{j}^{t}\right|$ for all i. Hence, for some $i,\left|Q_{j}^{t} \cap F_{i}^{\beta t}\right| \geq(k+1)^{-1}\left|Q_{j}^{t}\right|$; if this is the case, we write $Q_{j}^{t} \in \mathcal{F}_{i}^{\beta t}$. Thus,

$$
\sup _{t>0} t^{p} \sum_{j} A_{u}^{r}\left(Q_{j}^{t}\right) \leq \sum_{i=0}^{k} \sup _{t>0} t^{p} \sum_{Q_{j}^{t} \in \mathcal{F}_{i}^{\beta t}} A_{u}^{r}\left(Q_{j}^{t}\right) .
$$

To complete the proof we will show that each term of the outer sum on the right-hand side is dominated by

$$
C \int_{\mathbb{R}^{n}}|f|^{p} v d x
$$

There are three cases.
\triangleright Case 1: Cubes in $\mathcal{F}_{k}^{\beta t}$. As we noted in Section 2, there exists a constant $\beta^{\prime}>0$ such that

$$
\left\{x \in \mathbb{R}^{n}: M^{k+1} f(x)>\beta t\right\} \subset\left\{x \in \mathbb{R}^{n}: M_{B} f(x)>\beta^{\prime} t\right\}
$$

where $B(t)=t \log (e+t)^{k}$. Therefore, by Lemma 5.1 (with $\mu=(k+1)^{-1}$), there exists a constant $v>0$ such that, for each $t>0$ there exists a collection of disjoint dyadic cubes $\left\{P_{\ell}^{t}\right\}$ such that for each $j, Q_{j}^{t} \subset 3 P_{\ell}^{t}$ for some ℓ and such that $\|f\|_{B, P_{\ell}^{t}}>v t$. We now proceed exactly as we did at the end of the proof of Theorem 1.2. Since $C_{k}(t)=t^{p^{\prime}} \log (e+t)^{k p^{\prime}}, C_{k}^{-1}(t) \approx t^{1 / p^{\prime}} \log (e+t)^{-k}$,
and so $t^{1 / p} C_{k}^{-1}(t) \leq B^{-1}(t)$. Then, by Lemma 3.2, Conditions (2) and (3), the generalized H ölder's inequality (2.3) and inequality (1.11),

$$
\begin{aligned}
& \sup _{t>0} t^{p} \sum_{Q_{j}^{t} \in \mathcal{F}_{k}^{\beta t}} A_{u}^{r}\left(Q_{j}^{t}\right) \\
& \quad \leq \sup _{t>0} t^{p} \sum_{\ell} A_{u}^{r}\left(3 P_{\ell}^{t}\right) \\
& \quad \leq C \sup _{t>0} \sum_{\ell}\left|3 P_{\ell}^{t}\right|\left(\frac{1}{\left|3 P_{\ell}^{t}\right|} \int_{3 P_{\ell}^{t}} u^{r} d x\right)^{1 / r}\|f\|_{B, P_{\ell}^{t}}^{p} \\
& \quad \leq C \sup _{t>0} \sum_{\ell}\left(\frac{1}{\left|3 P_{\ell}^{t}\right|} \int_{3 P_{\ell}^{t}} u^{r} d x\right)^{1 / r}\left\|v^{-1 / p}\right\|_{C_{k}, P_{\ell}^{t}}^{p} \int_{P_{\ell}^{t}}|f|^{p} v d x \\
& \quad \leq C \sup _{t>0} \sum_{\ell}\left(\frac{1}{\left|3 P_{\ell}^{t}\right|} \int_{3 P_{\ell}^{t}} u^{r} d x\right)^{1 / r}\left\|v^{-1 / p}\right\|_{C_{k}, 3 P_{\ell}^{t}}^{p} \int_{P_{\ell}^{t}}|f|^{p} v d x \\
& \quad \leq C \sup _{t>0} \sum_{\ell} \int_{P_{\ell}^{t}}|f|^{p} v d x \\
& \quad \leq C \int_{\mathbb{R}^{n}}|f|^{p} v d x .
\end{aligned}
$$

