
ar
X

iv
:0

80
9.

09
48

v1
 [

m
at

h.
G

R
]

 5
 S

ep
 2

00
8

Solving the conjugacy problem in Garside groups

by cyclic sliding

Volker Gebhardt∗ Juan González-Meneses∗,†

September 4, 2008

Abstract

We present a solution to the conjugacy decision problem and the conjugacy search problem

in Garside groups, which is theoretically simpler than the usual one, with no loss of efficiency.

This is done by replacing the well known cycling and decycling operations by a new one,

called cyclic sliding, which appears to be a more natural choice.

We give an analysis of the complexity of our algorithm in terms of fundamental operations

with simple elements, so our analysis is valid for every Garside group. This paper intends to

be self-contained, not requiring any previous knowledge of prior algorithms, and includes all

the details for the algorithm to be implemented on a computer.

1 Introduction

The Conjugacy Decision Problem (CDP) for a group G is the decision problem of determining,
given any two elements a, b ∈ G, whether a and b are conjugate in G. The Conjugacy Search
Problem (CSP), on the other hand, requires to compute for any two given conjugate elements
a, b ∈ G a conjugating element c such that c−1ac = b. (We will also write ac = b.)

In this paper we will describe a new algorithm to solve both problems in Garside groups (of finite
type). The simplicity of the algorithm will allow us to describe it completely in this introduction
in a ready-to-implement manner. The main difference to established algorithms is the use of an
operation called cyclic sliding, which is a special kind of conjugation introduced in [11]. Cyclic
sliding assumes the role played by cycling and decycling in previous algorithms.

Cyclic sliding will be motivated and explained in §1.2, but it can be defined right now. One just
needs to recall the following notions in a Garside group G, which are well known to specialists.
Firstly, G admits a partial order 4, and there is a special element ∆, called Garside element.
Given x ∈ G, inf(x) and sup(x) are the maximal and minimal integers, respectively, satisfying
∆inf(x) 4 x 4 ∆sup(x). Secondly, given a, b ∈ G, there is a unique greatest common divisor a ∧ b
with respect to 4. Finally, the elements in the set [1, ∆] = {s ∈ G | 1 4 s 4 ∆}, called simple
elements, generate G. We assume this set to be finite (that is, G is of finite type). It is well known
how to compute all the above data in a Garside group G of finite type, as we shall see.

∗Both authors partially supported by MTM2007-66929 and FEDER.
†This work was done partially while the second author was visiting the Institute for Mathematical Sciences,

National University of Singapore in 2007. The visit was supported by the Institute.

1

http://arXiv.org/abs/0809.0948v1

Using the above well known notions, we can define the following:

Definition 1.1 ([11]). Given x ∈ G, we define the preferred prefix p(x) of x as the simple
element

p(x) =
(
x∆− inf(x)

)
∧

(
x−1∆sup(x)

)
∧∆,

and we define the cyclic sliding s(x) of x as the conjugate of x by its preferred prefix, that is,

s(x) = xp(x) = p(x)−1x p(x).

This is enough to describe a simple algorithm to solve the conjugacy decision problem and the
conjugacy search problem in a Garside group of finite type. The algorithm we present now,
however, is by far not the best possible one. In §1.3 we will give a much better algorithm, which
requires some other notions besides the preferred prefix and the cyclic sliding. Nevertheless, the
simple version given here for illustration can be useful for theoretical purposes or for applying it
to small examples.

Algorithm 0: Solving the conjugacy problem in a Garside group G of finite type

Input: x, y ∈ G.
Output: - Whether x and y are conjugate.

- If x and y are conjugate, an element c such that xc = y.

1. Set x̃ = x, c1 = 1 and T = ∅.

2. While x̃ /∈ T , set T = T ∪ {x̃}, c1 = c1 · p(x̃) and x̃ = s(x̃).

3. Set ỹ = y, c2 = 1 and T = ∅.

4. While ỹ /∈ T , set T = T ∪ {ỹ}, c2 = c2 · p(ỹ) and ỹ = s(ỹ).

5. Set V = {x̃}, V ′ = {x̃} and cex = 1.

6. While V ′ 6= ∅, do:

(a) Take v ∈ V ′.

(b) For every simple element s, do:

i. If vs = ỹ, then set cey = cv · s. Return ‘x and y are conjugate by c1 · cey · c
−1
2 ’.

STOP.

ii. If vs /∈ V , then:

A. Apply iterated cyclic sliding to vs until the first repetition, say w.

B. If w = vs, then set cvs = cv · s, V = V ∪ {vs}, and V ′ = V ′ ∪ {vs}.

(c) Remove v from V ′.

7. Return ‘x and y are not conjugate’.

The set V computed by the above algorithm, called the set of sliding circuits of x and denoted
SC(x), was introduced in [11]. It is a finite invariant of the conjugacy class xG of x, that is, it is
a finite subset of xG and only depends on xG, not on x itself. This set SC(x) consists of those
conjugates of x which are stabilised by sk for some positive integer k and it is analogous to the
ultra summit set USS(x) from [10]. One has SC(x) ⊆ USS(x), and in general SC(x) is a proper
subset of USS(x).

2

The first two lines of the algorithm compute an element x̃ ∈ SC(x), by applying iterated cyclic
sliding until the first repetition is reached (which is x̃). A conjugating element c1 from x to x̃ is
also computed. The following two lines compute ỹ ∈ SC(y) and a conjugating element c2 from
y to ỹ in the same way. Then, the algorithm starts to compute the whole set SC(x). If during
the computation it finds ỹ as an element of SC(x), the algorithm stops and returns a conjugating
element from x to y. If this does not occur, that is, if the algorithm computes the whole set SC(x)
without finding ỹ in it, then it returns the message ‘x and y are not conjugate’.

The use of cyclic sliding not only allows to develop a simpler algorithmic solution to the CDP/CSP,
but also is of theoretical interest; we refer to [11] for details. It is shown there that the set of sliding
circuits has all the good properties of the ultra summit set, but is the more natural invariant in
many ways. In particular, the properties of the set of sliding circuits fully extend to the case
of elements of summit canonical length 1, which is not the case for ultra summit sets. Another
indication of the naturalness of the cyclic sliding operation is the fact that for super summit
elements which have a rigid conjugate, the (unique) minimal positive element yielding a rigid
conjugate is precisely the conjugating element obtained by iterated cyclic sliding.

The structure of this paper is as follows. In the introduction, we present our algorithm solving the
conjugacy problems in Garside groups in a ready-to-implement form. This presentation is kept as
concise as possible; explanations, motivations and the proof of correctness are postponed to later
sections. More precisely, in §1.1, we give a basic introduction to the theory of Garside groups;
specialists may skip this part. In §1.2 we briefly explain the new concepts from [11] which are
subsequently used for the detailed description of the algorithm in §1.3.

The rest of the paper is devoted to the explanation and analysis of the algorithm. §2 contains a
summary of results from [11] which are required in our discussion. In §3 the algorithm is explained
and shown to be correct. Finally, the complexity of the new algorithm is analysed in §4, where §4.1
discusses how the operations required for our algorithm can be realised, only assuming knowledge
of the lattice of simple elements.

1.1 Basic facts about Garside groups

Garside groups were defined by Dehornoy and Paris [5]. For a detailed introduction to these
groups, see [6]; a shorter introduction, containing all the details needed for this paper can be
found in [1] (§1.1 and the beginning of §1.2).

One of the possible definitions of a Garside group is the following. A group G is said to be
a Garside group with Garside structure (G, P, ∆) if it admits a submonoid P satisfying
P ∩P−1 = {1}, called the monoid of positive elements, and a special element ∆ ∈ P called the
Garside element, such that the following properties hold:

(G1) The partial order 4 defined on G by a 4 b ⇔ a−1b ∈ P (which is invariant under left
multiplication by definition) is a lattice order. That is, for every a, b ∈ G there are a
unique least common multiple a ∨ b and a unique greatest common divisor a ∧ b with
respect to 4.

(G2) The set [1, ∆] = {a ∈ G | 1 4 a 4 ∆}, called the set of simple elements, generates G.

(G3) Conjugation by ∆ preserves P (so it preserves the lattice order 4). That is, ∆−1P∆ = P .

(G4) For all x ∈ P\{1}, one has:

||x|| = sup{k | ∃ a1, . . . , ak ∈ P\{1} such that x = a1 · · ·ak} <∞.

3

Definition 1.2. A Garside structure (G, P, ∆) is said to be of finite type if the set of simple
elements [1, ∆] is finite. A group G is said to be a Garside group of finite type if it admits a
Garside structure of finite type.

Throughout this paper, let G be a Garside group of finite type with a fixed Garside structure
(G, P, ∆) of finite type.

Remarks:

1. By definition, p ∈ P ⇔ 1 4 p. Given two positive elements a 4 b, one usually says that a is
a prefix of b. Hence the simple elements are the positive prefixes of ∆.

2. The number ||x|| defined above for each x ∈ P\{1}, defines a norm in P (setting ||1|| = 0).
Note that the existence of this norm implies that every element in P\{1} can be written as
a product of atoms, where an atom is an element a ∈ P that cannot be decomposed in P ,
that is, a = bc with b, c ∈ P implies that either b = 1 or c = 1. In any decomposition of x
as a product of ||x|| factors in P\{1}, all of them are atoms. Notice that the set of atoms
generates G. Moreover, the set of atoms is finite if G is of finite type.

The main examples of Garside groups of finite type are Artin-Tits groups of spherical type. In
particular, braid groups are Garside groups. In the braid group Bn on n strands with the usual
Garside structure that we call Artin Garside structure of Bn, one has the following:

• The atoms are the standard generators σ1, . . . , σn−1.

• The positive elements are the braids that can be written as a word which only contains
positive powers of the atoms.

• The simple elements are the positive braids in which any two strands cross at most once.
One has |[1, ∆]| = n!, so this is a finite type Garside structure.

• The Garside element ∆ is the positive braid in which any two strands cross exactly once
(also called the half twist). That is, ∆ = σ1(σ2σ1)(σ3σ2σ1) · · · (σn−1 · · ·σ1).

Note that the monoid P induces not only a partial order 4 which is invariant under left mul-
tiplication, but also a partial order < which is invariant under right multiplication. The latter
is defined by a < b ⇔ ab−1 ∈ P . It is obvious from the definitions that a 4 b is equivalent to
a−1 < b−1. It follows from the properties of G that < is also a lattice order, that P is the set of
elements a such that a < 1, and that the simple elements are the positive suffixes of ∆ (where we
say that a positive element b is a suffix of a if a < b). We will denote by x ∧� y (resp. x ∨� y) the
greatest common divisor (resp. least common multiple) of x, y ∈ G with respect to <.

The following notions are well known to specialists in Garside groups:

Definition 1.3. Given a simple element s, the right complement of s is defined by ∂(s) = s−1∆,
and the left complement of s is ∂−1(s) = ∆ s−1.

Notice that the map ∂ : [1, ∆] → [1, ∆] is a bijection of the (finite) set [1, ∆]. Notice also that
∂2(s) = ∆−1s∆. We denote by τ the inner automorphism of G corresponding to conjugation
by ∆. Hence ∂2(s) = τ(s).

Definition 1.4. Given two simple elements a and b, we say that the decomposition a · b is left
weighted if ∂(a) ∧ b = 1 or, equivalently, if ab ∧∆ = a. We say that the decomposition a · b is
right weighted if a ∧� ∂−1(b) = 1 or, equivalently, if ab ∧� ∆ = b.

The process of bringing a product a · b of two two simple elements a and b into left weighted form
by replacing it with the product (as) · (s−1b), where s = ∂(a) ∧ b, is called a local left sliding or
simply a local sliding [11]. Local right sliding is defined analogously.

4

Definition 1.5. Given x ∈ G, we say that a decomposition x = ∆px1 · · ·xr, where p ∈ Z and
r ≥ 0, is the left normal form of x if xi ∈ [1, ∆]\{1, ∆} for i = 1, . . . , r and xixi+1 is a left
weighted decomposition for i = 1, . . . , r − 1. We say that a decomposition x = y1 · · · yr∆

p is the
right normal form of x if yi ∈ [1, ∆]\{1, ∆} for i = 1, . . . , r and yiyi+1 is a right weighted
decomposition for i = 1, . . . , r − 1.

It is well known that left and right normal forms of elements in G exist and are unique. (Proposi-
tion 4.2 recalls how to compute them based on local slidings.) Moreover, the numbers p and r do
not depend on the normal form (left or right) that we are considering.

