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Geometric embeddings of braid groups do not

merge conjugacy classes
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Abstract

An embedding of the m-times punctured disc into the n-times punc-

tured disc, for n > m, yields an embedding of the braid group on m

strands Bm into the braid group on n strands Bn, called a geometric em-

bedding. The main example consists of adding n−m trivial strands to the

right of each braid on m strands. We show that geometric embeddings do

not merge conjugacy classes, meaning that if the images of two elements

in Bm by a geometric embedding are conjugate in Bn, the original ele-

ments are conjugate in Bm. We also show that the result does not hold,

in general, for geometric embeddings of mapping class groups.

1 Introduction

Braid groups on n strands Bn were introduced by Artin [1] and can be defined in
several different ways. The easiest one is by means of the following presentation,
also due to Artin [2]

Bn =

〈

σ1, . . . , σn−1

∣

∣

∣

∣

σiσj = σjσi |i− j| > 1
σiσjσi = σjσiσj |i− j| = 1

〉

If we see braids as homotopy classes of disjoint strands relative to their end-
points [3], the generator σi corresponds to the crossing of strands in positions i
and i+ 1, in the positive sense (see Figure 1).

The group Bn can also be seen as the mapping class group of the n-times
punctured disc, relative to the boundary. More precisely, if Dn is a topologi-
cal disc with n punctures (n interior points removed), we can consider the set
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Figure 1: Classical (Artin) generators of Bn

Homeo+(Dn, ∂Dn) of orientation preserving homeomorphisms from Dn to itself
fixing the boundary pointwise. Endowing Homeo+(Dn, ∂Dn) with the usual
compact-open topology, one defines the mapping class group MCG(Dn, ∂Dn) =
π0(Homeo+(Dn, ∂Dn)). That is, MCG(Dn, ∂Dn) is the set of orientation pre-
serving homeomorphisms of Dn (fixing the boundary pointwise), up to isotopy.
It turns out that Bn ≃ MCG(Dn, ∂Dn) [3].

There is a natural way to embed Bm into Bn for m < n: Choose a topological
embedding ϕ : Dm → Dn which sends punctures to punctures and ∂Dm to
the interior of Dn, and then extend every homeomorphism f of Dm fixing the
boundary pointwise to a homeomorphism ϕ(f) of Dn which equals ϕ ◦ f ◦ ϕ−1

in ϕ(Dm) and is the identity outside ϕ(Dm). This map which sends f to ϕ(f)
is injective and respects isotopies, so it induces an embedding ϕ : Bm → Bn,
which is called a geometric embedding (see [14]). Notice that we denoted three
different maps (applied to points, to homeomorphisms and to mapping classes)
with the same letter ϕ, hoping that this will not cause confusion.

The simplest example of a geometric embedding occurs when the disc embedding
ϕ is given by the inclusion, in the complex plane C, of the m-times punctured
disc of diameter m − 1/2 whose punctures are the integers 1, . . . ,m, into the
n-times punctured disc of diameter n whose punctures are the integers 1, . . . , n
(see Figure 2). We call this the standard embedding of Dm into Dn, and will
denote it by η. One can easily determine the standard geometric embedding
η : Bm → Bn in terms of Artin’s presentation, as in this case η(σi) = σi for
i = 1, . . . ,m− 1.

Actually, every geometric embedding ϕ is conjugate to η, in the following
sense. First, η ◦ ϕ−1 sends ϕ(Dm) to η(Dm). Then, as Dn\int(ϕ(Dm)) and
Dn\int(η(Dm)) are both annuli with n − m punctures, there is a homeomor-
phism from the former to the latter which coincides with η ◦ϕ−1 on ∂(ϕ(Dm)).
Gluing both homeomorphisms, we obtain an orientation preserving homeomor-
phism g of Dn (fixing the boundary pointwise) such that g ◦ϕ = η, the standard
embedding of Dm into Dn. Considering g as an element of Bn we obtain

η : Bm −→ Bn

f 7−→ g ◦ ϕ(f) ◦ g−1

as this is precisely the geometric embedding associated to the standard disc

2



Figure 2: The standard geometric embedding of Bm into Bn

embedding g ◦ ϕ = η : Dm → Dn.