\triangleright Case 2: Cubes in $\mathcal{F}_{0}^{\beta t}$. Given $t>0$, let $s=(\beta t)^{\delta_{1}}$. Again by Lemma 5.1 (the dyadic case), if $Q_{j}^{t} \in \mathcal{F}_{0}^{\beta t}$, then for some $i, Q_{j}^{t} \subset C_{i}^{s}$, where $\left\{C_{i}^{s}\right\}$ is the C alderón-Zygmund decomposition of $|T f|^{\delta_{1}}$ at height s. Hence, by Lemma 3.2, Conditions (2) and (3),

$$
\sup _{t>0} t^{p} \sum_{Q_{j}^{t} \in \mathcal{F}_{0}^{\beta t}} A_{u}^{r}\left(Q_{j}^{t}\right) \leq \sup _{t>0} t^{p} \sum_{i} A_{u}^{r}\left(C_{i}^{s}\right) .
$$

By Corollary 3.5, there exist $\varepsilon>0$ and a subcollection $\left\{\bar{Q}_{j}^{t}\right\}$ of $\left\{C_{i}^{s}\right\}$ such that if $x \in \bar{Q}_{j}^{t}$, then $M_{\delta_{1}}^{\#, d}(T f)(x)>\beta^{\prime \prime} t$, where $\beta^{\prime \prime}=\varepsilon^{1 / \delta_{1}} \beta$, and such that

$$
\sup _{t>0} t^{p} \sum_{i} A_{u}^{r}\left(C_{i}^{s}\right) \leq C \sup _{t>0} t^{p} \sum_{j} A_{u}^{r}\left(\bar{Q}_{j}^{t}\right) .
$$

We can now argue exactly as we did in the proof of Theorem 1.2 to get

$$
\sup _{t>0} t^{p} \sum_{Q_{j}^{t} \in \mathcal{F}_{0}^{\beta t}} A_{u}^{r}\left(Q_{j}^{t}\right) \leq C \int_{\mathbb{R}^{n}}|f|^{p} v d x .
$$

\triangleright Case 3: Cubes in $\mathcal{F}_{i}^{\beta t}, 1 \leq i \leq k-1$. Fix i; then arguing exactly as we did in Case 2, by Corollary 3.5 there exist $\varepsilon>0$ and a collection of disjoint dyadic cubes $\left\{\bar{Q}_{j}^{t}\right\}$ such that if $x \in \bar{Q}_{j}^{t}$, then $M_{\delta_{1}}^{\#}\left(C_{b}^{i} f\right)(x)>\beta^{\prime \prime} t$, where $\beta^{\prime \prime}=\varepsilon^{1 / \delta_{1}} \beta$, and such that

$$
\sup _{t>0} t^{p} \sum_{Q_{j}^{t} \in \mathcal{F}_{i}^{\beta t}} A_{u}^{r}\left(Q_{j}^{t}\right) \leq C \sup _{t>0} t^{p} \sum_{j} A_{u}^{r}\left(\bar{Q}_{j}^{t}\right) .
$$

We now apply Lemma 6.1 and repeat the argument at the beginning of this proof. When we do so we reduce the degree of the highest order commutator appearing from i to $i-1$. Therefore, after repeating our argument a finite number of times, we will reduce to collections of cubes satisfying conditions such as those in Case 1 and Case 2. Repeating those arguments will then give us the desired inequality.

Acknowledgement. We would like to thank E. Sawyer for sharing with the second author an unpublished manuscript which suggested our approach. We would also like to thank the referee for pointing out an error in Theorem 1.6. The first author was supported by a Ford Foundation fellowship; the second author by D GICYT Grant PB40192, Spain. The second author is also grateful for the invitation and hospitality of the C entre de Recerca M atemàtica, Barcelona, where this work was completed.

