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Abstract

Saving energy and protecting the environment became fundamental for

society and politics, why several laws were enacted to increase the energy-

efficiency. Furthermore, the growing number of vehicles and drivers leaded

to more accidents and fatalities on the roads, why road safety became an

important factor as well. Due to the increasing importance of energy-

efficiency and safety, car manufacturers started to optimise the vehicle in

terms of energy-efficiency and safety. However, energy-efficiency and road

safety can be also increased by adapting the driving behaviour to the given

driving situation. This thesis presents a concept of an adaptive and rule

based driving system that tries to educate the driver in energy-efficient

and safe driving by showing recommendations on time. Unlike existing

driving systems, the presented driving system considers energy-efficiency

and safety relevant driving rules, the individual driving behaviour and

the driver condition. This allows to avoid the distraction of the driver

and to increase the acceptance of the driving system, while improving the

driving behaviour in terms of energy-efficiency and safety. A prototype of

the driving system was developed and evaluated. The evaluation was done

on a driving simulator using 42 test drivers, who tested the effect of the

driving system on the driving behaviour and the effect of the adaptiveness

of the driving system on the user acceptance. It has been proven during

the evaluation that the energy-efficiency and safety can be increased, when

the driving system was used. Furthermore, it has been proven that the

user acceptance of the driving system increases when the adaptive feature

was turned on. A high user acceptance of the driving system allows a

steady usage of the driving system and, thus, a steady improvement of

the driving behaviour in terms of energy-efficiency and safety.
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Chapter 1

Introduction

Several oil crises in the last decades and the achievement of the peak oil1 increased

society’s awareness of the finiteness of the oil. In conjunction with the increasing

energy demand in the European Union and the human-made climate change, saving

energy and protecting the environment became fundamental for politics and society.

Thus, several laws were enacted to reduce the greenhouse gas emissions, which is

the consequence of the usage of fossil fuels, like the CO2 limitations for passenger

cars in the European Union. Furthermore, the European Union is aiming to save

20 % energy, and thus to reduce the CO2 emissions, until the year 2020 by increasing

the energy-efficiency at all stages on the energy chain, for example by increasing the

energy-efficiency of the vehicles on the road [2]. Figure 1.1 shows that the energy

consumption on the road increased by 21 % from 1990 to 2012. The European Union

expects that the energy demand and, thus, the CO2 output of the vehicles will further

increase, due to an increasing motorisation in the European Union, the trend for living

in suburban areas or the expansion of tourism [3].

The growing number of vehicles and drivers in the past leaded also to more ac-

cidents and fatalities on the road, why road safety became an important factor as

well. Due to the increasing importance of energy-efficiency and road safety, car man-

ufacturers are trying to optimise the car respectively parts of the car, like the engine

or the car body, to save energy and to increase the road safety. Furthermore, new

methods were invented to increase the energy-efficiency and the road safety of the

1Peak oil is the point in time, when the maximum global petroleum extraction is reached
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Figure 1.1: Energy consumption on the road from 1990 to 2012 in 1000 tonnes of oil
equivalent [1]

car like the regenerative brake [4], which converts kinematic energy during the brake

application to electric energy or the anti-lock brake system [5], which increases the

safety by preventing the wheels from locking up.

Besides the optimisation of the car, there is the potential to increase the energy-

efficiency and road safety by adapting the driving behaviour to the given driving

situation. The studies [7] and [8] showed that the driving behaviour has an effect on

the road safety. This has been also verified by the accidents report of the German

Statistical Office [6] that showed that about 86 % of the accidents with personal in-

jury in Germany in 2013 happened because of driver mistakes, such as speeding or

less distance to the preceding car. Figure 1.2 lists the causes of the accidents with

personal injury that happened in 2013. Furthermore it shows that the main cause

of road accidents with personal injury in the year 2013 were turning off mistakes

(13.6 %), failures to yield the right of way (12.5 %), inappropriate speed (12.0 %)

and insufficient distance to car in front (11.2 %). Furthermore, an adapted driving

behaviour can save energy up to 30 % as several studies showed [9, 10, 11]. How-

ever, according to Bongard [12] energy savings about 30 % can only be reached by

experienced drivers. In short-term driving practices, like energy-efficiency trainings

or contests, energy savings about 24 % are possible as the tests of the car manufac-

turer Ford showed [13]. In contrast, Barkenbus [14] calculates the energy savings in

long-term driving practices at 5 % when the drivers have no continuous feedback after

2
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Figure 1.2: Causes of accidents with personal injury [6]

the initial training. However, with a continuous feedback Barkenbus calculates the

energy savings at 10 %. A continuous feedback is defined by Barkenbus as showing

energy-efficient relevant recommendations every day.

There are already driving systems, such as the driving systems of Fiat [15], Kia [16]

or Lotan and Toledo [17], trying to improve the driving behaviour in terms of energy-

efficiency or safety. However, these driving systems cover either the area of energy-

efficiency or safety and provide insufficient feedback to the driver, for example by

showing a green lamp when the driver is driving energy-efficient. Furthermore, the

driving systems do not adapt itself to the individual driving behaviour and do not

consider the driver condition. This can lead to a decrease of the acceptance of the

driving systems as they may confuse the driver with recommendations in dangerous

driving situations by giving for example an energy-efficient relevant recommendation

while driving too close to the car in front. Furthermore, the driving systems show

the driver recommendations even when the driver is in stress. This may lead to an

increase of the mental load of the driver especially in stressful driving situations and,

thus, to accidents, as a high mental load can lead to accidents [18]. Another point

is that the driving systems may bother the driver with recommendations, which are

not relevant in the sense of the driver. Thus, the driver may switch off the driving

system and may not use it further.

3
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Due to the elaborated facts, the goal of this work is to create a driving system

that educates the driver in energy-efficient and safe driving behaviour. Therefore,

the driving system gives driving recommendations on time, while considering the

individual driving behaviour and the driver condition. This allows the driving system

to show customised recommendations. Thus, the driving system does not bother the

driver with recommendations, which are not relevant in the sense of the driver, and

suppresses recommendations when the driver is for example in stress. This may lead

to an increase of the acceptance of the driving system.

1.1 Methodology

The methodology used in this work includes four steps:

1. Analysis: During the analysis phase the research question was worked out on

the basis of the research in literature, tools and methodologies. Furthermore,

the current available driving systems were analysed and studied in this phase.

2. Conception: On the basis of the analysis, the concept of the new driving sys-

tem was worked out and innovative algorithms were developed. Furthermore,

other algorithms were developed in order to compare the performance of the

innovative algorithms.

3. Development: In this phase of the methodology, the prototype of the driving

system was developed according to the results of the conception phase.

4. Evaluation: The developed prototype was evaluated and tested in this phase.

1.2 Hypothesis

The following research question was identified during the analysis phase of the used

methodology and is the basis of this dissertation:

• Is it possible to improve the driving behaviour in terms of energy-efficiency and

safety by giving driving recommendations on time while considering the driver

condition and the individual driving behaviour?

4
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Recommendations are shown to the driver when an energy-inefficient or unsafe

driving behaviour is detected. The recommendations allow to point the driver to his

wrongdoings that caused the energy-inefficient or unsafe driving. Thus, the driver

has the opportunity to eliminate the wrongdoings and, thus, to improve the driving

behaviour in terms of energy-efficiency and safety.

• Does the adaptiveness of the driving system increase the user acceptance of the

driving system?

The adaptiveness of the driving system allows to consider the driver condition and

the individual driving behaviour when showing a recommendation to the driver. Thus,

the shown recommendations are adapted to the driver needs. The adaptive feature of

the driving system should help to increase the user acceptance of the driving system

and, thus, to lead to a steady usage of the driving system.

1.3 Goal of this work

The goal of this work is to solve the research question and, thus, to reduce the

energy-consumption of the vehicle and to increase the road safety. Another goal is

the increase of the user acceptance using the adaptive feature of the driving system.

Therefore, the prototype and the supporting algorithms have to be checked that

they educate the driver in energy-efficient and safe driving as well as adapt itself to

the individual driving behaviour using experiments with test persons on the driving

simulator. The evaluation of the driving simulator will demonstrate an increase of

the energy-efficiency and safety when using the driving system. Furthermore, the

evaluation demonstrates that the user acceptance is higher when using the adaptive

feature of the driving system.

In terms of the research question that is related to energy-efficiency and safety,

the test drivers will drive in a vehicle with and without using the driving system.

During the journeys, the fuel consumption as well as the mileage of the vehicle and

the time of the violation against the traffic rules will be measured. Based on the

obtained measurements, the energy-efficiency and safety of the driving behaviour will

5
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be calculated and compared between the journeys, in which the driver drove with and

without the driving system. This will allow the demonstration of an increase of the

energy-efficiency and safety and, thus, to solve the related research question.

The user acceptance of the driving system will be measured with a questionnaire

after the test drivers have driven with the adaptive feature of the driving system and

without the adaptive feature. The results of the questionnaire will be compared to

each other, in order to demonstrate an increase of the user acceptance when using

the driving system with the adaptive feature.

1.4 Definition of energy-efficiency

Energy efficiency is nowadays omnipresent in politics, media and research as it is

linked with benefits for example for the environment by reducing the CO2 emis-

sions and the economics by reducing the costs of the energy use [19]. But, what

is energy-efficiency exactly? In the following the term energy-efficiency is explained.

Furthermore, as the focus of this work is to increase the energy-efficiency of the car by

improving the driving behaviour, the role of energy-efficiency in road transportation

is also regarded.

1.4.1 Energy-efficiency in general

Energy-efficiency can be defined in general as using less energy in a process to produce

the same amount of useful output such as a product or a service. Thus, energy-

efficiency is not energy conservation that saves energy by reducing or abandoning

a service or a product. For example, switching off a light is energy conservation,

whereas replacing the bulb of the light with an LED bulb, which uses less energy for

the same brightness, would be energy-efficiency. According to [19] energy-efficiency

is broadly defined by the ratio:

Energy-efficiency =
Useful output of a process

Energy input into a process
(1.1)

6
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Where the output of a process can be an energy output, a physically defined output

(i.e. a tonne of a product) or an enumerated output such as market prices. The energy

input into a process is declared as the unit Joule. Joule is the unit for energy, work

or amount of heat in the International Systems of Units (SI).

1.4.2 Energy-efficiency in road transportation

The needed energy in road transportation is the kinetic energy. It is produced by

converting the energy of an energy source into kinetic energy for example by combus-

tion of fossil fuels within an engine. The dominating energy source in traffic is fossil

fuel. Due to the emitted greenhouse gas by using fossil fuels, the achievement of the

peak oil and correlating high costs of fossil fuels, the energy has to be used efficiently

as possible [10]. In general, energy-efficiency in road transportation can be defined as

the transportation of people or products as far as possible by using less energy. On

the basis of the equation in 1.1 the energy-efficiency in road transportation can be

defined as the following ratio:

energy-efficiency in road transportation =
Distance travelled

Burned fossil fuel
(1.2)

According to Helms et al. [10] and the International Energy Agency [20], there are

two opportunities to increase the energy-efficiency: on vehicle level and on system

level. On vehicle level, the efficiency can be increased for example by increasing the

efficiency of the engine or by improving the driving behaviour in terms of energy-

efficient driving, which is the focus of this work. On system level, reducing the

distances travelled per vehicle for example by doing business at home instead of

travelling to the working place would increase the energy-efficiency. Furthermore, an

increase in efficiency would also be reached on system level by shifting the travel to

the most sustainable transportation means or by utilising the transportation means

better.

7
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1.5 Definition of safety

Safety on the road became an important factor in the last decades to politics and car

manufacturers, due to increasing fatalities and accidents on the road. But, what is

the meaning of the term safety in the context of the road? In the following the term

safety is generally explained. Furthermore, as the focus of this work is to increase the

safety on the road by improving the driving behaviour, the role of safety on the road

is also regarded.

1.5.1 Safety in general

Safety is defined as the state when there are no unacceptable risks or no danger [21].

However, absolute safety can not be guaranteed in general. Thus, a relative safety

or a tolerable risk are also sufficient to describe something as safe. Relative safety is

the absence of danger for a certain time, under certain conditions and in a certain

environment. In addition, safety is also reached when the benefit of a thing is higher

rated than the probability of the existence of danger. Relative safety can be described

as the following ratio:

Relative safety =
Condition or environment

Absence of danger
(1.3)

Where the condition or environment can be a certain process or task that is performed.

The absence of danger is declared as the time, in which no danger is occurred during

the performance of the process or task.

1.5.2 Safety on the road

According to the general definition of safety, safety on the road can be defined as the

usage of the road by road users during the absence of casualties. Road users are for

example pedestrians, drivers or passengers of cars, buses or trams. On the basis of

the definition of relative safety in 1.3, road safety can be defined as the ratio:

Road safety =
Travelled distance

Usage of the road without casualties
(1.4)
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Where the travelled distance represents the distance that a road user is travelled

either in kilometres or miles. The usage of the road without casualties is declared in

the time unit. The term road safety considers methods and measures trying to reduce

the number of road casualties [22]. As the focus of this work is to increase the safety

by improving the driving behaviour, road safety is regarded in the following with the

focus on the car as a road user.

Road safety can be separated in two aspects of safety: technical safety and safety

training. Technical safety is used to increase the safety on the road by improving

the road itself, the traffic routeing or the vehicle for example by improving the car

body, adding driving assistants or safety systems to the car like the lane change

assistant or the anti-lock braking system (ABS). In contrast to the technical safety,

safety training tries to increase the road safety by educating the driver in safe driving

for example during the driving school or in driver trainings after getting the driving

license. During the driving school, computer applications or a driving simulator are

used to teach safe driving besides the teaching of the theoretical part of the driving.

Furthermore, the driving instructor gives feedback during the driving to the learner.

After getting the driving license, there are driver trainings that try to educate the

driver in defensive driving in order to make the driving behaviour safer. Other safety

relevant driver trainings are focusing on a feedback by an instructor during driving

and by discussing the driving behaviour in groups [23]. The education of the driver

by giving a feedback to the driver in terms of safety is also the focus of this work.

1.6 Thesis Outline

In the next chapter the related work of existing driving systems and developed driv-

ing rules for energy-efficient and safe driving will be presented. Chapter 3 explains

the goals and the architecture of the driving systems. Furthermore, the driving rules,

used in the driving system to detect an energy-inefficient or unsafe driving behaviour,

as well as the driving profile, which is used to adapt the driving system to the individ-

ual driving behaviour, are also explained in this chapter. Finally, Chapter 3 presents

the interface that is used to gather information from the car and algorithms that are

used to aggregate the gathered information and to update the driving profile. Dif-

ferent prediction algorithms for predicting the car state are evaluated and the results

9
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presented in Chapter 4. The detection of broken driving rules or deviations from the

typical driving behaviour using an improved rule matching algorithm is explained in

Chapter 5. Additionally, different rule matching algorithms are explained and their

performance are evaluated. The results of the rule matching algorithm evaluation are

also presented in Chapter 5. The decision process to show a recommendation while

considering the driver condition and the individual driving behaviour is explained and

evaluated in Chapter 6. Furthermore, the detection of the driver reaction to a shown

recommendation is also described in Chapter 6 in detail. Based on the algorithms

presented in the previous chapters, a prototype is developed, whose architecture is

explained in Chapter 7. The evaluation set-up for evaluating the driving system

as well as the architecture of the used driving simulator is described in Chapter 8.

Chapter 9 presents the results of the driving system evaluation, which are discussed

in Chapter 10. Finally, Chapter 11 and 12 concludes the findings of this thesis and

explains the future work.

On the basis of the findings in the Chapters 4 - 9, several papers were published

and are planned to be published. The following listing shows an excerpt of the

published papers, a full list of papers can be found in Appendix A:

• E. Yay, N. Martnez Madrid, J. A. Ortega Ramrez. Influence of stress in driving

behaviour, MEDICON 2016, Paphos, Cyprus, 2016.

• E. Yay, N. Martnez Madrid, J. A. Ortega Ramrez. Detecting the adherence of

driving rules in an energy-efficient, safe and adaptive driving system, Expert

Systems with Applications, Volume 47, Pages 58-70, ISSN 0957-4174, 2016.

• E. Yay, N. Martnez Madrid, J. A. Ortega Ramrez. Using an improved rule

match algorithm in an expert system to detect broken driving rules for an

energy-efficiency and safety relevant driving system, Procedia Computer Sci-

ence, Volume 35, Pages 127-136, ISSN 1877-0509, 2014.

• E. Yay, N. Martnez Madrid. An adaptive driving system regarding energy-

efficiency and safety, AITA - Workshop on Ambient Intelligence for Telemedicine

and Automotive domains, ISBN 978-84-697-0147-8, Seville, Spain, 2014.

• E. Yay and N. Martnez Madrid. SEEDrive - An Adaptive and Rule Based

Driving System, The 9th International Conference on Intelligent Environments

- IE’13, ISBN 978-0-7695-5038-1, Athens, Greece, 2013.
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• E. Yay and N. Martnez Madrid. A new driving system towards energy-efficient

and safe driving behaviour, Proceedings of the Tenth Workshop on Intelligent

Solutions in Embedded Systems (WISES), ISBN 978-1-4673-2464-9, Klagenfurt,

Austria, 2012.
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Chapter 2

Driving rules and driving systems

In the first two parts of this chapter, an overview over the driving rules are given that

are used to increase the driving behaviour in terms of energy-efficiency and safety.

Next, existing driving systems are presented, whose goal is to increase the energy-

efficiency or safety of the vehicle or to optimise the driving behaviour in terms of

energy-efficiency or safety. Finally, an overview over the existing driving systems

is given as well as possible improvements of the driving systems are discussed that

would allow to increase the energy-efficiency or safety of the driving behaviour and

the acceptance of the driving systems.

2.1 Driving rules for energy-efficiency

The goal of an energy-efficient and safe driving behaviour is to reduce the demand

of energy of the car and to increase the safety on the road by changing the habits

of the driver. In order to achieve this goal, the cooperation of the driver is needed,

as the driver has to adhere the driving rules for energy-efficient or safe driving. An

energy-efficient and safe driving behaviour is described by a set of rules. According to

Barkenbus [14] an energy-efficient driving behaviour involves such things as smooth

acceleration, anticipating to the traffic flow and signals, avoiding sudden starts and

stops, driving below the speed limit, maintaining an even pace and eliminating exces-

sive idling. Another definition of an energy-efficient driving behaviour has been done

by the European Union (EU) in their ECODRIVEN campaign [24], which had the

goal to distribute an energy-efficient driving behaviour in Europe in order to reduce

the CO2 emissions. The ECODRIVEN campaign was conducted between the years
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2006 and 2008. Besides driver trainings for energy-efficient driving, the ECODRIVEN

campaign presented eco driving activities to drivers in their social environment, so

that the drivers were engaged to reflect on and to optimise their driving behaviour in

energy-efficiency and safety. The ECODRIVEN project avoided 1 Mton CO2 emission

between 2006 and 2010 [24]. The following driving rules define an energy-efficient

driving behaviour in the ECODRIVEN campaign and, thus, were presented to the

drivers:

• Shift into a higher gear as soon as possible at the latest at 2500 revolutions per

minute (rpm), for diesel cars before 2000 rpm

• Maintain a steady speed using the highest possible gear

• Look ahead and anticipate to the traffic flow

• Decelerate smoothly by releasing the accelerator while the car is in gear

• Avoid high speeds above 80 or 90 km/h

• Switch the engine off when it is planned to idle longer than one minute

The presented energy-efficient driving rules were also part of the dutch eco driving

programme [25] started in 1999. It had the goal to reduce the CO2 emissions by edu-

cating drivers in terms of energy-efficient driving. The teaching of the energy-efficient

driving behaviour took place for example in driving schools for new drivers and in

driving trainings for existing drivers. Van den Hoed et al. [26] analysed the success

of the dutch eco driving programme during the years 2000 and 2004. For example,

they assessed through annual telephone surveys, which eco driving recommendation

was applied by existing drivers. The result of the telephone surveys was that 90 %

of the drivers were familiar with the eco driving programme and applied some (74 %

- 83 %) or a lot (10 % - 22 %) of the driving recommendations. Furthermore, van

den Hoed et al. observed an increase of the percentage of drivers that apply the eco

driving recommendations a lot. The net impact of the dutch eco driving programme

resulted in the increase of the avoidance of CO2 emissions from 9 kton - 41 kton in

the year 2000 to 97 kton - 222 kton in 2004. Furthermore, van den Hoed et al. showed

that the dutch eco driving programme increased also the cost efficiency for society,

government and end-users as a result of the avoided CO2 emissions and the saved

fuel.

14
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Van Mierlo et al. [11] evaluated three driving rules, which are also part of the

dutch eco driving programme, to measure the energy savings during their application.

Therefore, they monitored the driving data of 24 test drivers during the practice of

the following driving rules:

1. Shift as soon as possible to keep the engine speed low

2. Press the throttle quickly and vigorously to keep up with the traffic

3. Shift down as late as possible to a lower gear to keep the car rolling without

engaging the clutch.

The results of the evaluation showed a reduction in energy consumption from 5 %

to 25 % and, thus, a reduction of the vehicle emissions, when the driver adhered the

driving rules and interpreted them correctly. However, some drivers had problems to

apply the rules 2 and 3 as they were to contradictory to them. Thus, they ignored

driving rule 2. The study did not reflect a direct relation between the application

of driving rule 2 and the reaction of the energy consumption. However, the misin-

terpretation of the driving rules leaded to an increase of the energy consumption.

Thus, as the drivers had problems by the interpretation of the second driving rule

and a misinterpretation leads to an increase of the fuel consumption, Van Mierlo et

al. recommend to withdraw driving rule 2 from the eco driving recommendations.

Another positive effect of the adherence of the driving rules was a reduced driving

speed. According to the International Transportation Forum [27] and Haworth and

Symmons [9], a reduced driving speed leads to an increase of safety on the road, as

driving at low speeds increases the time for drivers to react appropriate in a dangerous

situation, lowers the braking distance and increases the probability to avoid collisions.

In general, a reduction of 1 km/h of the average speed can lead to a reduction of 2 %

- 3 % in accidents with personal damage.

2.2 Driving rules for safety

Besides the driving rules for energy-efficiency, there are also driving rules that prevent

an aggressive driving behaviour and, thus, increase the road safety. According to the

United Nations Economic Commission for Europe (UNECE) [28] an aggressive driving
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behaviour includes speeding or driving too close to the car in front. Speeding and

driving too close to the preceding car are also indirect or direct linked as the most

causes of accidents with personal injury [29]. Thus, the main focus of the Organisation

for Economic Co-Operation and Development (OECD) is the decreasing of the driving

speed by for example encouraging the public to drive safe using driver trainings or

setting incentives for a good, respectively a safe, driving behaviour.

Kloeden et al. [30] quantified the relationship between free travelling speed and the

risk of involvement in an accident in 80 km/h or greater speed limit zones. They inves-

tigated 83 passenger vehicles involved in an accident at the scene and reconstructed

the accidents. In the second step, they matched the reconstructed information from

the accidents, like location, direction of travel, time of day and day of week and speed,

against 830 control passenger vehicles, which they observed. Kloeden et al. showed

that the risk of involvement in an accident increases more than exponentially when

the travelling speed is above the mean traffic speed. In contrast, travelling speeds

below the mean traffic speed were associated with a lower accident risk. According

to their findings, Kloeden et al. recommend to reduce the speed limits to increase the

road safety.

The reduction of speed limits are also appreciated by Taylor et al. [31], who

showed in their study that higher speeds mean more accidents. They provided a clear

evidence of that fact using two studies: a road-based study and a driver-based study.

During the road-based study Taylor et al. studied sections of roads between major

junctions. During that study, the speeds of about 2 billion vehicles were measured

together with the traffic and pedestrian flows and the details of the road layout. The

number of accidents with personal injury were obtained from national records. On

the basis of the gathered information, relationships were developed to predict the

number of accidents with personal injury. During the driver-based study Taylor et

al. collected information about the driving speed and the personal characteristics of

the driver. This information was then related to the accident history of the driver to

quantify the association between the choice of speed and the personal characteristics

and between the accident involvement, the personal characteristics and the choice of

speed. Finally, the collected data from the road-based and driver-based study was

explored in their relationship to each other. Taylor et al. figured out, besides the

correlation of higher speeds with a higher accidents frequency, that a reduction of 1

mile per hour in the average speed reduces the accident frequency about 2 % - 7 %.
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The European Commission tried in their 3rd Road Safety Action Programme [32]

to improve the road safety, besides the driver training programmes, additionally by

altering the infrastructure, for example by building roads that influence the drivers

in their choice of speed. With the help of the 3rd Road Safety Action Programme of

the European Commission, which was released in 2003, the member countries of the

EU decreased the road fatalities until the year 2009 by about 36 % [32].

Besides driving speed and driving too close to the car in front, there are also other

safety issues like distraction and fatigue that can lead to accidents. McEnvoy et al.

[33] showed in their study that the usage of mobile phones distracts the driver and,

thus, leads to accidents.

This has been also verified by Wilson and Stimpson [34], who analysed the recorded

data of all road accidents with personal injury in the USA in 2008. The study showed

that 39 % of the accidents happened because of distraction caused by mobile phone

usage. Furthermore, they showed that the accidents related to mobile phone usage

increasingly involved male drivers driving alone in urban areas. According to their

findings Wilson and Stimpson recommend to ban the mobile phone usage while driv-

ing.

McEnvoy et al.[33] compared in their study the mobile phone usage of 456 drivers

at the estimated time of a crash with the same drivers during another trip, which was

at the same time of day in the week before the crash. They gathered the information

about the mobile phone usage by interviewing the drivers at the hospital and by

collecting the information from the phone company’s records of phone use. On the

basis of the comparison McEnvoy et al. associated the usage of the mobile phone up to

10 minutes before the crash with an fourfold increase of the risk to have an accident.

Furthermore, they showed that the risk to have an accident was independent of using

a hands-free device or of hand-held mobile phones during the driving. According to

the study of the European Commission [35] other devices, besides the mobile phone,

like music players or TV/DVD players are also distracting the driver so that they for

example do not notice signs.

Fatigue or sleep is according to Sagberg [36] a factor in 3.9 % of the accidents. The

study of Sagberg based on a questionnaire of 9200 accident-involved drivers, in which

they reported whether or not they have fallen asleep whilst driving and the resulting

consequences. The analysis of the questionnaire also showed that the most accidents
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relating to sleep or fatigue happened in the night-time. The most accidents because

of falling asleep or fatigue was to run off the road, whereby the drivers often run off

the right edge-line. According to the results, the proportion of falling asleep is about

2.5 times higher for male drivers than for female drivers. To avoid accidents related

to sleep or fatigue, Sagberg recommends to use information systems, which produce

low mental workload, or rumble strips on the road to keep the driver attentive.

The OECD [29] and the UNECE [28] derived rules for a safe driving behaviour

from the causes of accidents with personal injury. The New Zealand Transportation

Agency [37] considers additionally the avoidance of distraction and fatigue in their

safety relevant driving rules.

In the following the driving rules are listed, which are used by the OECD, UNECE

and the New Zealand Transport Agency to define a safe driving behaviour:

• Keep enough distance to the preceding car (minimum distance to the car in

front is equivalent to distance travelled by a vehicle in two seconds or half the

speed in meters)

• Look ahead and anticipate to surrounding traffic

• Adapt your speed to the given situation and don not exceed the speed limit

• Avoid any distractions (i.e. do not use the mobile phone during driving)

• Fitness to drive must be given (i.e. no alcohol, no fatigue, and so on)

Several countries, like Germany, included some of the driving rules into their road

traffic regulations, such as the guideline for the minimum distance to the preceding

car [38], which is in Germany defined as the drivers must be able to stop in time if

a car in front brakes, or the ban of hand-held mobile phones during driving [39], as

they highly distract the driver [34].

2.3 Driving systems

There are already driving systems trying to improve the driving behaviour of the

driver in terms of energy-efficiency or safety. The driving system called ANESA [40]

has the goal to reduce the energy consumption of the vehicle through free-wheeling.
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Therefore, ANESA gives precisely timed driving hints to reach a velocity sign without

the need of using the brakes. Thus, the energy loss of braking is avoided. In order

to give a driving hint, ANESA analyses the driving characteristics of the car, the

height profile of the road and their velocity restrictions. The characteristics of the car

contained information about the wheel drag, aerodynamic drag and gradient drag.

A navigation map is used to get the information about the height profile and the

velocity restrictions of the road. On the basis of these information ANESA calculates

the point when a free-wheeling hint should be given in order to reach a velocity sign

with the correct speed. For the evaluation of the driving system a driving simulator

was used, which contained a 10 minute track. 72 test runs were made on the driving

simulator with 18 randomly chosen drivers. The drivers had to drive the track as

usual, as energy-efficient as possible using their own skills and using ANESA. The

results of the test runs showed that the drivers can save energy of about 13 % using

ANESA in comparison to no assistance. If the drivers already attempted to save

energy, ANESA additionally saves energy of about 8 %. However, some drivers had

problems to apply the given instructions, as ANESA has given the free-wheeling hints

too late for them. Furthermore, free-wheeling is only one aspect of energy-efficient

driving, thus the energy savings could be increased more when considering also other

aspects that describe an energy-efficient driving behaviour defined by Barkenbus [14]

or the EU in their ECODRIVEN campaign [24].

Another driving system [41], called Artemisa, is developed by Corcoba and Muñoz.

It is based on the interaction between the mobile phone and the car. The focus of the

driving system is the education of the driver in eco driving by giving recommendations

to eliminate bad driving habits. The recommendations of the driving system consider

also the environmental influences on the car, like the weather or road condition. As

the driving system runs on a mobile device the needed information from the car is

gathered using its diagnostics port, whereas environmental information is collected

using the internet connection of the mobile phone. On the basis of the collected infor-

mation the preprocessing module calculates every ten minutes the arithmetic mean

for the collected values of a specific information, in case the value of the information is

numeric. Otherwise, the preprocessing module chooses the most frequent value of an

information. In the next step the expert system classifies the result of the preprocess-

ing module obtaining the eco driving recommendations. Each recommendation has

a probability that is assigned by the classifier. A high recommendation probability
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Figure 2.1: Kia’s driving system is using a coloured lamp to indicate the energy-
efficiency of the driving behaviour [16]

indicates a higher probability that the driver does not apply the driving recommen-

dation, why a recommendation to the driver is given again. However, the driving

system does not adapt itself to the individual driving behaviour and, thus, shows

the recommendations even when the driver is not interested in that recommendation.

Furthermore, it does not monitor the vital signals of the driver, for example to detect

the driver stress level, which can be used to suppress recommendations in order not

to stress the driver in stressful driving situations. Additionally, the driving system of

Corcoba and Muñoz uses a internet connection for gathering additional information

like the weather information. However, the internet connection may not be stable

enough during the journey to gather the needed information from the internet.

The are also commercial driving systems trying to improve the driving behaviour

in terms of energy-efficiency. The driving system of Kia [16] indicates an energy-

efficient driving behaviour using a lamp, which can be coloured green, red or white.

Figure 2.1 shows the driving system with a white coloured lamp. The driving system

analyses the driving behaviour according to five energy-efficient relevant driving rules,

which are listed in the following:

• Avoid speeding and drive at constant speed

• Shift as soon as possible

• Avoid sharp acceleration and sudden braking

• Check tire pressure

• Move with the traffic flow

20



2.3. DRIVING SYSTEMS

Figure 2.2: System configuration and the behaviour of the Nissan brake pedal [42]

The driving system of Kia activates a green lamp if the driver is driving energy-

efficient and, thus, according to the listed driving rules. The red lamp indicates that

the driver has broken a driving rule and is therefore driving energy-inefficient. A white

lamp represents the stand-by of the driving system or a normal fuel consumption

of the car. Kia evaluated the driving system in a eco-driving event with 100 test

drivers on a 7 km route. During the evaluation the drivers had to drive first using

their usual driving behaviour. After getting instructions from a trainer how to drive

energy-efficient the drivers had to drive the 7 km route again while using the driving

system of Kia. The result of the evaluation showed that during the journey, in which

the driving system of Kia was used, the efficiency increased between 10 % - 20 %.

However, the driving system of Kia does not show recommendations to the driver.

Thus, if the driver has no previous knowledge of how to drive energy-efficient, the

driver is not able to know why the driving system shows a red lamp and is not able

to eliminate the bad driving habits that caused an inefficient driving behaviour.