Definition 1.6. Given x ∈ G, whose left normal form is ∆px1 · · ·xr and whose right normal form
is y1 · · · yr∆

p, we define the infimum, canonical length and supremum of x, respectively, by
inf(x) = p, ℓ(x) = r and sup(x) = p + r.

It is shown in [7] that inf(x) and sup(x) are precisely the maximal and minimal integers, re-
spectively, such that ∆inf(x) 4 x 4 ∆sup(x) (or, equivalently, ∆sup(x) < x < ∆inf(x)). More-
over, if x = ∆px1 · · ·xr is in left normal form, then the left normal form of x−1 is precisely
x−1 = ∆−(p+r) ∂−2(p+r)+1(xr) ∂−2(p+r−1)+1(xr−1) · · · ∂−2(p+1)+1(x1). An analogous relation
holds for the right normal forms of x and x−1. This implies in particular that inf(x−1) = − sup(x),
sup(x−1) = − inf(x) and ℓ(x−1) = ℓ(x).

Definition 1.7. Given x ∈ G , its (left) initial factor ι(x) is defined as ι(x) = x∆− inf(x) ∧ ∆
and its (left) final factor ϕ(x) is defined as ϕ(x) = (∆sup(x)−1 ∧ x)−1 x.

We remark that if ℓ(x) = r > 0, and ∆px1 · · ·xr is the left normal form of x, then ι(x) = τ−p(x1)
and ϕ(x) = xr. This explains the names given to these simple elements. Notice also that if
r = 0, that is, if x = ∆p, then ι(x) = 1 and ϕ(x) = ∆. From the relation between the normal
forms of x and x−1, we see that ι(x−1) = ∂(ϕ(x)). Right versions ι�(x) = ∆− inf(x)x ∧� ∆ and
ϕ�(x) = x (∆sup(x)−1 ∧� x)−1 can be defined analogously.

Definition 1.8. Let xG denote the conjugacy class of x in G and define the summit infimum
infs(x) respectively the summit supremum sups(x) of x by infs(x) = max{inf(y) | y ∈ xG} and
sups(x) = min{sup(y) | y ∈ xG}. The set SSS(x) = {y ∈ xG | inf(x) = infs(x), sup(y) = sups(x)}
is called the super summit set of x; the elements of SSS(x) are called super summit elements.

It is well known that SSS(x) ⊂ xG is non-empty and finite [7] and it is clear from the definition that
SSS(x) only depends on the conjugacy class of x. Since, by the above remark, inf(y−1) = − sup(y)
and sup(y−1) = − inf(y) for all y ∈ G, one has y ∈ SSS(x) if and only if y−1 ∈ SSS(x−1).

1.2 Cyclic sliding

Before explaining our algorithm, we need to describe the underlying operation called cyclic sliding
introduced in [11]. The use of cyclic sliding (instead of the well known cycling and decycling
operations) is what distinguishes the new algorithm from previously known ones. The cyclic
sliding operation will be motivated and explained in more detail in the following section. Here we
just give the technical definitions, so that they can be used in the algorithm. Recall that G is a
Garside group of finite type with a fixed finite type Garside structure (G, P, ∆).

Definition 1.9. Given x ∈ G, the preferred prefix p(x) of x is the simple element

p(x) =
(
x∆− inf(x)

)
∧

(
x−1∆sup(x)

)
∧∆ = ι(x) ∧ ι(x−1) = ι(x) ∧ ∂(ϕ(x)),

and the preferred suffix p�(x) of x is the simple element

p
�(x) =

(
∆− inf(x)x

)
∧�

(
∆sup(x)x−1

)
∧� ∆ = ι�(x) ∧� ι�(x−1) = ι�(x) ∧� ∂−1(ϕ�(x)).

5

Definition 1.10. Given x ∈ G, the cyclic left sliding s(x) of x is the conjugate of x by its
preferred prefix, that is,

s(x) = xp(x) = p(x)−1x p(x),

and the cyclic right sliding s�(x) of x is the conjugate of x by the inverse of its preferred suffix:

s
�(x) = xp

�(x)−1

= p
�(x) x p

�(x)−1.

If there is no possible confusion, we will call s(x) the cyclic sliding, or just the sliding of x.

It will be convenient to display conjugations in a graph-theoretical style. In this way, we shall
write u

s
−→ v if us = v for some u, s, v ∈ G. Hence we have:

x
p(x)
−−−−→ s(x) and x

p
�(x)
←−−−− s�(x).

Elements for which the preferred prefix (or the preferred suffix) is trivial behave particularly nicely
in may ways.

Definition 1.11. An element x ∈ G is called left rigid or just rigid if p(x) = 1. Similarly, x is
called right rigid if p�(x) = 1.

The concept of rigidity was introduced in [1] and some of the properties of rigid elements were
analysed there. It is obvious from the definition that left (respectively right) rigid elements are
fixed points for left (respectively right) cyclic sliding. The converse clearly is not true.

The main idea of our algorithm is the following: Iterated application of cyclic sliding sends any
element x ∈ G to a finite subset of its conjugacy class xG. This subset only depends on xG and
is, in general, small. Hence, it can be used to solve the CDP and the CSP efficiently. This set is
defined as follows:

Definition 1.12. We say that y ∈ G belongs to a sliding circuit if sm(y) = y for some m ≥ 1.
Given x ∈ G, we define the set of sliding circuits of x, denoted by SC(x), as the set of all
conjugates of x which belong to a sliding circuit.

Since the partial order 4 is invariant under τ , one has p(τ(y)) = τ(p(y)), whence τ and s commute.

In particular, one has y ∈ SC(x) if and only if y∆k

= τk(y) ∈ SC(x) for all k ∈ Z.

Our algorithm will not only compute the set SC(x), but also conjugating elements connecting the
elements of SC(x). Basically, it constructs a connected directed graph, whose vertices correspond
to the elements of SC(x) and whose arrows correspond to conjugating elements sending one given
element in SC(x) to another.

Definition 1.13. Given x ∈ G, the sliding circuits graph SCG(x) of x is the directed graph
whose set of vertices is SC(x) and whose arrows correspond to conjugating elements as follows:
There is an arrow which starts at u ∈ SC(x), ends at v ∈ SC(x) and is labelled by s ∈ P \ {1} if
and only if:

1. us = v.

2. s is an indecomposable conjugator, that is, s 6= 1 and there is no element t,

such that 1 ≺ t ≺ s and ut ∈ SC(x).

We remark that the label of each arrow is a simple element (see Corollary 2.11).

Finally, we need to define two operations that will be applied to the conjugating elements. They
are analogous to the ones defined in [10], and we use the same names.

6

Definition 1.14. Given x, α ∈ G, we define the transport of α at x under cyclic sliding as

α(1) = p(x)−1 α p(xα).

That is, α(1) is the conjugating element that makes the following diagram commutative, in the
sense that the conjugating element along any closed path is trivial:

x
p(x)
−−−−→ s(x)

α

y
yα(1)

xα −−−−→
p(xα)

s(xα)

Note that the horizontal rows in this diagram correspond to applications of cyclic sliding.

For an integer i > 1 we define recursively α(i) = (α(i−1))(1). Note that (α(i−1))(1) indicates the
transport of α(i−1) at si−1(x). We also define α(0) = α.

The above operation is a way to transport a conjugating element along a sliding path. However,
occasionally we will need to go backwards, in some sense, although the obtained element will not
necessarily be a pre-image under transport. In Section 3.3 we will define the pullback s(1) of a
positive element s at an element y = s(z) ∈ SC(x) via the properties of its transport at z and
define recursively s(i) = (s(i−1))(1) for any integer i > 1 and s(0) = s (Definition 3.10). The details
are somewhat technical and require some prior work, so we postpone them at this stage. At the
moment, we just need to know how to compute pullbacks in a certain special case; this is the
content of the following proposition which will be shown in Section 3.3:

Proposition 3.15. Let x ∈ G, z ∈ SC(x), y = s(z) and let s ∈ G be positive such that ys is super
summit. Then the pullback of s at y, as given in Definition 3.10, is

s(1) =
(
p(z) s p

�(ys)−1
)
∨ 1 .

Hence, s(1) = β ∨ 1, where β ∈ G is the element that makes the following diagram commutative,
in the sense that the conjugating element along any closed path is trivial:

z
p(z)
−−−−→ y

β

y
ys

s�(ys) −−−−→
p�(ys)

ys

1.3 The algorithm

In this subsection we will describe in detail our algorithm to solve the CDP and the CSP in a
Garside group G. The only requirement needed to implement it, which we assume to be fulfilled
for the given Garside group G, is to know the structure of the lattices of simple elements, with
respect to both 4 and <. More precisely, one should have the following:

1. A list containing the atoms, A = {a1, . . . , aλ}.

2. A function that, given a ∈ A and s ∈ [1, ∆], determines whether a 4 s and, in that case,
computes the simple element a−1s.

3. A function that, given a ∈ A and s ∈ [1, ∆], determines whether s < a and, in that case,
computes the simple element s a−1.

7

In Section 4.1 we will see how, provided the above requirements are fulfilled, one can compute
right and left complements, gcds and lcms, normal forms, preferred prefixes and suffixes, cyclic
slidings, transports and pullbacks.

The whole algorithm is divided into three parts, called Algorithms 1, 2 and 3. Algorithm 1
computes one element x̃ in the set SC(x), starting from an arbitrary element x ∈ G. The algorithm
also computes a conjugating element from x to x̃. Algorithm 2 computes the arrows in the
graph SCG(x) which start at a given vertex; this is necessary for computing the entire set SC(x).
Moreover, knowing all arrows of the graph will allow us to compute a conjugating element for
every pair of elements in SC(x). Finally, Algorithm 3 solves the CDP and the CSP in G using
Algorithms 1 and 2.

We remark that Algorithm 1 is a refinement of the algorithm in [7] to compute an element in
the so-called super summit set of x. Here we replace two kinds of conjugation, called cycling and
decycling, by a single kind of conjugation: cyclic sliding. This is one of the reasons that make our
algorithm simpler. Algorithm 2 is a modification of the analogous one given in [10], applied to
cyclic sliding instead of cycling. Algorithm 3 is not new, since it is implicitly or explicitly described
in [7, 9, 10] in the context of other invariant subsets of the conjugacy class, namely super summit
sets, super summit sets with minimal simple elements, respectively ultra summit sets. The set
SC(x) is a subset of all of these sets [11].

We recommend that the reader not try to understand the algorithms at a first reading. They will
be clarified in the following sections, where each particular step of the algorithms will be explained
in a more humane way. See §4.2 for remarks concerning efficient implementation of the algorithms.

Algorithm 1: Computing one element in SC(x)

Input: x ∈ G.
Output: x̃ ∈ SC(x) and c ∈ G such that xc = x̃.

1. Set x̃ = x, c = 1 and T = ∅.

2. While x̃ /∈ T , set T = T ∪ {x̃}, c = c · p(x̃) and x̃ = s(x̃).

3. Set y = s(x̃) and d = p(x̃).

4. While y 6= x̃, set d = d · p(y) and y = s(y).

5. Return x̃ and c = c d−1.

8

Algorithm 2: Computing the arrows in SCG(x) starting at a given vertex

Input: v ∈ SC(x).
Output: The set Av of arrows in the graph SCG(x) starting at v.

1. Compute the minimal integer N > 0 such that sN(v) = v.

2. List the atoms of G, say a1, . . . , aλ. Set Av = ∅ and Atoms = ∅.

3. For t = 1, . . . , λ do:

(a) Set s = at.

(b) While ℓ(vs) > ℓ(v), set s = s ·
(
1 ∨ (vs)−1∆inf(v) ∨ vs∆− sup(v)

)
.

(c) If at 4 p(v), then compute the iterated N -pullbacks s, s(N), s(2N), . . . until the first
repetition, say s(rN), and set s = s(rN).

(d) Compute the iterated N -transports s, s(N), s(2N), . . . until the first repetition, say s(jN).
Let i < j be such that s(iN) = s(jN).

(e) If at 4 s(mN) for some m with i ≤ m < j, then do:

i. If ak 64 s(mN) for all k = 1, . . . , λ such that either ak ∈ Atoms or k > t, then set
Av = Av ∪ {s(mN)} and Atoms = Atoms ∪ {at}.

4. Return Av.

Algorithm 3: Solving the conjugacy problems in G

Input: x, y ∈ G.
Output: - Whether x and y are conjugate.

- If x and y are conjugate, an element c such that xc = y.