Now the following question arises: Do geometric embeddings merge conjugacy
classes of Bm? In other words, given a geometric embedding ϕ : Bm → Bn, and
given two non-conjugate elements a, b ∈ Bm, can ϕ(a) and ϕ(b) be conjugate in
Bn?

In this paper, we answer the above question in the negative, by showing the
following.

Theorem 1.1. Let η : Bm → Bn be the standard geometric embedding. For
every a, b ∈ Bm, if η(a) and η(b) are conjugate in Bn, then a and b are conjugate
in Bm.

From the above result the following follows easily:

Corollary 1.2. Let ϕ : Bm → Bn be a geometric embedding. For every a, b ∈
Bm, if ϕ(a) and ϕ(b) are conjugate in Bn, then a and b are conjugate in Bm.

Proof. Recall that η is the geometric embedding corresponding to the disc em-
bedding g◦ϕ for some homeomorphism g of Dn. If there exists α ∈ Bn such that
ϕ(b) = αϕ(a)α−1, then η(b) = gϕ(b)g−1 =

(

gαg−1
) (

gϕ(a)g−1
) (

gα−1g−1
)

=
(

gαg−1
)

η(a)
(

gαg−1
)−1

. Thus η(a) and η(b) are conjugate, hence so are a and
b by Theorem 1.1.

In order to show Theorem 1.1, in Section 2 we will recall some basic facts from
Nielsen-Thurston theory of braids and mapping classes, which will be used in
Section 3 to prove the result.
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Figure 3: A geometric embedding which merges conjugacy classes

As several arguments in the proof of Theorem 1.1 use the general theory of
mapping class groups, one is tempted to try to generalize the result to geo-
metric embeddings of other mapping class groups. That is, if M is a (possibly
punctured) surface and N is a subsurface such that ∂N ∩∂M = ∅, the injection
i : N →֒ M induces a map i∗ : MCG(N, ∂N) → MCG(M,∂M) which in most
cases is injective [12]. Here is an example of such a geometric embedding which
merges conjugacy classes.

Example 1.3. Let M2,1 be the orientable surface of genus 2 with 1 boundary
component, and let M3,0 be the orientable closed surface of genus 3. Consider the
geometric embedding i : M2,1 →֒ M3,0 represented in Figure 3. The induced map

i∗ : MCG(M2,1, ∂M2,1) → MCG(M3,0) is injective as M3,0\M2,1 is neither a
disc nor a punctured disc [12].

Let γ and δ be two simple closed curves in M2,0 as in Figure 3, and let τγ and
τδ be their corresponding Dehn twists.

First we see that τγ is not conjugate to τδ in MCG(M2,1, ∂M2,1), as follows:
Collapsing the boundary of M2,1 to a puncture p yields a group homomorphism
from MCG(M2,1, ∂M2,1) to MCG(M2,0\{p}). The image of τδ is trivial, while
the image of τγ is not, hence these elements cannot be conjugate.

Now notice that the mapping class ρ ∈ MCG(M3,0) represented by a rota-
tion of angle 2π/3 sends the curve i(γ) to the curve i(δ). This means that,
in MCG(M3,0), one has ρ ◦ i∗(τγ) ◦ ρ−1 = i∗(τδ). Hence i∗ merges conjugacy
classes.
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2 Some facts from Nielsen-Thurston theory

Recall that the braid group Bn can be defined as Bn = MCG(Dn, ∂Dn). There
is a special braid, denoted ∆2, which corresponds to a Dehn twist along a curve
which is parallel to the boundary of Dn. This braid is called a full twist, or the
Garside element of Bn, and it generates the center of Bn [5].