The car manufacturer Nissan developed a driving system [42] to support eco-

friendly driving habits by using a pedal that monitors the pressure on the accelera-

tor. The driving system shows a warning on the dashboard and activates a push-back

mechanism of the pedal, if the driver is pressing too hard the accelerator, which means

that more fuel is burned than needed. Furthermore, it calculates the optimal accel-

erator pressure on the basis of the fuel consumption of the car and the transmission

efficiency during acceleration and cruising. In Figure 2.2 the behaviour of the driving
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Figure 2.3: Eco:Index report of Fiat’s driving system [15]

system and the saved energy in different phases are shown. The Eco-Lamp of the

driving system reacts dependent on the pedal position. The Eco-Lamp indicates by

blinking when the driver is shortly before the optimal pedal position or by showing an

orange lamp when the driver pushed the pedal too hard. During the blinking of the

Eco-Lamp or when it is orange, the push-back mechanism of the pedal is activated

in order to make the driver to release the accelerator. Figure 2.2 shows the engine

and vehicle speeds avoided by the activation of the push-back mechanism during

the start and acceleration phases. According to Nissan it is possible to improve the

energy-efficiency between 5 % - 10 % when using the driving system with the push-

back mechanism and the Eco-Lamp. However, the driving system considers, like the

driving system ANESA, only one aspect of an energy-efficient driving behaviour.

In contrast to the driving systems of Kia and Nissan, the driving system eco:Drive

of the car manufacturer Fiat [15] has a different approach to improve the energy-

efficient driving behaviour. Instead of improving the driving behaviour using a lamp

or a push-back accelerator pedal, eco:Drive collects telemetric information during the

journey, like speed or rpm, about the current driving behaviour from the car net-

work and saves the information on a flash pen. The insertion of the flash pen into

a computer allows the servers of Fiat to analyse the driving behaviour in terms of

energy-efficiency, which is defined in the case of the driving system as steady acceler-
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ation, steady deceleration, early gear changes and constant speed. Figure 2.3 shows

the eco:Index that is generated on the basis of the driving behaviour analysis. It

indicates the energy-efficiency of the journey and is based on a star rating of the

energy-efficiency indicators like steady acceleration or constant speed. Additionally,

the driver has the opportunity to see the past eco:Index and to get hints how to im-

prove their performance on each energy-efficiency indicator. Furthermore, the driving

system shows the driver how much CO2 emissions and fuel costs was saved using an

energy-efficient driving behaviour and the number users who uses eco:Drive in their

online community eco:Ville. Fiat analysed the eco:Index of the drivers over a 30-day

period to measure the improvements of the drivers. The result of the analysis showed

that drivers improved their eco:Index, respectively their driving behaviour, by an av-

erage of 2.25 % and, thus, decreased the fuel consumption by an average of 5.84 %,

which saved fuel costs and CO2 emissions. However, the driving system does not

show recommendations during the journey. This would allow the improvement of the

driving behaviour in terms of energy-efficiency by alerting human errors and, thus,

would give the driver the opportunity to eliminate immediately bad driving habits

that caused the inefficient driving.

Besides the driving systems whose goal is to improve the driving behaviour in

terms of energy-efficiency, there are also driving systems with the focus on improving

the road safety. The driving system DAISY [43] tries to increase the road safety by

warning the driver in longitudinal and lateral control, especially when the driver is in

driving situations, which are susceptible for distractions. Therefore, DAISY monitors

the current driving situation including the driving behaviour and the condition of the

driver. On the basis of this information warning messages are generated, which are

adapted to the individual driving behaviour and are displayed on a haptic display,

which has the advantages that the driver gets less mental load, has possibly a shorter

reaction time and other passengers will not get aware of the warning message. The

haptic warning messages primarily consists of a continuous torque signal on the driv-

ing wheel. To distinguish the torque signal from other torque stimuli, which can be

caused for example from road impacts, a vibration signal is superimposed. Onken

evaluated the driving system using twelve test persons who had to do nine test runs,

in which the car was accelerated until a constant speed of 60 km/h was reached. The

test runs were separated in three test blocks. The first block consisted of four test

runs in order to test the adaptation of DAISY to the individual driving behaviour.

Therefore, the drivers had to do three test runs without DAISY to collect data for
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the adaptation algorithm and one test run with DAISY. The second block consisted

of two test runs in order to evaluate the recognisability of the warning torque signal.

During the last test block two runs were conducted in order to test the effect of the

warning mechanism with respect to safety. The test persons were driving once with

DAISY and once without, while they were distracted. The result of the evaluation

showed that 92.8 % of the test persons interpreted the warning torque signal cor-

rectly. Thus, DAISY enhances safety in driving situations, which are susceptible for

distractions. However, DAISY has the focus on warning the driver when a dangerous

driving situation is detected without regarding the possible bad driving habits that

caused the dangerous situation, like a mobile phone usage during the journey. Thus,

the driver is not able to eliminate these bad driving habits and, thus, the driver is

not able to improve the driving behaviour in terms of safety.

The driving system of Risack et al. [44] has the focus on increasing the safety by

warning the driver with an acoustic signal in case of an unintended lane departure.

The driving system is based on an video-based lane detection algorithm and considers

the driving behaviour during the generation of the warnings to be able to distinguish

between unintended and intended lane departures. An intended lane departure is

detected by the driving system when the driver announces a lane departure by using

the blinker, when an emergency manoeuvres is detected by high steering and brake

activities and when the car leaves the lane partly for a short time for example when

cutting a curve. Furthermore, the driving system suppresses lane departure warnings

in order not to disturb the driver when an high steering activity is detected or when

the driver brakes, as the driver is already aware of some driving situation. Risack et

al. evaluated the driving system on several journeys of about 500km using motorways

and ordinary roads. The result showed that the drivers accepted the warnings when

leaving the lane, as no false warnings were generated by the driving system. However,

wrong warnings were showed by the driving system when cutting a curve. The driving

system of Risack et al. shows only warnings to the driver instead of regarding why

the driver has departed the lane unintentionally. Furthermore, the driving system

considers only the usage of the blinker, the brake and the steering activity to detect

an emergency manoeuvre. The detection of such an manoeuvre could be improved

for example by using additionally vital signals of the driver like the driver stress level,

as the stress level may rise in a dangerous situation, in which the driver is forced to

do an emergency manoeuvre.
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Another driving system was presented by Milanés et al. [45]. It warns the driver

when an impending rear-end collision is detected in order to prevent the crash. Fur-

thermore, the driving system is able to generate control signals for the steering wheel

in order to avoid the collision automatically. Therefore, the driving system uses the

radar of the adaptive cruise control(ACC) system to monitor the time to collision,

which is the time, in which the cars would collide at their current speed, and the time

gap, which is the time it would take to trail the car to cover the current distance to the

leading car. The driving system contains two control systems. One for the detection

of a possible collisions on the basis of the time to collision and time gap parameters

and the second for avoiding the collision. If the first control system detects a possible

collision, it shows a collision warning to the driver and activates the second control

system, which then starts to calculate the aid manoeuvre without leaving the road

based on the position of the surrounding cars. The positions of the surrounding cars

are gathered using the Global Positioning System (GPS) and is transmitted to the

driving system by using car to infrastructure or car to car communication. The eval-

uation of the driving system was done in a driving circuit using a street with a length

of about 200 meters. Two cars were used for the trials, while one car is equipped with

the driving system. During the evaluation it was assumed, that the adjacent lanes

were free, so that the driving system is able to avoid the crash using the adjacent

lanes. In the first trial, the cars drove at the same lane while the speed of the leading

car was first greater than the trailing car. Then the trailing car increased the speed

in order to force a crash. In the second trial the leading car suddenly braked so that

a crash was forced. In both trials the driving system of the trailing car avoided the

crashes by warning the driver and steering the car to the side lane. However, the

driving system of Milanés et al. does not consider the possible bad driving habits of

the driver that caused the driving system to avoid the crash. This would allow the

driver to eliminate the bad driving habits and, thus, to drive safer even in a car that

has no a driving system for crash avoidance.

In contrast to the already presented safety relevant driving systems whose goal is

to warn the driver in dangerous situations, there are also driving systems trying to

educate the driver in safe driving like DriveDiagnostics [17]. The driving system shows

recommendations to the driver to prevent an aggressive driving behaviour or when

the current driving behaviour does not match the typical driving behaviour of the

driver in order to improve the driving behaviour in terms of safety. DriveDiagnostics

monitors and analyses therefore the driving behaviour of the driver during the journey
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Figure 2.4: An example of a monthly report, which shows the journey safety [17]

by collecting information about the acceleration and speed of the vehicle as well as

the position of the car using the GPS module of the navigation system. On the basis

of the collected information the driving system identifies different manoeuvre types

such as lane changes, sudden breaks, strong accelerations, excessive speed and so on.

The identified manoeuvre types are used to create an overall driving risk index for the

specific trip and for the overall vehicle performance. Furthermore, a driving profile is

generated based on the rate and severity of the detected manoeuvres and the speed

profile of the driver. DriveDiagnostics classifies the driving behaviour on the basis

of the generated driving profile in three categories, which are cautious, moderate

and aggressive. The driving system creates reports over the trip safety, as shown in

Figure 2.4, using the driving profile as well as the detected manoeuvres. The recorded

trips are classified using the colours green, yellow and red, which stand for a cautious,

moderate and aggressive driving behaviour during the journey. Besides the generated
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reports DriveDiagnostics also provides a real-time feedback that includes warnings

on aggressive driving behaviour or significant deviations from the typical driving

behaviour. The warnings are presented to the drivers as a text message or using

the in-vehicle display unit. The evaluation of the driving system was done during 5

months using 33 test drivers in two stages: the blind-profiling stage and the feedback

stage. During the blind-profiling stage the drivers were monitored by the driving

system without the notice of the drivers. In the second stage the drivers received

access to the reports of the driving system, which were generated on the basis of

the collected information during the blind-profiling stage. Furthermore, more reports

were generated as the drivers used the driving system further. The real-time feedback

was not used in the evaluation. The result of the evaluation showed that the driving

system has an impact on the driving behaviour as the driving risk indices dropped

in the first month, in which the feedback using the reports was provided. This effect

continued constant for three months. However, in the 5th month the driving risk

indices were back to the initial values. According to Lotan and Toledo, this suggests

that the initial impact of the system is significant, however it decreases over time

without routine follow-up or maintenance efforts. The driving system of Lotan and

Toledo could be improved by observing additionally the driver condition in order to

increase the road safety further. The observation of the driver condition would allow

the driving system to recognise for example drowsiness by using tracking systems [46]

or vital sensors [47]. Thus, the driving system could give adequate recommendations

to avoid dangerous situations caused by the driver condition.

2.4 Discussion

There are already attempts to decrease the energy consumption and, thus, the CO2

emissions of the vehicles by providing for example driver training programmes for

energy-efficient driving like the ECODRIVEN campaign of the EU or the dutch eco

driving programme, which had both success in saving energy and CO2 emissions.

Therefore, the EU and the Dutch Ministry of Transport defined driving rules that

describe an energy-efficient driving, which were used as the basis for the education of

the drivers in terms of energy-efficiency. Van Mierlo et al. [11] evaluated three driving

rules, which are part of the ECODRIVEN campaign and the dutch eco driving pro-
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gramme. As a consequence of the findings van Mierlo et al. recommend to withdraw

the driving rule ”accelerate rigorously to keep up with the traffic” as its application

confuses the drivers and, thus, hinders the driver to drive energy-efficient.

Another positive effect of an energy-efficient driving behaviour is the increasing

of the road safety as it prevents an aggressive driving behaviour [27, 9]. The UNECE

considers excessive speeding and an inappropriate distance to the car in front, which

also describe an aggressive driving behaviour, as the main problem for road safety.

Also the OECD [29] sees speeding and less distance to the car in front as the main

problem in road safety. According to Kloeden [30] and Taylor [31] the risk of getting

involved in an accident and the frequency of accidents rises when the speed of the

car increases. Therefore, the European Commission tries to increase the road safety,

additionally to driver safety trainings, by modifying the course of the roads so that the

drivers are forced to drive slow. Besides the car speed, the distraction, for example by

using hand-held mobile phones during driving, or fatigue are also factors that can lead

to accidents. Thus, Germany, amongst others, prohibited to use hand-held mobile

phones during driving. In order to avoid accidents caused by fatigue Sagberg [36]

recommends to use driving systems that warn the driver when a dangerous situation

occurs. On the basis of the findings and the accident causes the EU, OECD and the

New Zealand Transport Agency defined driving rules for a safe driving behaviour,

which are also used as the basis for driver safety trainings.

However, driver trainings and road modifications are limited as road modifications

are not always possible as they are for example expensive or the needed space for the

modification is not available. Driver trainings to improve the driving behaviour in

terms of energy-efficiency or safety are efficient in the beginning. However, after a

certain time has passed since the driver training, the drivers revert back to their old

driving behaviour and, thus, do not drive energy-efficient or safe. Lotan and Toledo

showed this in their evaluation, in which the test drivers reverted back to their old

driving behaviour after stopping to use their driving system [17]. Furthermore, driver

trainings are often expensive, not always available in all areas, the available places

are limited or some driver trainings are limited to professional drivers only. However,

there is the opportunity to improve the driving behaviour in terms of energy-efficiency

or safety by using for example driving systems.
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Driving

system
Safety

Energy-

efficiency

Realtime 

feedback

Offline 

feedback

Adaptation to 

driving 

behaviour

Considering 

driver 

condition
Kia x o o x x x
Fiat x o x + x x
Nissan x o o x x x
DriveDiagnostics + x + + x x
DAISY o x o x x x
ANESA x o o x x x
Artemisa x + + x x x
Risack et al. o x o x x x
Milanés et al. o x o x x x

+   good     o   medium     x   n/a

Table 2.1: The available energy-efficiency or safety related driving systems rated
regarding their different features

As shown in Table 2.1, there are already driving systems available that give recom-

mendations or warnings during the journey to improve the driving behaviour in terms

of energy-efficiency or safety. However, the current available driving systems cover

either the area of energy-efficiency or safety. Furthermore, some presented driving

systems cover only one aspect of the energy-efficient or safe driving, like ANESA [40]

or the driving systems of Nissan [42], Risack et al. [44] and Milanés et al. [45]. The

energy-efficiency or road safety could be increased more by considering all aspects of

energy-efficient or safe driving. Furthermore, there are also driving systems that do

not show recommendations to the driver, like the driving systems of Kia [16], Nis-

san [42] or Onken [43], also called DAISY. Instead, they are using lamps to indicate

an inefficient driving behaviour or show warnings in a dangerous driving situation.

However, showing a recommendation to the driver would allow the driver to eliminate

bad driving habits that caused an inefficient or unsafe driving behaviour. The driv-

ing systems that show a recommendation to the driver, like the driving systems of

Lotan and Toledo (DriveDiagnostics) [17] or Corcoba and Muñoz (Artemisa) [41], do

not adapt itself to the individual driving behaviour or consider the driver condition.

The adaptation to the individual driving behaviour would allow the driving systems

for example to show only recommendations that do not bother to the driver by sup-

pressing recommendations that are not necessary in the sense of the driver and, thus,

are not followed by the driver. Whereas the consideration of the driver condition

would allow the driving systems to avoid showing recommendations for example in

stressful driving situations or when a dangerous driver condition is recognised. This
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would increase the acceptance of the driving system as well as the energy-efficiency

and road safety, as the driving systems would consider the influence of the individual

driving behaviour and the driver condition while decreasing the energy consumption

and increasing the road safety.
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Chapter 3

Driving system

This chapter starts with the description of the goal of the driving system and continues

to explain the cycle of the driving system. The cycle needs to be passed to show an

energy-efficient or safety related recommendation to the driver. The driving rules

are also introduced in this chapter. They are used in the driving system for the

detection of an inefficient or unsafe driving behaviour and, thus, for the creation of a

recommendation. Furthermore, the driving profile is described in detail. It represents

the typical driving behaviour and stores recommendations that consist of information

for example about the driver reaction to already given recommendations. Finally, the

architecture of the driving system is presented and the interface, data aggregation

and the profile update module are explained.

3.1 Goal of the driving system

The goal of the adaptive and rule-based driving system is to educate the driver in

energy-efficient and safe driving. Therefore, the driving system is giving individual

recommendations during the journey to the driver, as there is a lack of driving systems

that cover the areas of energy-efficiency and safety. Furthermore, existing driving

system, like the driving system of Kia [16], Fiat [15] or Lotan and Toledo [17], do

not adapt itself to the individual driving behaviour and do not consider the driver

condition. Instead, they show recommendations to the driver even when the driver

is not interested or for example in stress. This can lead to a decrease of driving

system acceptance, due to showing recommendations that are not relevant in the
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sense of the driver. Furthermore, the road safety can be decreased for example in

stressful driving situations, as the driving system additionally distracts the driver

with recommendations in such situations.

The proposed driving system compares the driving behaviour against driving rules

that describe an energy-efficient or safe driving behaviour in order to check whether

the driver is driving energy-efficient or safe. On detection of an inefficient or unsafe

driving behaviour the driving system shows a recommendation to the driver that

tries to improve the driving behaviour in terms of energy-efficiency and safety. Fur-

thermore, the driving system adapts itself to the individual driving behaviour by

customising the recommendations on the basis of the driver reaction to already given

reactions and considers the driver condition. For example, the driving system creates

no recommendations when the driver is in stress and decreases the generation fre-

quency of a recommendation when the driver ignores a recommendation repeatedly.

This allows decreasing the driver mental load for example by giving no recommenda-

tions to the driver in stressful driving situations, as a high mental load can lead to

accidents [18]. Furthermore, the reduction of generation frequency allows the driving

system to increase its acceptance, as only recommendations are shown that are impor-

tant in the mind of the driver. Another recommendation is shown to the driver when

the current driving behaviour of the driver alters significantly in a negative way from

the typical driving behaviour. Thus, the driving system is able to warn the driver in

order to avoid a worsen of the driving behaviour regarding the energy-efficiency and

safety. Furthermore, the driving system predicts the driving behaviour of the driver.

This allows to show a recommendation to the driver before a breaking of a driving

rule or deviation from the typical driving behaviour occur.

3.2 Cycle of the driving system

According to the described idea of the driving system, four main tasks of the driv-

ing system are determined: monitoring of the current driving situation, profiling of

the driver, checking the driving system, deciding and showing a recommendation.

Figure 3.1 shows the correlation between the tasks.

First, the current driving situation is monitored by gathering information from

the car, the driver and the environment (1) by using the in-vehicle serial-bus systems,

vital sensors and other sensors for gathering information about the environment, like
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Monitoring the 
driving situation

Aggregating the 
information & Profiling 
the driving behaviour

Predicting the car 
state & checking 
the driving rules

Deciding to show 
recommendation

(1)

(2)

(3)

(4)

Figure 3.1: Cycle of the driving system

the weather. The collected information is then aggregated (2) in order to get more

information out of it. Furthermore, the collected and aggregated information is used

to generate or update a driving profile that describes the typical driving behaviour of

the driver. After the aggregation of the collected information and the update of the

driving profile, the collected and aggregated information is used to find any breaking

of the energy-efficient and safety relevant driving rules (3). The collected information

is also used to predict the vehicle state in order to allow an early detection of a driving

rule breaking. Furthermore, the driving profile is compared against the current driving

behaviour to indicate if the current driving behaviour deviates significantly from the

typical driving behaviour. On recognition of any breaking of the driving rules or

deviations from the typical driving behaviour, the driving system decides whether to

show a recommendation or not (4). The decision is based on the individual driving

behaviour of the driver and the driver condition. Thus, if the driver is for example

in stress or ignores a recommendation repeatedly, no recommendation will be shown

to the driver. This allows to prevent the driver from mentally over stimulation, as

this can cause distraction and can lead to accidents [18]. Furthermore, by suppressing

repeatedly ignored recommendations, the driving system is more likely to be accepted

by the driver. However, in case the driving system decides to show a recommendation,

the recommendation is rendered on the in-vehicle display unit and is additionally given

to the driver by using a speech output.
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3.3 Driving rules

As described in the idea of the driving system in Section 3.1, the current driving

behaviour has to be compared against an energy-efficient and safe driving behaviour to

be able to show a recommendation. As shown in Section 2, an energy-efficient and safe

driving behaviour is described by a set of rules. These rules are compared against the

current driving behaviour to detect an energy-inefficient and unsafe driving behaviour

and, thus, to show a recommendation. However, not every driving rule is suited to

be used in the driving system, as van Mierlo et al. [11] showed in their evaluation.

For example the energy-efficient related driving rule ”Press the throttle quickly and

vigorously to keep up with the traffic” was too contradictory to the drivers why they

applied the driving rules during the evaluation wrong. Thus, this rule will not be

used in the driving system. The driving rules, including the parameters that are used

in the driving system to detect an inefficient and unsafe driving behaviour, as well as

the corresponding recommendations are listed in Table 3.1.

No. Driving Rule Parameter Recommendation

1
Shift into a higher gear as soon as possible at the latest 

at 2500 revolutions per minute (rpm), for diesel cars 

before 2000 rpm

Rpm Shift the gear

2
Maintain a steady speed using the highest possible 

gear

Car speed, gear Drive steady

3

Look ahead and anticipate to the traffic flow Distance to the car in front, car 

speed, future distance to the 

car in front, future speed

Increase the distance

Increase the speed

4
Decelerate smoothly by releasing the accelerator while 

the car is in gear

brake pedal,

deceleration force

Do not use the brake 

pedal to slow down

5
Avoid high speeds above 80 or 90 km/h Car speed Avoid driving faster 

than 90 km/h

6
Switch the engine off when it is planned to idle longer 

than one minute

Engine status Turn off the engine

7
Keep enough distance to the preceding car Distance to the car in front, car 

speed, road condition

Increase the distance

8
Look ahead and anticipate to surrounding traffic Distance to the car in front, car 

speed, future distance to the 

car in front, future speed

Increase the distance

Increase the speed

9
Adapt your speed to the given situation and do not 

exceed the speed limit

Car speed, speed limit,

road condition, weather 

condition

Slow down your speed

10
Avoid any distractions (i.e. do not use the mobile 

phone during driving)

Distraction level Keep your attention on 

the road

11
Fitness to drive must be given (i.e. no alcohol, no 

fatigue, and so on)

fatigue level, alcohol level Have a rest, you are not 

able to drive

Car Rpm, car speed, gear, distance to the car in front, brake pedal, deceleration force, engine status, 

Table 3.1: The driving rules with parameters and corresponding recommendations
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The energy-efficiency and safety relevant driving rules are fuzzy defined why the

parameters of the driving rules have to be identified to be able to compare the driving

rules against the driving behaviour. However, there are driving rules, like (1) or (2),

that are exact defined. For these rules, the parameters, needed for the comparison,

are derived from their definition. The driving rules without an exact definition of

their parameters, like (3) or (7), were examined in order to detect the parameters.

A breaking of the driving rule (1) can be detected using the rpm of the car and

the information if the car has a diesel or a gasoline engine. Using this information,

the driving system should show the recommendation ”shift the gear” when the driver

is accelerating and the rpm is higher than 2500 rpm (for diesel cars 2000 rpm).

Furthermore, a recommendation has to be shown when the driver keeps the rpm

constantly higher than 2500 rpm. However, no recommendation should be shown

to the driver when the rpm is higher than 2500 rpm and the current rpm rate is

decreasing. This allows the driver to slow down using the engine braking without

getting bothered by the driving system to shift the gear.

The parameters speed and gear are used to detect a steady speed using the highest

gear (2). The recommendation to drive at steady speed should be given to the driver

when the driver is driving in the highest gear without a steady speed, which means

the speed of the car is varying as the driver accelerates and decelerates constantly.

The energy-efficiency relevant driving rule (3) and the safety relevant driving rule

(8) have the same focus: to drive with foresight and to anticipate with the traffic flow.

Thus, both were examined together in order to get the parameters for the detection

of their adherence. First, the term ”look ahead” while driving, which means to drive

with foresight, used in the driving rules has to be defined. According to Stahl et

al. [48] driving with foresight is defined as the identification of stereotypical traffic

situations on a tactical level in order to solve a conflict before it occurs. In the case of

the driving rules (3) and (8) the driver has to anticipate to the traffic flow/surrounding

traffic, which means to accelerate to the cruising speed and to keep enough distance

to the car in front. To keep enough distance to the car in front is also defined in

driving rule (7), why adhering the driving rule (3) or (8) also leads to the adherence

of the driving rule (7). To be able to drive with foresight, the driver has to perceive

the distance to the car in front and the speed of the preceding car. This allows an

early anticipation to the traffic flow/surrounding traffic. Thus, the parameters for

the detection of the adherence of the driving rules (3) and (8) are the distance to
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the car in front and the car speed, in order to detect the anticipation to the traffic

flow/surrounding traffic. A recommendation to anticipate to the traffic should be

shown to the driver when the speed of the car in front is much faster, however the

car must be within the speed limit. Furthermore, another recommendation should be

related to driving with foresight. Therefore, additional parameters like future speed

and future distance to the car in front should be considered. They allow showing the

driver recommendations that help him to adapt his driving behaviour early to the

traffic flow/surrounding traffic. For example, when the driving system detects that

the car in front will brake and, thus, the distance to the preceding car will decrease,

a recommendation should be shown to the driver in order to keep the distance to the

car in front.

The usage of the engine braking, instead of the brake pedal, is the purpose of

driving rule (4). This driving rule allows to save fuel by using free-wheeling. In

contrast to the driving system ANESA [40], the idea of the driving system is to show

a recommendation to use the engine braking, instead of giving a hint when to release

the accelerator, like ANESA does. The parameters that should be used by the driving

system to detect the adherence of this rule are the brake pedal and the deceleration

force. A recommendation not to use the brake pedal for slowing down should be given

when the brake pedal is used and the deceleration force is low or medium. However,

no recommendation should be shown when the driver is using the brake pedal and

deceleration force is high, as it can be assumed that the driver has done an emergency

braking to avoid an accident.

To keep the engine speed at lower rpm and, thus, to save fuel, driving speeds

higher than 80 or 90 km/h should be avoided. Therefore, the car speed should be

monitored and a recommendation to the driver should be given when the speed is

higher than 90 km/h. This allows the adherence of the driving rule (5).

The last energy-efficient related driving rule tries to minimise the fuel usage by

avoiding idling. According to the driving rule (6) idling longer than a minute should

be avoided. Thus, the driving system should recommend after 30 seconds for the first

time to shut off the engine in order to avoid idling longer than a minute.

The adherence of the energy-efficiency related driving rules has, according to Ha-

worth and Symmons [9], also a positive effect on safety as it prevents aggressive and

fast driving, which are the main causes of accidents. This has been also verified by
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van Mierlo et al. [11] who observed an decrease of the driving speed during the appli-

cation of energy-efficient driving rules. However, there is still the need of the safety

relevant driving rules to prevent other dangerous driving situations.

The safety relevant driving rule (7) is related to keep enough distance to the

preceding car in order to avoid an accident during sudden brakes of the car in front.

According to the thumb rule, which is used in most countries like Germany, drivers

should keep distance half of speed in metres to the car in front in rural roads or

highways and a quarter of speed to the car in front in metres in urban areas [38].

This thumb rule was also confirmed by the German court, why it is used in the

driving system to calculate the minimum distance to the car in front. However,

the thumb rule is only valid on a dry road. The braking distance on wet, icy or

snowy roads are longer than on a dry road, as the friction of the tyres on the road

decreases when the road is wet, snowy or icy [49, 50]. Thus, the parameters used for

detecting the adherence of the thumb rule are the car speed, the distance to the car

in front and the road condition. A recommendation to increase the distance to the

preceding car should be shown to the driver when the current distance to the car in

front is not enough according to the thumb rule and the road condition. However,

no recommendation should be shown to the driver when the current distance to the

car in front is not enough, but the distance to the preceding car is increasing. This

allows the driver to increase the distance to the car in front by for example releasing

the accelerator without getting bothered by the driving system.

The driving rule (9) tries to increase the safety by limiting the driving speed for

example according to the road conditions or speed limits. According to Elvik [50] a

bad road condition increases the risk of being involved in an accident as the friction

of the road decreases on bad conditions. Thus, the driver should drive slowly in

order to decrease the needed braking distance. Furthermore, as the road condition

is also related to the weather condition like rain, fog or snow it must also be taken

into account. For example by driving slower when the sight is affected by rain, fog

or snow. Thus, the parameters that are used for the driving rule (9) should be the

road condition, the weather condition and the speed limit. When the car speed is

above the speed limit a recommendation should be generated that tells the driver to

slow down. Another recommendation to slow down should be shown when the driver

is driving fast, which means that the driving speed is near the speed limit, and the

weather or road condition is bad, for example when the road is icy or damaged or

when the weather is foggy.
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The driver should set his focus on driving and should avoid any distractions (driv-

ing rule (10)) through the usage of for example the mobile phone or the entertainment

system. However, there are four kind of distraction types [51]: visual, cognitive, au-

ditory and manual distraction. Zhang and Smith [51] define visual distraction as the

eyes that glances away from the road. Whereas, cognitive distraction is defined as

the thinking about something different that is irrelevant to driving. Auditory distrac-

tion is when listening for example to messages that are irrelevant to driving. Finally,

manual distraction is defined as taking the hands off the steering wheel and shifting

the body out of the normal driving position. According to Zhang and Smith [51], au-

ditory and manual distraction tend to overlap with visual and cognitive distraction.

For example when manipulating buttons, the driver first has to look at the buttons

and think about the appropriate action. This relation between both distractions can

also be found between the auditory and the cognitive distraction. For example when

listening to the radio, the driver typically need to think about the content of the radio

broadcast. Thus, in the driving rule (10) only the cognitive and visual distraction is

regarded. On recognition of visual or cognition distraction, the recommendation that

the driver should set his/her focus on driving should be shown when the driver looks

away from the road several times or when the driver is not focusing on the driving

task, for example when using the mobile phone or when the driver is daydreaming.

Finally, driving rule (11) demands from the driver that the fitness to drive must

be given, which means that the driver should not drive when the driver is for example

fatigue or under influence of alcohol or other drugs [52]. The parameters that the

driving system should use for showing a recommendation are level of fatigue and if

the driver is under influence of drugs. In case of fatigue, which can be detected using

an eye tracker [46], the driving system should recommend the driver to have a rest.

In case of the detection of drugs, the driving system should recommend the driver

not to drive, as some countries like Germany prohibited by law to drive a car under

the influence of drugs, see § 315c of the German Criminal Code [53]. Drugs can be

detected using for example the blood parameters, the urine or hair of the driver. As

this is not applicable, the driving system will not consider this aspect. However, the

influence of alcohol on the driver can be detected using for example breath, sweat or

skin sensors and alcohol sniffers [54].

Based on the defined driving rule parameters, the adherence of the driving rules

can be monitored. However, during the application of the energy-efficient and safety

relevant driving rules a conflict can arise between the driving rules. For example,
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when the driver breaks an energy-efficiency and safety relevant driving rule at the

same time. According to the results of the ECODRIVEN project [24], safe driving

should take precedence over energy-efficient driving when a conflict arise between

the two. Thus, the driving system should process the safety relevant driving rule

first. For example, the driving rule ”keep enough distance to the car in front” should

be processed by the driving system before the driving rule ”anticipate to the traffic

flow”, since the driving system should not endanger the driver by showing for example

a recommendation to increase the speed in order to anticipate with the traffic flow

while the distance to the car in front is too less. However, when two driving rules are

broken by the driver that are in the same area, like energy-efficiency or safety, the

driving system processes the broken driving rules using the first come, first served

principle.

3.4 Driving profile

The driving system is using a driving profile to describe the driving behaviour of

the driver. The driving profile contains the typical driving behaviour of the driver

in order to compare the typical driving behaviour against the current driving be-

haviour. This allows the driving system to show a recommendation to the driver to

avoid a worsen of the driving behaviour when the current driving behaviour deviates

significantly from the typical driving behaviour. However, to compare the driving

behaviour, the driving system has to determine the typical driving behaviour of the

driver. The typical driving behaviour is based on the calculation of the parameters

that are relevant for detecting an energy inefficient or unsafe driving behaviour, see

Table 3.1. Besides the typical driving behaviour, the driving profile consists also of

information of about recommendations and the target driving behaviour. The stored

recommendations contain information about the driver reaction to already shown rec-

ommendations and the information when the recommendation was shown last. Based

on the driver reaction to already given recommendations, the driving system is able

to show the recommendations individually to the driver. This allows an adaptation

of the recommendations and, thus, an adaptation of the driving system to the in-

dividual driving behaviour of the driver. This allows not to bother the driver with

recommendations that are not relevant in the sense of the driver. The information

about the last given recommendations are used to avoid showing a recommendation

repeatedly in order not to bother the driver by showing the same recommendation.
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Driving Profile

Typical driving behaviour

 Manner of driving (rpm)
 Speed
 Stress level
 Distance to the car in front
 Distraction level
 Fatigue level

Target driving behaviour

 Safe
 Energy-efficient
 Both

Recommendations 

 Shift the gear
 Drive steady
 Increase the speed
 Slow down the speed
 Increase the distance to the car in front
 Do not use the brake pedal to slow down
 Avoid driving faster than 90 km/h
 Turn off the engine
 Keep your attention on the road
 Have a rest
 You are not able to drive

Figure 3.2: The driving profile with the stored information about the driver

Figure 3.2 shows the information that is stored in the driving profile. The target

driving behaviour, which is also stored in the driver profile, describes the decision of

the driver whether to drive energy-efficient, safe or both. Thus, the driving system

will show only recommendations to the driver on the basis of the chosen target driving

behaviour.