1. Use Algorithm 1 to compute x̃ ∈ SC(x) and ỹ ∈ SC(y), together with conjugating elements
c1 and c2 such that xc1 = x̃ and yc2 = ỹ.

2. Set V = {x̃}, V ′ = {x̃} and cex = 1.

3. While V ′ 6= ∅, do:

(a) Take v ∈ V ′.

(b) Use Algorithm 2 to compute Av.

(c) For every s ∈ Av, do:

i. If vs = ỹ, then set cey = cv · s. Return ‘x and y are conjugate by c1 · cey · c
−1
2 ’.

STOP.

ii. If vs /∈ V , then set cvs = cv · s, V = V ∪ {vs}, and V ′ = V ′ ∪ {vs}.

(d) Remove v from V ′.

4. Return ‘x and y are not conjugate’.

9

2 Cyclic sliding and the set of sliding circuits

This section summarises some properties of the cyclic sliding operation, the transport map, and
the set of sliding circuits, which we require for proving the correctness of the algorithm from
Section 1.3 and for analysing its complexity. Most of these results were obtained in [11] and we
refer to there for further details.

Properties of cyclic sliding

Cyclic sliding does not increase the canonical length. As G is of finite type, this implies that
iterated cyclic sliding starting from any x ∈ G eventually reaches a period, that is, produces an
element of SC(x). Moreover, iterated cyclic sliding achieves the minimal canonical length in the
conjugacy class, that is, SC(x) ⊆ SSS(x). More precisely, one has the following.

Lemma 2.1 ([11, Lemma 3.4]). For every x ∈ G, one has the inequalities inf(s(x)) ≥ inf(x),
sup(s(x)) ≤ sup(x), and ℓ(s(x)) ≤ ℓ(x).

Corollary 2.2 ([11, Corollary 3.5]). For every x ∈ G, iterated application of cyclic sliding even-
tually reaches a period, that is, there are integers 0 ≤ i < j such that si(x) = sj(x). In particular,
one has sk(x) ∈ SC(x) and sj−i(sk(x)) = sk(x) for all k ≥ i.

Proposition 2.3 ([11, Corollary 3.9]). For every x ∈ G, if ℓ(x) is not minimal in the conjugacy
class of x, then ℓ(x) > ℓ(sm(x)) for some positive integer m < ||∆||. In particular, one has
SC(x) ⊆ SSS(x).

Properties of the transport map

Under certain (mild) assumptions, the transport map respects many aspects of the Garside struc-
ture of G. In particular, transport at super summit elements preserves positive elements and
powers of ∆, and it respects the partial order 4 as well as gcds with respect to 4. One has:

Proposition 2.4. Let x ∈ G and let α, β ∈ G such that x, xα, xβ , xα∧β ∈ SSS(x) and consider
transports at x. Then the following hold.

1. If α is positive then α(1) is positive.

2. If α is positive then p(x) 4 α p(xα).

3. If α = ∆k for k ∈ Z then α(1) = ∆k.

4. If α 4 β then α(1) 4 β(1).

5. If α is simple then α(1) is simple.

6. (α ∧ β)(1) = α(1) ∧ β(1).

Proof. Claim 1 follows from [11, Lemma 3.15] and is equivalent to Claim 2, as α(1) = p(x)−1αp(xα).
Claims 3, 4, 5 and 6 are special cases of [11, Lemma 3.16], [11, Corollary 3.18], [11, Corollary 3.19]
and [11, Proposition 3.20], respectively.

Applying iterated cyclic sliding to a conjugate ys of y ∈ SC(x) will eventually produce another
element of SC(x) by Corollary 2.2. The following Lemma makes this more precise: iterated
transport of s along the sliding circuit of y eventually becomes periodic and this happens exactly
when SC(x) has been reached.

10

Lemma 2.5 ([11, Lemma 3.32]). Let x ∈ G, y ∈ SC(x) and s ∈ G such that ys ∈ SSS(x). Let N
be a positive integer such that sN (y) = y and for integers i ≥ 0 consider the transports s(iN) at y.
Then the following hold.

1. There are integers i2 > i1 ≥ 0 such that s(i1N) = s(i2N).

2. ys ∈ SC(x) if and only if there is a positive integer k such that s(kN) = s.

Convexity properties and connectedness of the sliding circuits graph

It is well known that for any x ∈ G, the set of elements conjugating x to an element in SSS(x) is
closed under ∧. This has become known as convexity and in particular implies the existence of a
minimal positive element conjugating x to an element in SSS(x).

Proposition 2.6 ([9, Proposition 4.12] or [11, Proposition 3.29]). Let x ∈ G. If xα, xβ ∈ SSS(x)
for elements α, β ∈ G, then xα∧β ∈ SSS(x).

Corollary 2.7 ([12, Theorem 2.4] or [11, Corollary 3.30]). Let x ∈ G. If xα, xβ ∈ SSS(x) for
elements α, β ∈ G, then xα∨β ∈ SSS(x).

Corollary 2.8 ([11, Corollary 3.31]). Let x ∈ G. There is a unique positive element ρ(x) (possibly
trivial) satisfying the following.

1. xρ(x) ∈ SSS(x).

2. ρ(x) 4 α for every positive α ∈ G satisfying xα ∈ SSS(x).

The analogous properties for SC(x) were shown in [11]. They in particular imply that SCG(x) is
a finite and connected directed graph.

Proposition 2.9 ([11, Proposition 3.33]). Let x ∈ G. If xα, xβ ∈ SC(x) for elements α, β ∈ G,
then xα∧β ∈ SC(x).

Corollary 2.10 ([11, Corollary 3.34]). Let x ∈ G. There is a unique positive element c(x)
(possibly trivial) satisfying the following.

1. xc(x) ∈ SC(x).

2. c(x) 4 α for every positive α ∈ G satisfying xα ∈ SC(x).

Corollary 2.11 ([11, Corollary 3.35]). For every x ∈ G, the graph SCG(x) is finite and connected.
Moreover, the arrows of SCG(x) correspond to simple elements, and the number of arrows starting
at a given vertex is bounded above by the number of atoms of G.

Cyclic right sliding and right transport

Recall that in a Garside group G with Garside structure (G, P, ∆), apart from the prefix order 4,
one also has the suffix order <, defined by a < b if and only if ab−1 ∈ P . With respect to the
latter, one can consider the the notions of preferred suffix, cyclic right sliding and set of right
sliding circuits (denoted SC�(x)), which are analogous to those of preferred prefix, cyclic sliding
and set of sliding circuits, but refer to the partial order < instead of 4 (cf. Definitions 1.9, 1.10
and 1.12).

Consequently, one can also define a transport map for cyclic right sliding, as follows. We remark
that, when one considers these notions with respect to <, and tries to relate them to the analogous
notions with respect to 4, one must consider conjugating elements on the left, meaning that a
(left) conjugating element α relates x to xα−1

= αxα−1.

11

Definition 2.12. Given x, α ∈ G, we define the right transport of α at x under cyclic right
sliding as α(1)�

= p�(xα−1

) α p�(x)−1. That is, α(1)�

is the conjugating element that makes the
following diagram commutative, in the sense that the conjugating element along any closed path is
trivial:

x s�(x)
p

�(x)
oo

xα−1

α

OO

s�(xα−1

)
p

�(xα−1
)

oo

α(1)�

OO

All results for cyclic (left) sliding and (left) transport hold in analogous form for cyclic right sliding
and right transport; the proofs can be translated in a straight-forward way. Alternatively, one can
consider a different Garside structure. As shown in [11], (G, P−1, ∆−1) also is a Garside structure
for G, called the reverse Garside structure, and cyclic right sliding and right transport with
respect to (G, P, ∆) are just cyclic (left) sliding and (left) transport with respect to (G, P−1, ∆−1).
We refer to [11, §3.3.2] for details. In particular, we have the following right versions of Lemma 2.1
and Proposition 2.4 (1).

Lemma 2.13. For x ∈ G, one has inf(s�(x)) ≥ inf(x), sup(s�(x)) ≤ sup(x), and ℓ(s�(x)) ≤ ℓ(x).

Proposition 2.14. Let x ∈ G and let α ∈ G be positive such that x, xα−1

∈ SSS(x). Then, the

right transport α(1)�

of α at x is positive.

A relation between cyclic (left) sliding and cyclic right sliding is given by the following result.

Proposition 2.15 ([11, Proposition 3.26]). Let x ∈ G. Then for any z ∈ SSS(x) one has
p�(s(z)) < p(z) and p�(z) 4 p(s�(z)).

3 Description of the algorithm

In this section we will explain the algorithms from §1.3 and prove their correctness. The main
idea of these algorithms, as for the previous solutions to the conjugacy problem given in [7, 9, 10],
is the computation of a finite subset of the conjugacy class, which is an invariant of the conjugacy
class, together with conjugating elements connecting each pair of elements of this subset. In our
case, the finite set is SC(x), the vertex set of the connected graph SCG(x), and the conjugating
elements will be paths in SCG(x).

3.1 Algorithm 3

We start by explaining Algorithm 3 from §1.3. We remark that analogues of this algorithm, which
use other sets instead of SC(x), are already given in [7, 9, 10]. We explain the version given in
this paper which uses the invariant SC(x).

It is clear from the definition that SC(x) is an invariant subset of the conjugacy class of x.
Moreover, we will see that Algorithm 1 computes, given x ∈ G, an element x̃ ∈ SC(x), that is,
SC(x) is non-empty. Hence, two elements x and y are conjugate if and only if SC(x) = SC(y) or,
equivalently, SC(x) ∩ SC(y) 6= ∅. Thus, knowing how to compute SC(x), starting from a given
element x, is sufficient to solve the conjugacy decision problem.

12

If we also want to solve the conjugacy search problem, that is, we want to find a conjugating element
form x to y in case they are conjugate, then we can do the following. Since SC(x) = SC(y), we
just need to find an element z ∈ SC(x), a conjugating element c form x to z, and a conjugating
element c2 from y to z. Then c c−1

2 conjugates x to y. In order to obtain these conjugating
elements, we proceed as follows.

Suppose that x, y ∈ G are conjugate. As we shall see, Algorithm 1 computes, given x ∈ G, an
element x̃ ∈ SC(x) and a conjugating element c1 from x to x̃. Applying the same algorithm to y,
we obtain an element ỹ ∈ SC(y) = SC(x) and a conjugating element c2 from y to ỹ. Hence, in
order to obtain a conjugating element from x to y, we just need to find a conjugating element
from x̃ to ỹ. In other words, we need to know how to relate, through a conjugation, any pair of
elements of SC(x). This is achieved thanks to the connected graph SCG(x), since the vertices of
this graph correspond to the elements in SC(x), and a path between two vertices corresponds to
a conjugating element from one vertex to the other.

Algorithm 3 computes a conjugating element from x̃ to any other element in SC(x), by computing
a maximal tree of the graph SCG(x). More precisely, the algorithm starts in step 2 by considering
V = V ′ = {x̃} and cex = 1. The set V contains the elements which we know belong to SC(x), so
at the beginning it only contains x̃. The set V ′ contains the elements of V that have not yet been
used in step 3 of the algorithm, so at the beginning V ′ = V . Finally, whenever a new element v
is added to V (and also to V ′), we compute an element cv, which is a conjugating element from x̃
to v. Of course, in step 2 of the algorithm, the conjugating element from x̃ to x̃ ∈ V is cex = 1.

Now step 3 does the following: For a known element of SC(x) which has not been processed before,
that is, for some v ∈ V ′, it calls Algorithm 2 to compute the arrows of SCG(x) starting at v. For
each such arrow s, it computes the endpoint vs of the arrow. If vs is not in V , this means that
we encountered a new element of SC(x), so we add it to both V and V ′, and at the same time
compute a conjugating element from x̃ to vs: Since we know a conjugating element cv from x̃
to v and a conjugating element s from v to vs, we can store cvs = cv · s as conjugating element
from x̃ to vs. Notice that the procedure checks whether vs = ỹ, since in this case we have already
found a conjugating element cey from x̃ to ỹ as desired. Concatenating it from the left with the
conjugating element from x to x̃ and from the right with the conjugating element from ỹ to y,
this produces a conjugating element from x to y which becomes the output of the algorithm. If ỹ
is not encountered, we remove v from V ′ at the end of step 3 in order to record the fact that the
arrows starting at v have been processed.