R.eferences

[1] D.R. Adam S, A note on Ries potentials, Duke M ath. J. 42 (1975), 765-778.
[2] J. Alvarez, R. Bagby, D. Kurtz \& C. Pérez, Weighted estimates for commutators of linear operators, Studia M ath. 104 (1993), 195-209.
[3] J. Alvarez \& C. Pérez, Estimates with A_{∞} weights for various singular integral operators, Bollettino U.M .I. (7) 8-A (1994), 123-133.
[4] C. Ben nett \& R. Sh arpley, Interpolation of Operators, Academic Press, N ew York, 1988.
[5] M. Carozza \& A. Passarelli di Napoli, Composition of maximal operators, Publ. Mat. 40 (1996), 397-409.
[6] M. C HRIST, Lectures on Singular Integral O perators, CBM S Regional C onference Series in M athematics, Volume 77, Amer. M ath. Soc., Providence, 1990.
[7] R. CoIFM AN , Distribution function inequalities for singular integrals, Proc. Acad. Sci. U.S.A. 69 (1972), 2838-2839.
[8] R. Coifman \& Y. M eyer, Au delà des opérateurs pseudo-différentiels, Astérisque 57 (1979), 1-84.
[9] R. Coifman, R. Rochberg \& G. Weiss, Factorization theorems for H ardy spaces in several variables, Ann. of M ath. 103 (1976), 611-635.
[10] D. Cruz-U Ribe, SFO \& A. Fiorenza, The A_{∞} property for Young functions and weighted norm inequalities, preprint.
[11] D. Cruz-U ribe, SFO \& C. PÉrez, Sharp two-weight, weak-typenorm inequalitiesfor singular integral operators, M ath. Res. Let. 6 (1999), 417-428.
[12] C. Fefferm an , Inequalities for strongly singular convolution operators, Acta M ath. $\mathbf{1 2 4}$ (1970), 9-36.
[13] C. Fefferm An \& E.M. Stein, H^{p} spaces in several variables, Acta Math. 129 (1972), 137193.
[14] J. García-Cuerva \& J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, N orth-H olland M ath. Studies Volume 116, N orth H olland, Amsterdam, 1985.
[15] L. H ÖRM AN D ER, Pseudo-différential operators and hypoelliptic equations, Proc. Symp. Pure M ath 10 (1967), 138-183.
[16] J.-L. Journé, Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of C alderón, Lecture N otes in M athematics, Volume 994, Springer Verlag, N ew York, 1983.
[17] M.A. Krasnosel'skil̆ \& Ya.B. RutickiĬ, Convex Functionsand Orlicz Spaces, P. N oordhoff, Gröningen, 1961.
[18] C.J. Neugebau ER, Inserting A_{p}-weights, Proc. Amer. M ath. Soc. 87 (1983), 644-648.
[19] R. O 'N EIL, Fractional integration in Orlicz spaces, Trans. Amer. M ath. Soc. 115 (1963), 300328.
[20] C. PÉrez, Weighted norm inequalities for singular integral operators, J. London Math. Soc. 49 (1994), 296-308.
[21] _, Two weighted inequalities for potential and fractional type maximal operators, Indiana M ath. J. 43 (1994), 663-683.
[22] \qquad On sufficient conditions for the boundedness of the H ardy-Littlewood maximal operator between weighted L^{p}-spaces with different weights, Proc. London M ath. Soc. 71 (1995), 135-57.
[23] \qquad Endpoint estimates for commutators of singular integral operators, J. Func. Anal. 128 (1995), 163-185.
[24] _ Sharp etimates for commutators of singular integrals via iterations of the H ardy-Littlew ood maximal function, J. Fourier Anal. Appl. 3 (1997), 743-756.
[25] D.H. Phong \& E.M. Stein, Hilbert integrals, singular integrals and Radon transforms, Acta M ath. 157 (1985), 99-157.
[26] M .M . Rao \& Z.D. Ren , Theory of Orlicz Spaces, M arcel Dekker, New York, 1991.
[27] E.T. SAW YER, A two weight weak type inequality for fractional integrals, Trans. Amer. M ath. Soc. 281 (1984), 339-345.
[28] E.T. Saw yer \& R. W heeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. M ath. 114 (1992), 813-874.
[29] C. SEGOVIA \& J.L. Torrea, Weighted inequalities for commutators of fractional and singular integrals, Publ. M at. 35 (1991), 209-235.
[30] E.M . Stein, N ote on the classL logL, Studia M ath. 32 (1969), 305-310.
[31] \qquad , Singular Integralsand Differentiability Properties of Functions, Princeton University Press, Princeton, 1970.
D. Cruz-Uribe, SFO

D epartment of M athematics, Trinity C ollege
H artford, CT 06106-3100, U. S. A.
Em AIL: david.cruzuribe@mail.trincoll.edu
C. Pérez

D epartimento de M atemáticas
Universidad Autónoma de M adrid
28049 M adrid, Spain
Em AIL: carlos.perez@uam.es

Subject Classification: 42B20, 42B25
KEYWORDS: weights, weak-type inequalities, fractional integral operators, C alderón-Zygmund operators, commutators

Submitted: April 23rd, 1999, revised: M arch 3rd, 2000.