The typical driving behaviour consists of information about the manner of driving

that is used to determine if the driver drives usually at low, mid or high revolutions.

Thus, the raw value, i.e. 3000 rpm, gathered from the engine speed sensor need to be

aggregated into the values for example high, mid or low revolutions. Furthermore,

the speed is also used to describe the typical driving behaviour. However, the driving

speed of the driver, stored in the in the typical driving behaviour, is divided into

the driving speed in different speed limit zones like 30, 50 or 120. This allows to

correlate the driving speed behaviour of the driver to each speed limit zone and,

thus, to determine that the driving speed behaviour deviates significantly. The stress

level of the driver is also considered in the typical driving behaviour. The typical

driver stress level can be used to indicate for example whether the current driver

stress level is usual and, thus, show the driver a recommendation to have a break or

to calm down. The distance to the car in front is also used to describe the typical
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driving behaviour of the driver. Therefore, the typical distance to the car in front is

stored in relation to the driving speed. For example, the typical distance to the car

in front is 30 metre when driving 60 km/h. The distraction and fatigue level of the

driver is also monitored in order to get the typical distraction and fatigue level. The

values are stored in the typical driving behaviour in order to detect for example a

worsen of the distraction or fatigue level. This allows to show a recommendation to

the driver to have a break when detecting that the driver is getting more distracted

or fatigue during the journey. The calculation of the stored information about the

typical driving behaviour is described in Section 3.8 in detail.

The target driving behaviour is also stored in the driving profile. Figure 3.2 shows

the values that can be stored as the target driving behaviour. The target driving

behaviour is used to decide, which recommendation should be shown to the driver.

The driver is able to modify the target driving behaviour using the graphical user

interface of the driving system. The driver can choose either safe, energy-efficient or

both, whereby both indicates that the driver wants to improve the driving behaviour

in terms of safety and energy-efficiency. On the basis of the chosen target driving

behaviour, the driving system will generate either safety or energy-efficiency relevant

recommendations or it will show recommendation of both domains to the driver.

The recommendations, stored the driving profile (see Figure 3.2), consist of infor-

mation about the lag of the recommendations and the time when the recommendation

was shown last. The lag represents the time between the last and the new recom-

mendation. Thus, a recommendation cannot be shown to the driver when the time

defined in the lag is not passed since the same recommendation was given before.

This allows to avoid bothering the driver with recommendations that are not relevant

in the sense of the driver, as the lag of a recommendation is adapted to the reac-

tion of the driver to a given recommendation. Besides the lag, the recommendations

consist also of information about the last given recommendation to the driver. The

last given recommendation is used by the driving system to check if the driver has

adhered the last given recommendation. Chapter 6 explains the adaptation of the

recommendations and the usage of the stored last given recommendation in detail.
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3.5 Architecture of the driving system

The architecture of the proposed driving system is based on the multi-tier architec-

ture. Thus, the driving systems functionality is separated into three layers: data

layer, processing layer and graphical layer. Figure 3.3 shows the layers and the differ-

ent modules of the driving system. Furthermore, the modules of the driving system

are graphically mapped to the driving system cycle in order to show the steps of the

driving system cycle in the architecture of the driving system.

Data Layer Processing Layer Graphical 
Layer

Short-Term 
Knowledge 

Base

Long-Term 
Knowledge 

Base

Data 
Aggregation

Interface

Prediction 
Engine

Rule 
Selector

Monitoring the 
driving situation

Aggregating the 
information & Profiling 
the driving behaviour

Predicting the car 
state & checking 
the driving rules

Deciding to show 
recommendation

Broken 
Rules 

Queue

Profile 
Update

Recommendations 
Inference Engine

Mid-Term 
Knowledge 

Base

Figure 3.3: The architecture of the driving system including the modules and their
corresponding

The data layer consists of modules that are responsible for gathering and process-

ing the information as well as creating the driving profile. In the first step of the

driving system cycle ”monitoring the driving situation” the interface module is used

to monitor the driving situation. Therefore, the interface module gathers the data,

needed for further processing, from different sources like the car, the driver and the

environment. The interface module is connected to the serial-bus systems of the car

and additionally to sensors that provide further information for example about the

driver and the environment. The next step of the driving system cycle ”aggregating

the information and profiling the driving behaviour” comprises the modules aggre-

gation and profile update that get the gathered information simultaneously from the
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interface module. The data aggregation module starts to aggregate the information

to get more information out of the monitored driving situation. The aggregation

of the collected information is described in Section 3.7. The aggregated informa-

tion is passed along with the collected information from the driving situation to the

short-term knowledge base that stores the information and provides it for further pro-

cessing. Additionally, the aggregated data is passed to the profile update module that

updates the driving profile, respectively the typical driving behaviour stored in the

driving profile, using the information from the interface module and the data aggre-

gation module. The updated driving profile is then stored in the mid-term knowledge

base. The long-term knowledge base consists of the driving rules that are used to

check whether the driver has broken a driving rule and the car facts. The car facts

store information for example about the fuel consumption. The stored information is

used for example to show the current fuel consumption of the car to the driver.

The processing layer is responsible for predicting the state of the car as well as the

checking the driving rules against the driving behaviour and the finding of deviations

of the current driving behaviour from the typical driving behaviour. Furthermore, it

decides whether a recommendation should be shown to the driver. The prediction

engine module and the rule selector module represent the driving system cycle step

”prediction of the car state and checking of the driving behaviour”. First, the predic-

tion engine module gets the prepared information from the short-term knowledge base

and starts to predict the car state. As the driving system shows the recommendations

in real-time the performance of the prediction is an important point. Thus, the car

state is defined by the driving system using the energy-efficiency and safety relevant

driving rule parameters driving speed, engine speed and distance to the car in front.

After predicting the car state, the information from the short-term knowledge base

is passed to the rule selector module together with the predicted car state. The rule

selector module matches the information, which was passed by the prediction engine

module, with the typical driving behaviour within driving profile, stored in the mid-

term knowledge base, and the driving rules, stored in the long-term knowledge base.

The matching of the incoming information against the typical driving behaviour and

the driving rules allows to recognise broken driving rules and deviations of the current

driving behaviour from the typical driving behaviour. The detected broken driving

rules or deviations from the typical driving behaviour are put into the broken rules

queue with the information that caused the breaking or the deviation and the driver

stress level at that time. The broken rules queue collects all broken driving rules or
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deviations from the typical driving behaviour and provides it for further processing

to the recommendations inference engine. The recommendations inference engine

module represents the last step of the driving system cycle ”deciding to show a rec-

ommendation”. It gets a broken driving rule or deviation from the typical driving

behaviour that is stored in the broken rules queue using the first in, first out principle.

On the basis of the detected broken driving rules or the deviations from the typical

driving behaviour gathered from the broken rules queue, the recommendations in-

ference engine decides whether to show a recommendation to the driver taking into

the corresponding information about the driver stress level and the driver reaction to

already given recommendations into account. Additionally, it checks if the driver has

adhered the last given recommendations. When the driver did not adhere the last

given recommendation repeatedly, the frequency of the corresponding recommenda-

tion is decreased. This allows not to bother the driver with recommendations that

are not necessary in the sense of the driver. Furthermore, when the driver was not

stressed at the moment when a driving rule was broken or when the driver did not

drive according the typical driving behaviour, the recommendations inference engine

will decide to show a recommendation to the driver. Thus, the recommendation is

passed to the graphical layer.

The graphical layer is the interface between the driving system and the user. Its

main task is the presentation of the recommendations to the driver. The recommen-

dations, which are received from the recommendations inference engine module, are

shown for example on the in-vehicle display unit and are presented simultaneously to

the driver using an audio voice. Furthermore, the graphical layer provides a graphical

user interface to the driver. Thus, the driver is able to interact with the driving sys-

tem for example to choose an existing or creating a new driving profile. Furthermore,

the driver has the opportunity to choose the target driving behaviour like safety,

energy-efficiency or both areas. The target driving behaviour indicates the area that

should be improved by the driving system.

3.6 Interface module

The driving system needs information about the current driving situation and the

driver to be able to detect an inefficient or unsafe driving behaviour, to adapt the

driving system to the individual driving behaviour and to consider the driver con-
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dition. The needed information is defined by the parameters of the driving rules,

described in Section 3.3, and the driver condition like the stress level or fatigue. On

the basis of the needed information three information sources can be specified: the

car, the environment and the driver. Figure 3.4 shows the information that can be

gathered from three information sources. Thus, the interface module collects the

needed information from the car, the driver and the environment using the in-vehicle

serial-bus systems and additionally attached sensors. Furthermore, the in-vehicle

internet connection can be used to gather additionally information. The gathered

information is then passed to the profile update and data aggregation module for

further processing. In the following the sensors and driving systems are explained

that can be used to get the needed information from the three information sources.

Driving system

 Stress level
 Fatigue
 Alcohol level
 Distraction level

 Car speed
 Gear
 Rpm
 Distance to the car 

in front
 Brake pedal
 Decelaration force
 Engine status

 Speed limit
 Weather condition
 Road condition

Figure 3.4: The driving rule parameters and the driver condition with the correspond-
ing information sources: driver, car and environment

3.6.1 Monitoring the car

To obtain the driving rule parameters like car speed, rpm, gear and so on, the in-

vehicle serial-bus systems can be used. According to Mayer [55], the well-established

serial-bus systems in the automotive area are: Controller Area Network (CAN), Media

Oriented System Transport (MOST), Local Interconnect Network (LIN) and FlexRay.

As shown in Figure 3.5, the serial-bus system CAN is separated in low and high-speed.

The high-speed CAN is used in the area of powertrain and chassis for a fast processing

of the information between the electronic control units (ECU) of the powertrain and

chassis. In contrast, the low-speed CAN is used in the convenience area, as the data

of the convenience ECUs need not be processed fast. The MOST serial-bus system is

implemented in the infotainment system area, in which it is used to transmit audio
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Figure 3.5: An example car network using the serial-bus systems (translated into
English, original picture in [59])

and video signals. LIN is used to transmit data simple and cost-effective in the area

of sensors and actuators. Finally, FlexRay is used for the communication in safety-

critical distributed applications. However, FlexRay ”must first become established

in the automobile” [55]. It was used for the first time in a car in 2007 by the car

manufacturer BMW [56]. The needed driving rule parameters from the car are placed

in the ECUs of the powertrain and chassis why the high-speed CAN can be used

for gathering the necessary information. According to Reif [57], the driving rule

parameters car speed, deceleration force, rpm, brake pedal position and engine status

can be read from the engine ECU as the sensors that monitor the needed values are

attached to the engine ECU. The information about the gear can be found on the

gearbox ECU, whereas the distance to the car in front can be gathered from the

autonomous cruise control ECU that uses for example a radar [58] to calculate the

distance to the car in front.

3.6.2 Monitoring the environment

For gathering the environmental information like the weather condition, road con-

dition or the speed limit, the interface module provides access to different sensors,

driving systems or the internet connection of the vehicle.

46



3.6. INTERFACE MODULE

For detecting the weather condition, the in-vehicle sensors like the temperature or

precipitation sensor can be used and accessed using the low-speed CAN, as the ECU

of the precipitation and temperature sensor is placed in the area of comfort [57]. Also

different weather sensors can be attached to the driving system for collecting mete-

orological information from mobile vehicles, as shown in [60]. The attached sensors

can be connected directly to the interface module or to an ECU that can be accessed

using the serial-bus system of the vehicle. Another possibility to get weather infor-

mation is to request the weather data from the in-vehicle internet connection, for

example by using the weather API of OpenWeatherMap1. To get a reliable informa-

tion about the current weather condition, the different weather information sources

can be combined.

The condition of the road can be measured by using the weather information.

For example, it can be assumed that the road may be icy when it is raining and the

temperature is below the freeze point. However, the internet connection of vehicle

can be used to get the information about the road condition, as well. For example

websites like WeatherOnline2 provide information about the current road condition.

Another approach to detect the road condition is by using a road surface sensor [61]

or driving systems that detect the road condition [62]. These sensors and driving

systems are able to detect a dry, wet, frozen or a snow-covered road.

There are already commercial driving systems like Speed Limit Info from BMW [63]

that recognise the speed limit of the road for example using a camera and image anal-

ysis algorithms. The driving system of BMW [63] is able to recognise speed limit and

no overtaking signs. Recognised signs are shown on the dashboard of the car in order

to keep the driver constantly informed. Another approach is to use the satnav to

gather the speed limit information from the road. However, according to Barnes et

al. [64] difficulties can arise with frequent updates to speed limit signs as for example

temporary road work signs or automatically changing speed limit signs cannot be

detected using a satnav.

1OpenWeatherMap offers free weather information through an API. More information can be
found on http://www.openweathermap.org

2WeatherOnline provides information about the weather and road conditions in Europe. More
information can be found on http://www.weatheronline.co.uk
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3.6.3 Monitoring the driver

The needed information from the driver is the driver condition like the stress level,

the fatigue level, the alcohol level and the distraction of the driver. The stress level

can be measured using an ear sensor that provides information about the heart rate.

The heart rate can be used to derive the heart rate variability (HRV). The HRV is the

variation of the interval between two heart beats, also called inter-beat interval(IBI)

and allows to detect the stress level of the driver [65, 66, 67], as high stress leads

to a high HRV. However, a low HRV indicates a low stress level. The stress level

of the driver can be gathered by the driving system either by using a software that

calculates the stress level and passes the information to the interface module or by

attaching a sensor to the interface module and calculating the driver stress level on

the basis of the HRV.

According to Jung et al. [68] the analysis of the HRV also gives a valuable informa-

tion about the fatigue and drowsiness status of the driver. They calculated the HRV

of the driver on the basis of the ECG signal and analysed the power spectral density

distribution of the HRV across its very low- (0.003-0.04 Hz), low- (0.04-0.15 Hz) and

high-frequency. Jung et al. showed that the ratio from the low- to high-frequency

can be used to decide if the driver is in normal, drowsy or fatigue condition, as the

ratio from the low- to high-frequency decreases when the condition of the driver pro-

gresses from awake to drowsy [69]. Another way to detect drowsiness and fatigue is

by tracking the eyes of the driver. Singh et al. [46] proposed a driver fatigue monitor-

ing system that monitors the driver eyes using a camera and warns the driver when

the driver shows symptoms of fatigue. The driving system of Daimler [70], Attention

Assist, observers the driving behaviour of the driver. On detection of the typical

indicators of drowsiness in the steering behaviour, a warning is given to the driver.

Based on the presented fatigue or drowsiness detection systems, the fatigue or drowsi-

ness information can be gathered by using the in-vehicle serial-bus system when the

fatigue or drowsiness detection systems are connected to the car or by attaching such

a fatigue or drowsiness detection system directly to the interface module.

There are four kind of sensors for measuring the blood alcohol level [71, 72, 73, 54]:

skin sensors, sweat sensors, alcohol sniffers and breath sensors. There are already skin

sensors developed [74, 75], also called tissue spectrometry systems, that need skin

contact to determine the blood alcohol level. According to the American Beverage

Institute [71] and USA Today [76], Toyota started to develop a steering wheel in 2007
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that embedded such a skin sensor to detect the blood alcohol level. Sweat sensors, also

called transdermal sensors, need also skin contact to detect the blood alcohol level

of the driver. Nissan [77] presented in 2007 a concept car that integrated a sweat

sensor in the gear shift knob to prevent drink driving by blocking the transmission

of the car. Breath sensors are widely used for estimating the blood alcohol [72].

The sensor measures the concentration of alcohol in the breath, as ethanol is able to

partition itself from the capillary blood into the inspired air. Volvo [78] presented

in 2007 a driving system that is using a breath sensor to prevent drink driving by

prohibiting to start the engine on detection of alcohol. Alcohol sniffers, also called

distant spectrometry systems, are trying to detect the presence of alcohol in the air.

According to Ferguson et al. [73], alcohol sniffers are trying to detect the alcohol

concentration of the breath for example within the driver cabin without the need to

provide a deep-lung breath like in breath sensors. Such sensors can detect alcohol

also when the window of the car is opened and the air conditioner of the car is set to

recycle [54]. Nissan [77] integrated, additionally to the sweat sensor, an alcohol sniffer

in the seat of their concept car in 2007 to detect the blood alcohol of the driver. On

the basis of the presented sensors and alcohol detection systems, the alcohol level of

the driver can be gathered either by connecting the sensors directly to the interface

module or to the in-vehicle serial-bus system for example by embedding the sensors

in to the driving wheel or driving seat, as shown in the concept car of Nissan [77].

The visual distraction and the cognitive distraction are combined in order to get

the distraction level of the driver. The visual distraction can be measured for example

using an eye tracking system. Volvo [79] developed a head and gaze tracker, called

Volvo/ANU system, that is able to robustly track head pose, gaze and eye closure

in real-time in the environment of a car. Cognitive distraction can be measured by

using the physiological signals of the driver [80] or the driving performance. However,

according to Lee et al. [80], the relationship between the physiological measures and

the driving performance might be a particularly powerful predictor of distraction

such as the eye movement and steering behaviour. Thus, a combination of sensors

and driving performance measures can be used for detecting the cognitive distraction

of the driver, whereas a stereo camera can be used for detecting the visual distraction.

The sensors and cameras for detecting the distraction level can be connected to an

ECU of the in-car serial-bus system that calculates and provides the distraction level

to the interface module or by connecting the sensors and cameras directly to the

interface module and calculating the distraction level within the driving system.
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3.7 Data aggregation module

The interface module is getting information from the car, the driver and the envi-

ronment in order to monitor the driving situation. However, some attached sensors

that monitor the driving situation, like the rain, temperature or engine speed sensor,

provide only raw data. For example, the rain sensor provides information about the

rain intensity, whereas the engine speed sensor provides the information about the

engine speed in revolutions per minute. However, aggregated sensor information is

needed to process the driving rules, as some driving rules depend on the aggregated

value, like the weather condition in the driving rule ”adapt your speed to the given

situation”. Furthermore, some driving rule parameters are described in a human

understandable way or are not worded exactly, like the weather condition or the ac-

celeration force, which are described as bad or very high. Thus, the data aggregation

module gets the information that are relevant for the aggregation and transformation

from the interface module and starts to aggregate and transform the information to

the needed values. After the aggregation and transformation, the processed informa-

tion is stored along with the information from the interface module in the short-term

knowledge base for further processing. Furthermore, the data aggregation module

passes aggregated information to the profile update module. Table 3.2 shows the

driving rule parameters that are aggregated in the data aggregation module with

their corresponding information source.

Driving rule parameter Information source Gathered Information Aggregated Information

Weather condition Rain sensor, 

internet connection

Rain intensity, 

Snow intensity, 

Fog intensity

Good driving weather, 

bad driving weather

Road condition Road condition detection 

system, 

internet connection

Ice, snow or water on the 

road, 

damaged road

Good road condition, 

bad road condition

Deceleration force Accelerometer sensor Positive or negative 

acceleration force in 

Newton

Very high, high, medium, 

low, very low deceleration 

force

Manner of driving Engine speed sensor Revolutions per minute driving at  very high, high, 

medium, low, very low 

revolutions
Alcohol level Skin sensors, sweat sensors, 

alcohol sniffers, breath 

sensors

Alcohol per mille above drink-drive limit, 

within drink-drive limit, no 

alcohol detected

Table 3.2: The driving rule parameters with the corresponding data source, the gath-
ered information and the aggregated information
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A bad weather condition for driving is described in [29], in which the OECD sum-

marises the speed limitations during different weather conditions in different coun-

tries. The OECD determines three measures for the limitation of the speed: rain,

snow and visibility due to fog or snow. In countries like France the speed limits on

broad roads and motorways are 10 km/h or 20 km/h lower when it is raining or

snowing. Furthermore, the speed limit is reduced to 50 km/h when the visibility is

less than 50 metres, for example due to fog or snow. Thus, to detect a bad weather,

the gathered weather information from for example the rain sensor or the internet

connection must be combined and aggregated. This allows to determine a bad or

good weather condition that can be used to show a recommendation by the driving

system for example to reduce the speed according to the defined driving speeds during

bad weather conditions listed in the report of the OECD.

The road condition sensors or driving systems that detect the road condition are

able to distinguish between a dry, wet, snowy or an icy road as shown in Section 3.6.2.

Furthermore, the internet connection provides the information if the road is dry, wet,

snowy or icy. However, this information must be aggregated to determine if the road

condition is good or bad for driving. Based on this information, the driving system

is able to show the driver a recommendation for example to slow down the speed as

the road condition is bad. This allows the driver to reduce the probability of being

involved in an accident as the braking distance of the car will decrease when reducing

the driving speed [50].

Besides the aggregation of the incoming information, the raw values collected

from the sensors, like the accelerometer sensor, have to be aggregated in to a human

understandable way. This allows to process the driving rules, as these are described

in a human understandable way and, thus, are not worded exactly. For example, the

deceleration force must be aggregated to a human understandable value. This allows

the processing of the driving rule ”Decelrate smoothly by releasing the acceleration

while the car is in gear”. The accelerometer sensor can be used to determine the

deceleration force. A positive sensor value represents an acceleration of the vehicle

and a negative value a deceleration. However, the sensor provides the acceleration

or deceleration of the vehicle in the unit Newton. Thus, the raw value of the sensor

must be aggregated into for example a high, high, medium or low acceleration and

deceleration in order to determine whether the driver is decelerating smoothly using

the engine braking or by using the brake pedal.
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The manner of driving is describing if the driver is driving at low or high rev-

olutions. This is relevant for describing the typical driving behaviour of the driver

in the driving profile. The manner of driving can be defined by using the engine

speed. However, the manner of driving is described as driving at very high, high,

mid, low or very low revolutions. Thus, the engine speed, which is measured by the

accelerometer in rpm, must be aggregated in order to specify the manner of driving.

The aggregated manner of driving allows the driving system to determine whether

the driver improves the driving behaviour in terms of energy-efficiency and is able to

show a recommendation when it detects a worsen of the manner of driving.

Also the alcohol level must be aggregated into a human understandable way, as

the sensors that are used for detecting the alcohol level provide the alcohol level in

per mille. Furthermore, the driving rule is described in a human understandable way

and defines that the driver should not be under the influence of drugs when driving.

However, as some laws allow drink-driving within a certain alcohol level, the alcohol

level gathered from the sensors must be aggregated for example to alcohol limit is

above the drink-drive limit, within the drink-drive limit or no alcohol detected. On

the basis of the transformation the driving system is able to determine whether the

driver is able to drive at all or the driver should not drive due to the detected alcohol

level that is for example within the drink-drive limit. Thus, the driving system is

able to show a recommendation to the driver, in which the driving is either not

recommended or allowed at the drivers own risk.

In order to get the aggregated information out of the collected sensor data, fuzzy

logic [81, 82, 83], neural networks [84, 83] or a combination of both, the neuro-

fuzzy networks [85], can be used. According to Siler and Buckles [83], fuzzy logic

is likely to be better than neural networks and, thus, also better than neuro-fuzzy

networks when input and output relations are known, no sufficient data is available

for a training set due to the combination of inputs and outputs or the collecting of a

training set would be too expensive and when there is an interest in the way, in which

the outputs can be derived form the inputs. In the case of the driving system, the

input and output combination for the aggregation of the driving rule parameters are

known. However, no training data set is available for the aggregation of the needed

information. Furthermore, the driving rules and the driving rule parameters are not

worded exactly, like the driving rule decelerate smoothly by releasing the accelerator

or the driving rule parameter deceleration force, which is described as high. However,

in crisp logic the driving rules and driving rule parameters have to be exactly defined.
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Figure 3.6: An example of the membership functions triangle, trapezium and Gaus-
sian [85]

For example, the deceleration force in crisp logic is an exact value like 1000 Newton.

An imprecise definition can not be processed in crisp logic, as the problem is for

example when the deceleration force should be interpreted as high in crisp logic.

Fuzzy logic allows the interpretation of imprecise definitions of driving rules and

driving rule parameters, as it allows to express the imprecise definitions by using

linguistic variables. According to Zadeh [81], linguistic variables are variables whose

values are words or sentences in natural or synthetic language. For example the de-

celeration force is a linguistic variable as its values are high, medium and low. The

linguistic variables are represented in fuzzy logic by using the fuzzy set theory. Fur-

thermore, the linguistic variables can be used in fuzzy logic to define rules. The rules

are used to do reasoning in fuzzy logic. The result of the reasoning is then transformed

by fuzzy logic to crisp values to allow further processing of the values. The three steps

that fuzzy logic is using to process the information are called: fuzzyfication, reasoning

and defuzzification.

In the fuzzy set theory [86], a fuzzy set consists of objects that have a certain

degree of membership, instead of objects that are true or false like in crisp logic. The

degree of membership is ranging between zero, which stands for no membership, and

one, which means full membership. It is assigned to each object using a membership

function, like a triangular, trapezium or Gaussian function. The transformation of

crisp values to a certain degree of membership using a membership function is also

called fuzzification. Figure 3.6 shows the degree of membership using the triangular,

trapezium and Gaussian function. The triangular function is used to express the

linguistic term approximately equal to 2, whereby the trapezium function represents

the term approximately between 5 and 7 and the Gaussian function the term ap-

proximately 11 [85, 82]. For example, the fuzzy set of the manner of driving is done
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Figure 3.7: The fuzzy set of the manner of driving on the basis of the engine speed,
using the triangular membership functions

using the triangular membership function that is applied to the sensor values of the

engine speed sensor, as shown in Figure 3.7. The engine speed is represented by the

linguistic variables very low, low, normal high and very high.

The linguistic variables can be used to create rules that are the basis for doing

reasoning in fuzzy logic. The reasoning allows to aggregate the collected informa-

tion from the sensors. For example, the weather condition can be aggregated by

defining rules that use the fuzzified sensor information from for example the rain or

weather sensor. The rules in fuzzy logic consist of antecedents and consequences. The

following equation illustrates the syntax of a fuzzy rule:

IF weather is rainy THEN driving weather is bad (3.1)

The antecedent in equation 3.1 is represented by weather is rainy and the con-

sequence of the rule is driving weather is bad. The antecedents and consequences in

fuzzy logic can be defined using linguistic or crisp variables. The linguistic variables

can also be chained together using logical operators. Figure 3.8 shows the degree of

memberships when using the AND and OR operator. When linking two linguistic

variables using the AND operator, the degree of membership of the consequence is

modelled as the minimum of the linguistic variables used in the antecedent. In con-

trast, when using the OR operator the degree of membership of the consequence is

defined as the maximum of the used linguistic variables in the antecedent [82]. The

degree of membership of the consequence is ranging between zero and one. The pro-

cess of finding the degree of membership of the consequence is called inference. The
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Figure 3.8: Two fuzzy rules with antecedents and consequences, the composition of
the rules and the defuzzification of the composition using the centre of area method
(illustration is based on [85])

linguistic variables used in the consequence are also called output variable. In fuzzy

logic the same output variable can be used in different rules as shown in Figure 3.8.

Therefore, the total degree of membership of an output variable has to be defined.

According to Nauck [85] the maximum method is usually used to get the total degree

of membership of an output variable by creating the maximum over every degree of

memberships of the output variables. This step in fuzzy logic is called composition.

Figure 3.8 illustrates the total degree of membership of an output variable that is

created using the maximum method.

The fuzzy output variable that is calculated using the composition has to be

transformed to a crisp value. This allows the further processing of the fuzzy output

variable in the non-fuzzy part of the driving system. The transformation of a fuzzy

value to a crisp value is called defuzzification. According to [83] the usual method

to defuzzify a fuzzy value is the centre of area method. The centre of area method

calculates the centre of an area under a curve, as shown in Figure 3.8, and gets the

value that is represented by the centre of the area. In the example illustrated in

Figure 3.8 the linguistic variable driving weather is bad is defuzzified approximately

to the crisp value 1.8. After the defuzzification of the values, the data aggregation

module stores them along with the gathered information from the interface module

in the short-term knowledge base for further processing. Furthermore, the defuzzified

values are passed to the profile update module that uses the aggregated values to

update the typical driving behaviour of the driver.
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3.8 Profile update module

The typical driving behaviour of the driver is stored in the driving profile and is used

in the driving system for checking the progress of the driving behaviour in terms

of energy efficiency and safety. A recommendation to the driver is shown when the

current driving behaviour differs significantly from the typical driving behaviour in

a negative way. As described in Section 3.4, several driving rule parameters, like the

manner of driving or the driving speed, are used to represent the typical driving be-

haviour of the driver. The information about the driving rule parameters is gathered

from the interface and data aggregation module. The typical driving behaviour is

based on the quantity of the gathered information. Thus, the representation of the

typical driving behaviour is more accurate when the driving system gathered more

information about the current driving behaviour of the driver. During the initialisa-

tion phase of the driving system a driving profile must be generated. At this time,

the driving profile is not able to represent the typical driving behaviour of the driver

as the driving system gathered not enough information about the driving behaviour.

Until the driving profile is able to represent the typical driving behaviour, the driving

system avoids to show recommendations based on the driving profile. During the

journey, the driving profile is updated using the information collected from the data

aggregation and interface module. The calculated typical driving behaviour is stored

in the driving profile for every journey separately. This allows to indicate positive or

negative trends in the typical driving behaviour and, thus, to show recommendations

when a negative trend is detected.

For updating the typical driving behaviour with the collected information, the

simple exponential smoothing technique [87, 88] is used. The simple exponential

smoothing technique can be used either for smoothing or to make forecasts of data

that has no seasonal influence or systematic trends like the driving behaviour. Fur-

thermore, it allows to consider the past typical driving behaviour during the calcula-

tion of the typical driving behaviour, as the current driving behaviour is influenced

by the past. However, the simple exponential smoothing limits the influence of the

past typical driving behaviour on the current by decreasing the influence of the past

typical driving behaviour when it is further back in time. The profile update module

uses the smoothing capability of the simple exponential smoothing technique to cal-

culate the information that define the typical driving behaviour of the driver using

the following equation:
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m∗
i =

1

(1 + i)
∗mi + (1− 1

(1 + i)
) ∗m∗

i−1 m,m∗, i ∈ R (3.2)

where m∗
i is the smoothed value that represents the information that is part of the

typical driving behaviour at the time slot i, like the driving speed or stress level of

the driver. The measured value from the sensor mi at the time slot i is gathered

from the interface and the data aggregation module. m∗
i−1 represents the smoothed

value of the information from the typical driving behaviour at the previous time

slot i − 1. However, during creation of the driving profile the previous smoothed

value m∗
i−1 is not available, why no previous smoothed value is used during the first

calculation of the smoothed value. The smoothing factor of the exponential smoothing

technique is represented at the time slot i by 1
(1+i)

. The smoothing factor is limited

to the range of zero and one, whereas one means no smoothing of the value. The

smoothing factor is used to decrease the influence of the previous smoothed value m∗
i−1

on the current calculation of the smoothed value m∗
i . This allows to give more weight

to the current measured value from the sensor gathered from the data aggregation

or interface module. After the calculation of the smoothed value m∗
i , the previous

smoothed value, which was stored in the driving profile to represent the previous

typical driving behaviour, is replaced by the newly calculated value m∗
i . Furthermore,

the time slot i is also stored in the driving profile in order to continue the calculation

in the next journey with the values of the previous journey. As the driving profile is

stored for every journey separately, this allows to begin a new journey on the basis of

the previous journey, which leads to the avoidance of the initialisation of the typical

driving behaviour in the beginning of every new journey. Thus, the new journey is

able to represent the typical driving behaviour from the beginning. Furthermore, the

usage of the time slot and the smoothed value from the previous journeys allow to see

a constant progress in the typical driving behaviour of the driver over all journeys.

Figure 3.9 shows an example of the manner of driving that is part of the typical

driving behaviour. For the calculation of the typical manner of driving, the aggregated

sensor information was gathered from the data aggregation module that calculated the

current manner of driving on the basis of the engine speed sensor. The profile update

module calculated the typical manner of driving during the first two journeys of the

driver, using the simple exponential smoothing equation 3.2. However, the typical

manner of driving started at very low and increased rapidly after the initialisation of

the driving profile, as the calculation of the typical manner of driving started for the
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Figure 3.9: The calculation of the typical manner of driving during the first and the
second journey using the simple exponential smoothing technique

first time in the first journey. At the end of the journey the driver has driven at high

to very high revolutions, why the typical manner of driving increased a second time.