Notice that the procedure in step 3 is repeated while V ′ 6= ∅. Since V ⊆ SC(x), where SC(x) is a
finite set, since every element of V is added to V ′ exactly once, and since the procedure removes
one element from V ′ each time it is executed, this means that at some point we will have V ′ = ∅
and the procedure will stop. At this point, the arrows starting at every element of V have been
processed (exactly once). Moreover, one has V = SC(x), since otherwise there would exist some
element v ∈ V and some element w ∈ SC(x)\V such that there is an arrow in SCG(x) from v
to w. (This follows, since the graph SCG(x) is connected by 2.11.) But since v ∈ V and V ′ = ∅,
step 3 has been applied to v, which means that w has been added to the set V , a contradiction.
Therefore, when the procedure stops, one has V = SC(x). If ỹ was not found in V , this means
that ỹ /∈ SC(x), whence x and y are not conjugate.

Therefore, Algorithm 3 solves the conjugacy decision problem and the conjugacy search problem
in Garside groups of finite type, provided that Algorithms 1 and 2 are correct.

3.2 Algorithm 1

Given x ∈ G, Algorithm 1 finds one element x̃ ∈ SC(x) and a conjugating element c such that
xc = x̃. This is achieved by iterated applications of cyclic sliding to x. By Corollary 2.2, there

13

must exist two positive integers 0 ≤ i < j such that si(x) = sj(x), that is, si(x) ∈ SC(x).
Algorithm 1 computes this element si(x), where i is minimal. This is done by storing all the
elements {sm(x) | m ≥ 0}, the trajectory of x under cyclic sliding, in a set called T . Initially,
one has T = ∅ and x̃ = x. At the beginning of the k-th iteration of the loop in step 2, one has
T = {s0(x), s1(x), . . . , sk−2(x)} and x̃ = sk−1(x). If x̃ /∈ T , then x̃ is added to T and cyclic sliding
is applied to x̃ before the next iteration of the loop. Otherwise, a repetition (the first one) has
been found and the loop terminates.

Moreover, c is at every time a conjugating element from x to x̃: At the beginning of the first
iteration of the loop in step 2, c = 1 is a conjugating element from x to x̃ = x. In each iteration
of the loop, the element c, which is a conjugating element from x to x̃, is multiplied on the right
by p(x̃), yielding a conjugating element from x to s(x̃), and x̃ is replaced by s(x̃).

Therefore, when the loop of step 2 stops, x̃ = si(x) ∈ SC(x) (with i minimal) and c is a conjugating
element from x to x̃, as desired. But notice that the conjugating element c is unnecessary long, as it
contains, as a suffix, the product of all conjugating elements along the sliding circuit containing x̃.
Steps 3 and 4 remove this suffix from c.

Step 3 initialises y = s(x) and d = p(x). The loop in step 4 checks whether y = x̃, otherwise
applies cyclic siding to y and multiplies d by the corresponding conjugating element, p(y), in such
a way that when the loop terminates, the element d equals the product of all conjugating elements
along the sliding circuit containing x̃. The algorithm then returns x̃ ∈ SC(x) and cd−1 as the
conjugating element from x to x̃.

3.3 Algorithm 2

Algorithm 2 is the most involved among all the procedures in this paper. It takes an element
v ∈ SC(x), that is, a vertex of the graph SCG(x), and computes the arrows of SCG(x) starting
at v. In other words, Algorithm 2 computes the indecomposable conjugators from v to other
elements of SC(x). To show the correctness of each step of the algorithm, we first need to prove
some theoretical results.

Proposition 2.9 and Corollary 2.10 have a consequence which is crucial for computing the sliding
circuits graph of an element x ∈ G: Given y ∈ SC(x) and s ∈ G, there is a unique 4-minimal
element cs = cs(y) satisfying s 4 cs and ycs ∈ SC(x); specifically, cs(y) = s · c(ys). Moreover, as

s 4 ∆sup(s) and x∆sup(s)

∈ SC(x), we have cs(y) 4 ∆sup(s). In particular, the number of arrows
starting at a given vertex y of SCG(x) is bounded by the number of atoms of G and the label of
each arrow is a simple element. In order to find the arrows starting at y it is hence sufficient to
consider the set of simple elements {ca(y) | a is an atom of G}. Let us then see how to compute
cs(y) given y ∈ SC(x) and s ∈ G.

By Lemma 2.5, the element cs we are looking for is a fixed point under some power of transport
along the sliding circuit containing y, and we know by Proposition 2.4 (4) that transport of
conjugating elements between super summit elements respects the partial order 4. The basic
idea is to apply iterated transport to a suitable element ps, which is derived from s and satisfies
s 4 ps 4 cs, until that fixed point is reached. All we need to do is to ensure that yps is super

summit (so that 4 is respected) and that s 4 p
(kN)
s for a sufficiently large multiple kN of the

length N of the sliding circuit containing y (so that we can be sure that we obtain the “right”
fixed point, that is, one which has s as a prefix).

The first step in the computation of ps is to find an element ρs which satisfies s 4 ρs and
yρs ∈ SSS(x), and which is 4-minimal among all elements doing so; this is due to [9]. Note that
ρs 4 cs since SC(x) ⊆ SSS(x). By Corollary 2.8, we have ρs = s · ρ(ys), so we just need to be able
to compute ρ(ys). This is achieved by the following result.

14

Proposition 3.1. For x ∈ G, the following algorithm computes ρ(x) as in Corollary 2.8.

1. Set ρ = 1.

2. While inf(xρ) < infs(x) or sup(xρ) > sups(x) do:

(a) Set ρ = ρ · (1 ∨ (xρ)−1∆infs(x) ∨ xρ∆−sups(x)).

3. Return ρ(x) = ρ.

If x = ys with y ∈ SSS(x), then the algorithm terminates after at most ℓ(s)·‖∆‖ passes through
the loop.

Proof. Let α be a positive element such that xρα ∈ SSS(x). Then (xρα)−1 ∈ SSS(x−1) and we
have sup((xρα)−1) = −infs(x) and sup(xρα) = sups(x). Thus xρ 4 xρα = αxρα 4 α∆sups(x),
whence xρ∆−sups(x)

4 α and, analogously, (xρ)−1∆infs(x)
4 α. As α is positive, the above implies

1 ∨ (xρ)−1∆infs(x) ∨ xρ∆−sups(x) 4 α. Moreover, 1 ∨ (xρ)−1∆infs(x) ∨ xρ∆−sups(x) = 1 if and
only if sup(xρ) ≤ sups(x) and inf(xρ) = sup((xρ)−1) ≥ infs(x), that is, if and only if xρ ∈ SSS(x).

Hence, at any stage of the above algorithm, the element ρ satisfies ρ 4 c for every positive element
c ∈ G such that xc ∈ SSS(x). In particular, ‖ρ‖ is bounded. As ‖ρ‖ is strictly increasing at every
step of the algorithm, the algorithm terminates and outputs ρ(x) as claimed. Finally, if x = ys

with y ∈ SSS(x), then ρ(x) 4 s−1∆sup(s) 4 ∆ℓ(s), whence the algorithm terminates after at most
ℓ(s)·‖∆‖ steps.

Corollary 3.2. Steps 3 (a) and 3 (b) in Algorithm 2 compute the element ρat
. The body of the

while loop is executed at most ‖∆‖ times.

Proof. Note that in steps 3 (a) and 3 (b) of Algorithm 2 we have v ∈ SC(x) ⊆ SSS(x) and ℓ(at) = 1.
Hence, by Proposition 3.1, steps 3 (a) and 3 (b) in Algorithm 2 compute exactly at · ρ(vat) = ρat

with at most ‖∆‖ passes through the while loop.

The element 1 ∨ (xρ)−1∆infs(x) ∨ xρ∆−sups(x) =
(
1 ∨ (x−1)ρ∆−sups(x

−1)
)
∨

(
1 ∨ xρ∆−sups(x)

)

in step 2 (a) of the algorithm in Proposition 3.1 can be computed efficiently using the following
result.

Proposition 3.3. If x ∈ G such that sup(x) = q + r with 0 ≤ r ≤ ℓ(x), then 1 ∨ x∆−q is the
product of the leftmost r factors of the right normal form of x.

Proof. Observe that a 4 b is equivalent to b−1 < a−1 for all a, b ∈ G by the definitions of 4

and <. This implies that one has a ∨ b = (a−1 ∧� b−1)−1 for all a, b ∈ G. Hence, in particular,

1 ∨ x∆−q = (1 ∧� ∆qx−1)−1 =
(
(x ∧� ∆q)x−1

)−1
= x(x ∧� ∆q)−1. Since x ∧� ∆q contains all but

the leftmost r factors of the right normal form of x, the claim follows.

Next we consider the sequence of iterated transports along the sliding circuit which contains the
element y. This sequence will eventually become periodic; we are interested in the periodic part.

Definition 3.4. Let x ∈ G, y ∈ SC(x) and u ∈ G such that yu ∈ SSS(x) and let N be the
length of the sliding circuit containing y, that is, let N be the smallest positive integer such that
sN (y) = y. For integers i ≥ 0 consider the transports u(iN) at y. By Lemma 2.5, there are integers
i2 > i1 ≥ 0 such that u(i1N) = u(i2N). Let i1 and i2 be minimal subject to this condition and define
l(u) = i2 − i1 and F (u) = {u(iN) | i1 ≤ i < i2}.

15

Note that 1 ∈ F (u) if and only if F (u) = {1}. Moreover by Lemma 2.5, yu ∈ SC(x) if and only if
i1 = 0 , that is, if and only if u ∈ F (u). Finally, for all v ∈ F (u) and all i ∈ N we have v(il(u)N) = v,
in particular, yv ∈ SC(x). In other words, the set F (u) contains those iterated transports u(iN)

of u along the sliding circuit of y which are fixed by some iterated transport along the sliding

circuit, that is, those which satisfy yu(iN)

∈ SC(x).

Lemma 3.5. Let x ∈ G, y ∈ SC(x), s ∈ G and denote cs = cs(y). Let N be the length of the
sliding circuit containing y, that is, let N be the smallest positive integer such that sN (y) = y. If

cs 4 c
(iN)
s for some i > 0 then c

(iN)
s = cs.

Proof. Let c
(iN)
s = csγ with a positive element γ. By induction, csγ 4 c

(kiN)
s for all k ≥ 1 from

Proposition 2.4 (4). By the preceding remark, this in particular implies cs 4 csγ 4 c
(l(cs)iN)
s = cs,

that is, γ = 1.

Lemma 3.6. Let x ∈ G, y ∈ SC(x), s ∈ P and denote cs = cs(y). Assume that p ∈ P satisfies
p 4 cs and yp ∈ SSS(y) and that F = F (p) 6= {1}.

1. If there exists v ∈ F such that s 4 v then cs = v.

2. If s 64 v for all v ∈ F , then cs is not an indecomposable conjugator starting at y.

Proof. First note that by Proposition 2.4 (4), we have p(i) 4 c
(i)
s for all i > 0.

Assume first that v ∈ F such that s 4 v. Then yv ∈ SC(x) and the minimality of cs implies

cs 4 v. Now v = p(iN) for some i, whence cs 4 v = p(iN) 4 c
(iN)
s . Lemma 3.5 then yields v = cs

and Claim 1 is shown.

Now assume that s 64 v for all v ∈ F and let i be a multiple of l(cs) sufficiently large so that

v = p(iN) ∈ F . Since 1 /∈ F , we have v 6= 1 and yv ∈ SC(x). Moreover, v = p(iN) 4 c
(iN)
s = cs and

v 6= cs, since s 64 v but s 4 cs. Hence, cs is not an indecomposable conjugator starting at y and
Claim 2 is shown.

Recall that we are trying to compute the arrows of SCG(x) starting at y. In Algorithm 2, we start
with an atom a and we try to see if there is an arrow c starting at y such that a 4 c or, equivalently,
such that ρa 4 c. The above result says that if F (ρa) 6= {1} then we will have no problem, since
either ca can be computed by iterated transport (where ca is the only possible candidate for being
such an arrow), or we can be sure that ca is not an arrow, since it is decomposable. Unfortunately,
it may occur that F (ρa) = {1}, as we can see in the following example:

Example 3.7. Consider in the Artin braid group B5 the elements y = x = ∆ ·σ2σ1σ4σ3σ4 ·σ1, in
left normal form as written, and s = σ3σ2σ1. It is easy to check that s6(y) = y, that is, y ∈ SC(x).
Since ys = ∆ · σ1σ3 · σ3σ2σ1σ2 is in left normal form as written, ys ∈ SSS(x), that is, ρs = s.

However, s(1) = p(y)−1sp(ys) = 1 and hence F (s) = {1}, that is, the requirements of Lemma 3.6
are not satisfied.