If we quotient Bn by its center, that is if we consider Bn/〈∆2〉, geometrically
this corresponds to removing the condition that the boundary of Dn is fixed
pointwise, so Bn/〈∆2〉 = MCG(Dn). Notice that we could collapse the bound-
ary of Dn to a new puncture, so this group becomes a subgroup of the mapping
class group of the (n+ 1)-times punctured sphere.

This allows to study braids using the Nielsen-Thurston theory of mapping
classes [13, 8], so braids can be classified into three geometric types:

• Periodic: If they have finite order modulo ∆2.

• Reducible, not periodic: If they are not periodic, and they preserve
a family of disjoint, non-parallel simple closed curves in Dn, each one
enclosing more than 1 and less than n punctures (such curves are called
non-degenerate).

• pseudo-Anosov: If the induced mapping class of the (n+1)-times punc-
tured sphere admits a representative which preserves two transverse mea-
sured foliations, scaling the measure of one of them by some real number
λ > 0, and the measure of the second one by λ−1.

One can interpret this classification as follows: Periodic braids have a power
which preserves all non-degenerate curves. Reducible (non-periodic) braids have
a power which preserves some non-degenerate curves. Pseudo-Anosov braids
have no power preserving a non-degenerate curve.

The most important case in this paper will be the second one: Reducible (but not
periodic) braids. By definition, these braids preserve a family of non-degenerate
curves. By [4], there is a distinguished family of curves associated to a reducible,
non periodic braid β, called the canonical reduction system of β and denoted
CRS(β).

The canonical reduction system CRS(β) of a given braid β (not necessarily
reducible) is defined as follows. A simple closed curve C is said to be essential
for β if βN (C) = C for some N > 0, and if C′ is not fixed by any power of β
for every C′ having positive geometric intersection with C (that is, C′ cannot be
isotoped to be disjoint from C). Then CRS(β) is the set of (isotopy classes of)
essential curves for β.
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Some important facts concerning canonical reduction systems are the follow-
ing [4]:

• CRS(β) 6= ∅ if and only if β is reducible, not periodic.

• CRS(α ◦ β ◦ α−1) = α(CRS(β)).

• Dn\CRS(β) has several connected components. Given a power βM of β
which preserves each of these connected components (the permutation in-
duced by βM on the set of connected components is trivial), the restriction
of βM to each connected component is either periodic or pseudo-Anosov.

• CRS(β) is the minimal family, under inclusion, of (isotopy classes of)
non-degenerate curves satisfying the above property. In other words, a
family of curves which satisfies the above property is CRS(β) if and only
if the family obtained by removing any of its curves does not satisfy the
property.

One particular property of braids, compared to other mapping classes, is that
cutting a punctured disc along disjoint non-degenerate curves yields again punc-
tured discs (each curve plays the role of boundary of the outermost connected
component it encloses). This implies that each reducible (non-periodic) braid
β ∈ Bn can be decomposed into simpler braids on fewer strands, cutting the disc
along CRS(β). Usually, in the theory of mapping classes, one takes a power βM

such that each connected component is sent to itself, but in the case of braids
this is not necessary, as one can see in [10].

In any case, if β ∈ Bn is reducible and non-periodic, the outermost connected
component of Dn\CRS(β) is always preserved by β, and the restriction of β to
this component is a braid that we will call βext, the external component of β.

We point out that βext is well defined up to conjugacy, as it depends on the way
of collapsing the holes of the surface to punctures. Although there is a way to
properly define the external and internal components of β (see [10]), we shall
not need it, as the only property of βext we care about in this paper is whether
it is trivial or not, and this is well defined up to conjugacy.

We will use the above results in the next section to show Theorem 1.1.