During the first journey the typical manner of driving was initialised and needed time

until it was able to represent the typical manner of driving of the driver. The last

calculated typical manner of driving and the last time slot of the calculated typical

manner of driving is used as the basis for the second journey. This allows to represent

a constant progress of the typical manner of driving, as seen in Figure 3.9, and to avoid

the reinitialisation of the typical manner of driving in the second journey. Thus, the

second journey was able to represent the typical manner of driving from the beginning

of the journey.
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Prediction engine module
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Figure 4.1: The data flow of the processing layer with the focus on the prediction
module

The driving system tries to show a recommendation to the driver before the driver

breaks a driving rule. Therefore, it is necessary that the driving system knows the

future state of the car. The prediction engine module of the driving system, shown in

Figure 4.1, is responsible for the prediction of the car state. Therefore, it gathers the

needed data from the short-term knowledge base module and predicts the state of the

car. The predicted state of the car is then passed along with the data from the short-

term knowledge base to the rule detector module for further processing. However, as

the performance of the driving system is an important point, the prediction must be
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done in near-time. Thus, not every measure of the car is used to define the state of

the car. Instead, the safety and energy-efficiency relevant measures like driving speed,

distance to preceding car and revolutions per minute are used. The future state of the

car allows the driving system to recognise an early breaking of the driving rules. Thus,

the driving system is able to generate recommendations to prevent the breaking of

the driving rules. There are prediction algorithms like the Kalman filter or the Auto-

Regressive Moving-Average (ARMA) that are able to predict the car state. In the

following sections the Kalman filter and the ARMA are explained. Furthermore, the

algorithms are evaluated by predicting the driving speed that is part of the car state.

Finally, the results of the evaluation are presented and discussed.

4.1 Discrete Kalman filter

The Kalman filter [89] is an algorithm that allows prediction by estimating a process

and getting feedback of that process in the form of a measurement. The two steps

of the Kalman filter are also called prediction and correction. The prediction is

responsible for the forward projection of the current state and the estimation of the

error covariance in order to obtain the a priori estimation for the next time step. The

correction step is responsible for the feedback that allows to get a measurement into

the a priori estimation and, thus, to obtain an improved a posteriori estimation of the

state. According to Welch and Bishop [89], the estimation algorithm of the Kalman

filter can be seen as a predictor-corrector algorithm that solves numerical problems

by predicting the current state ahead in time and correcting the prediction by an

actual measurement at that time.

The cycle of the Kalman filter consists of the prediction and correction steps,

as shown in Figure 4.2. During the initialisation of the Kalman filter, the previous

state xk−1 and the previous error covariance Pk−1 are initialised (1a). The initialised

previous state and error covariance are the basis for the first step of the Kalman filter

(1b), in which first the state is estimated for the next time step using the equation

x̂−k = Ax̂k−1 +Buk (4.1)
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Prediction Correction

(1b) estimation of state 
and error covariance

(2) correction of the 
estimation using the 

corresponding measurement

(1a) initial state and 
error covariance

Figure 4.2: The cycle of the Kalman filter with the steps prediction and correction
(illustration is based on [89])

where x̂ is the predicted state, A the state transition model that is applied to the

previous state x̂k−1 and B is the control-input model that is applied to the control

vector uk. Next, the error covariance is estimated for the next time step using equation

P−
k = APk−1A

T +Q (4.2)

where P−
k is the predicted error covariance, A is the state transition model that is

applied to the previous error covariance Pk−1 and to the transposed error covariance

matrix AT . Q represents the noise covariance matrix. After the estimation, the

Kalman filter updates the estimated state of the prediction step using the measure-

ment at the time step of the estimation (2). First, the Kalman gain is computed

using the equation

Kk = P−
k H

T (HP−
k H

T +R)−1 (4.3)

where Kk represents the Kalman gain. H is the measurement matrix, whereas HT

is the transposed measurement matrix. R represents the error covariance of the

measurement. The second task of the correction step is to update the estimated state

with the measurement zk using the equation
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x̂k = x̂−k +Kk(zk −Hx̂−k ) (4.4)

where the updated estimate with the measurement is represented by x̂k. According to

Welch and Bishop [89], the difference of zk−Hx̂−k is called the measurement innovation

or the residual that reflects the discrepancy between the predicted measurement Hx̂−k
and the current measurement zk. Finally, the error covariance is updated in the

correction step, as well, using the equation

Pk = (I −KkH)P−
k (4.5)

where Pk is the updated error covariance, I the identity matrix and P−
k represents the

predicted error covariance. The update of the estimated state and error covariance

allows to generate the a posteriori state estimation for the updated state and the

error covariance. The a posteriori state and error covariance are used as the basis of

the prediction step for estimating the state and the error covariance for the next time

step.

Pentland and Liu [90] used the Kalman filter for modelling and recognition of sim-

ulated driving behaviour. As the human behaviour is not directly observable Pentland

and Liu determined the internal state of the driver using an indirect estimation pro-

cess. According to Pentland and Liu the Kalman filter is only useful in short time

prediction like a quick hand motion, up to one-tenth of a second. Therefore, they

used the Kalman filter for small-scale structure of the driving behaviour and coupled

these together into a Markov chain1 that represents the large-scale structure of the

driving behaviour. Pentland and Liu showed in an experiment that this approach is

able to achieve 95 % accuracy at predicting the subsequent actions of the driver from

the preparatory movements of the driver.

However, Bossanyi [91] used the Kalman filter for the short-term wind speed

prediction. The forecast of the short-term wind speed was done with a time step of one

minute over a data set of 1000 hours. Thereby, Bossanyi compared the performance of

the forecast with persistence. During the experiment, a forecast horizon up to ten time

1A Markov chain consists of states and transitions. It also describes the transition probability
from one state to another. The probability of the next state depends only on the current state.
Markov chains are mainly used for statistical models of real world processes
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steps were investigated. Bossanyi generated also new series with time steps of 2, 5, 10

and 15 minutes. This allowed to study the evolution of the one-step ahead prediction

error. The results of the investigation showed that the Kalman filter generated the

smallest prediction error for a time step of 5 minutes. Furthermore, the greatest

improvement over persistence occurred about a time step of one minute, whereas the

persistence performed better for hourly data.

4.2 Autoregressive Moving-Average

Another statistical prediction model is the ARMA [92, 93]. It combines the au-

toregressive (AR) and the moving-average (MA) model. The autoregressive model

assumes that the current value depends on the past values of the same time series.

The order of the autoregressive model describes the amount of the past values that

are considered in the autoregressive model. The past values are also called lag. The

order of the autoregressive model is denoted by AR(p), where p defines the lag. The

following equation defines the autoregressive model

zt = C + at +

p∑
i=1

φiz(t−i) (4.6)

where zt stands for the value at time t. c is a constant level, whereas at is a random

variable with mean zero and constant variance that is independent and represents

random error or shocks. φ is the coefficient to that is to be estimated and z(t−i) is the

past value.

The moving-average model describes the time series as a weighted average of

random errors or shocks. The order of the moving-average model describes the lags

that are included in the model. The moving-average model is denoted by MA(q),

where q is the lag. The moving-average model can be described with the equation

zt = at +

q∑
i=1

Θia(t−i) (4.7)

where zt is a weighted average of the current shock or random error at and the past

shocks or random errors a(t−i). Θ is the coefficient that is to be estimated.
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Modelling a time series using the autoregressive or moving average model would

need to consider too many values of the past series to make estimation possible.

Thus, ARMA combines both models defined in the equations 4.6 and 4.7 to reduce

the amount of past values needed for modelling a time series. The ARMA is denoted

by ARMA(p, q) whereby p and q are lags for the autoregressive and moving-average

model. Equation 4.8 shows the combination of the autoregressive and moving-average

model in the ARMA.

zt = C + at +

p∑
i=1

φiz(t−i) +

q∑
i=1

Θia(t−i) (4.8)

However, to use an ARMA model for prediction, the ARMA model has to be fitted

to the data by choosing the right order p and q of the autoregressive and moving-

average model. This can be done for example by using the autocorrelation and partial

autocorrelation function [92]. On the basis of the fitted ARMA model, ARMA is able

to predict the behaviour of a time series on the basis of past values. The ARMA is

used for example in the area of econometrics, statistics and for wind speed prediction.

Lujano-Rojas et al. [94] compared the ARMA model and the artificial neural

network by predicting hourly the average wind speed. Therefore, they created ARMA

models to the wind speed time series of three months of the years 2007 and 2008 for

three weather stations. Furthermore, they trained an artificial neural network for

hourly average wind speed forecasting. In order to evaluate the forecasting errors of

the ARMA models and the artificial neural network, Lujano-Rojas et al. used the

data gathered from the three weather stations in 2009. The results of the evaluation

showed that the prediction accuracy of the time between one and ten hours ahead

could be improved in some cases by the ARMA about 17 %. However, in other cases

the forecasting errors of the artificial neural network were about 1 % smaller than the

ARMA model.

Xu and Zeng [95] used the ARMA to predict the network traffic in order to de-

tect intrusions or attacks. Therefore, they combined the prediction with an intrusion

detection system. For the initialisation of the ARMA model they collected 500 data

samples. In order to validate the ARMA model, Xu and Zeng used 40 field devices

and five routers in their experiment, in which the field devices transmitted the data

to a gateway using the routers. The result showed, that the prediction performance
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is better than other models for one and k-step-ahead prediction. Furthermore, more

than 90 % of the intrusions were detected using the combination of an ARMA pre-

dicted network traffic and an intrusion detection system.

4.3 Evaluation

To determine the ability of the Kalman filter and the ARMA for predicting the car

state in the driving system, their accuracy were measured. Therefore, both algo-

rithms were implemented in the prediction engine module of the driving system. The

algorithms were prepared to do a 2.5, 5 and 10 seconds prediction of the driving

speed, which is part of the car state. The prediction was done in near-time, as the

driving system is using the predicted data to create recommendations. To have the

same data basis for the evaluation of the algorithms, the driving speed of a vehicle

was recorded during a 15 minutes journey on a rural road. The journey was done

using a driving simulator. Figure 4.3 shows the recorded driving speed that was the

basis for the evaluation of the algorithms.

Time

S
pe

ed
 (

km
/h

)

0

20

40

60

80

100

120

140

Original speed

Figure 4.3: Captured driving speed of the journey using a driving simulator

As the driving system is a real-time application, the recorded driving speed was

played back using a CAN bus simulation software to which the driving system was

connected. For evaluating the accuracy of the algorithms for a 2.5, 5 and 10 seconds

prediction, six runs were used, in which the average deviation of the predicted driving

speed from the captured driving speed was calculated. In the first run, the ARMA

and Kalman filter had to do a forecast of 2.5 seconds of the captured driving speed,
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whereas the second run consisted of a 5 second prediction of the captured driving

speed. Finally, the ARMA and Kalman filter were used to do a 10 seconds prediction

of the recorded driving speed in the third run.

In each run, the Kalman filter was initialised with the value 0 for the previous

driving speed and previous error covariance. After the initialisation of the Kalman

filter, it started to predict the driving speed for the given period of time (i.e. 2.5, 5

and 10 seconds) and to correct the prediction using the driving speed measurement,

according to the Kalman filter cycle and the equations presented in Section 4.1. In

contrast to the Kalman filter, the ARMA needed a certain amount of data until it was

able to do a prediction. Thus, a hundred driving speed measurements were collected

from the car, until ARMA started to predict the future driving speed. After the

enough data was gathered, the first step was to create a time series on the basis of the

collected data. Based on the time series an ARMA model was generated, according to

the equations presented in Section 4.2. After the generation of the ARMA model, it

was able to predict the future driving speed for the given period of time (i.e. 2.5, 5 and

10 seconds). However, on receiving of a new driving speed measurement, the collected

data was updated with the received measurement. The updated data collection was

then used to create a new time series containing the updated data. On the basis

of the newly created time series, a new ARMA model was generated. Thus, the

updated ARMA model was able to do the prediction considering the current driving

speed measurement. This cycle of the ARMA was done for every new driving speed

measurement of the car.

4.4 Results

The presented algorithms have different approaches for the prediction of values, why

the algorithms needed to be evaluated in order to find a suitable algorithm for the

driving system to predict the car state. The evaluation of the prediction algorithms

was based on the data collected from a driving simulator. Therefore, the driving speed

information of a car was collected during a 15 minutes journey on a driving simulator.

To compare the algorithms, their accuracy was measured during the prediction of

the driving speed. The algorithms had to do a 2.5, 5 and 10 seconds prediction.
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2.5 seconds 

forecast

5 seconds 

forecast

10 seconds 

forecast

ARMA 3.96 5.62 8.80
Kalman filter 9.90 19.90 39.21

Average deviation from original driving speed

Table 4.1: The accuracy of the prediction algorithms showing the average deviation
from the original driving speed in each run

The results presented in Table 4.1 show that the prediction of the ARMA was more

accurate than the predicted driving speed of the Kalman filter, as the ARMA considers

also the history of the values.

In the first run of the evaluation, the algorithms had to predict the driving speed

of the car 2.5 seconds to the future. The figures 4.4 and 4.5 show the result of

the Kalman filter and ARMA when predicting the driving speed 2.5 seconds to the

future. The figures show besides the predicted driving speed also the original driving

speed that was captured and used as the basis for the prediction. As shown in

Figure 4.4 (1), the prediction of the Kalman filter had a bad accuracy when the

driver accelerated or decelerated strongly. However, the accuracy of the prediction

was better for situations when the driver accelerated or decelerated slightly or when

the driver was driving with a constant speed. Figure 4.4 (2) shows the deviation of the

predicted driving speed from the original driving speed when using the Kalman filter.

The average deviation of the predicted driving speed was 9.90 km/h. In contrast, the

2.5 seconds prediction of the ARMA was more accurate than the Kalman filter as

shown in Figure 4.5, especially in situations when the driver accelerated or decelerated

the car. However, the ARMA had trouble with predicting the driving speed when the

driver changed from strong deceleration to strong acceleration or vice versa. In such

situations ARMA assumed that the driver will still decelerate strongly. The deviation

of the predicted driving speed from the captured driving speed using ARMA is shown

in Figure 4.5 (2). The average deviation of the predicted driving speed was 3.96 km/h

when using ARMA.

In the second run, the algorithms were prepared to do a 5 seconds forecast of the

driving speed. The results of the second run are presented in Figure 4.6 and 4.7.

The results show that the ARMA was more accurate than the Kalman filter in pre-

dicting the driving speed 5 seconds to the future. In comparison with the first run,

the prediction accuracy of the Kalman filter decreased, as the average deviation of
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Figure 4.4: 2.5 seconds prediction of the driving speed using the Kalman filter (1)
and the deviation from the original speed (2)
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Figure 4.5: 2.5 seconds prediction of the driving speed using ARMA (1) and the
deviation from the original speed (2)

predicted driving speed from the original driving speed was 19.79 km/h. Especially

in situations, in which the driver accelerated or decelerated strongly, the peaks of

the predicted driving speed were higher than in the first run of the Kalman filter

and, thus, deviate significantly from the original driving speed, as illustrated in Fig-

ure 4.6 (2). Figure 4.7 (1) shows that the accuracy of the ARMA decreased in the

second run, as well. However, ARMA predicted still more accurate than the Kalman

filter, as the average deviation of the predicted driving speed was 5,62 km/h. In com-
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Figure 4.6: 5 seconds prediction of the driving speed using the Kalman filter (1) and
the deviation from the original speed (2)

Time

S
pe

ed
 (

km
/h

)

0

20

40

60

80

100

120

140

ARMA
Original Speed

(1)
Time

S
pe

ed
 (

km
/h

)

-40

-20

0

20

40

60

Deviation of ARMA

(2)

Figure 4.7: 5 seconds prediction of the driving speed using ARMA (1) and the devi-
ation from the original speed (2)

parison with the previous run, the predicted driving speed in ARMA had lower peaks

in situations when the driver changed from strong deceleration to strong acceleration

or vice versa (see Figure 4.7 (2)). However, this did not lead to an increase of the

accuracy, instead, the lower peaks decreased the accuracy of the prediction.

During the last run, the algorithms had to do a 10 seconds prediction of the

driving speed. Figure 4.8 and 4.9 illustrate the results of the last run. According to

the results, the ARMA was more accurate than the Kalman filter. In comparison with
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Figure 4.8: 10 seconds prediction of the driving speed using the Kalman filter (1) and
the deviation from the original speed (2)
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Figure 4.9: 10 seconds prediction of the driving speed using ARMA (1) and the
deviation from the original speed (2)

the first and second run, the prediction accuracy of the Kalman filter decreased again,

as the average deviation of the 10 seconds predicted speed from the original speed was

39.21 km/h. In this run, the Kalman filter had the same behaviour as in the previous

runs, which leaded to an increase of the predicted driving speed peaks, as shown in

Figure 4.8 (2). Thus, this leaded to an increase of the deviation from the original

driving speed in this run, why the accuracy of the prediction decreased. However, in

this run the accuracy of the ARMA was also higher than the accuracy of the Kalman
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filter. The average deviation of ARMA in the third run was 8,80 km/h. Compared

to the first and second run, the peaks of the predicted driving speed decreased again

when using ARMA in situations when the driver changed from strong acceleration to

deceleration or from strong deceleration to acceleration, as shown in Figure 4.9 (2).

However, just like in the second run the lower predicted peaks did not lead to a higher

accuracy. In contrast, they leaded to a lower accuracy of the prediction.

4.5 Discussion

The goal of the evaluation was to measure the accuracy of the prediction algorithms.

Therefore, the algorithms had to predict the driving speed of the car 2.5, 5 and 10

seconds to the future. In order to have the same data basis, the driving speed of a car

was captured during a 15 minutes journey on rural road using a driving simulator.

During the evaluation the recorded driving speed was used in the Kalman filter and

ARMA for the 2.5, 5 and 10 seconds prediction of the driving speed. In order to

measure the accuracy of the algorithms, the deviation of the predicted driving speed

and the original driving speed was calculated for each run.
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Figure 4.10: The results of the evaluation showing the average deviation from the
original driving speed for every run

The evaluation showed that the prediction of the driving speed using ARMA is

more accurate than using the Kalman filter. In contrast to ARMA, which considers

all past measurements of the driving speed, the Kalman filter considers only the last

measurement of the driving speed. This leaded to an imprecise prediction of the
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driving speed with the Kalman filter. The imprecision of predicted driving speed

increased when the Kalman filter was used to predict the driving speed further in

time, especially in the second and third run when predicted 5 and 10 seconds to the

future, as shown in Figure 4.10. This correlates with the findings of Pentland and

Liu [90], who revealed that the Kalman filter is only useful in short time prediction

like a fast hand motion. Furthermore, Figure 4.10 shows that the prediction accuracy

decreased also for ARMA when predicting further in time. However, according to

the results in Table 4.1, the imprecision of the ARMA increased from the 2.5 second

forecast to the 10 second forecast by an average deviation of the predicted driving

speed of about 4.5 km/h, whereas the Kalman filter increased its imprecision by an

average deviation of the driving speed of about 29 km/h. Furthermore, during the

10 seconds prediction, the accuracy of the ARMA was still better than the prediction

accuracy of the Kalman filter when predicting 2.5 seconds to the future. Thus, it

can be seen that the Kalman filter is not suitable for predicting the car state in the

prediction engine module.

According to the results of the evaluation, ARMA will be used in the prediction

engine module to predict the state of the car, which is represented by the car speed,

engine speed and the distance to the car in front. As ARMA had the best accuracy

when predicting 2.5 seconds to the future, the prediction engine module will predict

the car state 2.5 seconds to the future. The prediction of the car state 2.5 seconds to

the future allows the driving system to show a recommendation to the driver before a

breaking of the driving rule or a deviation from the typical driving behaviour occurs.

Thus, the driver has the opportunity to avoid a breaking of the driving rule or to

correct the driving behaviour according to the typical driving behaviour.
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Figure 5.1: The data flow of the processing layer with the focus on the rule selector
module and its local working memory and improved rule matching algorithm

The detection of broken driving rules or deviations from the typical driving be-

haviour is done in the rule selector module of the processing layer, see Figure 5.1.

The detection allows to determine whether the driver is driving energy-inefficient,

unsafe or does not drive as usual. On the basis of the detection, a recommendation

to the driver can be shown to increase the energy-efficiency or safety. Furthermore,

the recommendation can be used to point the driver to the current driving behaviour

that deviates significantly from the typical driving behaviour, why the driver should

improve the current driving behaviour. For the detection of the broken driving rules
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and deviations from the typical driving behaviour rule matching algorithms can be

used. Rule matching algorithms are pattern matching algorithms that match rules to

a data set. They are often used in production systems to determine, which rules of

the production system have to be fired on the basis of the data stored in the working

memory of the production system. Therefore, the rule matching algorithms receive

information about the changes made to the working memory of the production system

and determine the changes that have to be done in the conflict set. The conflict set

consists of all rules that have to be fired. The order, in which the rules are fired are

defined in the conflict set resolution strategy, such as first come, first serve or the pri-

oritisation of the rules. Regarding the driving system, the conflict set is represented

by the broken rules queue module of the processing layer (Figure 5.1). It is solved by

the recommendations inference engine using the first come, first serve principle. The

rule matching algorithms compare production, also called rules, against data tuples,

also called facts. In the driving system, the rules are represented by the driving rules

defined in Section 3.3. Furthermore, the rules are used to define when a deviation

from the typical driving behaviour is detected. The facts are represented by the infor-

mation that are stored in the short-term knowledge base and the information about

the predicted car state. The facts are passed from the prediction engine module to

the internal working memory of the rule selector module. The rules are described

by conditions and consequences. For example, regarding the rule ”shift as soon as

possible”, a condition of that rule would be Rpm>2500 and a consequence would be

to show the recommendation to shift the gear. The rule is passed to the conflict set

when the facts match the conditions of that rule. According to the conflict set reso-

lution strategy of the recommendations inference engine, the consequence of the rule

is fired when the conflict set is solved. There are several rule matching algorithms

such as Rete, Treat or Leaps. In the following sections the rule matching algorithms

are briefly explained. After the explanation of the algorithms, the improved rule

match algorithm is introduced and evaluated. Finally, the result of the evaluation are

presented and discussed.

5.1 Rete

The Rete algorithm [96] uses a tree structured network to represent the rules, whereas

every rule has its own network. The network is also called Rete network. Figure 5.2

shows a Rete network that represents a rule. A Rete network contains alpha and beta

74



5.1. RETE

nodes. Every alpha node of a network represents one condition of a rule and stores the

fact that matched the condition of the node in its node memory. The beta nodes are

used to store partial matches when different facts are joined from the parent nodes.

Parent nodes can be either an alpha node or another beta node. On every update of a

fact in the working memory, the old fact stored in the alpha and beta node memories

are deleted. The updated fact is then pushed into the Rete network that passes the

fact to the corresponding alpha nodes. The alpha node starts then to check whether

the new fact satisfies its condition. In case the fact satisfies the node condition, the

node stores the fact in the alpha memory and passes it to the beta node. The beta

node represents the joining of parent nodes and checks whether the joining between

two parent nodes (i.e. two alpha nodes or one beta and one alpha node) is satisfied

on the basis of the newly received fact. When the beta node is satisfied and has no

child node, the rule is put into the conflict set. However, if the beta node has a child

node, the fact is passed to the child beta node that checks again if the joining of its

parent nodes are satisfied. To solve the conflict set in Rete, a conflict set resolution

strategy has to be defined like first come, first serve.

Figure 5.2 illustrates the data flow of the Rete algorithm on the basis of the Rete

network of the driving rule Rule1 ”shift as soon as possible” with the conditions

Rpm>2500 and Gear<6. The initial working memory, the memories of the nodes

within the Rete network and the conflict set are empty. In the next cycle of the

driving system, the facts Rpm : 3000 and Gear : 3 are added to the working memory.

The working memory passes the newly arrived facts to the Rete network using an

add operation. The root node of the Rete network passes the incoming facts to the

corresponding alpha nodes that checks if the facts satisfy their conditions and stores

them in their so called alpha memory. The facts are then passed to the beta node,

that proofs if the incoming facts satisfy the joining of the parent nodes. In case

the fact satisfies the joining of the two parent nodes, the facts are stored in the so

called beta memory and Rule1 is put to the conflict set. In the next cycle of the

driving system, the fact Rpm : 3000 is updated to Rpm : 2400. This update causes

a delete operation within the Rete network, in which the old fact Rpm : 3000 is

removed from the alpha and beta node memories and Rule1 is removed from the

conflict set. The delete operation is followed by an add operation that passes the new

fact Rpm : 2400 to the Rete network. As the fact Rpm : 2400 does not satisfy the

condition Rpm>2500 of the alpha node, it is not stored in the alpha node memory

and is not passed to the beta node. Thus, Rule1 is not put into the conflict set again.
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Figure 5.2: Illustration of the Rete algorithm with the operations add and delete
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5.2 Treat

The Treat algorithm [97] is the evolution of the Rete algorithm. It tries to improve

the Rete algorithm in the memory usage by omitting the beta nodes. Thus, the Treat

algorithm does not use beta nodes to join the parent nodes and, thus, it does not

use a beta memory to store the facts that satisfied the joining of the parent nodes.

Instead, the Treat algorithm checks the satisfaction of the joining when required. For

example, when an incoming fact satisfies an alpha node, the fact is stored in the alpha

memory of that node and the joining of that alpha node is recomputed. If the result

of the computation is positive the rule is added into the conflict set. The conflict set

resolution strategy of the Treat algorithm must be defined similarly to the conflict

set resolution strategy of the Rete algorithm.

Figure 5.3 illustrates the process on the basis of the driving rule Rule1 ”shift as

soon as possible” with the conditions Rpm>2500 and Gear<6. Treat represents the

driving rule by using also a Rete like network, however, without the beta nodes. The

initial working memory consists the facts Rpm : 3000 and Gear : 3, whereas the

fact Rpm is updated in the next cycle to Rpm : 2400. An update of a fact causes

the Treat algorithm first to delete the old fact from the alpha node memories and to

remove the rule Rule1 from the conflict set. In the second step, the Treat algorithm

is using an add operation, in which the new fact is passed to the corresponding alpha

node that checks if the fact satisfies its condition. On satisfaction of the condition,

the intermediate relations of the alpha nodes are recomputed. This causes in our

example an insertion of Rule1 into the conflict set.

According to the results of Miranker [97], the Treat algorithm is more effective

than the Rete algorithms, as it needed fewer comparisons until the facts were bound to

the corresponding nodes and less memory was needed, due to the missing beta nodes

and beta memories. Furthermore, during a deletion of a fact, the Treat algorithms

manipulates the alpha nodes and the conflict set directly, instead of recomputing the

joining of the alpha nodes. In contrast, Rete has to recompute the joining of the

alpha nodes when a fact of the working memory is deleted, to keep the beta nodes

up to date. However, Nayak et al. [98] showed that the Rete algorithm outperforms

the Treat algorithm. Especially, when it is used in static structures, as the Rete

algorithms joins the alpha nodes in static structures once, instead of recomputing the

joinings every time. According to Nayak et al., a structure is static when a single fact
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Figure 5.3: Illustration of the Treat algorithm with the operations add and delete
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is not removed from the working memory. Thus, the Rete algorithm has to compute

every join only when the whole structure is removed or added. Furthermore, the

results of Nayak et al. differ from Miranker’s results in [97], as Miranker counted only

the number of comparisons, which may not reflect the intrinsic differences between

the match algorithms [98].

5.3 Leaps

The Leaps (Lazy Evaluation Algorithm for Production Systems) algorithm [99] is

based on the Treat algorithm. Thus, it uses alpha nodes to store the facts that satisfy

the alpha node conditions and calculates the intermediate joins of the alpha nodes

when they are needed. In contrast to the Rete and Treat algorithm, Leaps provides

also a conflict set resolution strategy by combining the conflict set resolution strategy

with the search for rules whose conditions are satisfied. This allows Leaps to omit the

conflict set. Instead of putting the rule whose conditions are satisfied into the conflict

set, the consequence of the rule is fired immediately. Leaps is using lazy evaluation

to find rules whose conditions are satisfied by inspecting the facts of a rule one by

one. If a rule is found, whose conditions are satisfied, it pauses the current search

and fires the corresponding rule consequence.

Figure 5.4 shows once cycle of the Leaps algorithm with two rules: Rule1 ”shift

as soon as possible” and the rudimentary rule Rule2, where Rule1 has the conditions

Rpm>2500 and Gear<6. Rule2 is illustrated only for demonstrating the process of

Leaps. The rules are represented like in Treat by using a Rete like network without

the beta nodes, as beta nodes are not needed in Leaps. During the initialisation phase

the working memory is empty, why the alpha nodes of Rule1 are empty, as well. The

working memory is then updated with the facts Rpm : 3000 and Gear : 3. After the

update of the working memory, Leaps starts searching for the rule whose conditions

are satisfied by the updated facts. In the first step it checks the conditions of Rule1.

In case of Rule1, the facts satisfy the conditions as well as the intermediate relations

of the rule. Thus, Leaps fires the consequence of Rule1 immediately. After the firing

of the consequence Leaps would continue the search, however, the fact Rpm : 3000

is updated to Rpm : 2400. This causes Leaps to suspend the current search and

to start a new search with the updated fact Rpm : 2400. In case, the old search

did not fire a rule it would not be suspended. Instead, the updated fact would be
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pushed onto a stack until the old search is finished. After that, the updated fact

would be popped from the stack and Leaps would start the search with the popped

fact. During the time when the old search is suspended, the corresponding facts that

are stored in the alpha node memories are not deleted. Instead, they are ignored

during the newly started search. When the newly started search is finished, Leaps

resumes the suspended search with the old facts until all rules are checked. Finally,

when the suspended search is finished, the old facts will be removed from the alpha

node memories of all rules. According to the evaluation of Miranker [99], the lazy

evaluation of the rules allows Leaps to increase the rule firing rates and to decrease

the execution time of the algorithm. This can be achieved by Leaps, as it avoids the

computation of all rules in each cycle like Rete or Treat. Instead, Leaps suspends the

current search and carries on to search the rules with the updated fact. However, the

current search is only suspended when a fact that is stored in the working memory is

updated and a consequence of a rule was fired.

5.4 Improved rule matching algorithm

According to Nayak [98], the Rete algorithm outperforms Treat, especially in static

structures [98]. Static structures are defined as facts that are not removed from the

working memory [98]. As the facts within the driving system are not removed, the

driving system has a static structure. Furthermore, the facts stored in the driving

system are updated with a frequency of 100Hz. However, an update of the facts is

neither considered in the Treat nor in the Rete algorithm. Thus, the usage of the

Treat or Rete algorithm in the driving system would cause massive delete and add

operations within the driving system, as the algorithms had to keep the network up

to date by deleting the old and adding the new facts. Due to this fact, the Treat

and Rete algorithm are not ideal for the usage within the driving system. The Leaps

algorithm, which is the evolution of Treat, combines the lazy rule matching with

solving the conflict set. This allows Leaps a faster firing of the rule consequences.

However, this makes the Leaps algorithm also inflexible, as the conflict set resolution

strategy cannot be changed. The conflict set of the introduced driving system is solved

by the recommendations inference engine that processes the broken rules according

to the first in, first out principle. Each rule is checked if the firing of the consequence
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has to be suppressed, as the driver may be under stress. Due to this fact, the Leaps

algorithm is also not an ideal solution for matching the rules against the facts in the

driving system.

Based on the elaborated findings, a rule match algorithm for the usage within the

driving system was created on the basis of the Rete algorithm, as the Rete algorithm

is developed for environment with static structures. To avoid the delete and add

operations upon every update of the facts and, thus, to improve the performance, a

rule matching algorithm has been created that stores pointers to the corresponding

facts within the node memories, instead of the fact itself. Thus, upon every update

of the facts, the improved Rete network does not have to be updated. Instead,

the network is only triggered to check whether the updated fact satisfy the node

conditions. Listing 5.1 shows the abstract description of the improved rule matching

algorithm. Upon every update of the facts, every improved Rete network is triggered

to check its alpha nodes with the updated facts. In case the result of the checking

differs from the previous result, stored within the corresponding node memory, the

old result is deleted and the new result is put into the alpha node memory. If the

alpha node has a child beta node, the child beta node is triggered to check whether

the new result satisfies the intermediate relation of the parent nodes. Therefore, the

beta nodes point to the node memory of the parents. First, the beta nodes check

if both parents are updated with the updated facts. Then, the beta node checks

the intermediate relation between the parent nodes using the pointers to the node

memories of the parents. If the result of the checking differs from the stored value

in the beta node memory, the stored value is replaced by the result of the checking.