The above example shows that one could possibly have F (ρa) = {1} for some atom a in the
situation of Algorithm 2. In this case, Lemma 3.6 would not guarantee that iterated transport is
sufficient to find ca or to be sure that ca is decomposable. Let us now see that there is another
condition which also ensures that either ca can be computed by iterated transport, or that it is
decomposable; it is given by the corollary to the following result.

Lemma 3.8. Let x ∈ G and v ∈ SC(x). Let s 6= 1 be a positive element such that vs ∈ SSS(x).
If s(k) = 1 for some k ≥ 1, then s ∧ p(v) 6= 1.

16

Proof. This proof parallels the one of [10, Lemma 4.11]. Denote w = vs. By hypothesis

s(k) =
(
p(v)p(s(v)) · · · p(sk−1(v))

)−1
s

(
p(w)p(s(w)) · · · p(sk−1(w))

)
= 1,

that is,
s

(
p(w)p(s(w)) · · · p(sk−1(w))

)
= p(v)p(s(v)) · · · p(sk−1(v)).

We will show the result by induction on k. If k = 1, one has sp(w) = p(v), hence s∧ p(v) = s 6= 1.
Suppose the result is true for k − 1, and consider s(1). We can assume that s(1) 6= 1, otherwise
the result would hold by applying the case k = 1. But we have (s(1))(k−1) = 1, so by induction
hypothesis s(1) ∧ p(s(v)) 6= 1.

Recall that the transport t(1) of an element t at v satisfies t(1) = p(v)−1tp(vt). For t = p(v)
this yields p(v)(1) = p(vp(v)) = p(s(v)). As the transport preserves ∧ by Proposition 2.4 (6),
one hence has (s ∧ p(v))(1) = s(1) ∧ p(v)(1) = s(1) ∧ p(s(v)) 6= 1, which implies s ∧ p(v) 6= 1 by
Proposition 2.4 (3).

Corollary 3.9. Let x ∈ G and v ∈ SC(x). Let a be an atom such that a 64 p(v). Then either
F (ρa) 6= {1} or ca is not an indecomposable conjugator starting at v.

Proof. Suppose that F (ρa) = {1}. This means that some iterated transport (ρa)(k) = 1 for some
k ≥ 1. By the above lemma, it follows that ρa ∧ p(v) 6= 1. Hence there must exist an atom b
such that b 4 ρa ∧ p(v). Since b 4 p(v) and vp(v) ∈ SC(x), it follows that cb 4 p(v). On the
other hand, since b 4 ρa 4 ca, it follows that cb 4 ca. But one cannot have cb = ca, otherwise
a 4 ca = cb 4 p(v), which is not possible by hypothesis. Therefore, cb is a proper prefix of ca,
which means that ca is not an indecomposable conjugator starting at v.

Recall that if F (ρa) 6= {1} then either ca can be found by iterated transport or ca is not indecom-
posable. Hence, if a 64 p(v), we just need iterated transport in order to compute or to discard ca.
The case that remains to be dealt with is the case a 4 p(v) and F (ρa) = {1}.

We will now consider the more general situation that F (ρs) = {1} for some element s ∈ G. Iterated
transport of ρs reaches the “wrong” fixed point in this situation. The solution is to apply iterated
transport not to ρs itself, but to a related element p satisfying ρs 4 p 4 cs for which the existence
of v ∈ F (p) with s 4 v is guaranteed. To this end we introduce the notion of the “pullback” of an
element s, defined as the 4-minimal among the elements whose transport has s as a prefix.

Definition 3.10. Let x ∈ G, z ∈ SC(x), y = s(z) and let s ∈ G be positive. By Propositions 2.6
and Proposition 2.4 (6), there exists a unique positive 4-minimal element s(1) ∈ G satisfying

zs(1) ∈ SSS(x) and s 4 (s(1))
(1), where (s(1))

(1) indicates the transport of s(1) at z. We call s(1)

the pullback of s at y.

For any integer k > 1 we define recursively the k-fold pullback s(k) = (s(k−1))(1) of s at y. Note
that (s(k−1))(1) indicates the pullback of s(k−1) at the unique element w in the sliding circuit of y

satisfying sk−1(w) = y. We also define s(0) = s.

Lemma 3.11. Let x ∈ G, z ∈ SC(x), y = sk(z) for a positive integer k and let s ∈ G be positive.
Then, the k-fold pullback s(k) of s at y is the minimal positive element such that s 4 (s(k))

(k) and
zs(k) ∈ SSS(x).

Proof. The claim holds for k = 1 by definition of the pullback. Suppose the claim is true for
k − 1. By Proposition 2.4 (4), one then has s 4 (s(k−1))

(k−1) 4 (((s(k−1))(1))
(1))(k−1) = (s(k))

(k).

Moreover, if α is a positive element such that s 4 α(k) and zα ∈ SSS(x), then α(1) is a positive

element such that s 4 (α(1))(k−1) and s(z)α(1)

= s(zα) ∈ SSS(x). Hence, s(k−1) 4 α(1) by
induction. By definition of the pullback of s(k−1), we then have s(k) = (s(k−1))(1) 4 α, as we
wanted to show.

17

Lemma 3.12. Let x ∈ G, z ∈ SC(x), y = sk(z) for a positive integer k and let s, t ∈ G such that
1 4 s 4 t. Then, s(k) 4 t(k).

Proof. By Lemma 3.11, we have t 4 (t(k))
(k) and zt(k) ∈ SSS(x). But then s 4 t 4 (t(k))

(k) and,
again using Lemma 3.11, we obtain s(k) 4 t(k) as we wanted to show.

Lemma 3.13. Let x ∈ G, z ∈ SC(x), y = s(z) and let s ∈ G be positive. Then the pullback s(1)

of s at y satisfies s(1) 4 ∆sup(s).

Proof. Let q = sup(s) ≥ 0 and consider transport at z. We have s 4 ∆q = (∆q)(1) by Propo-
sition 2.4 (3). Moreover, ∆q is positive and y∆q

∈ SSS(x). By 4-minimality of s(1), we obtain
s(1) 4 ∆q as claimed.

The next result shows how one can use pullbacks to compute cs in the case in which F (ρs) = {1}
may occur.

Proposition 3.14. Let x ∈ G, v ∈ SC(x) and let N be the length of the sliding circuit of v,
that is, let N be the smallest positive integer such that sN (v) = v. Let s ∈ P \ {1} such that
vs ∈ SSS(x) and for integers k ≥ 0 consider the iterated pullbacks s(kN) at v. Let i ≥ 0 be such
that s(iN) = s(jN) for some j > i. Then cs is the only element in F (s(iN)) which admits s as a
prefix. In particular, F (s(iN)) 6= {1}.

Proof. First note that by Lemma 3.13, we have 1 4 s(kN) 4 ∆sup(s) for all k ≥ 0. As G is of finite
type, the number of such elements is finite, whence there exist integers i ≥ 0 and j > i such that
s(iN) = s(jN).

Let m = i(j− i) ≥ i and denote p = s(mN). Notice that iterated N -fold pullback becomes periodic
of period j−i starting from the i-th term, hence p(k(j−i)N) = p for all k ≥ 0, that is, p = s(k(j−i)N)

for all k ≥ i. Now recall from Lemma 2.5 that, since vcs ∈ SC(x), we have (cs)
(tN) = cs for some

t ≥ 1. Consider then M > i to be a multiple of t, big enough so that p(M(j−i)N) ∈ F (p). By
Lemma 3.11, p = s(M(j−i)N) is the minimal positive element such that s 4 p(M(j−i)N). This
implies that F (p) 6= {1} and that F (p) contains an element which admits s as a prefix. Moreover,
s 4 cs = (cs)

(M(j−i)N), where the equality in the last step holds since M is a multiple of t. By
the minimality of p one finally has p 4 cs. We can then apply Lemma 3.6 to p, and conclude that
cs = p(M(j−i)N) ∈ F (p). Uniqueness also follows from Lemma 3.6.

It only remains to be shown that F (p) = F (s(iN)), that is F (s(mN)) = F (s(iN)) for m as above;
indeed, we will show that F (s(kN)) = F (s(iN)) for all k ≥ i. Since iterated N -fold pullback is
periodic of period j − i from the i-th term, we can assume i < k < j.

We have s(iN) 4 (s(kN))
((k−i)N) and also s(kN) 4 (s(jN))

((j−k)N) = (s(iN))
((j−k)N) by Lemma 3.11.

Applying (k−i)N -fold transport to the second expression and using Proposition 2.4 (4), one obtains
(s(kN))

((k−i)N) 4 (s(iN))
((j−i)N), whence s(iN) 4 (s(kN))

((k−i)N) 4 (s(iN))
((j−i)N).

Using Proposition 2.4 (4) again, we can for any K ≥ 0 apply K-fold transport to this expression
and we see that (s(iN))

(K) 4 (s(kN))
(K+(k−i)N) 4 (s(iN))

(K+(j−i)N) for all K ≥ 0. That is, for

any integer K large enough so that s′ = (s(iN))
(K) ∈ F (s(iN)), we have cs′ = s′ 4 (s′)((j−i)N) and

hence s′ = (s′)((j−i)N) by Lemma 3.5 (where s′ = cs′ is chosen as the element s in the statement
of the lemma). Hence, the above inequality implies s′ = (s(kN))

(K+(k−i)N). As this is true for
all sufficiently large K, we have F (s(iN)) = F (s(kN)). In particular, F (p) = F (s(iN)), whence
cs ∈ F (s(iN)), as we wanted to show.

The following result allows us to compute pullbacks in the situation of Algorithm 2.

18

Proposition 3.15. Let x ∈ G, z ∈ SC(x), y = s(z) and let s ∈ G be positive such that ys is super
summit. Then the pullback of s at y, as given in Definition 3.10, is

s(1) =
(
p(z) s p

�(ys)−1
)
∨ 1 .

Proof. Let u =
(
p(z) s p�(ys)−1

)
∨ 1. We show that u satisfies the defining properties of s(1). The

following commutative diagram illustrates the situation; all conjugating elements corresponding
to arrows will be shown to be positive.

s�(ys) //

p(s�(ys))
//

p
�(ys)

//

ysα−1 α
//

p(ysα−1
)

//

ys //

p(ys)
//

s(s�(ys)) // s(ysα−1

) // s(ys)

z

u

OO

p(z)
// y

s

OO

u(1)

44
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i

Claim 1: zu ∈ SSS(x).

Proof: As ys ∈ SSS(x), we have zp(z) s p
�(ys)−1

= s�(ys) ∈ SSS(x) by Lemma 2.13. Then,
Corollary 2.7 implies zu ∈ SSS(x), since u =

(
p(z) s p�(ys)−1

)
∨ 1.

Claim 2: u is a positive element and s 4 u(1).

Proof: By definition, u is positive and u = p(z)sα−1, where α = p�(ys) ∧� p(z)s. (Note that
α−1 = p�(ys)−1 ∨ (p(z)s)−1.) By Proposition 2.15, p�(ys) 4 p(s�(ys)) and since p�(ys)α−1 is
positive and s�(ys) ∈ SSS(x), we obtain with Proposition 2.4 (2)

p
�(ys) 4 p(s�(ys)) 4 p

�(ys)α−1
p

(
s
�(ys)p

�(ys)α−1
)

= p
�(ys)α−1

p(ysα−1

)

which implies 1 4 α−1p(ysα−1

). Hence, s 4 sα−1p(ysα−1

) = p(z)−1up(zu) = u(1).

Claim 3: If t is a positive element such that zt ∈ SSS(x) and s 4 t(1), then u 4 t.

Proof: Write t(1) = sγ for some positive element γ and apply cyclic right sliding to y, ys and

yt(1) = s(zt), as shown in the following commutative diagram.

zt
p(zt)

// s(zt) s�(s(zt))
p

�(s(zt))
oo

ys

γ

OO

s�(ys)

γ(1)�

OO

p
�(ys)

oo

z
p(z)

//

t

OO

y

s

OO

s�(y)

s(1)�

OO

p
�(y)

oo

We obtain t = p(z) s γ p(zt)−1 = p(z) s p�(ys)−1 γ(1)� [
p�(s(zt)) p(zt)−1

]
, where γ(1)�

is positive
by Proposition 2.14 and the factor in brackets is positive by Proposition 2.15. Therefore, we have
p(z) s p�(ys)−1 4 t, and since t is positive, one finally has u =

(
p(z) s p�(ys)−1

)
∨ 1 4 t.