3 The standard geometric embedding does not

merge conjugacy classes

In this section we will show Theorem 1.1. Let η : Bm → Bn be the standard
geometric embedding, and let a, b ∈ Bm such that η(a) and η(b) are conjugate.
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Figure 4: The canonical reduction system of η(a) is obtained by applying η to
CRS(a), and possibly adding ∂(η(Dm)).

If a = 1 the result follows easily: one has η(a) = 1 which implies that η(b) = 1,
and as η is injective one obtains that b = 1 too. We can then assume that both
a and b are nontrivial.

First we must point out that η(a) preserves the boundary of η(Dm), which is a
non-degenerate curve of Dn hence η(a) is not pseudo-Anosov. We shall now see
that η(a) cannot be periodic.

If η(a) were periodic, there would be some integers M,N with N > 0 such that
η(a)N = ∆2M . As ∆ is a braid in which every strand crosses every other strand
once in the positive sense, ∆2M is a braid in which every strand crosses every
other strand, unless M = 0. But in our case the n-th strand of η(a)N would
not cross any other, so we deduce that M = 0, hence η(a)N = 1. As braid
groups have no torsion [7, Theorem 8] (see also [9, 6, 11]), it would follow that
η(a) = 1, so a = 1, a contradiction. Therefore η(a) is not periodic.

From the above arguments we obtain that η(a) is reducible, non periodic. Hence
CRS(η(a)) 6= ∅. We shall now compare CRS(η(a)) and CRS(a), the latter
being possibly empty, as a can be either periodic, reducible or pseudo-Anosov.

Lemma 3.1. Under the above conditions, if aext is trivial, then CRS(η(a)) =
η(CRS(a)). Otherwise CRS(η(a)) = η(CRS(a)) ∪ ∂(η(Dm)). Moreover, in
either case η(a)ext is trivial.

Proof. Recall that η(a) is obtained by extending the homeomorphism a of Dm

by the identity to the whole Dn, where Dm is embedded into Dn by the standard
embedding η. This implies in particular that ∂(η(Dm)) is preserved by η(a).

Since CRS(a) is preserved by a, if we apply the standard disc embedding η to
this (possibly empty) family of curves, we obtain η(CRS(a)) which is preserved
by η(a). Hence Γ = η(CRS(a)) ∪ ∂(η(Dm)) is a family of disjoint, simple, non-
parallel, non-degenerate curves preserved by η(a). Moreover, we claim that if
η(a)M preserves the connected components of Dn\Γ, then η(a)M restricted to
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each connected component is either periodic or pseudo-Anosov. Indeed, η(a)M

restricted to the outermost component of Dn\Γ is the identity, while η(a)M

restricted to any other component is equal to aM restricted to a component of
Dm\CRS(a), hence it is either periodic or pseudo-Anosov.

Therefore CRS(η(a)) is a subset of Γ, and we only need to see which curves of
Γ can be removed so that the restriction of η(a)M to each connected component
is still either periodic or pseudo-Anosov.

Given C ∈ η(CRS(a)), removing C from Γ merges two connected components.
That is, if we consider Γ′ = Γ\{C}, there is a connected component of Dn\Γ′

which is the union of C and of two connected components of Dn\Γ. If the
restriction of η(a)M to this component were periodic or pseudo-Anosov, this
would imply that η−1(C) can be removed from CRS(a), which is not true.
Hence all curves of η(CRS(a)) belong to CRS(η(a)), so the only curve which
could possibly be removed from Γ to obtain CRS(η(a)) is ∂(η(Dm)).

Now suppose that aext is trivial. Then the restriction of η(a) (and of every
power of η(a)) to the outermost component of Dn\η(CRS(a)) is also trivial.
Hence the restrictions of η(a)M to the connected components of Dn\η(CRS(a))
are either periodic or pseudo-Anosov, therefore CRS(η(a)) = η(CRS(a)).