In case the beta node has a child beta node, the child beta node is triggered to

do a checking. However, if there are no child beta node, the conflict set is updated

according to the result of the checking. Thus, if the result of the checking was positive,

which means that the rule is broken, the rule is put into the conflict set. In contrast,

if the rule is not broken and the conflict set contains the rule, the rule is remove

from the conflict set. The explained approach allows a faster processing of the rule

matching algorithm, as it does not have to update the memory of every alpha or beta

node using the updated fact. Furthermore, the improved matching algorithm avoids

to store redundant information within the alpha and beta nodes, as the facts that are

stored in the working memory are not stored additionally within the node memories.
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1 For each r u l e do ;
2 For each alpha node in Rete Network do ;
3 Check cond i t i on o f alpha node us ing the po in t e r to the
4 f a c t s to r ed in the working memory ;
5 I f r e s u l t o f the check ing d i f f e r s from the s to r ed l o g i c a l

va lue then ;
6 Store r e s u l t in alpha node memory ;
7 I f alpha node has a beta node then ;
8 Tr igger c h i l d beta node to check the in t e rmed ia te

r e l a t i o n o f the alpha nodes ;
9 I f beta node has been t r i g g e r e d from both parents then ;

10 Check the updated va lue s o f both parents us ing the
s to r ed p o i n t e r s ;

11 I f r e s u l t i s t rue and the r e s u l t d i f f e r from
12 the s to r ed l o g i c a l va lue s then ;
13 Store r e s u l t in beta node memory ;
14 I f beta node has c h i l d r e n then ;
15 Tr igger c h i l d beta node to check in te rmed ia te

r e l a t i o n in the same way as cur rent beta node ;
16 Else ;
17 Put r u l e i n to the c o n f l i c t s e t ;
18 End i f ;
19 Else i f r e s u l t o f both va lues are f a l s e and r e s u l t

d i f f e r s from the s to r ed l o g i c a l va lue s then ;
20 Store r e s u l t in beta node memory ;
21 I f beta node has c h i l d r e n then ;
22 Tr igger c h i l d beta node to check in te rmed ia te

r e l a t i o n in the same way as cur rent beta node ;
23 Else ;
24 Remove r u l e from c o n f l i c t s e t ;
25 End i f ;
26 End i f ;
27 End i f ;
28 Else i f alpha node cond i t i on i s s a t i s f i e d and r u l e i s not

in c o n f l i c t s e t then ;
29 Put r u l e i n to the c o n f l i c t s e t ;
30 Else i f alpha node cond i t i on i s not s a t i s f i e d and r u l e i s

in c o n f l i c t s e t then ;
31 Remove r u l e from c o n f l i c t s e t ;
32 End i f ;
33 End for ;
34 End for ;

Listing 5.1: Abstract improved rule matching algorithm, which shows the matching
of the rule using the facts stored in the working memory
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Figure 5.5 shows the improved Rete network and the update process of the im-

proved rule matching algorithm using Rule1 ”shift as soon as possible” with the

conditions Rpm>2500 and Gear<6. The initial working memory is empty as well as

the memory of the alpha and beta nodes. The beta node points to the memory of

the alpha nodes, which is needed to check whether the intermediate relation between

the parent nodes is satisfied. During the initial add operation, pointers to the facts,

stored in the working memory, are passed to the corresponding alpha nodes. Af-

ter the initialisation, the improved Rete network is triggered to check the conditions

against the facts in the working memory, according to the abstract algorithm in List-

ing 5.1. First, the alpha nodes check their condition against the facts. The result of

the checking is stored in the corresponding alpha node memory using a logical value.

In the example, the facts stored in the working memory satisfy the condition of the

alpha nodes, which then trigger the beta node to check the intermediate relation of

the parent nodes. The beta node start then to check the logical values of the parent

nodes, which are both true, and manipulates the conflict set by adding Rule1 into

the conflict set. After updating the fact Rpm : 3000 to Rpm : 2400, the improved

Rete network is triggered again to check the conditions within the network against

the facts. In contrast, the Treat and Rete algorithm would delete the old and add

the new fact. The alpha node with the condition Rpm>2500 checks its condition

against the corresponding fact in the working memory and stores the result, which is

in this case false, in its node memory. As the node memory was updated, the alpha

node triggers its child beta node to check if the intermediate relation of its parent

nodes are still satisfied, using the values stored in the node memories of the parent

nodes. In the example in Figure 5.5, the beta node memory consists of the value false

after the update of the fact, as the intermediate relation of its parent nodes are not

satisfied. Thus, Rule1 is not broken any more, why the beta nodes removes Rule1

from conflict set, as it was in the conflict set before.

The basis of the rule matching algorithm is the driving rule file (DRR), which

contains the rules for matching the facts within the improved rule matching algorithm

against the driving rules and deviations of the current driving behaviour from the

typical driving behaviour. The antecedent and consequence of the rules are based on

the driving rules introduced in Section 3.3 and the typical driving behaviour described

in Section 3.4. The typical driving behaviour allows to detect deviations of the current

driving behaviour using the rule matching algorithm. On the basis of the rules defined

in the DRR files, the improved Rete network is generated. The driving rule ”shift as
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1 #rule
2 ”ecoRPM”
3 #when
4 rpm > 2500 & gear < 6
5 #then
6 sh i f tGea r
7 #end

Listing 5.2: The definition of the rule ”shift as soon as possible” with the
corresponding consequence in the DRR file

soon as possible” describes that the driver should shift the gear before the revolutions

per minute are higher than 2500 and when the gear is not the maximum gear, which

is 6 in the example. The driving rule is defined in the DRR file using the schema

shown in Listing 5.2.

The begin of a rule in the DRR file is indicated by the tag #rule, which is followed

by the name of the rule that is surrounded by quotation marks, ”ecoRPM” in the

example. The conditions of the rule are defined after the keyword #when. Multiple

conditions are joined by the character &. The condition can be defined using terms

that contain the facts of the working memory. In the example the terms Rpm>2500

and Gear<6 are defined as the conditions of the rule, in which the facts rpm and

gear were used. The consequence of the rule is indicated by the keyword #then. The

consequences of the rules are defined in the long-term knowledge base and consist

of the recommendation that should be shown to the driver. It is possible to define

multiple consequences in a rule in order to show the driver multiple recommendations.

Based on the rule defined in the DRR file, the improved rule matching algorithm

creates the corresponding improved Rete network. The abstract algorithm for gen-

erating the improved Rete network is shown in Listing 5.3. First, a root node is

created for a rule that is defined in the DRR file. Then, the algorithm starts to parse

the DRR file to find defined conditions. For any found condition, the improved rule

matching algorithm creates an alpha node and adds it as a child to the root node. In

case that the rule contains another condition, the improved rule matching algorithm

creates another alpha node and adds it also as a child of the root node. Additionally,

it creates a beta node that represents the intermediate relation between the created

alpha nodes and adds the newly created beta node as a child node of the created

alpha nodes. Furthermore, pointers to both alpha node memories are stored in the
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1 For each r u l e in DRR f i l e do ;
2 Create a root node ;
3 I f the re i s a cond i t i on in d r i v i n g r u l e then
4 Create an alpha node us ing the cond i t i on and s e t i t as a

c h i l d o f the root node ;
5 While the re are f u r t h e r c o n d i t i o n s in the d r i v i n g r u l e do ;
6 Create an alpha node us ing the cond i t i on and s e t i t as a

c h i l d o f the root node ;
7 Create a beta node ;
8 Set beta node as a c h i l d o f the new created alpha node ;
9 Pass beta node a po in t e r to the memory o f the new alpha

node ;
10 I f the re i s a former c rea ted beta node ;
11 Set new beta node as a c h i l d o f the former c reated beta

node ;
12 Pass beta node a po in t e r to the memory o f the former

c reated beta node ;
13 Else
14 Set new beta node as a c h i l d o f the former crated alpha

node ;
15 Pass beta node a po in t e r to the memory o f the former

c reated alpha node ;
16 End i f ;
17 End while ;
18 End i f ;
19 End for ;

Listing 5.3: Abstract network generation algorithm that illustrates the generation of
the improved Rete network based on the rules defined in the DRR file

beta node. After the generation of the improved Rete network, the improved rule

matching algorithm starts to monitor the working memory for an initial add of a fact

in order to pass the pointer to the corresponding alpha nodes and, thus, to match the

facts against the rules.

5.5 Evaluation

To determine the performance differences between Rete, Treat and the improved rule

matching algorithm, the algorithms were implemented in the Rule Selector module of

the driving system. For measuring the performance of the rule matching algorithms,

Miranker [97] and Nayak [98] used different metrics in their experiments. Therefore, a
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combination of the metrics was used in the evaluation of the improved rule matching

algorithm. The following metrics were used by Miranker and Nayak to evaluate the

Rete and Treat algorithms and was also used in the evaluation of the improved rule

matching algorithm:

• Counting the comparisons of the facts against the node conditions

• Counting the accesses to the node memories

• Measuring the average execution time of the algorithms

To match the facts against the driving rules, the improved rule matching algo-

rithm as well as the Rete and Treat algorithm were evaluated using the three driving

rules with their corresponding rule conditions. The initialisation of the three driving

rules resulted in different Rete networks in order to measure the performance of the

algorithms when using different rules with different conditions. The following rules

were used to initialise the rule matching algorithms during the evaluation.

1. Shift as soon as possible;

Conditions: Rpm>2500 and Gear<6

2. Do not exceed the speed limit;

Conditions: Carspeed<Speedlimit

3. Keep enough distance to the car in front;

Conditions: DistanceToCarInFront<Carspeed/2

The driving rule (1) caused a generation of a Rete like network within the rule

matching algorithms with one root node, two alpha nodes that consists the conditions

Rpm>2500 and Gear<6 and one beta node that is responsible for the checking of

the intermediate relation between the alpha nodes. The second driving rule caused

the rule matching algorithms to generate a Rete like network with only one root node

and one alpha node with the condition Carspeed<Speedlimit. The rule matching al-

gorithms generated a Rete like network for the driving rule (3) with one root node and

one alpha node that consisted of the conditionDistanceToCarInFront<Carspeed/2.

In contrast to the condition of the driving rule (2), in which the rule matching algo-

rithms has to compare the facts with each other, the rule matching algorithms have

to do additionally a calculation in right part of the condition of the driving rule (3)

which is Carspeed/2.
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The evaluation of the algorithms were done using three drivers. Each driver has

driven five journeys with a duration about 12 minutes on a driving simulator that

simulated a rural road. In order to have the same data basis for each rule matching

algorithm, car data like the engine speed, car speed, current gear, etc. was captured

during the journey. The recorded journeys were played back on every run, which

allowed the evaluation of the algorithms using the same conditions for the different

rule matching algorithms. For the evaluation, 15 runs per rule matching algorithm

were used. Thus, in total, 45 runs were made during the evaluation, in which the

comparisons of the facts against the node conditions and the accesses to the node

memories of the algorithms were counted. Furthermore, during the runs, the average

execution time of the algorithms were measured, as well. In the first 15 runs, the Rete

algorithm was evaluated. In the second 15 runs, the defined metrics were measured for

the Treat algorithm. Finally, during the last 15 runs the metrics of the improved rule

matching algorithm were measured. During all runs, the rule matching algorithms

were initialised using the driving rules (1)-(3) in order to obtain the performance of

the algorithms.

5.6 Results

The evaluation of the rule matching algorithm were done using 15 journeys, in which

the comparisons of the facts against the node conditions as well as the accesses to the

node memories were counted and the execution time was measured. The results of the

evaluation, presented in Table 5.1, showed that the improved rule matching algorithm

outperforms the Rete and Treat algorithm in the environment of the driving system.

The improved rule matching algorithm needed fewer comparisons of the facts to the

node conditions until it bound the facts to the nodes, fewer accesses to the node

memories to save the facts in the memories and took less average execution time.

Table 5.1 shows that the improved rule match algorithm needed about 210 accesses

to node memories as an average of all journeys. Thus, the improved rule matching

algorithm needed fewer accesses to the node memories than Rete or Treat. In contrast,

Treat needed in the area of the driving system about 6311 accesses to the node

memories and, thus, less accesses to the node memories than Rete. Furthermore,

the improved rule matching algorithm needed in average 3544 comparisons during

all journeys, why it needed fewer comparisons than the Rete algorithm that needed
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Improved Rete Treat Improved Rete Treat Improved Rete Treat

1 219 4331 3437 2860 4423 3462 4 11 10
2 203 8091 6945 3865 5949 4620 5 12 11
3 215 4821 3997 2960 4512 3516 5 11 11
4 317 5437 4583 3645 5357 4254 5 11 10
5 175 6873 5991 3640 5482 4314 5 12 11
6 159 11173 8515 3730 5794 4362 5 12 11
7 247 7549 7325 3695 5841 4464 4 12 10
8 207 7913 7591 3695 5813 4404 4 11 10
9 131 7981 7603 3595 5649 4248 4 12 10

10 291 6711 5467 3725 5796 4422 4 11 10
11 283 6437 5531 3835 5463 4146 4 11 10
12 191 9887 7055 3380 5362 4050 4 11 10
13 182 7148 6890 3450 5344 4110 4 12 10
14 171 7547 7059 3550 5556 4200 4 12 10
15 166 6510 6688 3540 5308 4182 4 11 9

Avg. 210.47 7227.27 6311.80 3544.33 5443.27 4183.60 4.33 11.47 10.20

Accesses to

node memories

Fact comparisons against 

node conditions

Average execution time

 (in ms)Journey

Table 5.1: The result of the algorithms in 15 journeys

about 5443 comparisons. Thus, Treat outperformed Rete in the comparisons of the

facts against the node condition, as well. Furthermore, the results showed that the

improved rule matching algorithm outperformed Treat and Rete also in the area of the

average execution time. The improved rule matching algorithm processed the facts in

average in 4 ms, which is faster than Rete and faster than Treat. Furthermore, Rete

was slower in processing the facts within its Rete network than the Treat algorithm,

as it needed about one second longer for processing the facts than Treat, which needed

about 10 seconds.

5.7 Discussion

An improved rule match algorithm was developed on the basis of the Rete algorithm.

Furthermore, it was optimised for the usage in the driving system, respectively in

environments whose data is changing frequently. This was achieved by adapting the

alpha and beta nodes. Instead of storing all facts that satisfied the node conditions

within the node memories, the alpha nodes point to the facts that are stored in the

working memory and the beta nodes are pointing to the stored logical value in the

alpha node memory. The nodes store only the logical value that indicates if the

condition of the node is satisfied. Furthermore, the improved Rete algorithm allows
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Figure 5.6: The average results of the evaluation

the definition of the rules within the DRR files, in which the terms represent the

conditions of the rule. During the generation of the improved Rete network, the

terms are used to pass the pointers to the corresponding nodes.

The aim of the evaluation was to compare the performance of the rule matching

algorithms. Therefore, the metrics used by Miranker [97] and Nayak [98] in their

evaluation were considered during the evluation. The results of the evaluation showed

that the improved rule matching algorithm outperforms Rete and Treat in the area

of the driving system. Thus, it can be assumed that pointing to the facts within the

nodes and storing a logical value is more efficient than passing the facts to the network

and storing the fact, which satisfied the node condition within the node memories.

The average results of all journeys, illustrated in Figure 5.6, show that the im-

proved rule matching algorithm needed about 97 % fewer accesses to the node mem-

ories than Rete or Treat during all 15 journeys. This is related to the logical value,

stored in the node memories, that is touched only when the result of fact comparison

differs from the stored logical value. Furthermore, the pointers to the facts allow

to update the facts without the need of deleting and adding facts within the node

memories, like Rete or Treat does. The Treat algorithm needed less comparisons

against the node conditions and less accesses to the node memories as Rete, due to

the missing beta nodes in Treat.
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Furthermore, the improved rule matching algorithm needed 35 % fewer compar-

isons against the node conditions than Rete and 15 % fewer comparisons than Treat.

This results from triggering the Rete like network in the improved rule matching al-

gorithm to compare the facts against the node conditions after all facts are updated

within the working memory. This allows to check the node conditions against the

facts once. In contrast, the Treat and Rete algorithms pass every updated fact from

the working memory to their networks for comparing the fact against the node con-

ditions. For example, when the fact Speed and Speedlimit are updated within the

working memory, the corresponding node in the improved rule matching algorithm

has to compare the condition Speed<Speedlimit once. In contrast, using Treat or

Rete, an update consists of deleting the old fact within the node memory and adding

the new fact. Thus, the facts Speed and Speedlimit are first removed from the node

memory. Then, the new facts are passed in succession to network, which first has to

check the fact Speed against the condition and then the fact Speedlimit. Thus, an

update of two facts in one condition causes in Rete and Treat two comparisons instead

of one comparison in the improved matching algorithm. As the Treat algorithm has

no beta nodes, whose node memories have to be updated on a deletion of a fact, it

needed fewer comparisons than the Rete algorithm.

The average results, shown in Figure 5.6, illustrate also that the improved rule

matching algorithm processes the facts faster than Rete and Treat. The average

execution time of the improved rule matching algorithm was 62 % faster than Rete

and 57 % faster than the Treat algorithm. Thus, passing a pointer to the facts stored

in the working memory and triggering the network to check the facts against the node

conditions need less execution time than passing the facts to the network and store

them in the alpha and beta node memories like in Rete, or storing the facts in the

alpha node memories and recomputing the intermediate relations between the alpha

nodes when needed like in Treat. According to the results, the computation of the

intermediate relations between the alpha nodes is more efficient than the recalculation

of the beta nodes, why the Treat algorithm processes the facts faster than Rete in the

area of the driving system. As the improved rule matching algorithms is adapted to

the usage in the driving system and, thus, outperforms the Rete and Treat algorithms,

it will be used in the rule selector module to find an inefficient or unsafe driving

behaviour as well as to detect a deviation from the typical driving behaviour.
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Figure 6.1: The data flow of the processing layer with the focus on the recommenda-
tions inference engine module

The driving system shows recommendations to the driver to optimise the driving

behaviour regarding the energy-efficiency and safety. However, instead of showing the

recommendation to the driver on detection of an inefficient or unsafe driving behaviour

or when a deviation from the typical driving behaviour is detected, the driving system

decides on the basis of the driver stress level and the driver reaction to already shown

recommendations whether to show a recommendation or not. This allows not to

distract the driver in stressful driving situations by showing recommendations and
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not to bother the driver with recommendations, which are not necessary in the sense

of the driver. Thus, the driving system tries to increase its acceptance by considering

the individual driving behaviour of the driver.

The decision to show a recommendation is done in the recommendations inference

engine module that is placed in the processing layer of the driving system, see Fig-

ure 6.1. First, the recommendations inference engine module gets a broken driving

rule or deviation from the broken rules queue with the corresponding driver stress

level. Furthermore, it gets the information about the driver reaction to already given

recommendations, which is placed in the driving profile. Every recommendation that

is stored in the driving profile contains information about its lag and the last shown

recommendation. The lag of a recommendation determines the interval between two

recommendations of the same type. On the basis of the gathered information from

the broken rules queue, the driver stress level, the recommendation lag and the driver

profile, the recommendations inference engine module creates a recommendation for

the broken driving rule or deviation from the typical driving behaviour and decides

on the basis of the created recommendation whether to show the recommendation.

When the recommendations inference engine module decides to show the recommen-

dation, it is passed to the graphical layer that shows the recommendation to the

driver. Furthermore, it updates the last given recommendation, stored in the driving

profile, with the newly given recommendation. To check if a recommendation should

be shown to the driver a decision tree [100] is used.

In this chapter, first, the conditions when a recommendations should be shown

to the driver are defined. Furthermore, the measurement of the driver reaction to a

shown recommendations and its influences on the defined conditions are explained in

section 6.1. This section is followed by the explanation of the decision tree on the

basis of the definition when a recommendation should be shown to the driver and the

process of the driver reaction detection. Section 6.4 explains the evaluation of the

decision tree and presents the according results. Finally, the results of the evalua-

tion as well as an alternative approach for the recommendations inference engine are

discussed.
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6.1 Definition when a recommendation should be

shown

The goal of the driving system is to improve the driving behaviour of the driver

in terms of energy-efficiency and safety by giving recommendations to the driver.

Instead of showing a recommendation directly to the driver like already existing

driving systems, the driving system creates recommendations when the driving rules,

explained in section 3.3, are broken or when a deviation from the typical driving

behaviour is detected. Based on the broken rule or deviation, the recommendations

inference engine module decides whether to show a recommendation, while considering

the driver needs as well as the condition of the driver that has effects on the driving

behaviour. The driver needs are defined as the current driving behaviour of the driver

that can be altering from the typical driving behaviour depending on the situation of

the driver. For example, the driver could drive faster than usual when the driver is

in hurry. Thus, the driving system has to react to the temporarily changed driving

behaviour of the driver by for example avoiding to show a recommendation that could

bother the driver in that situation. This can be achieved by checking if the driver

adhered a previous shown recommendation. In case the driver did not adhere the

recommendation given shortly before, the lag of the recommendation is increased.

However, only the lag of the recommendation is increased, which was not adhered

by the driver. This allows to avoid showing recommendations to the driver, which

are not interesting to the driver. The lag of a recommendation is also decreased by

the driving system in order to show recommendations again to the driver that were

not adhered in the past. The decreasing of the lag is done on the beginning of every

journey by decreasing the lag by the value that is half of the current recommendation

lag. The alteration of the recommendation lag allows the driving system not only to

consider the driver needs but also to adapt itself to the individual driving behaviour

of the driver, by considering the different characteristics in the driving behaviour of

different drivers.

Besides the driver needs and the individual driving behaviour, the driving system

considers also the driver condition, like the driver stress. The consideration of the

driver condition allows the driving system to avoid the distraction of the driver by

showing recommendations when the driver is in stress caused for example by a stress-

ful or complicated driving situation. Thus, the driver is able to focus on driving the
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B U
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Figure 6.2: Illustration of the decision process with the detection of broken rules g(b),
the broken rules set B, the decision function f(b) and the recommendations set U

vehicle without getting distracted by the driving system for example during a stress-

ful or complicated driving situation. Furthermore, the risk of being involved in an

accident in the consequence of the distraction caused by the driving system is reduced

in such situations. The consideration of the driver condition and the adaptation of

the driving system to the individual driving behaviour allows the driving system to

adapt itself to the driver, as described in the idea of the driving system in Section 3.1.

Figure 6.2 illustrates the whole decision process whether a recommendation should

be created and shown to the driver. Let the function g(b) be the detection of the

broken driving rules or deviations from the typical driving behaviour that are stored

in the broken rules queue module and let B be the broken rules set that represents the

broken rules queue. Furthermore, let the function f(b) be the function that checks

every element in the broken rules set B if it meets the conditions to show a recom-

mendation and let U be the recommendations set that consists of recommendations

that should be shown to the driver. In case function f(b) detects an element in B that

meets the conditions, which define when a recommendation should be shown, a recom-

mendation is created and put into the recommendations set U . The recommendations

set U is processed by the graphical layer in order to show the recommendations to

the driver. The recommendations that are stored in the recommendations set U can

be defined by the equation

∀u ∈ U : ∃b ∈ B | f(b) = 1 (6.1)
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where for each recommendation u in the recommendations set U exists exactly one

broken rule or deviation from the typical driving behaviour b in the broken rules set B,

whose result of the function f(b) is 1. The function f(b) checks if a recommendation

for the elements b placed the broken driving rules set B, should be given to the driver.

Equation 6.2 describes the conditions, in which the result of function f(b) is 1 and,

thus, a recommendation u is created and put it into the recommendations set U with

the purpose to show the recommendation to the driver.

f(b) = 1⇔ st < γ ∧ |ut| − |ut−1| > α ∧ |last(uθt )| > βθ∧

improved(uθt−1, u
θ
t ) = 0 ∧ predict(ut) = 0

(6.2)

Let st be the stress level of the driver at given time t and γ represents the stress

level limit. Thus, when the driver stress level reaches the stress level limit, no rec-

ommendation is shown to the driver as the result of the function f(b) is 0. In the

recommendations inference engine module the stress level limit is set to a driver stress

level that represents a high stress level. This allows to show recommendations only

when the driver is not highly stressed and is therefore able to recognise and handle

the shown recommendation. To give the driver enough time to react to a given rec-

ommendation, the time since the last recommendation was shown is calculated by

subtracting the time of the current recommendation |ut| with the time of the previ-

ous shown recommendation |ut−1|. The result is compared against α that defines the

waiting time between two recommendations and is used to determine if enough time

is passed since the last given recommendation in order to show a new recommenda-

tion. If the waiting time α has passed since the last recommendation was given, a

new recommendation can be shown.

The function last(uθt ) gathers the time since the same recommendation of the cur-

rent recommendation type was given before. The gathered time is compared against

βθ that is the lag of the recommendation uθ. The lag of the recommendation repre-

sents the waiting time between two recommendations of the same type. It is altered

by the recommendations inference engine module based on the adherence of the rec-

ommendation by the driver and is initialised using the waiting time α. This allows the

driving system to avoid showing a recommendation when the driver is not interested

in adhering the recommendation.
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The function improved(uθt−1, u
θ
t ) is 0 when the driver did not improve his driving

behaviour or when the last shown recommendation and the current processed rec-

ommendation is not of the same type. The function checks first, if the last shown

recommendation and the current processed recommendation are of the same type.

Furthermore, when the recommendations are of the same type, it checks if the driver

has improved his driving behaviour since the last shown recommendation. This allows

showing recommendations to the driver when the recommendation is still broken and

the driver did not improve his driving behaviour regarding the recommendation. In

case the driver improved the driving behaviour, the driving system gives the driver

more time in order to improve the driving behaviour further without showing the

same recommendation to the driver again. This allows to avoid the repetition of a

recommendation and, thus, to avoid bothering the driver with that recommendation.

The function predict(ut) is 0 when the driver will not improve his driving be-

haviour in future or when no predicted parameter is available for the checking the

recommendation. The function validates first, if a parameter that is predicted by

the prediction engine module is available for the recommendation, like the param-

eter engine speed, driving speed or distance to the car in front. When a predicted

parameter is available, it checks on the basis of the predicted parameter if the driving

behaviour will be improving. In case the driving behaviour is improving, no recom-

mendation is shown to the driver. Thus, the driver gets more time to improve the

driving behaviour in order to adhere the driving rule or the typical driving behaviour

without getting bothered by showing a recommendation to the driver.

The waiting time α in the equation 6.2 is defined on the basis of the time until the

driver is able to read or to hear the shown recommendation and on the basis of the time

until the driver is able to react to a shown recommendation. The average reaction time

to brake on an unexpectedly occurred traffic situation is 0.55-0.66 seconds [101, 102].

However, the brake reaction time is only valid for simple driving reactions [101].

Johansson [101] believes that the reaction time of a driver increases for complex

reactions. A complex reaction is for example steering, as the drivers have to decide

how to steer in order to avoid for example an accident. Summala [103] recommends

to reserve 3 seconds for the steering time of a driver in order to operate safely to an

unexpectedly stimulus change on the road side.
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Since the drivers have to read and react to a recommendation that occurs unex-

pectedly on the centre console of the car and, thus, have to shift their attention to

the driving system to be able to decide if the recommendation should be adhered,

the recommended steering time of Summala is used as the driver reaction time to

a given recommendation. Furthermore, the recommendation has to be processed by

the graphical user interface of the driving system. Thus, the driving system has to

show the recommendation until the driver has read the recommendation or has heard

the audio voice that reads the recommendation. As the average reader needs 164

milliseconds to process a single word during reading [104], it can be assumed that the

reading speed can be neglected by the driving system due to the short sentences used

in the recommendations, such as ”Please shift to a higher the gear”. However, the

reading speed of the audio voice has to be considered in the waiting time. The reading

speed is dependent on the language used for the recommendations as the sentences of

the recommendation are getting longer or shorter based on the used language. The

reading speed of the audio voice for the recommendation with the longest sentence

in the German language is 7 seconds. In contrast, the audio voice needs 4 seconds

for the same recommendation in the English language. Thus, the waiting time α can

be seen as 10 seconds when using the German language. Within the 10 seconds the

reaction time of the driver (3 seconds) and the reading speed of the audio voice in

German language (7 seconds) are considered.

Summarised, the function f(b) with the parameter b is 1 and, thus, the recom-

mendation u is put into the recommendations set U , when the driver is not highly

stressed, enough time has passed between the last shown recommendation and the

current recommendation as well as enough time has passed between the recommen-

dations of the same type and when the driver has not improved the driving behaviour

since the last recommendation was shown or will not improve the driving behaviour

in future.

6.2 Detecting the driver reaction to a given rec-

ommendation

The lag of a certain recommendation, which is defined by the variable βθ in equation

6.2, represents the waiting time between two recommendations of the same type, i.e.

20 seconds. The lag of a recommendation is initialised using the value of the waiting
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Figure 6.3: The process how the driver reaction to the previous shown recommenda-
tion is checked

time α and is altered by the recommendations inference engine module on the basis

of the driver reaction to a given recommendation. The altered lag is stored along

with the recommendation in the driver reaction to a given recommendation that is

placed in the driving profile of the driver. Thus, every recommendation is adapted

to the individual driving behaviour of the driver and to temporarily changes in the

driving behaviour, caused for example when the driver is in hurry. This allows not to

bother the driver with recommendations that are not interesting in the sense of the

driver or in situations when the driver is not able to adhere the recommendations.

The detection of the driver reaction is done in the function improved(uθt−1, u
θ
t ) in

equation 6.2 on the basis of the previous shown and the current processed recommen-

dation. Figure 6.3 shows the process how the driver reaction to the previous shown

recommendation is checked. After receiving the current processed and the previous

shown recommendation, the recommendations inference engine module checks if the

previous shown and the current processed recommendation have the same recommen-

dation type. If the recommendations are not of the same type, the detection of the

driver reaction is cancelled, as the recommendations inference engine assumes that

the previous shown recommendation was adhered.
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In case of a same recommendation type, the last shown recommendation is checked

if it was given shortly before. Thus, the last shown recommendation is validated if

it is in the period of the minimum and maximum waiting. The period between the

minimum and maximum waiting time is the time gap, in which a last shown rec-

ommendation is considered for the detection of the driver reaction. The minimum

waiting time is set to 15 seconds after the last shown recommendation, which is

the waiting time α in equation 6.2 and additionally 5 seconds that give the driver

additionally time to change the driving behaviour regarding the last shown recom-

mendation. In contrast, the maximum waiting time is set to 20 seconds after showing

a recommendation, which is the double of the waiting time α. The minimum and

maximum waiting time allows to give the driver enough time to show a reaction to

the given recommendation while ignoring old recommendations that are not valid at

the current driving situation. Thus, the detection of the driver reaction starts when

the minimum waiting time is passed and ends when the maximum waiting time is

reached. After the successful checking of the minimum and maximum waiting times,

the parameters that caused the past and the current breaking of the driving rule

or the deviation from the typical driving behaviour are gathered from the last and

the current recommendation. The gathered parameters are compared to check if the

driver has improved the driving behaviour after showing the last recommendation.

When the driver has improved his driving behaviour, the driving system assumes

that the driver adhered the recommendation before. If the driver did not adhere the

recommendation the ignorance counter is increased. When the driver ignored a rec-

ommendation three times, the recommendation lag is increased by 20 seconds, which

is the double of the waiting time α, and the ignorance counter is reset. In contrast,

when the driver did not ignore a recommendation three times the ignorance counter

is not increased and the recommendation lag is not increased. However, when driv-

ing system assumes that the driver did not improve the driving behaviour since the

last shown recommendation, the driving system assumes that the driver ignored the

shown recommendation.

The following example will illustrate the detection process of the driver reaction.

For example, the driver has broken the driving rule ”shift the gear” before with

the parameters engine speed = 3000 and gear = 3 and, thus, the recommendation

”Please shift to a higher the gear” was shown to the driver (remember, to break the

driving rule ”shift the gear”, the current engine speed must be greater than 2500

and current gear must be less than the maximum gear, see Section 3.3 for a detailed
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explanation). If the driving rule is still broken, the driver reaction is detected by

getting the parameters engine speed and gear of the last shown recommendation,

which are compared against the parameters engine speed = 2800 and gear = 4 that

caused the current breaking of the driving rule ”shift the gear”. In this case the

parameters changed in an positive way, as the engine speed decreased and the gear

was shifted up by the driver. Thus, an improvement is detected, which means that

the driver has adhered the recommendation. However, when the parameters did not

improve as the parameters did not change or were getting worse, for example with

the parameters engine speed = 3200 and gear = 3, it is assumed that the driver did

not adhere the recommendations why the ignorance counter for the recommendation

is increased. The driver is allowed to ignore a recommendation three times. On

the third ignorance of the recommendation, the lag of the recommendation, βθ in

equation 6.2, is increased by 20 seconds, which is the double of the waiting time α.