19

Example 3.16. Consider the situation from Example 3.7. The trajectory of y = ∆·σ2σ1σ4σ3σ4 ·σ1

under cyclic sliding has length N = 6. Computing iterated pullbacks of ρs = s = σ3σ2σ1 at y we
obtain s(12) = s(6) = σ3σ4. Hence, using the notation from Proposition 3.14, we have i = 1 and
j = 2.

Computing iterated transports of p = s(iN) = s(6) = σ3σ4, we obtain p(12) = p(6) = σ3σ2σ1σ4.

Hence, we have F (p) = {p(6)} and as s 4 p(6), we obtain cs = p(6) = σ3σ2σ1σ4.

Note that p /∈ F (p), that is, computing iterated transports is necessary even after reaching a stable
loop under iterated N -fold pullback.

The results obtained in this section ensure that step 3 (c) of Algorithm 2, if executed, will compute
an element (ρat

)(iN), one of whose iterated transports is precisely cat
. This computation is only

done whenever at 4 p(v), which is the only case, as we saw above, in which we cannot be sure
to find cat

or to be able to discard cat
as decomposable using F (ρat

). Note, in particular, that
computing pullbacks is not necessary if v is rigid (or, by [11, Theorem 1.1] equivalently, has a
rigid conjugate). The algorithm continues in step 3 (d) by applying iterated transport to the
corresponding element (either ρat

or (ρat
)(iN)) until the first repetition occurs. Then, step 3 (e)

checks whether any of the elements in F (ρat
) respectively F ((ρat

)(iN)) admits at as a prefix, in
which case it will precisely be cat

by Lemma 3.6. If at does not occur as a prefix, then cat
is not

indecomposable by Lemma 3.6, Corollary 3.9 and Proposition 3.14.

However, even if cat
occurs as an element of F (ρat

) respectively F ((ρat
)(iN)), it is not necessarily

an indecomposable conjugator. The latter property is checked in step 3 (e) i: The set Atoms will
eventually contain the atoms ak such that cak

is an indecomposable conjugator starting at v and
k = max{i | ai 4 cak

}. Suppose that we have computed cat
for some atom at. If t is not the

biggest index among the atoms dividing cat
, then we can discard cat

at this step since, if it is
indecomposable, it will appear again in a further step of the algorithm, when the mentioned atom
is processed. On the other hand, if t is the maximal index among the atoms dividing cat

but cat

is decomposable, then there must exist some indecomposable cal
4 cat

, where l < t is maximal
among the atoms dividing cal

. In particular, al has been processed before at, and we must have
al ∈ Atoms. Therefore, if ak 64 cat

for all ak ∈ Atoms and also for all k > t, we can be sure that
cat

is indecomposable, and we can add at to the set Atoms. This is what is done in step 3 (e) i,
hence Algorithm 2 computes the arrows starting at v, as claimed.

4 Complexity of the algorithms

4.1 Computing in Garside groups

In this section, we will describe how one can perform all the computations required by our algo-
rithms in any Garside group of finite type, provided some basic operations on simple elements can
be performed. We refer the reader to [13] for a similar approach.

We remark that in a particular Garside group there may be specific algorithms having better
complexity than the generic ones we describe below. This is in particular the case for braid
groups (see [8] and [3]). Hence one should not use the algorithms below if one just needs to make
computations in braid groups.

20

Assumption 4.1. Let G be a Garside group of finite type. We assume that the list of atoms
A = {a1, . . . , aλ} of G is known and that the following operations can be performed effectively; we
consider the cost of these operations to be O(C).

(H) Given a simple element s, compute a hash value for s.

(Op) Given an atom a ∈ A and a simple element s, test whether a 4 s (respectively s < a)
and, if yes, compute the simple element a−1s (respectively s a−1).

We further assume that elements of G are stored as products (sequences) of simple elements or
inverses of simple elements. Then, two elements consisting of at most k such factors can be
multiplied at a cost of O(k) simply by concatenating the corresponding sequences.

We remark that we also could have considered the following additional basic operations:

(Op1) Given a simple element s, test whether s = 1.

(Op2) Given two simple elements s and t, test whether s = t.

(Op3) Given an atom a ∈ A and a simple element s, test whether sa (resp. as) is simple and, if
yes, compute the simple element sa (resp. as).

However, if s is a simple element, then s = 1 is equivalent to ai 64 s for all i = 1, . . . , λ, where
the latter condition can be tested using the operation (Op) at most λ times. Hence, (Op1) can
be realised in terms of (Op) at a cost of O(Cλ). We will moreover see below that (Op2) and
(Op3) can be realised in terms of (Op) at a cost of O(Cλ ‖∆‖). While doing so may not yield
the most efficient ways of realising (Op1), (Op2) and (Op3), it does not change the complexities
of the algorithms we consider.

We remark that the operations (Op) and (Op3) can be realised at equal cost in many Garside
groups; this is the case for braid groups, for instance. However, as we are working with a generic
Garside group of finite type, we want to keep our assumptions to the minimum. We moreover
mention that one could use (Op3) as basic operation instead of (Op): if the cost of (Op3) is O(C),
then one can test at a cost of O(Cλ) whether a simple element is equal to ∆ and the operations
(Op) and (Op2) can be realised in terms of (Op3) at a cost of O(Cλ ‖∆‖); the map ∂ induces a
duality between this situation and the situation from Assumption 4.1. Finally, note that (Op1)
can be realised in terms of (Op3) at a cost of O(Cλ), if ∆ is the lcm of the atoms of G: in this case,
∂(s) = ∆ is equivalent to ai 4 ∂(s) for all i = 1, . . . , λ, that is, s = 1 is equivalent to sai ∈ [1, ∆]
for all i = 1, . . . , λ.

An important remark concerning the algorithms below is the following: One of the most frequently
used operations consists of determining an atom a such that a 4 s, given a nontrivial simple
element s. If the simple elements are stored as products of atoms, this operation has a cost
of O(1). However, if the simple elements are stored in a different way, it is possible that the only
way to find such an atom is to check whether a 4 s for every a ∈ A, until the answer is positive.
This has time complexity O(Cλ). Therefore, in the algorithms below we will sometimes write
‘Take an atom a 4 s’, and we will assume that this operation has a cost of O(Cλ), although the
reader should notice that the actual cost could be only O(1) in some situations.

The first computations which we will express in terms of the basic operations are computing left
and right complements of simple elements and conjugation of simple elements by ∆ or ∆−1. We
will also see a generic way of performing the operations (Op2) and (Op3). The following algorithm
underlies all of these:

21

Algorithm to compute the right complement of a simple element

Input: A simple element s.
Output: The simple element ∂(s) = s−1∆.

1. Set d = ∆.

2. While s 6= 1 do:

(a) Take an atom a 4 s.

(b) Set d = a−1d and s = a−1s.

3. Return d.

At most ‖∆‖ passes through the loop are required and the costs of the test s 6= 1, step 2 (a) and
step 2 (b) are O(Cλ), O(Cλ) and O(C), respectively. Hence, the complexity of this algorithm is
O(Cλ ‖∆‖). Notice that ∂−1(s) = ∆ s−1 can be computed in the same way, replacing 4 by < and
multiplying with a−1 on the right instead of on the left. The given algorithm can also be used to
compute τ(s) = ∂2(s) or τ−1(s) = ∂−2(s), so all these operations have a cost of O(Cλ ‖∆‖).

Given a simple element s and an atom a, one can determine whether sa is simple by computing
∂(s) with the above algorithm and checking whether a 4 ∂(s), where the latter step has a cost of
O(C) by Assumption 4.1. Moreover, if sa is simple, one can compute sa = ∂−1(a−1∂(s)). That
is, we can perform operation (Op3) that way. Similarly, one can determine whether as is simple
by checking whether ∂−1(s) < a and, if it is, one can compute as = ∂(∂−1(s)a−1). All these
operations have a cost of O(Cλ ‖∆‖).

Next, we will describe the lattice operations on simple elements, which are important for computing
normal forms of elements.

Algorithm to compute the greatest common divisor of two simple elements

Input: Two simple elements s and t.
Output: The simple element s ∧ t.

1. Set i = 1 and d = ∆.

2. While i ≤ λ do:

(a) If ai 4 s and ai 4 t, then

(b) set d = a−1
i d, set s = a−1

i s, set t = a−1
i t and set i = 1,

else

(c) set i = i + 1.

3. Return ∂−1(d).

The tests in step 2 (a) and the operations in step 2 (b) have a cost of O(C), step 3 has a cost of
O(Cλ ‖∆‖), and all remaining operations have a cost of O(1). As step 2 (b) is executed at most
‖∆‖ times, with at most λ passes through the while loop between two consecutive executions,
the cost of step 2 is O(Cλ ‖∆‖), so the complexity of the algorithm is also O(Cλ ‖∆‖). Note
that finding the atoms which are common divisors of s and t is critical for the complexity of the
algorithm. Thus, even if step 3 was avoided by making use of a realisation of (Op3) with a cost
of O(C), the complexity of the algorithm would not improve.

By symmetry, one can similarly compute the greatest common divisor s ∧� t with respect to <.

22

Least common multiples of simple elements with respect to 4 or < can now be computed using
the following formulae, which can easily be seen to hold:

s ∨ t = ∂−1
(
∂(s) ∧� ∂(t)

)
, s ∨� t = ∂

(
∂−1(s) ∧ ∂−1(t)

)
.

Therefore, computing s ∨ t or s ∨� t also takes time O(Cλ ‖∆‖).

As s = t is equivalent to s = s∧t = t, we can use the following modification of the above algorithm
to test whether two simple elements are equal, that is, perform operation (Op2).

Algorithm to test whether two simple elements are equal

Input: Two simple elements s and t.
Output: The truth value of s = t.

1. Set i = 1 and d = ∆.

2. While i ≤ λ do:

(a) If ai 4 s and ai 4 t, then

(b) set d = a−1
i d, set s = a−1

i s, set t = a−1
i t and set i = 1,

else

(c) set i = i + 1.

3. If s = 1 and t = 1, then return true, else return false.

The cost of step 3 is O(Cλ); all other steps are as before. Hence, the complexity of the algorithm
is O(Cλ ‖∆‖). This implies, in particular, that two elements of canonical length at most k whose
(left or right) normal forms are known, can be compared at a cost of O(Cλk ‖∆‖) by comparing
their infima (at a cost of O(1)) and at most k pairs of simple elements.

The following algorithm computing the local sliding of a pair of simple elements is also just a small
modification of the algorithm as the one computing the gcd of two simple elements:

Algorithm to compute the local sliding of a pair of simple elements

Input: Two simple elements s and t.
Output: The simple elements s(∂(s) ∧ t) and (∂(s) ∧ t)−1t.

1. Set i = 1 and s′ = ∂(s).

2. While i ≤ λ do:

(a) If ai 4 s′ and ai 4 t, then

(b) set d = a−1
i d, set s′ = a−1

i s′, set t = a−1
i t and set i = 1,

else

(c) set i = i + 1.

3. Return ∂−1(s′), t.

The cost of step 1 is O(Cλ ‖∆‖); all other steps are identical. Hence, the local sliding of a pair of
simple elements can also be computed at a cost of O(Cλ ‖∆‖).

Knowing how to compute local slidings, one can use the standard algorithms to compute the left
or right normal form of any element (see §1.1), based on the following well-known result.

23

Proposition 4.2 (see, for example, [4, Props. 3.1 and 3.3] or [8]). Let s1, . . . , sk and s′0, s
′

k+1 be
simple elements such that the product s1 · · · sk is in left normal form as written.

1. Consider the product s′0s1 · · · sk. For i = 1, . . . , k apply a local sliding to the pair s′i−1si, that

is, let ti = ∂(s′i−1) ∧ si and define s′′i−1 = s′i−1ti and s′i = t−1
i si. Finally define s′′k = s′k.

Then, s′′0 · · · s
′′

k is the left normal form of s′0s1 · · · sk (where possibly s′′0 = ∆ or s′′k = 1).

2. Consider the product s1 · · · sks′k+1. For i = k, . . . , 1 apply a local sliding to the pair sis
′

i+1,

that is, let ti = ∂(si) ∧ s′i+1 and define s′i = siti and s′′i+1 = t−1
i s′i+1. Finally define s′′1 = s′1.

Then, s′′1 · · · s
′′

k+1 is the left normal form of s1 · · · sks′k+1 (where possibly s′′1 = ∆ or s′′k+1 = 1).