Finally, suppose that aext is not trivial. Let S be the outermost component of
Dn\η(CRS(a)), and consider η(a)M restricted to S. This mapping class is still
a braid, as S is (homeomorphic to) a punctured disc. Notice that (η(a)M )|S
is not periodic: as the last puncture of Dn does not cross any other, if it were
periodic it should be trivial, but this is not the case. Also, (η(a)M )|S is not
pseudo-Anosov, as it preserves the non-degenerate curve ∂(η(Dm)). Hence we
cannot remove ∂(η(Dm)) from Γ in this case, and therefore CRS(η(a)) = Γ.

In both cases the restriction of η(a) to the outermost component ofDn\CRS(η(a))
is trivial, that is η(a)ext is trivial. This ends the proof of Lemma 3.1.

Now suppose that η(a) and η(b) are conjugate in Bn, and let α ∈ Bn such that
α η(a) α−1 = η(b). Then we have CRS(η(b)) = α(CRS(η(a))).

By Lemma 3.1, CRS(η(a)) has a curve enclosing m punctures if and only if aext
is trivial. Therefore aext is trivial if and only if so is bext.

Let CRSout(η(a)) be the set of outermost curves in CRS(η(a)), and define
CRSout(η(b)) similarly. As nested curves preserve their relative position under
the homeomorphism α, it follows that CRSout(η(b)) = α(CRSout(η(a))).

Let us denote by Sa the outermost connected component of Dn\CRS(η(a))
and by Sb the outermost connected component of Dn\CRS(η(b)). As α sends
CRSout(η(a)) to CRSout(η(b)), we have α(Sa) = Sb.

Suppose that aext (and thus bext) is nontrivial. In this case Sa = Sb = Dn\η(Dm)
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so α preserves η(Dm), and we can clearly take a representative of α which fixes
∂(η(Dm)) pointwise. Let α′ be the restriction of this representative to η(Dm),
and let α0 = η−1(α′) ∈ Bm.

Let us see that in this case b = α0 a α
−1

0 . Indeed,

b = η−1(η(b)|η(Dm)
) = η−1((α η(a) α−1)|η(Dm)

) =

= η−1(α′ η(a)|η(Dm)
(α′)−1) = α0 η

−1(η(a)|η(Dm)
) α−1

0 = α0 a α
−1

0 .

Now suppose that aext (and thus bext) is trivial. This implies by Lemma 3.1
that all curves in CRS(η(a)) and CRS(η(b)) belong to the interior of η(Dm).
Hence ∂(η(Dm)) belongs to the interior of both Sa and Sb. Let C1 = ∂(η(Dm))
and C2 = α(C1). Recall that Sb is isomorphic to a punctured disc, and that
C1 and C2 are interior closed simple curves of Sb. Moreover, as the annulus
determined by C1 (resp. C2) and ∂Dn contains exactly n −m punctures, there
is a homeomorphism of Sb ∪ CRSout(η(b)) which sends C2 to C1, and leaves
CRSout(η(b)) and ∂Dn fixed pointwise. Extending this homeomorphism by the
identity to the whole Dn, we obtain a homeomorphism β of Dn with support in
Sb, such that β(C2) = C1.

If we consider γ = β ◦ α, we notice that γ(C1) = β(α(C1)) = β(C2) = C1. That
is γ(∂(η(Dm))) = ∂(η(Dm)). Hence γ(η(Dm)) = η(Dm), and we can take a
representative of γ which fixes ∂(η(Dm)) pointwise. Moreover, β and η(b) have
disjoint support, hence they commute. Therefore:

γ η(a)γ−1 = β α η(a) α−1 β−1 = β η(b) β−1 = η(b).

We then have a braid γ ∈ Bn which conjugates η(a) to η(b) and preserves
η(Dm). Denoting γ′ = γ|η(Dm)

, and γ0 = η−1(γ′) ∈ Bm, it follows as above that

γ0 a γ−1

0 = b.

This shows that in every case, a and b are conjugate in Bm, finishing the proof
of Theorem 1.1.
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Facultad de Matemáticas
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