The increase of the lag βθ allows to adapt the presentation of a recommendation to the

individual driving behaviour of the driver and to the driver needs, as the driver may

be in hurry and, thus, temporarily not interested to get a specific recommendation

from the driving system, like the recommendation ”slow down in order not to exceed

the speed limit”. After altering the lag of the repeatedly ignored recommendation,

the ignorance counter of the recommendation is reset to the initial value of zero.

Thus, the driver has again the opportunity to ignore the recommendation three times

until the lag of the recommendation is increased again. The ignorance counter allows

the driving system to consider driving situations in which the driver is not able

to adhere the shown recommendation. Thus, instead of increasing the lag of the

recommendation, the ignorance counter is increased to allow the driver the adherence

of the recommendation after the driving situation that hindered the driver to adhere

the recommendation.

6.3 Decision tree

To consider the conditions when a recommendation should be shown to the driver

(see Section 6.1) and the conditions used to detect the driver reaction to already

shown recommendations (see Section 6.2), a decision tree [100] is used in the recom-

mendations inference engine module to decide whether to show a recommendation

to the driver. The decision tree allows to do the decision whether to show a rec-

ommendation. Furthermore, it allows to combine the conditions of recommendation
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decision and the detection of the driver reaction, while considering the order of the

different conditions. However, the decision tree is not automatically generated using

for example the C4.5 or the ID3 algorithms [100], as the conditions as well as their

order are already defined and there is no training data available to train the decision

tree. Instead, the conditions that define when a recommendations should be shown

and the conditions of the driver reaction detection are used to create a static decision

tree that decides whether a recommendation should be shown to the driver.

Figure 6.4 illustrates the created decision tree. The root and the leafs of the

decision tree were arranged in the order that allows a short decision making process

and avoids an unnecessary checking of the leafs. For example, it is not necessary to

detect the driver reaction or to check the driver stress level when the waiting time α

is not passed. The root of the decision tree is the condition ”is enough time passed

between the last shown and current recommendation”, as the decision tree needs not

to check any condition further when the waiting time α is not passed and, thus, the

driver was not able to read and to show a reaction to the recommendation, why

the current recommendation is suppressed by the recommendations inference engine

module. On the other side, when the recommendation passed the waiting time α, the

decision tree checks the driver reaction to the last shown recommendation next.

To check the driver reaction, the decision tree first validates if the current rec-

ommendation is from the same type as the last shown recommendation. The rec-

ommendations inference engine assumes that the driver adhered the previous shown

recommendation when the last shown recommendation is not of the same type of the

current processed recommendation. In this case the decision tree goes on to check

if there is a predicted parameter for the recommendation available. However, if the

last shown recommendation is of the same type as the current recommendation, it

is checked if the driver had enough time to show a reaction to the last shown rec-

ommendation. Therefore, the time when the current recommendation was generated

is compared with the time of the last shown recommendation. According to the

detection process of the driver reaction in Section 6.2, it is validated that the recom-

mendation is between the minimum and maximum waiting time that define the time

slot when the recommendations inference engine detects a driver reaction. In case,

the maximum time has been exceeded or the minimum waiting time is not reached

by the current recommendation, the detection of the driver reaction will be skipped

as the driving situation for which the last recommendation was shown is not valid for

the current processed recommendation or the driver had not enough time to show a
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Figure 6.4: The decision tree that is used in the recommendations inference engine
to check the adherence of the last shown recommendation and to decide whether to
show a recommendation

reaction to the last shown recommendation. However, when the maximum time was

not exceeded and the minimum time was reached, then the driving behaviour of the

driver is inspected to find improvements since the last shown recommendation was

given. Thereby, the parameter of the last shown recommendation, which caused the

breaking of the driving rule or deviation from the typical driving behaviour, is checked

for improvements. When an improvement is detected, the decision tree decides to sup-
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press the current processed recommendation in order to check if the broken driving

rule or deviation from the typical driving behaviour still exists in the next cycle of the

driving system. Furthermore, this avoids bothering the driver with recommendations

when the driving behaviour is already improving.

When no improvement is detected, the decision tree carries on to check if the

driver will improve the driving behaviour in future. To be able to check the future

improvement of the driving behaviour, the decision tree validates if a predicted pa-

rameter, like the predicted engine speed, is available for the recommendation. In case,

a predicted parameter is available, it is compared against the parameter that caused

the current processed recommendation. When a positive trend is detected, which

means that the predicted value improves the driving behaviour regarding the cause

of the current recommendation, the current recommendation is suppressed in order

not to bother the driver by showing recommendations when the driver will improve

the driving behaviour anyway. In contrast, if no predicted parameter is available or

no improvement is detected for the future, the decision tree continues to check if the

driver has an high stress level. When a high stress level is detected no recommen-

dation is shown to the driver. This allows not to distract or to bother the driver by

showing recommendation in stressful driving situations, as the driver should set his

focus on driving and, thus, on solving the stressful driving situation. However, when

the driver is not stressed the decision tree finally validates if the recommendation

passed its lag. The lag of a recommendations defines when a recommendation of the

same time should be shown again to the driver. To check whether the recommen-

dation has passed its lag, the period since the current processed recommendation is

calculated on the basis of the time when the recommendation was shown the last time

and the time when the current recommendation was created. When the calculated

period is greater than the lag of that recommendation type, the recommendation is

shown to the driver. In contrast, the recommendation is suppressed when the lag

is not reached from the current processed recommendation. This allows the adapta-

tion of the driving system to the individual driving behaviour by adjusting lag of a

recommendation based on the driver reaction to already given recommendations.
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6.4 Evaluation and results

An evaluation of the decision tree was done in order to check if the decision tree is

working according to the definition when a recommendation should be shown to the

driver (see Section 6.1) and if the decision tree is able to recognise the driver reaction

to already given recommendations (see Section 6.2). Therefore, the decision tree was

implemented in the recommendations inference engine module of the driving system.

To check if the decision tree is working according to the definitions in the sections 6.1

and 6.2, the following events were measured during the evaluation:

• Change of the recommendation lag

• Checking of the driver reaction

• Shown recommendation

• Suppressed recommendation due to high driver stress level

• Suppressed recommendation due to predicted improvement

The evaluation of the driving system was done using a driving simulator. The

evaluation consisted of one journey of about 5 minutes on a rural road that had a

speed limit of 50 km/h. During the journey, the events of the driving system were

measured that allows to evaluate the decision tree. Furthermore, the driving rule

”do not exceed the speed limit” with the condition carspeed < speedlimit was used

during the journey. The test driver that attended in the evaluation was briefed to

exceed the speed limit significantly during the first half of the journey. This allowed

to test the driver reaction detection and, thus, the variation of the recommendation

lag as well as the suppressing of the recommendations due to a high driver stress

level or a predicted improvement of the driving behaviour. In the second half of the

journey, the driver was instructed to drive at the speed limit of about 50 km/h in

order to test the reaction of the decision tree when the driver is driving at the speed

limit and, thus, is not breaking the driving rule all the time.
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Figure 6.5: The result of the evaluation of the decision tree

Figure 6.5 shows the result of the journey, in which the detected events of the

driving system as well as the driving speed and the predicted driving speed are shown.

In the first part of the journey, in which the driver was instructed to drive significantly

faster than the speed limit, the lag of the recommendation was at its initial value.

The green line in Figure 6.5 shows the progress of the lag, whereas the grey line

on the top shows the local lag for each recommendation. Figure 6.5 shows only

the increased value of a lag, why the initial value of the lag is at zero. When the

driving speed (cyan line) exceeded the speed limit (black line), the driving system

showed a recommendation (blue dashed line) for the first time. As the speed limit

was still exceeded, the second recommendation was shown after the waiting time α.

Furthermore, the driver reaction to the already shown recommendation was measured

(red dotted line) and the ignorance counter was increased the first time, as there was

no improvement of the driving behaviour detected. After the third recommendation

was shown, the lag of the recommendation was increased by 20 seconds, as the driver

did not adhere the recommendation a third time. However, no recommendation was

shown when the lag was increased, as the driving system predicted an improvement of
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the driving behaviour (green dotted line). At the moment, when the no improvement

was predicted, the driving system showed again a recommendation to the driver. After

the increase of the lag, the driving system waited to show a recommendation until the

lag of the recommendation was past since the last shown recommendation, see grey

line at the top of a recommendation. After showing the fourth recommendation, the

driver reaction detection increased the ignorance counter as the driver did not adhere

the recommendation.

During the second part of the journey, in which the driver was briefed to drive

at the speed limit of 50 km/h, the ignorance counter was not increased during the

detections of the driver reaction, as the driver reduced the driving speed since the time

when the driving rule was broken. Thus, the driving system assumed that the driver

adhered the recommendation, why the lag was not increased for the rest of the journey.

After the seventh shown recommendation, the stress level of the driver increased to

a high stress level, why the driving system did not show a recommendation to the

driver during this phase. Furthermore, the driving system predicted an improvement

of the driving behaviour that leaded also to a suppressing of the recommendation.

After showing the eight recommendation, the driver reaction was not detected, as the

driver did not exceed the speed limit. Thus, the driving system assumed that the

driver adhered the shown recommendation, as the driving rule was not broken by the

driver.

6.5 Discussion

A definition when a recommendation should be shown to the driver was created.

Furthermore, it was defined how the detection of the driver reaction to a already

shown recommendation should be done. On the basis of the definitions a decision

tree was developed that decides whether to show a recommendation to the driver and

detects the driver reaction to an already shown recommendation. The decision tree

shows a recommendation to the driver when the driver is not in stress, enough time

is passed between two recommendations as well as enough time is passed between

two recommendations of the same type and when no improvement of the driving

behaviour is detected or predicted.
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The aim of the decision tree evaluation was to check if the developed decision

tree shows or suppresses recommendations and if the recommendation lag is altered

according to the definition when a recommendation should be shown and the definition

of the driver reaction detection to an already shown recommendation. Therefore,

the events of the driving system like recommendation shown or suppressed and the

alteration of the recommendation lag are captured. The results of the evaluation

showed that the decision tree showed and suppressed recommendations as well as

altered the recommendation lag according to the created definitions.

According to the captured events, the driving system showed three recommenda-

tions at the beginning of the journey without suppressing a recommendation. As the

driver exceeded the speed limit in the whole first part of the journey, each recommen-

dation was shown after the initial waiting time, as the lag of the recommendation was

at its initial state. When the driver ignored the recommendation the third time, the

decision tree increased the lag of the recommendation. Thus, the recommendations

were shown less frequently to the driver. Furthermore, the decision tree suppressed

recommendations when an improvement of the driving behaviour was predicted and

when the driver stress level was high.

However, besides a decision tree a state machine [105] can also be used to do the

decision whether to show a recommendation and the alteration of the recommenda-

tion lag on the basis of the driver reaction to already shown recommendations. For

example, when using state machines, every recommendation represents a state. The

lag of a recommendation can be altered by using the transition between the recom-

mendations. When a recommendation is ignored by the driver and, thus, the state is

transited to itself, the lag of that recommendation is decreased. When transiting to

another state, the lag of a recommendation stays the same. Furthermore, the driver

stress level can also be considered for example by checking the stress level of the driver

within the recommendation state or by using another state machine, in which every

state represents different stress levels. The transition between the states of the stress

level can be used to alter the lag of the recommendation on the basis of the stress

level. Thus, a recommendation can be suppressed by a state machine on the basis

of the stress level, when the state machine of the stress level is used in combination

with the recommendation state machine.
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However, as the driving system is functional, a state machine does not fit in the

process of the driving system, why a decision tree was chosen to do the decision

whether to show a recommendation to the driver. Furthermore, the state machine

requires to define a state for every recommendation used in the driving system. More-

over, when adding a new parameter, for example the distraction level of the driver, to

the decision process whether to show a recommendation, a new state machine has to

be created and considered. Thus, the costs of adding new parameters are high when

using a state machine. In contrast, when using a decision tree a new parameter is

put to the decision process by adding another leaf to the tree.
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Figure 7.1: The architecture of the driving system that is used as the basis for the
prototype

On the basis of the findings in the previous chapters, a prototype of the adaptive

and rule based driving system was implemented. The developed prototype was the

basis for the evaluation of the driving system, explained in Chapter 8. The archi-

tecture of the prototype is based on the general architecture of the driving system

that is shown in Figure 7.1. The architecture of the developed prototype is briefly

explained in the following section, as the general architecture was already described

in Section 3.5. In Section 7.2, the implementation of the modules and the process

of the data layer are described. Furthermore, the processing layer as well as the im-

plementation of its modules in the prototype are explained in Section 7.3. Finally,

the implementation of the graphical layer that represents the interface to the driver

is shown in Section 7.4. Additionally, the representation of the recommendations to

the driver is explained, as the output of the recommendations is also done in the

graphical layer.
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7.1 Architecture

For the development of the driving system prototype, the general architecture of

the driving system, shown in Figure 7.1, was used. Thus, the prototype consists of

the data, processing and the graphical layer, which are used in the general driving

system architecture to gather and to prepare the data, to decide whether to show a

recommendation and to interact with the driver. Figure 7.2 shows the implementation

of the architecture and its modules in detail.

The data layer, whose implementation details are described in the following sec-

tion, consists of the modules interface, profile update, data aggregation and the infor-

mation module that consists of the short, mid- and long-term knowledge base. The

interface module of the data layer gathers needed information from the car, the en-

vironment and the driver and provides that information to the data aggregation and

profile update module. The data aggregation module aggregates the incoming data

and stores the aggregated data in the working memory that is placed in the short-term

knowledge base. The working memory stores also information that is gathered from

the interface module. The profile update module updates the driver profile, which is

placed in the mid-term knowledge base, on the basis of the information provided by

the interface and the data aggregation module.

The processing layer consists of the prediction engine, rule selector and the rec-

ommendations inference engine module. Furthermore, the logic behind the graphical

user interface is also placed in the processing layer. The GUI logic module allows

the interaction between the driving system and the driver by allowing to choose the

driving profile and the area of improvement, for example safety, energy-efficiency or

both. The processing layer starts to predict the car state in the prediction engine

module on the basis of the information stored in the working memory that is placed

in the short-term knowledge base of the data layer. The predicted information is

passed along with the information stored in the working memory to the rule selector

module. On the basis of the information provided by the prediction engine module

and the driving profile of the driver, the driving behaviour is checked to find broken

driving rules or deviations from the typical driving behaviour. On detection of broken

driving rules or deviations, the recommendations inference engine decides whether to

show a recommendation. Therefore, it considers the individual driving behaviour of
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the driver as well as the driver stress level. When a recommendation should be shown

to the driver, it is passed to the graphical layer. Section 7.2 explains realisation of

the processing layer in the prototype of the driving system.

The graphical layer is responsible for the interaction between the driving system

and the driver. Therefore, it shows a graphical user interface to the driver that pro-

vides the opportunity to choose the driving profile or the area of improvement, such as

safety, energy-efficiency or both. Furthermore, the graphical layer shows recommen-

dations to the driver when the processing layer decides that a recommendation should

be given to the driver. The graphical layer renders the recommendations for example

on the graphical user interface using text or by using an audio voice. The develop-

ment of the graphical layer within the prototype of the driving system is described in

Section 7.4 in detail.

7.2 Data layer

The data layer is responsible for gathering and preparing the information from the

car, the driver and the environment. Furthermore, the gathered and prepared in-

formation are provided to the processing layer that analyses the driving behaviour

and decides whether to show a recommendation. In the first step, the data layer

gathers information from the car, the driver and the environment using the interface

module. It implements interfaces to the car and the environment as well as to the

driver. The interface module supports the well-established serial-bus systems in the

automotive area to obtain information about the car, i.e. speed or distance to the car

in front, and the environment. The environmental sensors, like the rain or weather

sensor, are also attached to the in-vehicle serial-bus systems [57]. The support of the

well-established serial-bus systems CAN, LIN, MOST or FlexRay allows the driving

system to be used in different cars. A detailed description of the serial-bus systems

and available environmental sensors can be found in Section 3.6.1 and 3.6.2. If addi-

tional car interfaces are needed in the driving system, the interface module provides

a car interface class that can be extended by the needed car interface. Furthermore,

as the driving system needs information about the driver stress level, the interface

module provides an interface to a vital sensor that allows to measure the driver stress

level on the basis of the heart rate variability. Section 3.6.3 explains the stress level

detection on the basis of the heart rate variability. If more sensors are needed to
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Figure 7.3: The fuzzy sets of the acceleration (1) and the manner of driving (2) used
in the prototype for fuzzification

obtain additional vital information from the driver, the interface module provides a

driver interface class that allows to attach more sensors to the driving system. The

implemented interfaces gather new information from the in-vehicle serial-bus systems

and from the vital sensor, which is connected to the driver, and passes the obtained

information to the information updater class.

The information updater is responsible for collecting the information provided by

the interface module and distributing the obtained information simultaneously to the

data aggregation and profile update module. Additionally, it stores the incoming

information from the interface module within the working memory, that is placed in

the short-term knowledge base. This allows to synchronise the information that is

received from the interface module, as the interface module receives information from

the car and driver interface asynchronously.
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The data aggregation module of the data layer aggregates the information that is

passed by the information updater. For the aggregation of the information the data

aggregation module uses fuzzy logic, that is described in Section 3.7 in detail. In

the prototype of the driving system the manner of driving as well as the acceleration

force information are aggregated. Thus, fuzzy sets and fuzzy rules were created that

allows the aggregation of these information. Figure 7.3 shows the fuzzy set of the

acceleration (1) and the manner of driving (2). On the basis of the defined fuzzy sets,

the fuzzificator fuzzyfies the information of the engine speed and the acceleration

force that is gathered from the in-vehicle serial-bus system.

Accelerationforce (1 )
RULE 0 : IF a c c e l e r a t i o n F o r c e IS h i g h P o s i t i v e THEN

a c c e l e r a t i o n IS h i g h P o s i t i v e ;
RULE 1 : IF a c c e l e r a t i o n F o r c e IS mediumPositive THEN

a c c e l e r a t i o n IS mediumPositive ;
RULE 2 : IF a c c e l e r a t i o n F o r c e IS l owPos i t i v e THEN

a c c e l e r a t i o n IS l owPos i t i v e ;
RULE 3 : IF a c c e l e r a t i o n F o r c e IS noAcce l e ra t i on THEN

a c c e l e r a t i o n IS noAcce l e ra t i on ;
RULE 4 : IF a c c e l e r a t i o n F o r c e IS lowNegative THEN

a c c e l e r a t i o n IS lowNegative ;
RULE 5 : IF a c c e l e r a t i o n F o r c e IS mediumNegative THEN

a c c e l e r a t i o n IS mediumNegative ;
RULE 6 : IF a c c e l e r a t i o n F o r c e IS highNegat ive THEN

a c c e l e r a t i o n IS highNegat ive ;

Manner of driving (2 )
RULE 0 : IF rpm IS veryHigh THEN mannerOfDriving IS veryHigh ;
RULE 1 : IF rpm IS high THEN mannerOfDriving IS high ;
RULE 2 : IF rpm IS normal THEN mannerOfDriving IS normal ;
RULE 3 : IF rpm IS low THEN mannerOfDriving IS low ;
RULE 4 : IF rpm IS veryLow THEN mannerOfDriving IS veryLow ;

Listing 7.1: Fuzzy rules that are applied on the fuzzified acceleration force (1) and
engine speed (2)

Listing 7.1 shows the fuzzy rules that are applied in the decision maker on the

fuzzified information from the engine speed and the acceleration force. Using the

fuzzy rules and the fuzzified information, the decision maker determines the grade

of membership of the rule consequences. To be able to use the fuzzified information

for further processing, the defuzzificator defuzzifies the grade of membership of the

consequence into a crisp value. The result of the defuzzification is the crisp value
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that represents the manner of driving and the acceleration force that was calculated

on the basis of the fuzzified information. After the defuzzification, the crisp values

are stored in the working memory and are passed to the profile update module for

further processing.

The profile update module is responsible for updating the driving profile that

represents the typical driving behaviour of the driver. Therefore, the profile update

module gets information about the current driving behaviour of the driver from the

information updater class and the data aggregation module. The current driving

behaviour of the driver is used to update the typical driving behaviour, as the typ-

ical driving behaviour of the driver is varying for example due to improvements of

the driving behaviour. The update of the driving profile is done by processing the

gathered information with the simple exponential smoothing technique, explained in

Section 3.8. The simple exponential smoothing technique is applied to each infor-

mation stored in the driving profile, like the manner of driving or the driving speed.

After updating the driving profile with the collected and aggregated information, the

driving behaviour stored in the driving profile is able to represent the typical driving

behaviour of the driver until the current measurement.

The short-term knowledge base of the data layer contains, after the collection

and aggregation of the information, the data that is able to represent the current

driving situation. Furthermore, the mid-term knowledge base is able to represent

the typical driving behaviour of the driver that considers the changes of the typical

driving behaviour until the current measurement. The car facts and the driving rules

are stored in the long-term knowledge base. However, the long-term knowledge base

is not updated during the journey. Instead, the car facts and the driving rules are

loaded into the long-term knowledge base at the start of the driving system using

the in-vehicle serial-bus systems and the DRR files. Finally, when the knowledge

bases of the data layer were updated with the current information, which represent

the current driving situation, they can be used by the processing layer to start the

decision process of whether to show a recommendation to the driver.

However, to make the information in the mid- and long-term knowledge base

available for the next journeys, a database is used to store the collected information.

At the beginning of a journey the information that is stored in the database is loaded

into the mid- and long-term knowledge base, whereas the driving profile is loaded

into the mid-term knowledge base when the database contains a driving profile of the

117



CHAPTER 7. PROTOTYPE

Journey 
Data

Driver 
Profile

Journey
Recommen-

dation

Value 
Type

Type

Recommen-
dation Type

Recommen-
dation Value

Consequence 
Type

1

n

1

n

n
1

n
1

n

n
1

1
n

1
n

1

Figure 7.4: The structure of the database that is used to store the driving profile and
the consequences of the driving rules

driver. In contrast, when there is no driving profile the data layer generates a new

driving profile for the driver. The driving profile that is altered during the journey is

stored in the database at the end of every journey in order to reuse the altered driving

profile in the next journey. The long-term knowledge base loads the information

about the driving rule consequences from the database at the beginning of every

journey. The driving rule consequences stored in the database contain information

about the recommendation text that should be shown and the audio file that contains

the recommendation.

A SQLite database1 is used in the driving system to store the information of the

driving profile and the driving rules, as it is an serverless, local and transactional

database engine. Thus, the SQLite database does not need additional resources or

need to be maintained. Figure 7.4 shows the database structure that is used to store

the driving profile and the driving rules. The basis of the database structure is the

table driver profile that is created for every driver and contains the name of the

1More information about the SQLite database can be found on http://www.sqlite.org
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driver as well as the area of improvement. Each driver profile is associated with one

or more journeys and recommendations. The table journey stores information about

the time when the journey was started. During the journey one or more information

can be stored in the table journey data that represents the typical driving behaviour

of the driver. The table journey data contains information about the typical driving

behaviour during every journey of a driver. The stored information has different

categories that are defined in the table value type, such as the average speed during

the speed limit of 70 km/h. This allows capturing the typical driving behaviour in

different driving situations and, thus, to represent the typical driving behaviour in

the driving system more accurate. The different value types are again categorised in

the table type using a generic term. For example, the average speed during the speed

limit of 70 km/h and 100 km/h are categorised with the type average speed, as they

are describing the typical driving speed of the driver.

The table recommendation represents the driver reaction to a shown recommen-

dation. It stores the recommendation lag as well as the ignorance counter and the

time when a recommendation was shown the last time. For each recommendation

stored in the recommendation table, the information that caused the showing of

the recommendation is stored in the table recommendation value. The type of the

recommendation that is stored in the recommendation table is defined in the table

recommendation type. It contains the different types of the recommendations, such as

do not exceed the speed limit. Furthermore, the information about the consequences

of the recommendations are stored in the consequence type table, such as playing an

audio file or showing a text. This allows to define different ways of transporting the

recommendations to the driver, i.e. using text and an audio file.

7.3 Processing layer

The processing layer consists of the prediction engine, rule selector, recommendations

inference engine and the GUI logic module. On the basis of the modules, the pro-

cessing layer decides whether to show a recommendation to the driver and allows the

driver to create a new and modify an existing driving profile. The modification of the

driving profile is located within the GUI logic module that consists of the logic behind

the graphical user interface. It allows the driver to create and to choose a driving

profile by using the userprofile selector. Furthermore, the targetprofile selector allows
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the driver to choose the area of improvement, like the area of safety, energy-efficiency

or both areas. According to the selection of the driver, the driving system will show

only recommendations that are related to the chosen area of improvement.

In the first step of the processing layer, the prediction engine module gathers the

information from the current driving situation that is stored in the working data of

the short-term knowledge base. On the basis of the gathered information the predic-

tion engine module predicts the car state that is described by the engine speed, car

speed and the distance to the car in front. As explained in Chapter 4, the autore-

gressive moving-average algorithm is used to predict the car state. The prediction

engine module passes the predicted car state with the gathered information from the

working memory to the rule selector module for checking if the driver has broken a

driving rule or if there is a deviation of the current driving behaviour from the typical

driving behaviour. For detecting a broken rule or a deviation from the typical driving

behaviour, the rule selector module consists of an internal working memory and the

improved rule matching algorithm, explained in Section 5.4. During the initialisa-

tion phase of the driving system, the internal working memory gathers the typical

driving behaviour of the driver from the driving profile. Furthermore, the improved

rule matching algorithm is initialised. In case no driving profile is available in the

mid-term knowledge base of the data layer, as it may be the first usage of the driving

system, the deviation from the typical driving behaviour is not detected by the rule

selector module. The internal working memory stores the information of the current

driving situation as well as the predicted car state and the state of the typical driving

behaviour. Furthermore, it is the basis for the detection of a broken driving rule or

deviation from the typical driving behaviour. When the internal working memory

was updated, the improved rule matching algorithm checks the current driving situ-

ation against the driving rules and car facts of the long-term knowledge base to find

broken driving rules. Furthermore, the improved rule matching algorithm compares

the typical driving behaviour that is stored in the internal working memory against

the current driving behaviour in order to find a deviation from the typical driving

behaviour. The process of the improved rule matching algorithm is described in Sec-

tion 5.4 in detail. When a broken driving rule or a deviation from the typical driving

behaviour is detected, the broken driving rule or the deviation is put into the broken

rules queue of the recommendations inference engine. Besides the broken rule or de-

viation, the information that caused the breaking or deviation as well as the driver

stress level are also passed to the broken rules queue.
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1 #rule
2 ”ecoRPM”
3 #when
4 Rpm > 2500 & Gear < 6 & a c c e l e r a t o r P r e s s e d = 1
5 #then
6 Shi f tGear
7 #end
8
9 #rule

10 ” typica lDriv ingManner ”
11 #when
12 AverageMannerOfDriving > TypicalAverageMannerOfDriving
13 #then
14 BadAverageMannerOfDriving
15 #end
16
17 #rule
18 ” speedLimit ”
19 #when
20 Carspeed > Speed l imi t & Speed l imi t > 0
21 #then
22 Speedl imitExceeded
23 #end

Listing 7.2: An excerpt of the driving rules that are defined in the DRR files for the
usage in the driving system

In the prototype of the driving system rules were defined to check the typical driv-

ing behaviour of the driver as well as the driving rules for energy-efficiency and safety.

Listing 7.2 shows an excerpt of the energy-efficiency and safety relevant driving rules

that are described in the DRR files. The first rule ecoRPM is an energy-efficiency rel-

evant driving rule. The consequence of the rule is to show the recommendation to shift

the gear when the driver is accelerating, the engine speed is above 2500 revolutions

per minute and the driver did not reach the maximum gear. Further energy-efficiency

relevant rules, which are part of the energy-efficiency driving rules described in Sec-

tion 3.3, are defined in the DRR file. The second rule typicalMannerOfDriving

is related to the deviation of the current driving behaviour from the typical driving

behaviour. A deviation from the typical manner of driving is recognised when the

current manner of driving is getting worse. Thus, the driving system will show a rec-

ommendation that tells the driver to decrease the engine speed while driving. Besides

this rule, further rules to detect a deviation from the typical driving behaviour are

also defined in the DRR file. The last recommendation speedLimit has the conse-
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quence that recommends the driver to slow down as the driver exceeded the speed

limit. However, if there is no speed limit, like on German highways, the consequence

of the driving rule should not be fired. Besides this safety relevant rule, further rules

are defined in the DRR file that cover the different aspects of the safety relevant

driving rules described in Section 3.3.

The recommendations inference engine consists of the broken rules queue and the

decision tree that is explained in Section 6.3. The broken rules queue contains the

broken rules and deviations that were detected by the rule selector modules. The

decision tree process the broken rules or deviations stored in the broken rules queue

according to the first in, first out principle. For each broken rule or deviation from

the typical driving behaviour a recommendation is created. On the basis of the

driver stress level gathered from the broken rules queue and the driver reaction to

already shown recommendations, which is stored in the driver profile, the decision tree

decides whether to show or to suppress the created recommendation. The decision

is done according to the definition when a recommendation should be shown, see

Section 6.1. Furthermore, the decision tree detects the driver reaction to the last

shown recommendation and modifies the lag of the recommendation according to the

results of the driver reaction detection. The modified recommendation lag is stored

in the driver profile. When the decision tree decides to show a recommendation, it is

passed to the graphical layer with the purpose to show the recommendation to the

driver. Additionally, the time when the recommendation is shown is stored in the

driver profile.

7.4 Graphical layer

The graphical layer is responsible for the presentation of the recommendations and

other messages to the driver. Therefore, it provides an information and a recommen-

dation generator. The information generator is used to show messages to the driver

that are not recommendations, like the current fuel usage or information about the

current speed limit. In contrast, the recommendation generator is used to present

recommendations to the driver. It allows the rendering of the recommendation on

the graphical user interface (GUI) and the presentation of the recommendation using

an audio voice. This allows to present the driver the recommendations without dis-

tracting the driver during the journey. When an additional message type is needed,
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Figure 7.5: The graphical user interface of the prototype

the message generator can be used as a basis for a new type of a message genera-

tor that is able to display the needed message type on the GUI. The graphical user

interface allows the interaction of the driver with the driving system using a touch

screen. The interaction of the driver with the graphical user interface is processed

by the input processor that is connected to the GUI logic module of the processing

layer.

Figure 7.5 shows the graphical user interface of the driving system. The driver

has the opportunity to choose and to create a new driving profile on the top left of

the graphical user interface. During the creation of the driving profile, the driver has

the opportunity to choose the area of improvement, such as safety, energy-efficiency

or both. After creating a driving profile the driving system can be started to monitor

the driving behaviour using the start/stop button on the top right. When the driving

system is stopped, the button is coloured green, whereas the button colour turns to

red when the driving system is running. However, the driving system can only be

started by the driver when there is a connection to the in-vehicle serial-bus system and
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when the database of the driving system is initialised. The status of the connection to

the in-car serial-bus system and the initialisation status of the database is indicated

on the left side of the status bar that is placed at the bottom of the graphical user

interface. On the right side of the status bar is the usage time of the driving system.

The main area, in which the recommendations and information of the driving system

are shown, has a black background colour. On the upper part of the black area are

the recommendations that are shown to the driver. The recommendations are shown

to the driver in three stages. The current recommendation is shown is shown on

the top with a large and white font. Besides the textual rendering of the current

recommendation, the recommendations are presented to the driver also by using an

audio voice. This allows presenting the recommendations without distracting the

driver by forcing the driver to read the recommendation from the graphical user

interface. Furthermore, the presentation of the recommendation using an audio voice

allows the driver to avoid the missing of a recommendation. After five seconds, the

recommendation is passed to the second stage that is placed in the middle. The

second stage shows the past recommendation with a medium sized and grey font.