Given an element x written as a product of k simple elements or inverses of simple elements, the
left normal form of x can be obtained as follows. First, one replaces each inverse s−1 of a simple
element with ∆−1∂−1(s); at most k replacements are necessary and each replacement has a cost
of O(Cλ ‖∆‖). Then, one collects all appearances of ∆ or ∆−1 on the left hand side, applying τ
or τ−1 as required, so that the element will be written as ∆qs1 · · · sk, where each si is a simple
element; the number of applications of τ or τ−1 is bounded by k(k − 1)/2 and each application
has a cost of O(Cλ ‖∆‖). Finally, one applies local slidings to every pair of consecutive simple
elements until every pair is left weighted; it follows from Proposition 4.2 that at most k(k − 1)/2
local slidings are required, each at a cost of O(Cλ ‖∆‖). Therefore, the complexity of computing
the left normal form of x is O(Cλk2 ‖∆‖). Computing right normal forms is analogous and has
the same complexity.

Note, however, that if the left normal form (resp. the right normal form) of x is known and s is a
simple element, then the left normal forms (resp. the right normal forms) of xs, sx, xs−1, s−1x, xs

and xs−1

can be computed at a cost of O(Cλk ‖∆‖), where k = ℓ(x): the number of applications
of τ or τ−1 is bounded by k and only O(k) local slidings are required by Proposition 4.2.

We now show how to compute the gcd of two arbitrary elements a and b, given as products of
simple elements and inverses of simple elements with at most k factors. First, we write them in
left normal form, say ∆pa1 · · · ar and ∆qb1 · · · bt. If we denote m = min{p, q}, we can consider
a′ = ∆−ma and b′ = ∆−mb. Notice that a′ and b′ are positive elements, and one of them has
infimum zero. Since a ∧ b = ∆ma′ ∧∆mb′ = ∆m(a′ ∧ b′), it is sufficient to know how to compute
gcds of positive elements and we will hence detail the algorithm to compute a ∧ b assuming a
and b are positive; the cost of reducing to this case by computing the normal forms of a and b is
O(Cλk2 ‖∆‖). We remark that, if the left normal form of a positive element a is known, then
a∧∆ is also known, since it is precisely the first factor in its left normal form (which may be ∆).

Algorithm to compute the greatest common divisor of two positive elements

Input: Two positive elements a and b.
Output: The element a ∧ b.

1. Set u = ∆, a′ = a, b′ = b and d = 1.

2. While u 6= 1 do:

(a) Compute the left normal forms of a′ and b′.

(b) Set s = a′ ∧∆ and t = b′ ∧∆.

(c) Set u = s ∧ t.

(d) Set d = du, set a′ = u−1a′ and b′ = u−1b′.

3. Return d.

24

Since a and b are positive, one has (a∧b)∧1 = 1. It is then easy to see by induction that after the
i-th pass through the while loop one has d = (a∧b)∧∆i. Hence, if a and b are given as products of
simple elements and inverses of simple elements with at most k factors, the number of repetitions
of the while loop is bounded by k+1. The cost of step 2 (a) in the first pass through the while loop
is O(Cλk2 ‖∆‖), but in all subsequent passes, the cost is O(Cλk ‖∆‖) by Proposition 4.2. As the
costs of steps 2 (b), 2 (c) and 2 (d) are O(1), O(Cλ ‖∆‖) and O(k), respectively, the complexity
of the algorithm hence is O(Cλk2 ‖∆‖). Computing the right gcd a ∧� b is analogous and has the
same complexity.

One can now compute the least common multiple of two elements a and b, given as products of
simple elements and inverses of simple elements with at most k factors, as follows. Compute the
normal forms of a and b and let m = max{sup(a), sup(b)}. The elements a−1∆m and b−1∆m are
both positive, whence we can compute d = (a−1∆m) ∧� (b−1∆m) using (the right version of) the
algorithm above. Then, a ∨ b = (a−1 ∧� b−1)−1 = ∆m((a−1∆m) ∧� (b−1∆m))−1 = ∆md−1. This
cost of this computation is dominated by computing d as the right gcd of a−1∆m and b−1∆m

which has cost O(Cλk2 ‖∆‖). Thus, the complexity of computing the lcm a ∨ b is O(Cλk2 ‖∆‖).
Computing the right lcm a ∨� b is analogous and has the same complexity.

The computations of the preferred prefix and the cyclic sliding of an element can now be done
just by applying the definitions, since we already know how to perform all operations that occur.
For instance, in order to compute the preferred prefix of an element x, given as a product of
simple elements and inverses of simple elements with k factors, one first computes the left normal
form of x = ∆px1 · · ·xr, which takes time O(Cλk2 ‖∆‖). Then one applies the formula given in
Definition 1.9, namely p(x) = ι(x) ∧ ∂(ϕ(x)). Since ι(x) = τ−p(x1) with |p| ≤ k and ϕ(x) = xr,
the complexity of computing p(x) from the normal form of x is O(Cλk ‖∆‖). The normal form
of s(x) = xp(x) can then be computed in O(Cλk ‖∆‖). Thus, the cost of applying a cyclic sliding
is dominated by the cost of computing the normal form, that is, applying a cyclic sliding has
complexity O(Cλk2 ‖∆‖). Note that if the normal form of x is known, then p(x) and the normal
form of s(x) can be obtained at a cost of O(Cλk ‖∆‖).

The transport of an element α at an element x is given by the formula α(1) = p(x)−1αp(xα). If
x and α are given as products of simple elements and inverses of simple elements with at most k
factors, then α(1) can be computed with the above formula in time O(Cλk2 ‖∆‖) by the arguments
from the previous paragraph. In other words, applying a transport has the same complexity as
computing a normal form. Note that if the normal form of x is known and α is simple, then the
normal form of xα can be obtained at a cost of O(Cλk ‖∆‖), whence α(1) can be computed at a
cost of O(Cλk ‖∆‖) by the arguments above.

Computing the preferred suffix, applying a cyclic right sliding and applying right transport are
analogous and the complexities are the same as for the left versions discussed above.

Finally, the pullback of a positive element s at an element y, with the hypotheses and the notation
of Proposition 3.15, is s(1) =

(
p(z) s p�(ys)−1

)
∨ 1; we assume that we also know the element z.

If y, z and s are given as products of simple elements and inverses of simple elements with at
most k factors, then s(1) can be computed in time O(Cλk2 ‖∆‖) using the operations described
above. If s is simple and if the left normal form of z and the right normal form of y are known,
then p(z) s p�(ys) can be computed at a cost of O(Cλk ‖∆‖) and, since this product involves
only 3 simple factors, the subsequent computation of the lcm has a cost of O(Cλ ‖∆‖), whence
in this case s(1) can be obtained at a cost of O(Cλk ‖∆‖). Computing the right pullback s(1)� is
analogous and has the same complexity.

25

Summarising the results obtained in this section, we have:

Theorem 4.3. Let G be a Garside group of finite type with Garside element ∆ and set of atoms
A = {a1, . . . , aλ} for which Assumption 4.1 is satisfied. Moreover, let a be an atom of G, let s
and t be simple elements of G and let x, y and α be elements of G, given as products of simple
elements or inverses of simple elements with at most k factors.

1. The following operation can be performed in O(Cλ):

• Test whether s = 1.

2. The following operations can be performed in O(Cλ ‖∆‖):

• Test whether s = t.

• Compute ∂(s), ∂−1(s), τ(s) or τ−1(s).

• Test whether the product as is simple and, if so, compute as.

• Test whether the product sa is simple and, if so, compute sa.

• Compute s ∧ t, s ∧� t, s ∨ t or s ∨� t.

• Perform a local (left or right) sliding on the product s · t.

3. The following operations can be performed in O(Cλk ‖∆‖):

• Test whether x = y, if the left normal forms or the right normal forms of x and y are
known.

• Compute the left normal form [resp. the right normal form] of xs, sx, xs−1, s−1x, xs

or xs−1

, if the left normal form [resp. the right normal form] of x is known.

• Compute p(x) or s(x) [resp. p�(x) or s�(x)], if the left normal form [resp. the right
normal form] of x is known.

• Compute the left transport s(1) [resp. the right transport s(1)�

] of s at x, if the left
normal form [resp. the right normal form] of x is known.

• Compute the left pullback s(1) [resp. the right pullback s(1)�] of s at x, if it is defined
and if the right normal form [resp. the left normal form] of x and the left normal form
of the element z ∈ SC(x) satisfying s(z) = x [resp. the right normal form of the element
z ∈ SC�(x) satisfying s�(z) = x] are known.

4. The following operations can be performed in O(Cλk2 ‖∆‖):

• Compute the left normal form of x or the right normal form of x.

• Compute x ∧ y, x ∧� y, x ∨ y or x ∨� y.

• Compute p(x), p�(x), s(x) or s�(x).

• Compute the left transport α(1) of α at x or the right transport α(1)�

of α at x.

• Compute the left pullback α(1) [resp. the right pullback α(1)�] of α at x, if it is defined

and if the element z ∈ SC(x) satisfying s(z) = x [resp. the element z ∈ SC�(x) satisfying
s�(z) = x] is known.

4.2 Complexity of the new algorithms

Knowing the computational cost of the basic operations, we can now analyse the complexity of
the algorithms for computing SC(x) from Section 1.3. Firstly, we define some bounds which will
be used in the sequel.

26

Notation 4.4. Let x be an element of G given as a product of simple elements or inverses of
simple elements with at most k factors.

[Distance to cyclic sliding repetition] Let T be an integer such that there exist two integers
0 ≤ i < j ≤ T satisfying si(x) = sj(x).

[Length of sliding circuits] Let M be an integer such that for any element z ∈ SC(x) there
exists a positive integer N ≤M with sN (z) = z.

[Distance to transport repetition] Let R be an integer such that for any element z ∈ SC(x)
and any simple element s satisfying zs ∈ SSS(x) there exist two integers 0 ≤ i < j ≤ R
satisfying s(iN) = s(jN), where sN (z) = z and s(m) denotes m-fold transport at z for m ∈ N.

Remark 4.5. It is easy to see that integers T , M and R as above exist and to give some obvious
(but very crude) upper bounds for them: By Corollary 2.2, iterated cyclic sliding becomes periodic,
so T as above exists. Indeed, it follows from Proposition 2.3 that sm(x) ∈ SSS(x) for all m ≥ k ‖∆‖.
As |SSS(x)| ≤ |[1, ∆]|k, one can choose T ≤ k ‖∆‖ + |[1, ∆]|k. Moreover, as SC(x) ⊆ SSS(x) is
finite, M as above exists and one can choose M ≤ |SC(x)|. (Hence, in particular, M ≤ |[1, ∆]|k.)
Finally, by Proposition 2.4 (5), transports of simple elements are simple. Since G is of finite type,
R as above exists and one can choose R ≤ |[1, ∆]|.

Lemma 4.6. Let x ∈ G, z ∈ SC(x), and let s be a simple element such that zs ∈ SSS(x). If N , i,

j and K are integers such that sN (z) = z, 0 ≤ i < j ≤ K and
(
s(KN)

)(iN)
=

(
s(KN)

)(jN)
, where

t(m) denotes m-fold transport of t at z and t(m) denotes m-fold pullback of t at z for m ∈ N, then
s(KN) = s((K+j−i)N).

Proof. By Lemma 3.11 we have s(KN−iN) 4

((
s(KN−iN)

)
(iN)

)(iN)

=
(
s(KN)

)(iN)
=

(
s(KN)

)(jN)
.

Again using Lemma 3.11, we obtain
(
s(KN−iN)

)
(jN)

4 s(KN), that is, s((K+j−i)N) 4 s(KN).

Similarly, we have s(KN−jN) 4

((
s(KN−jN)

)
(jN)

)(jN)

=
(
s(KN)

)(jN)
=

(
s(KN)

)(iN)
and from this

obtain
(
s(KN−jN)

)
(iN)

4 s(KN), that is, s((K+i−j)N) 4 s(KN). Applying (j − i)N -fold pullback

to the last statement yields s(KN) 4 s((K+j−i)N) using Lemma 3.12.

Hence, s(KN) = s((K+j−i)N) as we wanted to show.

Corollary 4.7. Consider for x ∈ G the bounds from Notation 4.4. For any element z ∈ SC(x)
and any simple element s satisfying zs ∈ SSS(x) there exist two integers 0 ≤ i < j ≤ 2R satisfying
s(iN) = s(jN), where sN (z) = z and s(m) denotes m-fold pullback at z for m ∈ N.

Proof. By the choice of R there are integers 0 ≤ i′ < j′ ≤ R such that
(
s(RN)

)(i′N)
=

(
s(RN)

)(j′N)
.

We then have s(RN) = s((R+j′−i′)N) by Lemma 4.6. Setting i = R and j = R + j′ − i′, we have
0 ≤ i < j ≤ 2R and s(iN) = s(jN) as desired.

Proposition 4.8. Let G be a Garside group of finite type with Garside element ∆ and λ atoms,
and let x be an element of G given as a product of simple elements or inverses of simple elements
with at most k factors. Using the bounds from Notation 4.4, the complexity of Algorithm 1 is
O(Cλk(k + T) ‖∆‖).

Proof. Observe that ℓ(si(x)) ≤ k for all non-negative integers i. In particular, the normal forms of
two such elements can be compared at a cost of O(Cλk ‖∆‖) by Theorem 4.3. Note further that a
hash function depending on all factors in the normal form can be computed at a cost of O(Ck), if
the normal form is known. We use a sufficiently large hash table, together with this hash function,

27

to store the trajectory T in step 2. If the normal form of an element y with ℓ(y) ≤ k is known,
testing whether y ∈ T (and storing it if it is not) then has a cost of O(Cλk ‖∆‖).

We initially compute the normal form of x at a cost of O(Cλk2 ‖∆‖). Step 1 has a cost of O(1).
Step 3 and each pass through the while loops in step 2 and step 4 have a cost of O(Cλk ‖∆‖) by
Theorem 4.3. The number of passes through the while loops is bounded by T. Step 5 has a cost
of O(T). Hence the claim holds.

Proposition 4.9. Let G be a Garside group of finite type with Garside element ∆ and λ atoms,
and let v be an element of G given as a product of simple elements or inverses of simple elements
with at most k factors. If the left and right normal forms of v are known, then, using the bounds
from Notation 4.4, the complexity of Algorithm 2 is O

(
Cλ2k ‖∆‖ (‖∆‖ +RM)

)
.

Proof. In step 1, we perform N ≤ M times the following operations: apply a cyclic sliding to
an element whose left and right normal forms are known, compute the left normal form and the
right normal form of the result and compare it to v; each of these has a cost of O(Cλk ‖∆‖) by
Theorem 4.3. Hence, the cost of step 1 is O(CλkM ‖∆‖).

Step 2 has a cost of O(λ); we store the set Av as a list and the set Atoms ⊆ {a1, . . . , aλ} as an
array of λ flags.

Steps 3 (a) to (e) are executed λ times. Step 3 (a) has a cost of O(1); the costs of the remaining
steps are as follows:

For step 3 (b) note that at any time we have at 4 s 4 ρat
4 ∆, so s is simple. In particular,

sup(vs)−sup(v) ∈ {0, 1}. As the right normal form of v is known and s is simple, the right normal
form of vs can be computed at a cost of O(Cλk ‖∆‖) by Theorem 4.3. By Proposition 3.3, we
can obtain the element 1∨vs∆− sup(v) from the right normal form of vs at a cost of O(1): it is the
leftmost factor in the right normal form if sup(vs) = sup(v)+1, and it is trivial if sup(vs) = sup(v).
In the same way, we can obtain 1 ∨ (vs)−1∆inf(v) from the right normal form of (vs)−1. Observe
that the right normal form of (vs)−1 is related to the right normal form of vs: the leftmost factor
in the right normal form of (vs)−1 can be obtained from the rightmost non-∆ factor in the right
normal form of vs by applying the map ∂ or ∂−1 at most 2k + 1 times, that is, at a cost of
O(Cλk ‖∆‖) by Theorem 4.3. As both 1∨ vs∆− sup(v) and 1∨ (vs)−1∆inf(v) are simple, so is their
lcm. In particular, computing the lcm and the final multiplication (which is a local sliding) each
have a cost of O(Cλ ‖∆‖) by Theorem 4.3. Hence, since the number of passes through the while
loop is at most ‖∆‖ by Proposition 3.1, step 3 (b) has a cost of O(Cλk ‖∆‖2).

In step 3 (c) the initial test at 4 p(v) has a cost of O(C). We can store the simple elements
s(iN) (i = 1, 2 . . .) in a sufficiently large hash table, using the hash function from Assumption 4.1.
Testing whether s(iN) has already occurred (and storing it if not) then has a cost of O(Cλ ‖∆‖).
Since the left and right normal forms of all elements in the sliding circuit of v are known from
step 1, each pullback can be computed at a cost of O(Cλk ‖∆‖) by Theorem 4.3. As the number of
pullbacks which need to be computed is bounded by 2RM by Corollary 4.7, the cost of step 3 (c)
hence is O(CλkRM ‖∆‖).

By the same arguments, step 3 (d) has a cost of O(CλkRM ‖∆‖), since each transport can be
computed at a cost of O(Cλk ‖∆‖) and the number of transports which need to be computed is
bounded by RM .

The test in the outer if statement in step 3 (e) has a cost of O(CR), whereas the test in the if
statement in step 3 (e) i has a cost of O(Cλ), since testing whether ak ∈ Atoms has a cost of O(1).
As the remaining operations in step 3 (e) i have a cost of O(1), the cost of step 3 (e) is O(C(λ+R)).

Hence, the complexity of Algorithm 2 is O(Cλ2k ‖∆‖ (‖∆‖ +RM)) as claimed.

28

Theorem 4.10. Let G be a Garside group of finite type with Garside element ∆ and λ atoms, and
let x and y be elements of G given as products of simple elements or inverses of simple elements
with at most k factors. Let T , M and R be the maxima of the bounds from Notation 4.4 for x and
y, respectively.

The complexity of Algorithm 3 is O
(
Cλk ‖∆‖ ·

(
k + T + |SC(x)|λ(‖∆‖ +RM)

))
.

Proof. Observe that ℓ(z) ≤ k for all z ∈ SC(x). In particular, the (left) normal forms of two such
elements can be compared at a cost of O(Cλk ‖∆‖) by Theorem 4.3. Note further that a hash
function depending on all factors in the normal form can be computed at a cost of O(Ck), if the
normal form is known. We use a sufficiently large hash table, together with this hash function,
to store the set V . More precisely, whenever a new element vs ∈ SC(x) is found, where s is an
indecomposable conjugator and v ∈ V , we store the left normal form and the right normal form
of vs, as well as the indecomposable conjugator s, in the hash table entry for vs. If the left normal
form and the right normal form of vs are known, testing whether vs ∈ V , and storing all required
data if it is not, has a cost of O(Cλk ‖∆‖). The set V ′ is stored as a list (storing hash table indices
instead of actual elements), whence storing or retrieving an element of V ′ has a cost of O(1).
Observe that the conjugating elements cv for v ∈ V are implicit in the spanning tree structure
for SCG(x) with root x̃ which is computed: for any v ∈ V , the conjugating element cv can be
obtained by tracing back the path to the root which is given by the indecomposable conjugators
stored for every entry in the hash table. In particular, there is no actual computation of cvs = cv ·s
in step 3 (c) ii; at most cey is ever explicitly computed (in step 3 (c) i).

Step 1 has a cost of O(Cλk(k + T) ‖∆‖) by Proposition 4.8; this includes computing the left and
right normal forms of x̃ and ỹ. For step 3 (c) note that, since the left normal form and the right
normal form of v are known, the left normal form and the right normal form of each conjugate vs

can be computed at a cost of O(Cλk ‖∆‖) by Theorem 4.3. Steps 3 (a), 3 (d) and 4 have a
cost of O(1). Steps 2, 3 (c) ii, as well as the test of the condition in step 3 (c) i have a cost of
O(Cλk ‖∆‖). Step 3 (b) has a cost of O(Cλ2k ‖∆‖ (‖∆‖ +RM)) by Proposition 4.9. The body
of the while loop in step 3 is executed |SC(x)| times and the body of the for loop in step 3 (c)
is executed at most λ times. The actual computation of the conjugating element c1 · cey · c

−1
2 in

step 3 (c) ii has a cost of O(T + |SC(x)|), but is executed at most once.

Thus, the complexity of Algorithm 3 is

O
(
Cλk(k + T) ‖∆‖

)
+ O

(
|SC(x)| · Cλ2k ‖∆‖ (‖∆‖ +RM)

)

+ O
(
|SC(x)|λ · Cλk ‖∆‖

)
+ O

(
T + |SC(x)|

)

= O
(
Cλk ‖∆‖ ·

(
k + T + |SC(x)|λ(‖∆‖ +RM)

))

as claimed.

Remark 4.11. Unfortunately, the obvious bounds for T and M given in Remark 4.5 are expo-
nential in k. For the Artin braid groups Bn one has |[1, ∆]| = n!, that is, the above bounds are
also exponential in n (or ‖∆‖) for this sequence of Garside groups, as is the bound for R given in
Remark 4.5. Moreover, no bound for |SC(x)| is currently known which is better than the obvious
bound |SC(x)| ≤ |SSS(x)| ≤ |[1, ∆]|k (cf. Remark 4.5); the latter again is exponential. None of
these bounds adequately describes the behaviour observed in computer experiments.

We conjecture that there are bounds for T , M and R which are polynomial in k and ‖∆‖. If the
elements of SC(x) are rigid, then one can choose R =‖∆‖ by [11, Proposition 4.3 and Corollary 4.4],
and obviously M = 1. However, even in this case, no realistic bound for T is known.

The situation for |SC(x)| is more complicated. It is shown in [2] that |USS(x)| grows exponentially
in n for periodic elements of the Artin braid groups Bn. By [11, Proposition 5.1], the same is true

29

for |SC(x)|. Hence, a bound for |SC(x)| which is polynomial in k and ‖∆‖ cannot be expected in
general. However, it may be possible to establish such a bound for certain classes of elements, for
example rigid elements. For the situation of Artin braid groups, an attempt to reduce the general
case to the special case of rigid elements is sketched in [1].

The problem of finding bounds for T , M and R which are polynomial in k and ‖∆‖ and the
problem of understanding |SC(x)| correspond to open problems formulated in [1] in the context
of Artin braid groups for ultra summit sets and the cycling and decycling operations.

References

[1] J. S. Birman, V. Gebhardt and J.González-Meneses, Conjugacy in Garside groups I: cycling,
powers and rigidity, Groups Geom. Dyn. 1 (2007), 221-279.

[2] J. S. Birman, V. Gebhardt and J.González-Meneses, Conjugacy in Garside groups III: Peri-
odic braids, J. Alg. 316 (2007), 746-776.

[3] J. S. Birman, K.Y. Ko and S. J. Lee, A new approach to the word and conjugacy problems in
the braid groups, Adv. Math. 139 (1998), 322-353.

[4] R. Charney, Artin groups of finite type are biautomatic, Math. Ann. 292 (1992), 671-683.

[5] P.Dehornoy and L.Paris, Gaussian groups and Garside groups, two generalizations of Artin
groups, Proc. London Math. Soc. 79 (1999), 569-604.

[6] P.Dehornoy, Groupes de Garside, Ann. Scient. Ec. Norm. Sup. 35 (2002), 267-306.

[7] E.ElRifai and H. Morton, Algorithms for positive braids, Quart. J. Math. Oxford Ser. (2), 45
(1994), 479-497.

[8] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Patterson and W. P. Thurston,
Word Processing in Groups, Jones and Bartlett Publishers, Boston 1992.

[9] N. Franco and J.González-Meneses, Conjugacy problem for braid groups and Garside groups,
J. Alg. 266 (2003), 112-132.

[10] V. Gebhardt, A new approach to the conjugacy problem in Garside groups, J. Alg. 292 (2005),
282-302.

[11] V. Gebhardt and J. González-Meneses, The cyclic sliding operation in Garside groups,
arXiv:0808.1430v2.

[12] E.-K.Lee and S. J. Lee, Abelian subgroups of Garside groups, Comm. Alg. 36 (2008), 1121-
1139.

[13] J.Michel, Garside and braid monoids and groups. Chapter 81 of the GAP manual available
at http://www.math.jussieu.fr/˜jmichel/htm/CHAP081.htm

Volker Gebhardt:

School of Computing and Mathematics
University of Western Sydney
Locked Bag 1797
Penrith South DC NSW 1797, Australia
E-mail: v.gebhardt@uws.edu.au

Juan González-Meneses:

Dept. Álgebra. Facultad de Matemáticas
Universidad de Sevilla
Apdo. 1160
41080 Sevilla (SPAIN)
E-mail: meneses@us.es
URL: www.personal.us.es/meneses

30