Finally, the recommendation of the second stage is transferred to the third stage that

shows the recommendation that was important ten seconds ago. Beneath the area, in

which the recommendations are shown, is the current and optimal fuel usage shown

to the driver. The current fuel usage shows how much fuel is burnt per 100 km by

the car with the current driving behaviour of the driver. The optimal fuel usage per

100 km is also shown to the driver in order to set incentives to the driver to adhere

the recommendations shown by the driving system.
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Evaluation

The goal of the evaluation was the examination of the research questions, which were

defined in Section 1.2. For the evaluation, the created prototype of the adaptive and

rule-based driving system and a driving simulator, which is explained in Section 8.1,

was used. In order to get the needed information from the car, the driver and the

environment, the prototype was connected to the driving simulator and adapted to

the interfaces and the sensor information provided by the driving simulator. The

connection of the prototype is described in Section 8.1. The hypotheses that were

used in the evaluation are explained in Section 8.2. Furthermore, in this section,

the experimental set-up, which was used to evaluate the defined hypotheses, is also

explained. Finally, the evaluation plans for testing the hypotheses are described in

detail in Section 8.2.1 and 8.2.2

8.1 Driving simulator

The driving simulator, shown in Figure 8.1, is used to evaluate the driving system.

It consists of three displays that are placed in front of a driving seat for visualising

the environment. Furthermore, to allow the most possible immersion, five speakers

surround the driving seat that allow to simulate the environment of the driver using

audio. The driver has the opportunity to control the virtual car using a steering

wheel and a gear knob as well as the accelerator, the brake and the clutch pedal.

Furthermore, the heartbeat and the brain activity of the driver can be monitored

using an ear sensor and a electroencephalogram (EEG). The dashboard is placed

behind the steering wheel and provides information about the driving speed, fuel level
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Figure 8.1: The driving simulator that is used in the evaluation

and the engine speed to the driver. A touchscreen on the right side of the steering

wheel represents the centre console of the car, in which for example the interaction of

the driver with a driving system can be realised. During the evaluation, the prototype

of the driving system will run on the touchscreen and, thus, the recommendations of

the driving system will be presented to the driver using the touchscreen.

Besides the in- and output interfaces to the driver, the driving simulator con-

sists of three computers: that are responsible for the simulation of the car and the

environment, the collection of the vehicle and driver data and the presentation of

the developed applications to the driver on the touchscreen. Figure 8.2 shows the

components of the driving simulator and the communication structure between the

computers and their tasks within the driving simulator. The input devices of the car,

like the steering wheel, the pedals and the gear knob as well as the output devices, like

the three screens and the five speakers, are connected to the simulation computer.

The simulation computer runs the driving simulation software OpenDS1 that gets

the driving instructions of the driver and starts to calculate the car physics and to

visualise the car and the environment on the basis of the gathered instructions. The

visualisation of the car and the environment is done using the connected displays and

1OpenDS is an open source driving simulation originally developed by the German Research
Center for Artificial Intelligence (DFKI GmbH). More information about OpenDS can be found on
www.opends.de
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speakers. During the calculation of the car physics, the simulation computer updates

also the information presented on the dashboard and sends the updated information

to the data collector computer using a tcp/ip connection between the computers.

Additionally, the driving simulation allows the steering of the virtual car using the

information received from the tcp/ip connection. The ear sensor that monitors the

heartbeat of the driver is connected to the emWave2 software in the simulation com-

puter. The software receives the heartbeat information of the driver and calculates

the heart rate variability. On the basis of the heart rate variability, the software

classifies the stress level of the driver in low, medium and high stress.

The data collector computer contains a simulation of the remaining bus and a

data logger application that receives the information provided by the applications

OpenDS and emWave and the EEG sensor. Besides the receiving of the information,

the data logger application allows also to send information from the simulation of

the remaining bus to the simulation computer, for example to steer the vehicle. The

main task of the data logger is to collect and to log the data from the connected

applications and sensors. The data logger additionally passes the collected informa-

tion to the simulation of the remaining bus. The communication between the data

logger and the remaining bus simulation is done using the Component Object Model

(COM) interface. Therefore, the data logger provides a COM-client that connects to

the COM-server of the remaining bus simulation that allows the COM-client to put

or to get information from the control units of the remaining bus simulation. The

software CANoe3 is used to simulate the remaining bus. It allows the simulation of

the well-established serial-bus system CAN, MOST, LIN or FlexRay. The serial-bus

system CAN is used in the driving simulator to represent the serial-bus system of the

virtual car. Table 8.1 shows the data of the available virtual control units that ia

represented by the information provided by the driving simulation, the EEG and the

calculation of the driver stress. When receiving for example the information about

the simulated engine speed from the OpenDS, the data logger puts the information

into the corresponding control unit, which would be the engine control unit in this

case. The newly received information from the data logger is provided by the control

units within the serial-bus system CAN to other control units. The remaining bus

2emWave is a software of the company HeartMath Inc. that calculates the heart rate variability
and the stress level. More information about emWave can be found on www.heartmath.com/emwave-
technology

3CANoe is a software of Vector GmbH that allows the simulation of the remaining bus, like CAN,
MOST, LIN or FlexRay. More information about CANoe can be found on www.vector.com
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Control Unit Name Information
Environment Speedlimit
Engine Speed

Acceleration
State

Engine Information Milage
Maximum Speed

EEG Low Alpha
High Alpha
Beta
Gamma
Theta
Meditation
Excitement

Fuel Fuel Consumption
Optimal Fuel Consumption
Petrol Level

Gear Position
GPS Heading

Longitude
Latitude

Powertrain Brake
Engine speed
Throttle
Engine Power

Steering Steeringwheel Angle
Horn

Stress Monitor Stress
IBI
Accumulated Stress

Table 8.1: The information with their corresponding electronic control units that is
provided by the driving simulator in the simulation of the remaining bus

simulation allows to connect external applications or hardware control units to the

simulation of the remaining bus by using a hardware interface. As in the evalua-

tion the serial-bus system CAN was used, the CAN hardware interface was used to

connect the remaining bus simulation with the embedded computer. However, it is

also possible to use for example a FlexRay interface for connecting the embedded

computer with the remaining bus simulation, when the serial-bus system FlexRay is

simulated in CANoe.
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The embedded computer contains the applications that are developed to run on

the centre console of the car, like the developed prototype of the driving system.

Therefore, the embedded computer is connected to a touchscreen for showing the

graphical user interface of the application to the driver. Furthermore, the touch-

screen allows the driver to control the application using the touch capability of the

touchscreen. As the embedded computer is connected to the simulation of the re-

maining bus using the hardware CAN-interface, the application has the opportunity

to work with the data of the control units shown in Table 8.1 that are part of the

simulated CAN.

For example, the developed prototype of the driving system was running during

the evaluation on the embedded computer of the driving simulator, why the proto-

type first had to be connected to the interfaces of the driving simulator. This was

done by using the CAN interface provided within the embedded computer. The CAN

interface allowed the prototype of the driving system to gather the necessary infor-

mation from the virtual vehicle and the driver. Therefore, the interface module of

the prototype was modified to work with the provided hardware CAN interface of the

embedded computer. Furthermore, the simulated control units of the remaining bus

simulation, shown in Table 8.1, were registered in the interface module of the proto-

type. The registration allowed the interface module of the driving system to access

the information of the simulated control units by using the hardware CAN-interface

of the driving simulator.

8.2 Experimental set-up

The experimental set-up of the evaluation was created on the basis of hypotheses

that were defined using the research questions proposed in Section 1.2. However, the

evaluation was separated in two experimental set-ups, one set-up for each research

question. The separation of the evaluation allowed to limit the duration of a test

drive to a maximum of one hour per test person. This allowed to reduce the influence

of a bad driving behaviour to the results of the evaluation, as a long evaluation

period can cause inattention or disincentive and, thus, to a bad driving behaviour.

Furthermore, the separation allowed the verification or the refutation of the defined

hypotheses during the evaluation of the adaptive and rule-based driving system. Thus,
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(1) (2)

Figure 8.3: The routes of the evaluation on the highway (1) and the city (2)

the proposed research questions could be answered on the basis of the evaluation

results. The following hypotheses were created and used in the evaluation of the

driving system to answer the proposed research questions:

1. The driving system improves the driving behaviour in terms of energy-efficiency

and safety by giving driving recommendations on time, while considering the

driver condition and the individual driving behaviour.

2. The adaptiveness of the driving system increases the user acceptance of the

driving system.

The evaluation of the driving system was done in Germany using 42 test drivers.

Each test driver was attached with an ear and an EEG sensor to obtain the stress

level and the EEG. The first 20 test drivers were used to test hypothesis (1), whereas

22 test drivers were used for testing hypothesis (2). Each test driver had to drive

four journeys on the driving simulator. Two journeys on a highway and two journeys

within a city. Figure 8.3 shows the routes on the highway and within the city. The

highway is a circular route with four lanes, in which one lap is about 12 kilometres.

The test drivers had to drive 16 kilometres, however only the last 10 kilometres of

the journey were considered in the evaluation, as the drivers had to get familiar in

the first kilometres with the route and the driving system. In order to represent

a German highway, there are parts on the highway with no speed limit. However,

there are also parts on the highway with a speed limit of 70 km/h, 100 km/h, and
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120 km/h. Furthermore, there was traffic on the highway with cars that drive at a

maximum speed of 120 km/h on the left lane and 80 km/h on the right lane. In

the city, the drivers had to drive a defined circular route. One lap on the route

has a length of about 1.5 kilometres. In order to represent the roads in a Germany

city, the speed limits were set to 50 km/h. The test drivers had to drive about six

kilometres or four laps on the defined route. However, to get familiar with the route

and the driving simulator, only the last 4 kilometres of the city route were considered

in the evaluation. Besides a roundabout, the route consisted of five crossroads. Three

crossroads were using traffic lights to regulate the traffic at the crossroads. The traffic

cars on the route adhered the speed limit of 50 km/h, whereas most of the traffic cars

drove at 30 km/h.

During the evaluation of the hypotheses, the driving system showed recommen-

dations to the test drivers on the basis of the measured information from the car,

the driver and the environment. A recommendation to the test drivers were shown

when the driving system detected a deviation from the typical driving behaviour or a

broken driving rule. Due to the limited information gathered from the driving simu-

lator, the driving system considered only two aspects of the typical driving behaviour

that are the typical manner of driving and the typical stress level. Furthermore, the

driving system showed a recommendation to the test drivers when a broken driving

rule was detected. In the following the driving rules are listed that were considered

by the driving system to show a recommendation:

• Shift into a higher gear as soon as possible at the latest at 2500 revolutions

• Switch the engine off when it is planned to idle longer than a minute

• Do not exceed the speed limit

• Keep enough distance to the preceding car

8.2.1 Evaluating the first hypothesis

To test hypothesis (1) in the first part of the evaluation, metrics were defined on the

basis of the definition of energy-efficiency and safety. Energy-efficiency is defined in

Section 1.4.2 as the ratio of the travelled distance and the burned fuel, whereas safety

is defined in Section 1.5.2 as the ratio of travelled distance and the usage of the road
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without casualties. Thus, to test the hypothesis (1), the fuel consumption as well

as the mileage of the car and the occurred casualties were recorded during the four

journeys of the 20 test drivers. In the evaluation a casualty was defined as exceeding

the speed limit. The distance to car in front was not considered as a casualty in

the evaluation, although the driving system shows a recommendation to the driver

when the driver has not enough distance to the car in front. During the evaluation

an equal condition could not be guaranteed for the distance to the car in front, in

which the test drivers had the same amount of virtual cars in front. Thus, only the

fuel consumption as well as the mileage of the car and the time in which the speed

limit was exceeded were recorded during the evaluation.

Journey
Use 

driving system

Even subject 

number

Odd subject 

number

1 No Highway (16km) City (6km)

2 No City (6km) Highway (16km)

3 Yes Highway (16km) City (6km)

4 Yes City (6km) Highway (16km)

Table 8.2: The within-group design of the hypothesis (1) evaluation including the
Latin square that was used to order the routes

To measure an improvement of the driving behaviour in terms of energy-efficiency

or safety, the 20 test drivers had to drive without and with the driving system on the

highway and the city. Due to the limited resources of test drivers, the within-group

design [106] was chosen for the evaluation of hypothesis (1). Furthermore, the Latin

square was used to order the driving sequence of the routes. This allows to avoid the

influence of the journey order to the results, why the drivers had to start to drive

either on the highway or in the city based on their subject number. Table 8.2 shows

the within-group design of the hypothesis (1) evaluation including the Latin square

that was used to order the routes.

In the first two journeys the drivers had to drive without the driving system and,

thus, got no recommendations to improve the driving behaviour. This allowed to

determine the typical driving behaviour of the test drivers and to record the driving

behaviour without the influence of the driving system, as the driver may have driven

more efficient or safe when the driver had known the purpose of the evaluation.

Thus, at the beginning of the evaluation the drivers were not told the purpose of

the evaluation. Instead, they were told to drive in their usual manner. In the first
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Questionnaire 
 

Personal Information 

Age Sex How long do you hold a driving licence?   
 
_______________ 

 

☐m    ☐f 

 
_________________________________ 

  

 

Questions 

Do you drive regularly?  

Yes No  

☐ ☐  

If yes, how often? _____________________________________________________________________  
  

Please determine how often you are driving in which area (in %):  

City Highway Rural roads 

______ ______ ______ 
   

Have you heard about energy-efficient or eco driving?   

Yes No  

☐ ☐  

   

Have you been in a driver training with the focus on energy-efficient or eco driving?   

Yes No  

☐ ☐  

If yes, how often and how long (Days / Hours)?  

______________________________________________________________________________________  
  

Have you been in a driver training with the focus on safety? 
 

Yes No  

☐ ☐  

If yes, how often and how long (Days / Hours)?  

______________________________________________________________________________________  
  

How do you feel at the moment?  
Concentrated Stressed Relaxed Nervous tired  

☐ ☐ ☐ ☐ ☐  

How long do you sleep regularly? 
< 5  6 7 8 9 <  

☐ ☐ ☐ ☐ ☐  

 Figure 8.4: The first page of the questionnaire that was used in the evaluation of
hypothesis (1) to get information about the driver (cont.)
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Are you easy distractible? (0 easy concentrated – 4 easy distractible) 
0 1 2 3 4  

☐ ☐ ☐ ☐ ☐  

How often do you play video games? (0 not at all – 4 very often) 
0 1 2 3 4  

☐ ☐ ☐ ☐ ☐  

 

  1 2 3 4 5 6 7  n/a  

I like it to save fuel Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Totally 
agree 

☐  

I like it to increase the safety on the road Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Totally 
agree 

☐  

I would change my driving behaviour to save fuel Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Totally 
agree 

☐  

I would change my driving behaviour to increase 
the road safety 

Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Totally 
agree 

☐  

I would like to use a driving system that tries to 
improve my driving behaviour 

Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Totally 
agree 

☐  

 

 
Figure 8.4: The second page of the questionnaire that was used in the evaluation of
hypothesis (1) to get information about the driver

journey, the drivers with an even subject number drove 16 km on the highway and

6 km on the city route during the second journey. In contrast, the drivers with an

odd subject number drove first in the city and afterwards on the highway. After the

first two journeys the driving system was introduced to the drivers. If possible, the

test drivers should adhere the recommendations shown by the driving system during

the next journeys. In the third journey the drivers with the even subject number

drove on the highway and in the last journey within the city. In contrast, test drivers

with an odd subject number drove in the third journey in the city and then on the

highway. However, during the last two journeys, recommendations were shown to the

drivers by the driving system in order to improve their driving behaviour in terms of

energy-efficiency and safety. This allowed to record the fuel consumption of the car

and the mileage of the drivers when driving according to the recommendations.

At the end of the evaluation of hypothesis (1), a questionnaire was presented to

the drivers. As the questionnaire contained questions about energy-efficiency and

safety on the road and, thus, the driver may have driven more energy-efficient or

safer when the driver knew or sensed the purpose of the evaluation, the questionnaire

had to be at the end of the evaluation. This allowed not to influence the driving

behaviour during the first and second journey, in which the typical driving behaviour
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of the driver was measured. As the evaluation was done in Germany, the questions

of the questionnaire were in the German language. Figure 8.4 shows the translated

questionnaire that was used in the evaluation of hypothesis (1). The first questions

of the questionnaire allowed to get an overview of the age and the driving experience.

Furthermore, the questionnaire consisted of questions to obtain the information about

the state of the driver. For example, questions about the current feeling as well as the

sleeping period and the information about the distractibility. This allowed to measure

if the drivers felt for example stressed or sleepy after using the driving system. In order

to determine if the test drivers had experience with driving in simulated environments,

a question about playing video games was asked. Finally, to obtain information about

the stance on energy-efficient and safe driving as well as the stance of the drivers on

energy-efficient and safe driving systems, several questions were asked at the end of

the questionnaire with the focus on obtaining personal information about the drivers.

8.2.2 Evaluating the second hypothesis

In the second part of the evaluation, hypothesis (2) was tested, using a questionnaire.

For evaluating hypothesis (2) 22 test drivers drove 4 journeys. The test drivers drove

two journeys on the highway and two journeys on the city route. The routes of the

highway and the city were the same as in the first part of the evaluation. In contrast

to the evaluation of hypothesis (1), the test drivers were using the driving system in

every journey. However, instead of adhering the shown recommendations, the test

drivers had the opportunity to ignore the shown recommendations in the evaluation

of hypothesis (2). This allowed the driving system to adapt itself to the individual

driving behaviour on the basis of the ignored recommendations. Furthermore, the

energy-efficiency and safety of the journeys were not measured, as only the user

acceptance was for interest in the evaluation of the hypothesis (2).

The adaptive feature of the driving system was turned off in two journeys of the

driving system, whereas the adaptive feature was turned on in the second two journeys

of the evaluation. However, the 22 test drivers did not know when the adaptive feature

was turned on or off in order not to influence the result of the evaluation. Table 8.3

shows the evaluation plan of the hypothesis (2). Due to the limited resources of test

drivers, the within-group design [106] was chosen for the evaluation of hypothesis (2).

Furthermore, the Latin square was used to order the sequence of the routes and the

sequence of the usage of the driving systems adaptive feature. This allowed to avoid
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Even subject 

number

Odd subject 

number

1 No Yes Highway (16km) City (6km)

2 No Yes City (6km) Highway  (16km)

3 Yes No Highway (16km) City (6km)

4 Yes No City (6km) Highway  (16km)

Journey
Even subject 

number

 User Acceptance Survey

User Acceptance Survey

Adaptation
Odd subject 

number

Table 8.3: The driving rules with parameters and corresponding recommendations

the influence of the journey order and the order of the turned on adaptive feature.

Thus, the drivers had to start to drive either on the highway or in the city and with

or without the adaptive feature based on their subject number.

In the first two journeys, the test drivers with an even number had to drive without

the adaptive feature of the driving system. In this case, the driving system showed

recommendations to the driver when detected a broken driving rule without consider-

ing the driver condition or the driver reaction to an already shown recommendation.

First, the test drivers drove on the highway, that was followed by the city route. In

contrast, the test drivers with an odd subject number drove in the first two routes

with the adaptive feature turned on. Furthermore, they drove first within the city and

then on the highway. After the first two journeys, the test drivers had to fill out the

user acceptance questionnaire based on the experience with the driving system in the

first two journeys. After filling out the journey, the test drivers with an even subject

number started to drive first on the city route and then on the highway. Furthermore,

the adaptive feature was turned on for the test drivers with an even subject number.

For the test drivers with an odd subject number, the adaptive feature of the driving

system was turned off in the last two journeys. Furthermore, they started to drive

first within the city and then on the highway. After the last two journeys, the test

drivers had to fill out a second questionnaire on the basis of their experience with the

turned on or turned off adaptive feature of the driving system.

The questionnaire that was used for measuring the user acceptance of the driving

system was created on the basis of the Usefulness, Satisfaction, and Ease of Use

(USE) questionnaire of Lund [107]. The questions of the USE questionnaire are

categorised in usefulness, ease of use, ease of leaning and satisfaction. However, the
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USE questionnaire was modified by removing questions about the ease of use and

other questions that did not fit into the evaluation and by adding new questions. For

example questions were added to obtain information about the driver, which were

also used in the questionnaire for the evaluation of hypothesis (1), or questions about

the recommendation frequency. The following listing categorises the used questions

for analysing the user acceptance into the categories of the USE questionnaire:

Usefulness

• It helps me to drive energy-efficient

• It helps me to drive safe

• It is useful

• It is disturbing

• It meets my needs

• It does everything I would expect it to do

Ease of Use

• It is easy to use

• It is user friendly

• It is flexible

• The recommendations are easy to understand

• The frequency of the recommendations is acceptable

• Using it is effortless

• I can use it without written instructions

• I don’t notice inconsistencies as I use it

• Both, professional and regular users would like it
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Satisfaction

• I am satisfied with it

• I would recommend it to a friend

• It is fun to use

• It works the way I want it to work

• It is wonderful

• I feel, I need to have it

Figure 8.5 shows the modified USE questionnaire. The first part of the question-

naire contains questions about the driving experience, the age of the driver and the

stance on energy-efficient or safe driving. The questions about the personal informa-

tion had to be filled out by the test drivers only in the questionnaire after the first

two journeys. In contrast, the questions about the usefulness, satisfaction, ease of

use, ease of learning and the mental state had to be answered in the first and second

questionnaire, respectively after the second and the fourth journey. The test drivers

had also the opportunity to write down positive or negative aspects of the driving

system. Thus, The two surveys allowed to measure the user acceptance of the two

driving systems with the turned on or off adaptive feature.
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Proband: # 

1               12.12.2014 
 

Questionnaire 
 

Personal Information 

Age Sex How long do you hold a driving licence?   

_______________ ☐m    ☐f __________________________________   

 

Do you drive regularly?  

Yes No  

☐ ☐  

If yes, how often? _____________________________________________________________________  
  

Please determine how often you are driving in which area (in %):  

City Highway Rural roads 

______ ______ ______ 
   

How long do you sleep regularly? 
< 5  6 7 8 9 <  

☐ ☐ ☐ ☐ ☐  

Are you easy distractible? (0 easily concentrated– 4 easily distractible) 
0 1 2 3 4  

☐ ☐ ☐ ☐ ☐  

How often do you play racing games? (0 not at all – 4 very often) 
0 1 2 3 4  

☐ ☐ ☐ ☐ ☐  
 

Questions 

  1 2 3 4 5 6 7   n/a 

I like it to save fuel Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

I like it to increase the safety on the road Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

I would change my driving behaviour to 
increase the energy-efficiency 

Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

I would change my driving behaviour to 
increase the road safety 

Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

I would like to use a driving system that tries 
to improve my driving behaviour 

Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

           
Figure 8.5: The first page of the questionnaire was used in the evaluation of hypothesis
(2) to get information about the driver (cont.)
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Proband: # 

2               12.12.2014 
 

It helps me to drive energy efficient Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

It helps me to drive safe Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

It is useful Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

It is disturbing Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

It meets my needs Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

It does everything I would expect it to do Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

It is easy to use Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

It is user friendly Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

It is flexible Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

The recommendations are easy to 
understand 

Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

The frequency of the recommendations is 
acceptable 

Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

Using it is effortless Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

I can use it without written instructions Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

I don't notice any inconsistencies as I use it Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

Both, professional and regular users would 
like it 

Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

I am satisfied with it Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

I would recommend it to a friend Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

It is fun to use Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

It works the way I want it to work Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

It is wonderful Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

I feel, I need to have it Totally 
disagree 

☐ ☐ ☐ ☐ ☐ ☐ ☐ Total 
agree 

☐ 

How do you feel at the moment?  
Concentrated Stressed Relaxed Nervous Tired  

☐ ☐ ☐ ☐ ☐  
 

Figure 8.5: The second page of the questionnaire was used in the evaluation of hy-
pothesis (2) to measure the user acceptance of the adaptive and non-adaptive driving
systems
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Chapter 9

Results

The focus in the first part of the evaluation was on the energy-efficiency and safety of

the driving system. 20 test drivers drove four journeys, in which the energy-efficiency

and safety were measured during the journey. In the first two journeys the drivers

drove without the driving system. During the last two journeys the test drivers got

energy-efficiency and safety relevant recommendations by the driving system. At the

end of the four journeys, the drivers had to fill out a questionnaire that allowed to

get information about the driver.

The result of the questionnaire is presented in Table 9.1. It shows that the 20 test

drivers had an average age of 23.6. whereas 3 test drivers were female and 17 male.

In average, the test drivers hold the driving licence about 5 years and drove about 4

times a week with their car. The test drivers had the most driving experience in the

city (51.65 %), which is followed by the driving experience on rural roads (28.90 %)

and on the highway (19.40 %). The average test driver sleeps 6.85 hours. All test

drivers had heard about energy-efficiency driving, however none of the test drivers

attended to a driver training with the focus on energy-efficiency. In contrast, five

test drivers attended in average once for one day to a driver training with the focus

on safety. 4 test drivers felt concentrated after the journey, while 9 were relaxed and

10 tired. The question if the test drivers were easy distractible were answered in

average with 1.75 on a scale between 0 and 4, in which 0 is easy concentrated and 4

easy distractible. The average test driver played racing games in an average of 0.95

on a scale between 0, not at all, and 4, very often. In the last five questions, the

test drivers had to determine if they agree or disagree with a statement. A scale

between 1, totally disagree, and 7, totally agree, were used. The statement that the
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Questions Units

Age

Gender 3 17 male

How long do you hold a driving licence? (in years)

Do you drive regularly? (h / week)

Please determine how often you are

driving in the following areas
city (in %)

highway  (in %)

rural  (in %)

How long do you sleep regularly? (in hours)

Did you hear about energy-efficient driving? 20 yes / 0 no

Did you attend to a driver training with the focus 

on energy-efficiency?
0 yes / 20 no

Did you attend to a driver safety training? 5 yes / 15 no

- If yes, how often and how long?

How do you feel at the moment? concentrated

relaxed

tired

Are you easy distractible?

easy concentrated  - 

easy distractible

(0-4) 

How often do you play racing games? 
not at all - very often

(0-4)

I like it to save fuel 

totally disagree - 

totally agree

(1-7)

I like it to increase the safety on the road

totally disagree - 

totally agree

(1-7)

I would change my driving behaviour to increase the 

energy-efficiency

totally disagree - 

totally agree

(1-7)

I would change my driving behaviour to increase the 

road safety

totally disagree - 

totally agree

(1-7)

I would like to use a driving  system that tries to improve 

my driving behaviour

totally disagree - 

totally agree

(1-7)

5.60

6.15

4.55

female /

28.90

6.85

4.15

51.65

19.40

10

1.75

0.95

6.00

6.35

Overall Average

5.04

Once, for 1 day

4

9

23.60

Table 9.1: The results of the questionnaire used in the first part of the evaluation to
get information about the test drivers

test drivers liked to save fuel were answered with an average result of 6.00. The result

of the statement I like to increase the safety on the road was answered with 6.35 in

average. However, the test drivers tend to agree to the statement to change their

driving behaviour to increase the road safety in average with 5.60. The test
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Fuel 

consumption 
(litre)

Speed limit 

adherence

Fuel 

consumption 
(litre)

Speed limit 

adherence

Fuel 

consumption 
(litre)

Speed limit 

adherence

1 0.29 98.75% 0.31 99.18% 0.02 0.44%

2 0.29 97.87% 0.24 96.56% -0.04 -1.31%

3 0.33 95.87% 0.26 94.37% -0.07 -1.50%

4 0.56 95.49% 0.24 99.05% -0.32 3.56%

5 0.35 92.71% 0.33 95.27% -0.02 2.56%

6 0.41 95.78% 0.27 96.99% -0.14 1.21%

7 0.36 99.11% 0.39 97.77% 0.03 -1.34%

8 - - - - - -

9 0.42 95.96% 0.32 96.00% -0.10 0.04%

10 0.30 96.31% 0.23 95.40% -0.07 -0.91%

11 0.33 89.46% 0.30 88.10% -0.03 -1.36%

12 0.28 96.25% 0.25 99.45% -0.04 3.20%

13 0.52 96.12% 0.34 93.14% -0.18 -2.98%

14 0.26 90.10% 0.26 94.39% 0.00 4.29%

15 0.34 98.54% 0.28 96.84% -0.06 -1.69%

16 0.60 93.12% 0.43 93.20% -0.17 0.07%

17 0.27 99.56% 0.25 99.83% -0.02 0.27%

18 0.28 95.69% 0.24 98.74% -0.04 3.05%

19 - - - - - -

20 0.38 86.33% 0.29 92.40% -0.09 6.06%

21 0.34 96.95% 0.29 96.09% -0.05 -0.86%

22 0.37 92.37% 0.30 91.81% -0.07 -0.56%
Total 

Average
0.36 95.12% 0.29 95.73% -0.07 0.61%

For 100 km -1.80

User

With 

driving system

Without 

driving system

City (~4km)

Difference

Table 9.2: The results of the first part of the evaluation, in which hypothesis (1) was
evaluated on the city route

drivers would agree in average with 6.15 to the statement that they would change

the driving behaviour to increase the road safety. The statement that the test drivers

would like to use a driving system to improve their driving behaviour was answered

in average with 4.55.

The results of evaluating the effects of the driving system to the driving behaviour

in terms of energy-efficiency and safety are shown in Table 9.2 for the city route and

in Table 9.3 for the highway. During the evaluation the test drivers 8 and 19 had

to cancel the evaluation due to simulator sickness1. Thus, two more test drivers

attended in the first part of the evaluation in order to get 20 test drives. The result

1Simulator sickness is triggered by deceiving the sensory organs using virtual reality. The sickness
occurs often when there is a discrepancy between the visual information and the vestibular system.
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Figure 9.1: The fuel consumption of the test drivers on the 4 km city route
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Figure 9.2: The speed limit adherence of the test drivers on the 4 km city route

show that the 20 test drivers needed on the city route in average 0.36 litres for 4 km

and had a speed limit adherence of 95.12 % when not using the driving system. A

speed limit adherence of 100 % indicates the adherence of the speed limit during the

whole journey, whereas 0 % indicates an exceeding of the speed limit during the whole

journey. When using the driving system in the city, the test drivers needed about

0.29 litres fuel. Furthermore, the speed limit adherence increased slightly to 95.73 %.

Thus, a decrease of the fuel consumption by 0.07 litres for 4 km or 1.8 litres/100 km

and an increase of the speed limit adherence by 0.61 % were measured.
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Fuel 

consumption 
(litre)

Speed limit 

adherence

Fuel 

consumption 
(litre)

Speed limit 

adherence

Fuel 

consumption 
(litre)

Speed limit 

adherence

1 0.48 65.49% 0.42 92.76% -0.06 27.27%

2 0.52 75.85% 0.47 86.86% -0.06 11.01%

3 0.47 83.22% 0.43 84.34% -0.04 1.12%

4 0.64 82.46% 0.52 97.18% -0.13 14.72%

5 0.66 45.69% 0.47 69.82% -0.20 24.14%

6 0.61 45.22% 0.56 53.66% -0.05 8.45%

7 0.55 92.63% 0.49 96.40% -0.06 3.77%

8 - - - - - -

9 0.49 83.94% 0.46 91.17% -0.02 7.22%

10 0.48 47.45% 0.54 53.28% 0.05 5.83%

11 0.49 66.44% 0.44 76.43% -0.05 9.99%

12 0.52 84.01% 0.56 96.12% 0.04 12.11%

13 0.60 61.73% 0.49 88.30% -0.11 26.57%

14 0.42 62.27% 0.41 93.17% -0.01 30.90%

15 0.43 89.25% 0.38 82.14% -0.05 -7.11%

16 0.64 33.18% 0.61 42.50% -0.03 9.32%

17 0.49 86.29% 0.43 95.42% -0.06 9.13%

18 0.48 85.11% 0.54 96.42% 0.06 11.31%

19 - - - - - -

20 0.68 69.09% 0.54 86.31% -0.15 17.22%

21 0.65 44.10% 0.55 88.76% -0.10 44.66%

22 0.50 53.35% 0.47 65.75% -0.03 12.40%

Total 

Average
0.54 67.84% 0.49 81.84% -0.05 14.00%

For 100 km -0.52

Without 

driving system

With 

driving system

Highway (~10km)

Difference

User

Table 9.3: The results of the first part of the evaluation, in which hypothesis (1) was
evaluated on the highway

Figure 9.1 shows the fuel consumption of each test driver when using the driving

system and when not using the driving system. It can be seen that the majority of

test drivers needed less fuel when using the driving system. However, test driver 1

and 7 needed more fuel when using the driving system, while test driver 14 needed

the same amount of fuel on the 4 km city route. The adherence of the speed limit on

the city route is shown for each test driver in Figure 9.2. 7 test drivers adhered the

speed limit more often when using the driving system. 4 test drivers did not change

their driving behaviour when using the driving system and, thus, no difference were

measured in the adherence of the speed limit when using or not using the driving

system. However, 9 test drivers slightly worsen the speed limit adherence when using

the driving system on the city route.
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Figure 9.3: The fuel consumption of the test drivers on the 10 km highway
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Figure 9.4: The speed limit adherence of the test drivers on the 10 km highway

Table 9.3 shows the results of the first evaluation part on the highway. The average

fuel consumption of the 20 test drivers was 0.54 litres on the 10 km highway route

without using the driving system. The average speed limit adherence was about

67.84 % on the highway when the driving system was not used. After introducing

the driving system to the drivers, an average decrease of the fuel consumption by

0.05 litres for 10 km were detected. Thus, the test drivers burned 0.49 litres or
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4.9 litres/100 km fuel for driving 10 km on the highway. Furthermore, when the

driving system was used, the speed limit was adhered on the highway 81.84 % of the

driving time. This is an increase of the speed limit adherence of 14 %.

Figure 9.3 shows the fuel consumption on the highway for each driver. 17 out

of 20 test drivers reduced their fuel consumption when using the driving system. In

contrast, the fuel consumption increased for the test drivers 10, 12 and 18 when the

driving system was used. The adherence of the speed limit with and without the

driving system is illustrated for each driver in Figure 9.4. 19 test drivers increased

the adherence of the speed limit when the driving system was used. However, test

driver number 15 decreased the adherence of the speed limit in comparison to the

journey, in which the driving system was not used.

In the second part of the evaluation, it was tested if the adaptive feature of the

driving system increases the user acceptance of the driving system. Therefore, 22

test drivers drove four journeys. The user acceptance of the driving system was

measured using a modified USE questionnaire. In two journeys the adaptive feature

was turned off. After the two journeys the test drivers had to answer the questions

of the questionnaire. In the next two journeys the adaptive feature of the driving

system was turned on. Afterwards, the test drivers had to answer again the questions

of the questionnaire.

Table 9.4 shows the results of the questionnaire that was used to collected infor-

mation about the test drivers. One female and 21 male test drivers attended in the

second part of the evaluation. Furthermore, the test drivers were in average 26.55

years old and held their driving licence in average 8.27 years. The test drivers drove

about 6.23 times per week with their vehicle. Furthermore, they drove in average

45.45 % in the city, 21.23 % on the highway and 33.77 % on rural roads. The 22

test drivers slept in average 6.95 hours per night and tend to be easy concentrated,

as the average answer to the question if they are easy distractible was 1.55 on a scale

from 0, easy concentrated, to 4, easy distractible. The answer how often the test

drivers play video games was 1.27 on a scale from 0, not at all, to 4, very often. The

scales for the last five questions were from 1, totally disagree, to 7, totally agree.

The test drivers liked to save fuel with 5.95 and agreed to like the increasing of road

safety in average with 6.14. However, the test drivers agreed in average with 5.23 to

change their driving behaviour to increase energy-efficiency. In contrast, the average
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Questions Units Overall Average

Age 26.55

Gender 1 female / 21 male

How long do you hold a driving licence? (in years) 8.27

Do you drive regularly? (h / week) 6.23

Please determine how often you are

driving in the following areas
city (in %) 45.45

highway (in %) 21.23

rural (in %) 33.77

How long do you sleep regularly? (in hours) 6.95

Are you easy distractible?

easy concentrated  - 

easy distractible

(0-4) 

1.55

How often do you play racing games? 
not at all - very often

(0-4)
1.27

I like it to save fuel 
totally disagree - 

totally agree (1-7)
5.95

I like it to increase the safety on the road
totally disagree - 

totally agree (1-7)
6.14

I would change my driving behaviour to 

increase the energy-efficiency

totally disagree - 

totally agree (1-7)
5.23

I would change my driving behaviour to 

increase the road safety

totally disagree - 

totally agree (1-7)
5.55

I would like to use a driving  system that tries 

to improve my driving behaviour

totally disagree - 

totally agree (1-7)
4.50

Table 9.4: The results of the questionnaire used in the second part of the evaluation
to get information about the test drivers

acceptance of the test drivers to change the driving behaviour to increase the road

safety was 5.55. The test drivers would agree to use a driving system to improve their

driving behaviour in average with 4.5.

On the basis of the modified USE questionnaire the user acceptance of two the

versions of the driving system were measured. One version of the driving system

was with and one without the adaptive feature. The questionnaire used a scale for

measuring the user acceptance that was from 1, totally disagree, to 7, which meant

totally agree. Furthermore, the questions of the questionnaire were categorised to

measure the usefulness, ease of use and satisfaction of the driving systems.

150



Questions Units Adaptive Non-Adaptive

It helps me to drive energy 

efficient

totally disagree - totally 

agree (1-7)
4.91 4.55

It helps me to drive safe
totally disagree - totally 

agree (1-7)
4.55 4.05

It is useful
totally disagree - totally 

agree (1-7)
5.09 4.64

It is disturbing
totally disagree - totally 

agree (1-7)
4.00 5.00

It meets my needs
totally disagree - totally 

agree (1-7)
4.17 3.36

It does everything I would expect it to do
totally disagree - totally 

agree (1-7)
5.05 4.12

4.63 4.29

It is easy to use
totally disagree - totally 

agree (1-7)
6.42 6.08

It is user friendly
totally disagree - totally 

agree (1-7)
5.91 5.31

It is flexible
totally disagree - totally 

agree (1-7)
4.21 4.00

The recommendations are easy to 

understand

totally disagree - totally 

agree (1-7)
6.55 6.59

The frequency of the recommendations is 

acceptable

totally disagree - totally 

agree (1-7)
5.05 2.91

Using it is effortless
totally disagree - totally 

agree (1-7)
6.00 5.95

I can use it without written instructions
totally disagree - totally 

agree (1-7)
6.45 6.27

I don't notice any inconsistencies as I use it
totally disagree - totally 

agree (1-7)
4.95 4.77

Both professional and regular users would 

like it

totally disagree - totally 

agree (1-7)
4.37 3.75

5.55 5.07

I am satisfied with it
totally disagree - totally 

agree (1-7)
4.88 3.86

I would recommend it to a friend
totally disagree - totally 

agree (1-7)
4.59 3.64

It is fun to use
totally disagree - totally 

agree (1-7)
3.95 3.05

It works the way I want it to work
totally disagree - totally 

agree (1-7)
4.32 3.55

It is wonderful
totally disagree - totally 

agree (1-7)
3.35 2.60

I feel I need to have it
totally disagree - totally 

agree (1-7)
3.14 2.23

4.04 3.15Satisfacation

Ease of Use

Usefulness

Table 9.5: The results of the questionnaire used in the second part of the evaluation
to measure the user acceptance
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The results of the modified USE questionnaire are shown in Table 9.5. In terms

of usefulness, the adaptive driving system was doing better than the non-adaptive

driving system, as the average result of the adaptive driving system was 4.63 in

contrast to 4.29 of the non-adaptive driving system. In the sense of the test drivers,

the adaptive driving system helped the drivers to drive more energy-efficient and safe.

Furthermore, it was more useful and less disturbing than the driving system without

the adaptive feature. Finally, the adaptive driving system fitted the needs and the

expectations of the test drivers better than the non-adaptive driving system.

The result in the category ease of use showed that the adaptive driving system

(5.55) was rated in average better than the non-adaptive driving system (5.07). The

test drivers agreed that the adaptive driving system is easier to use, user friendlier and

more flexible than the driving system without the adaptive feature. In both driving

systems, the drivers understood the recommendation easily. However, the test drivers

disagreed with the recommendation frequency of the non-adaptive driving system. In

contrast, the test drivers agreed that the recommendation frequency of the adaptive

driving system was acceptable. The test drivers agreed that both driving systems

were effortless to use and can be used without written instructions. Furthermore,

the test drivers tended to notice slightly less inconsistencies during the usage of the

adaptive driving system than during the usage of the non-adaptive driving system.

In the sense of the test drivers professional and regular users would like the adaptive

driving system more than the driving system without the adaptive feature.

Finally, the test drivers were more satisfied by the adaptive driving system that

was rated in this category in average with 4.04, in contrast to 3.15 for the non-adaptive

driving system. In this category, the test drivers agreed with 4.88 to be satisfied

with the adaptive driving system. In contrast, the test drivers tend to disagree in

terms of satisfaction with 3.86 when thinking about the non-adaptive driving system.

Furthermore, the test drivers would recommend the adaptive driving system to a

friend instead of the non-adaptive driving system. In terms of fun to use, the non-

adaptive driving system was rated less than the adaptive driving system. For the test

drivers, the adaptive driving system worked better in the way they wanted it to work.

Furthermore, the test drivers seen the adaptive driving system more wonderful and

felt that they need to have it.
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Discussion

In the first part of the evaluation, the effect of the driving system on the energy-

efficiency and safety was measured on the city and highway route. Therefore, the fuel

consumption, the adherence of the speed limit and the duration of the journey was

captured. The metrics were used to validate the following hypothesis that was tested

in the evaluation of the energy-efficiency and safety:

• The driving system improves the driving behaviour in terms of energy-efficiency

and safety by giving driving recommendations on time, while considering the

driver condition and the individual driving behaviour.

Figure 10.1 compares the needed fuel of all test drivers on the city and highway

routes when using the driving system and when the driving system was not used.

During journeys of the test drivers in the city, the fuel consumption was in sum

about 19.44 % higher when the driving system was not used. Furthermore, the test

drivers needed in sum about 9.26 % more fuel on the highway route without the usage

of the driving system. However, the decrease of the fuel consumption was not as much

as on the city route, as the driving system showed only recommendations relating to

the driving rule to shift up as soon as possible and the test drivers drove without the

driving system already with the highest gear. Thus, the test drivers did not broke

the driving rule ”shift as soon as possible” on the highway as much as on the city

route. However, according to the results of the measured fuel consumption, it can be

seen that there is a tendency that the presented driving system is able to increase
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Figure 10.1: Comparison of fuel consumption of all drivers with and without the
usage of the driving system on the city (1) and the highway (2) route

the energy-efficiency in total by 14.35 %. An increase of the energy-efficiency of a

vehicle, when adhering the recommendations for energy-efficient driving, has been

also reported by van den Hoed et al. [26] and van Mierlo et al. [11].

Figure 10.2 shows the comparison of the speed limit adherence of all drivers on the

city and highway route when driving with and without the driving system. The test

drivers adhered the speed limit on the city route without using the driving system in

sum 0.61 % less than on the journey when the driving system was used. This was

due to the characteristics of the city route that forced the test drivers to drive slowly

within the city, why the test drivers were not able to driver faster than the speed limit

of 50 km/h. In contrast to the city route, the results of the speed limit adherence

differ significantly on the highway. The adherence of the different speed limits on

the highway was in sum 14 % higher when using the driving system, as the driving

system showed recommendations to the drivers when the test drivers exceeded the

speed limit. It can be seen that there is a tendency that the presented driving system

is able to increase the road safety in total by 7.31 %. An improvement of the driving

behaviour in terms of safety was also reported by Lotan and Toledo [17] during the

evaluation of their driving system.

The presented results of the energy-efficiency and safety evaluation show that the

driving system has an influence on the driving behaviour. Furthermore, the results

show that the driving system was able to improve the driving behaviour in terms of

energy-efficiency and safety by showing recommendations, while the driving system
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Figure 10.2: Comparison of speed limit adherence of all drivers with and without the
usage of the driving system on the city (1) and the highway (2) route

considered also the driver condition and the individual driving behaviours of the test

drivers. However, the energy-efficiency and safety could be increased more, when

considering more driving rules in the driving system, as only two energy-efficiency

and one safety relevant driving rules were considered in the evaluation. According to

the results, the hypothesis can be answered positively in this part of the evaluation,

as the driving system increased the energy-efficiency and safety while also considering

the driver condition and the individual driving behaviour. Thus, the driving system

had a positive influence to the driving behaviour of the test drivers. This was also

proven in the studies of van den Hoed et al. [26] and Lotan and Toledo [17].

In the second part of the evaluation, the USE questionnaire was used to measure

if the adaptive feature of the driving system has an influence on the acceptance of

the driving system. The USE questionnaire was separated in questions about the

usefulness, satisfaction and ease of use of the driving system. The questionnaire was

used to validate the following hypothesis that was tested in the evaluation of the user

acceptance:

• The adaptiveness of the driving system increases the user acceptance of the

driving system.
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Figure 10.3: Comparison of usefulness, ease of use and satisfaction of the driving
system with and without the adaptive feature

The results of the questionnaire are shown in Figure 10.3. It can be seen that

the test drivers answered the questions related to the usefulness of the driving sys-

tem about 7.34 % more positive when the adaptive feature of the driving system was

turned on. Furthermore, the positive answers about the ease of use increased about

8.65 % and the satisfaction of the driving system increased about 22.03 %, when the

test drivers used the adaptive driving system. Thus, it can be seen that the adaptive

feature of the driving system is able to increase the user acceptance. However, ac-

cording to the results of the questions about the satisfaction, the acceptance of the

driving system could be increased more by creating a more user friendly interface,

in which the recommendations are shown to the driver related to their importance.

For example, instead of presenting all recommendations to the driver using an audio

voice, some recommendations, like to shift the gear, could be presented by showing

a symbol. Additionally, gamification1 aspects, like setting incentives or using ratings

to indicate the energy-efficiency and safety, could be integrated in the driving system

in order to increase the user acceptance and the joy of use.

The presented results of the user acceptance evaluation show that the adaptive

feature of the driving system increased the usefulness, satisfaction and the ease of use

of the driving system. Thus, the acceptance of the driving system was higher when

the adaptive feature of the driving system was active. According to these findings, the

hypothesis that was used in the evaluation of the user acceptance can be confirmed,

as the adaptive feature of the driving system had a positive influence on the user

acceptance.

1Gamification is the usage of game mechanics in a non-gaming area to allow the increase of user’s
commitment to solve problem
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In the first part of the evaluation 17 male and 3 female test drivers were used,

who had an average age of 23.6 years. 21 male and 1 female with an average age of

26.55 years attended in the second part of the evaluation. Thus, the results of the

energy-efficiency, safety and user acceptance evaluation cannot be transferred to all

drivers, as the amount of test drivers were too less in each part of the evaluation and

did not provide a representation of the average driver. Nevertheless, the result of

the evaluation showed an improvement of the driving behaviour in terms of energy-

efficiency and safety as well as an increased user acceptance when the adaptive feature

of the driving system was used. Thus, it can be assumed, based on the validated

hypotheses, that the research questions introduced in Chapter 1.2 can be positively

answered.
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Chapter 11

Conclusions

This thesis was focused on the problem of a growing energy consumption through

vehicles and the high number of accidents with personal injury. One problem of

the growing energy consumption is the resulted higher output of CO2 gases that

facilitates the global warming. Furthermore, the society and politics got aware of the

finiteness of the oil, why saving energy became fundamental for them. Thus, several

laws were enacted for example by the European Union to reduce the greenhouse gases

and to save energy. Besides the growing energy consumption, the growing number of

vehicles on the road leaded also to more accidents and fatalities on the road. Most of

the accidents with personal injury were caused by driver mistakes.

Car manufacturers reacted to these facts by improving the car itself, like the car

body or engine, in terms of energy-efficiency and safety. However, besides the im-

provement of the car, there is also the possibility to decrease the fuel consumption

and to increase the road safety by adapting the driving behaviour to the given driving

situation. There are already several driving systems that try to improve the driving

behaviour in terms of either energy-efficiency or safety. However, these driving sys-

tems covers either the aspects of energy-efficiency or safety and do not consider the

individual driving behaviour or the driver condition.

In this thesis an adaptive and rule based driving system was developed that tries to

improve the driving behaviour in terms of energy-efficiency and safety, while consid-

ering also the driver condition, like the driver stress level, and the individual driving

behaviour. The detection of an inefficient and unsafe driving behaviour is done on the

basis of energy-efficiency and safety relevant driving rules and by using an improved



CHAPTER 11. CONCLUSIONS

rule matching algorithm that was developed in this thesis. Furthermore, the driving

system is adapted to the individual driving behaviour as well as to the driver condition

by using a decision tree. The decision tree was created on the basis of the definitions

when a recommendation should be shown and how to detect a driver reaction to a

shown recommendation. The adaptation to the driving behaviour and to the driver

condition allows the driving system to show recommendations in dependence of the

individual driving behaviour and the driver condition that can lead to an increase of

the user acceptance. The driving system tries also to predict the future car state by

using the autoregressive-moving average algorithm. This allows the driving system

to show a recommendation before the driver is driving energy-inefficient or unsafe.

Furthermore, the driving system shows a recommendation to the driver, besides the

energy-efficiency and safety relevant recommendations, when the current driving be-

haviour differs from the typical driving behaviour in order to avoid the drivers to

revert back to their old habits that caused the inefficient or unsafe driving behaviour.

The detection of the deviation from the typical driving behaviour is done using the

developed improved rule matching algorithm.

The developed driving system has been evaluated regarding the energy-efficiency

and safety. Furthermore, it has been evaluated if the adaptive feature of the driving

system increases the user acceptance of the driving system. The evaluation was done

on a driving simulator using a city and a highway route. 20 test drivers were used to

evaluate the energy-efficiency and safety, whereas 22 test drivers were used to evaluate

the user acceptance of the driving system in the categories usefulness, ease of use and

satisfaction.

The results of the evaluation showed that the energy-efficiency can be increased

in average by 14.35 % and the safety in average by 7.31 % when using the introduced

driving system. Furthermore, the user acceptance can be improved when the adaptive

feature of the driving system was used, as the usefulness was increased by 7.34 %,

the ease of use by 8.65 % and the satisfaction by 22.03 %. According to these results,

it can be assumed that the driving system improves the driving behaviour in terms

of energy-efficiency and safety. Furthermore, the results showed that the adaptive

feature of the driving system increases user acceptance of the driving system and,

thus, can lead to a steady usage of the driving system.
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Future work

The current developed prototype of the driving system considers only the driving rules

”shift as soon as possible”, ”turn off the engine, when it is planned to idle longer than

a minute”, ”don’t exceed the speed limit” and ”keep enough distance to the car in

front”. Thus, the future work of the driving system comprises the consideration of all

energy-efficiency and safety relevant driving rules that were presented in Chapter 2.

Furthermore, besides the driver stress level, further work concentrates also on the

consideration of the distraction level of the driver and other driver conditions like

fatigue and fitness to drive. Based on the consideration of all driving rules and driving

conditions, like distraction or fatigue, it has to be investigated if the consideration

all driving rules and driver conditions within the driving system cause a further

improvement of the driving behaviour in terms of energy-efficiency and safety.

The current evaluation of the driving system was done using 42 test drivers that

had an average age of 25.08 years and were mainly male. Thus, the results of the test

drivers are only valid for that group. However, to show a significance of the presented

findings and to validate the found tendency of an improved driving behaviour and

an increased user acceptance, an evaluation with a bigger set of test drivers will

be done. The test drivers for the future evaluation will be chosen to represent the

average driver. Additionally, a long-term evaluation of the driving system will be

done in order to investigate the long-term effects of the driving system on the driving

behaviour. The results of the long-term evaluation can be correlated for example with

the findings of Lotan and Toledo [17], who examined a return to the initial driving

behaviour after five months of using a driving system.
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Another part of the future work is the improvement of the graphical user interface

as well as the communication of the driving system with the driver. The usability of

the driving system in terms of user-friendliness and joy of use must be improved in

order to increase the acceptance of the driving system and, thus, to increase the du-

ration of using the driving system. Besides the improvement of the user-friendliness

and joy of use, future work comprises also the creation of a human machine inter-

face concept for the driving system that follows the recommendations for in-vehicle

information systems of the European Commission [108]. During the creation of the

concept, the improvement of presenting the recommendations must be considered,

as some drivers felt bothered by the driving system as it presented all recommen-

dations using an audio voice. Thus, the presentation of the recommendations must

be improved in order to present the recommendations in a noticeable way, however,

without distracting or bothering the driver.

Finally, the driving system has to be evaluated in a real environment in order to

validate the evaluation results of this thesis. However, before starting the evaluation in

a real environment, the driving system has to be prepared to be connected with a real

vehicle. Thus, the interfaces of the driving system have to be adapted to the available

serial-bus interface of the vehicle. Furthermore, also the vehicle has to be prepared by

adding missing sensors to the vehicle, like an ECG or EEG, that measure for example

the driver stress level or the driver distraction. On the basis of the preparations, the

evaluation of the driving system can be done in a real environment using test drivers

that represent the average driver.
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Publications

The following listing shows the papers that were published until 2016 on the basis of

the findings of this thesis.

• E. Yay, N. Martnez Madrid, J. A. Ortega Ramrez. Influence of stress in driving

behaviour, MEDICON 2016, Paphos, Cyprus, 2016.

• E. Yay, N. Martnez Madrid, J. A. Ortega Ramrez. Detecting the adherence of

driving rules in an energy-efficient, safe and adaptive driving system, Expert

Systems with Applications, Volume 47, Pages 58-70, ISSN 0957-4174, 2016.

• E. Yay, N. Martnez Madrid, J. A. Ortega Ramrez. Using an improved rule

match algorithm in an expert system to detect broken driving rules for an

energy-efficiency and safety relevant driving system, Procedia Computer Sci-

ence, Volume 35, Pages 127-136, ISSN 1877-0509, 2014.

• E. Yay, N. Martnez Madrid. An adaptive driving system regarding energy-

efficiency and safety, AITA - Workshop on Ambient Intelligence for Telemedicine

and Automotive domains, ISBN 978-84-697-0147-8, Seville, Spain, 2014.

• E. Yay, N. Martnez Madrid, J. Antonio Ortega Ramrez. Using an improved

rule match algorithm for the detection of broken driving rules in an energy-

efficient and safety relevant driving system, XVI Jornadas de ARCA, Qualitative

Systems and their Applications in Diagnosis, Robotics and Ambient Intelligence,

ISBN 978-84-606-6085-9, Cdiz, Spain, 2014.
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• E. Yay and N. Martnez Madrid. Considering driver stress to increase the user

acceptance while generating recommendations in an energy-efficiency and safety

relevant driving system, Workshop on Mobile Networks for Biometric Data

Analysis, ISBN 978-8-8875-4803-7, Ancona, Italy, 2014.

• E. Yay and N. Martnez Madrid. SEEDrive - An Adaptive and Rule Based

Driving System, The 9th International Conference on Intelligent Environments

- IE’13, ISBN 978-0-7695-5038-1, Athens, Greece, 2013.

• E. Yay and N. Martnez Madrid. SEEDrive - Using in-car serial-bus systems

for safe and energy efficient driving, Proceedings of the Eleventh Workshop on

Intelligent Solutions in Embedded Systems (WISES), ISBN 978-3-00-042899-9,

Plzen, Czech Republic, 2013.

• E. Yay and N. Martnez Madrid. An educational driving system towards energy-

efficient and safe driving behaviour, XV Jornadas de ARCA, Qualitative Sys-

tems and their Applications in Diagnosis, Robotics and Ambient Intelligence,

ISBN 978-84-616-7622-4, Murcia, Spain, 2013.

• E. Yay and N. Martnez Madrid. A new driving system towards energy-efficient

and safe driving behaviour, Proceedings of the Tenth Workshop on Intelligent

Solutions in Embedded Systems (WISES), ISBN 978-1-4673-2464-9, Klagenfurt,

Austria, 2012.
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[45] Vicente Milanés, Joshué Pérez, Jorge Godoy, and Enrique Onieva. A fuzzy aid

rear-end collision warning/avoidance system. Expert Systems with Applications,

39(10):”9097–9107, 2012.

[46] Hardeep Singh, J.S. Bhatia, and Jasbir Kaur. Eye tracking based driver fatigue

monitoring and warning system. 2010 India International Conference on Power

Electronics (IICPE), pages 1–6, 2011.

[47] Arun Sahayadhas, Kenneth Sundaraj, and Murugappan Murugappan. Eye

tracking based driver fatigue monitoring and warning system. Sensors,

12(12):1–6, 2012.

[48] Patrick Stahl, Birsen Donmez, and Greag Jamieson. Anticipation in Driving:

The Role of Experience in the Efficacy of Pre-event Conflict Cues. IEE Trans-

actions on Human-Machine Systems, 44(5):1673–1678, 2014.

[49] R. Ghandour, A. Victorino, M. Doumiati, and A. Charara. Tire/road friction

coefficient estimation applied to road safety. 18th Mediterranean Conference on

Control Automation (MED), pages 1485–1490, 2010.

[50] Rune Elvik, Alena Hoye, Truls Vaa, and Michael Sorensen. The Handbook of

Road Safety Measures - Second Edition. Emerald Group Publishing Limited,

2009.

[51] Harry Zhang and Matthew Smith. SAfety VEhicles using adaptive Interface

Technology - A Literature Review of Visual Distraction Research, 2004.

[52] European Commission - Mobility and Transport. Fitness to drive, 2014.

Available at http://ec.europa.eu/transport/road safety/topics/behaviour/fitness

to drive/index en.htm

Last visit 10.02.2015.

169



REFERENCES

[53] Michael Bohlander. Translation of the german criminal code, 2013.

Available at http://www.gesetze-im-internet.de/englisch stgb/german criminal

code.pdf

Last visit 02.02.2015.

[54] John K. Pollard, Eric D. Nadler, and Mary D. Stearns. Review of Technology

to Prevent Alcohol-Impaired Crashes, 2007.

[55] Eugen Mayer. Serial bus systems in the automobile - Part 1: Motivation,

advantages, tasks and architecture of serial bus systems in the automobile.

Elektronik Automotive, 7:70–73, 2006.

[56] BMW Technology Guide. Flex ray, 2011.

Available at http://www.bmw.com/com/en/insights/technology/technology gui

de/articles/flex ray.html

Last visit 12.02.2015.

[57] Konrad Reif. Bosch Autoelektrik und Autoelektronik - Bordnetze, Sensoren und

elektronie Systeme. Vieweg+Teubner Verlag / Springer Fachmedien Wiesbaden

GmbH, Wiesbaden, 2011.

[58] Ramzi Abou-Jaoude. ACC Radar Sensor Technology, Test Requirements, and

Test Solutions. IEEE Transactions on Intelligent Transportation Systems,

40(3):115–122, 2003.

[59] Eugen Mayer. Serielle Bussysteme - Teil 1: Architektur, Aufgaben und Vorteile.

Elektronik Automotive, 7:70–73, 2006.

[60] ITS International. Pioneering sensors collect weather data from moving

vehicles, 2011.

Available at http://www.itsinternational.com/sections/nafta/features/pioneerin

g-sensors-collect-weather-data-from-moving-vehicles/

Last visit 22.02.2015.

[61] Keiji Fujimura and Takashi Sakamoto. Road Surface Sensor. Fujitsu technical

journal, 1:64–72, 1988.

[62] Christopher Paul Urmson, Michael Steven Montemerlo, and Jiajun Zhu. De-

tecting road weather conditions, 2014. US Patent App. 13/623,397.

170



REFERENCES

[63] BMW Technology Guide. Speed Limit Info, 2012.

Available at http://www.bmw.com/com/en/insights/technology/technology gui

de/articles/speed limit info.html

Last visit 13.02.2015.

[64] Eugen Mayer. Serielle Bussysteme - Teil 1: Architektur, Aufgaben und Vorteile.

Elektronik Automotive, 7:70–73, 2006.

[65] Mohit Kumar, Matthias Weippert, Reinhard Vilbrandt, Steffi Kreuzfeld, and

Regina Stoll. Fuzzy Evaluation of Heart Rate Signals for Mental Stress Assess-

ment. IEEE Transactions on Fuzzy Systems, 15(5):791 – 808, 2007.

[66] Lizawati Salahuddin and Desok Kim. Detection of Acute Stress by Heart Rate

Variability Using a Prototype Mobile ECG Sensor. Proceedings of the 2006

International Conference on Hybrid Information Technology, 2:453–459, 2006.

[67] Jennifer Healey and Rosalind Picard. Detecting Stress During Real-World Driv-

ing Tasks Using Physiological Sensors. IEEE Transaction on Intelligent Trans-

portation Systems, 6(2):156–166, 2005.

[68] Sang-Joong Jung, Heung-Sub Shin, and Wan-Young Chung. Driver fatigue

and drowsiness monitoring system with embedded electrocardiogram sensor on

steering wheel. IET Intelligent Transport Systems, 8(11):43–50, 2014.

[69] G. Calcagnini, G. Biancalana, F. Giubilei, S. Strano, and S. Cerutti. Spec-

tral analysis of heart rate variability signal during sleep stages. Engineering

in Medicine and Biology Society, 1994. Engineering Advances: New Opportu-

nities for Biomedical Engineers. Proceedings of the 16th Annual International

Conference of the IEEE, 4:1252–1253, 1994.

[70] ITS International. ATTENTION ASSIST: Drowsiness-detection system warns

drivers to prevent them falling asleep momentarily, 2008.

Available at http://media.daimler.com/dcmedia/0-921-658892-1-1147698-1-0-

1-999999-0-1-0-854934-0-1-0-0-0-0-0.html

Last visit 16.02.2015.

[71] American Beverage Institute. Alcohol Detection Technologies: Present and

Future, 2009.

171



REFERENCES

[72] Robert Swift. Direct measurement of alcohol and its metabolites. Addiction,

98(2):73–80, 2003.

[73] Susan A. Ferguson, Abdullatif Zaouk, Neeraj Dalal ad Clair Strohl, Eric Traube,

and Robert Strassburger. Alcohol Detection Technologies: Present and Future.

Proceedings of the 22rd International Technical Conference on the Enhanced

Safety of Vehicles, pages 1–14, 2013.

[74] T.D. Ridder, S.P. Hendee, and C.D. Brown. Noninvasive Alcohol Testing

Using Diffuse Reflectance Near-Infrared Spectroscopy. Applied Spectroscopy,

59(2):181–189, 2005.

[75] TruTouch. Product information, 2014.

Available at http://tttinc.com/product/

Last visit 18.02.2015.

[76] USAToday. Toyota creating alcohol detection system, 2007.

Available at http://usatoday30.usatoday.com/tech/news/techinnovations/2007-

01-03-toyota-drunken-driving x.htm

Last visit 17.02.2015.

[77] Nissan. Drunk-driving prevention concept car, 2007.

Available at http://www.nissan-global.com/EN/TECHNOLOGY/OVERVIEW

/dpcc.html

Last visit 17.02.2015.

[78] Volvo. Volvo cars launches new alcoguard to help reduce the number of alcohol-

related road accidents, 2007.

Available at https://www.media.volvocars.com/global/en-gb/media/pressrelea

es/12151

Last visit 18.02.2015.

[79] T. Victor. A technical platform for driver inattention research, Volvo technical

misc for project NUTEK Dnr 1P21-99-4131, 2000.

[80] John Lee, Michelle Reyes, and Daniel McGehee. SAfety VEhicles using adaptive

Interface Technology (Task 5) - A Literature Review of Cognitive Distraction,

2004.

172



REFERENCES

[81] Lotfi A. Zadeh. The Role Of Fuzzy Logic In The Management Of Uncertainty

In Expert Systems. Fuzzy Sets and Systems, 11:199–227, 1983.

[82] Hans-Jürgen Zimmermann. Fuzzy Set Theory - and Its Applications, Fourth

Edition. Springer Seience+Business Media New York, 2001.

[83] William Siler and James J. Buckley. Fuzzy Expert Systems And Fuzzy Reason-

ing. Wiley Interscience, 2005.

[84] Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, 1994.

[85] Detlef Nauck, Rudolf Kruse, and Frank Klawonn. Neuronale Fuzzy Systeme.

Spektrum der Wissenschaften, Dossier: Kopf oder Computer, 4, 1997.

[86] Lotfi A. Zadeh. Fuzzy Sets. Information and Control, 8:338–353, 1965.

[87] Everette S. Gardner Jr. Exponential smoothing: The state of the art-part {II}.
International Journal of Forecasting, 22(4):637–666, 2006.

[88] Chris Chatfield, Anne B. Koehler, J. Keith Ord, and Ralph D. Snyder. A

new look at models for exponential smoothing. The Statistician, 50(2):147–159,

2001.

[89] Greg Welch and Gary Bishop. An Introduction to the Kalman Filter. SIG-

GRAPH 2001 course 8, 2001.

[90] Alex Pentland and Andrew Liu. Modelin and PredictThe Statisticianion of

Human Behaviour. Neural Computation, 11(1):229–242, 1999.

[91] Alexandre Costa, Antonio Crespo, Jorge Navarro, Gil Lizcano, Henrik Madsen,

and Everaldo Feitosa. A review on the young history of the wind power short-

term prediction. Renewable and Sustainable Energy Reviews, 12(6):1725–1744,

2008.

[92] Peter J. Brockwell and Richard A. Davis. Introduction to Time Series and

Forecasting, Second Edition. Springer, 2002.

[93] W. J. Dixon. BMDP Statistical Software Manual Volume 1. University of

California Press, 1992.

173



REFERENCES
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